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Abstract

We discuss the design, construction, and operation of a new intensity interferometer, based on the campus of
Southern Connecticut State University in New Haven, Connecticut. While this paper will focus on observations
taken with an original two-telescope configuration, the current instrumentation consists of three portable 0.6 m
Dobsonian telescopes with single-photon avalanche diode detectors located at the Newtonian focus of each
telescope. Photons detected at each station are time stamped and read out with timing correlators that can give
cross-correlations in timing to a precision of 48 ps. We detail our observations to date with the system, which has
now been successfully used at our university in 16 nights of observing. Components of the instrument were also
deployed on one occasion at Lowell Observatory, where the Perkins and Hall telescopes were made to function as
an intensity interferometer. We characterize the performance of the instrument in detail. In total, the observations
indicate the detection of a correlation peak at the level of 6.76σ when observing unresolved stars, and consistency
with partial or no detection when observing at a baseline sufficient to resolve the star. Using these measurements,
we conclude that the angular diameter of Arcturus is larger than 15 mas and that of Vega is between 0.8 and
17 mas. While the uncertainties are large at this point, both results are consistent with measures from amplitude-
based long baseline optical interferometers.

Unified Astronomy Thesaurus concepts: Astronomical instrumentation (799); Long baseline interferometers (931);
Field stars (2103); Stellar radii (1626)

1. Introduction

Intensity interferometry, first proposed by Hanbury Brown &

Twiss (1956, 1958), can be used as a method of extracting very

high resolution information of astrophysical sources based on

the super-Gaussian statistics of photons, also referred to as the

Hanbury Brown and Twiss (HBT) effect. They showed that

light recorded by two independent detectors at different

locations has a weak correlation in intensity if the object being

viewed was indistinguishable from a point source. In

astronomical terms, this implies that if the two detectors are

separated by a distance less than that needed to resolve a star,

then the intensity correlation should be observed. In contrast,

when the distance is increased to the point where the baseline

resolves the object, the correlation disappears. In between these

two limits, partial correlation can be observed that traces out

the profile of an Airy pattern, the width of which is inversely

proportional to the diameter of the star being observed.

Hanbury Brown and his collaborators were able to measure

the diameters of 32 stars from the site of their famous Narrabri

intensity interferometer (Hanbury Brown et al. 1974), which

represented the culmination of their intensity interferometry

efforts. Chronologically, this work sat between the seminal

interferometric studies of Michelson and Pease performed at

the Mount Wilson 2.5 m telescope (Michelson & Pease 1921;

Pease 1925) and the development and use of the Mark III

stellar interferometer in the 1980s and 1990s (Shao et al. 1988;
Hutter et al. 1989; Hummel et al. 1995). The latter paved the
way for the return to amplitude-based optical interferometry
and the rise of specialized facilities for long baseline optical
interferometry such as SUSI (Davis 1994; Tango 2003; Davis
et al. 2005), the Navy Precision Optical Interferometer
(Armstrong et al. 1998; Nordgren et al. 1999; Baines et al.
2018), the CHARA Array (ten Brummelaar et al. 2005;
McAlister et al. 2005; Schaefer et al. 2020), and the Magdalena
Ridge Optical Interferometer (Creech-Eakman et al.
2004, 2018, 2020).
Starting in the mid-2000s, however, a revival of intensity

interferometry has slowly taken shape. One of the principal
reasons for this is that ultrafast detectors with high quantum
efficiencies have become widely available. This allows for a
reexamination of the technique in a photon-counting context
with the advantage that increased speed creates the possibility
of higher signal-to-noise ratios (S/Ns) as detailed in Klein et al.
(2007). Those authors discuss the fact that the timing
capabilities of modern detectors and timing correlators can be
as much as a factor of 1000 higher than those of the
instrumentation used at Narrabri, which gives flexibility in
the design of a modern intensity interferometer. For example,
whereas the Narrabri instrument used two telescopes with
primary mirror diameters of 6.5 m to achieve a limiting
magnitude of approximately V= 2, the higher timing resolution
of modern detectors allows one to achieve the same limiting
magnitude with telescopes that are much smaller. Alternatively,
significantly fainter limiting magnitudes are now possible with
telescopes that are comparable in size to the Narrabri
instrument. Several groups have built new intensity inter-
ferometers and reported successful correlation measurements in
recent years, including Rivet et al. (2018, 2020), Acciari et al.

The Astronomical Journal, 163:92 (16pp), 2022 February https://doi.org/10.3847/1538-3881/ac43bb

© 2022. The American Astronomical Society. All rights reserved.

3
Adjunct Astronomer, Lowell Observatory.

Original content from this work may be used under the terms

of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.

1



(2020), Abeysekara et al. (2020), and Zampieri et al. (2021).
The intrinsic timing resolution of these instruments spans a
range from roughly 400 ps to 2.5 ns, and they use telescopes
with diameters of 1–17 m; in the case of larger telescopes
(Acciari et al. 2020; Abeysekara et al. 2020), these are so-called
“light-bucket” telescopes, which do not have high optical
resolution, and as a consequence, detectors with a larger active
area must be used to collect the light, generally photomultiplier
tubes. Thus, these instruments are much closer in design to the
Narrabri stellar interferometer of the 1970s. In contrast, the
employment of smaller (∼1 m class) telescopes (Rivet et al.
2018; Zampieri et al. 2021) has generally been coupled with the
use of ultrafast single-photon avalanche diode (SPAD)
detectors.

Over the past several years, our group has designed, built,
and operated a new intensity interferometer based mainly at the
campus of Southern Connecticut State University, but which is
modular enough to transport the photon detection instrumenta-
tion to other astronomical facilities (Horch & Camarata 2012;
Horch et al. 2016, 2018; Weiss et al. 2018; Klaucke et al.
2020). It belongs to the second category of intensity
interferometers just mentioned, in that it uses 0.6 m telescopes
and SPAD detectors. We describe in this paper the final
instrument design and construction, discuss the observations
taken to date both on our campus and at the Anderson Mesa
site at Lowell Observatory, and analyze the results obtained
with the data so far. While we are still improving the
instrument performance and the data-taking process, these
observations together indicate that the system is detecting
intensity correlations at the level predicted by theory. Our
instrument uses smaller telescopes than any of the other
intensity interferometers mentioned above, and its timing
precision is higher; thus, it pushes the technique into a regime
where it can be done with portable telescopes and at relatively
low cost. We use the correlations detected to make deductions
concerning the diameters of Vega (α Lyr, HR 7001) and
Arcturus (α Boo, HR 5340); while still uncertain, these
measurements are consistent with those made with the larger
Michelson-style optical interferometers.

2. Basic Theory

The details of optical detection depend on the properties of
photons, which follow Bose–Einstein statistics. As discussed
in, e.g., Mandel (1963), Hanbury Brown (1974), and Labeyrie
et al. (2006), if n photons are detected on average in a time
interval Δt, then the variance in the detection rate for a linearly
polarized input beam is given by

t
D = +

D
D

n n n
t
, 12 2( ) ( )

where Δτ represents the coherence timescale over which

intensity variations occur owing to Bose–Einstein fluctuations

and is related to the inverse of the frequency bandwidth of the

detected light. The presence of the second term on the right-

hand side of the equation indicates that over time intervals of

order Δτ or less there will be an increased probability of

photon detection, which represents the HBT effect and is

sometimes referred to as photon bunching. In most applica-

tions, however, Δτ is at least several orders of magnitude

smaller than Δt and the deviation from Poisson statistics is

negligible.

The possibility for using this effect in high-resolution
imaging in astronomy arises from the fact that the second-
order coherence function, which depends on the expression for
the variance above, is also related to the modulus square of the
complex visibility. The former is defined as
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where the brackets indicate a time average, I1 and I2 are the

irradiance values at two different detection points, r is a fixed

detection point in space, b is the baseline between r and a

second detection location, and t0 is the timing delay between

detections at the two stations. Defining the complex visibility

as V12, the relationship between g(2) and V12 in the case of

linearly polarized light can be written as
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For the case of unpolarized light, Mandel (1963) shows that,

because the second-order coherence function involves the

products of intensities and not field amplitudes, the expected

result for g(2) for unpolarized light modifies the last term in the

above by a factor of 1/2:
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Regardless of the polarization state of the detected light,

Equations (3) and (4) establish the fact that high-resolution

information about a source can be obtained by detecting the

irradiance at two locations without physically interfering the

two beams. For a photon-counting experiment, Equation ((2))

indicates that the data product needed to obtain g(2) (and

therefore |V12|
2
) is the normalized timing cross-correlation of

the photon data streams. However, in order to retrieve high-

quality data and determine the visibility, it is crucial to increase

the fraction Δτ/Δt as much as possible. This can be done by

decreasing the frequency bandwidth of the light by using an

extremely narrow bandpass filter (which increases the numera-

tor), or by increasing the electronic bandwidth of the detector

(which decreases the denominator), or both. Much of the recent

revival of intensity interferometry has been made possible by

detector developments that have enabled the second of these

options.
To estimate the S/N that is practically obtainable in the

unpolarized case, we follow Malvimat et al. (2014). In a given
timing interval Δt, there will be approximately Δt/Δτ
intervals of coherence. If the count rate per second is given
by r, then the number of counts detected per interval at each
telescope is given by n= rΔt. The total number of photon
correlations generated per timing interval is the square of this,
(rΔt)2, and each of these has a probability of Δτ/Δt of being
correlated owing to the HBT effect (with the remainder being
“random” correlations), yielding a signal of

t t
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On the other hand, the noise would be dominated by Poisson

statistics even at the detector speeds available today and given

by the square root of the number of random correlations
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obtained per interval, or in other words,

= DN r t. 6( )

Therefore, the S/N is given by

/
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Over a longer integration time, the result from each counting

interval would add in quadrature, so that in a total exposure

time of T the final S/N would be given by

/
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All of the quantities on the right-hand side of this equation are

direct observables except the coherence timeΔτ. However, this

is easily obtained from characteristics of the filter used to make

the observations. We calculate the frequency bandwidth from

filter properties as

n
l l l l
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where λ0 is the center wavelength of the observation and Δλ is

the FWHM of the filter transmission. While the coherence time

depends to a certain extent on the shape of the filter

transmission curve, it can be approximated as

t
n
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D
1
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Once Δτ is calculated for a given filter, the fraction of photons

correlated owing to the HBT effect is Δτ/(2Δt) in the

unpolarized case. For example, with a filter width of 3 nm and

center wavelength of 532 nm, Δτ≈ 0.31 ps; using a timing

resolution of 64 ps to record the data, the expected fraction of

correlated photons is then 0.0024. At a constant count rate of

1 MHz at each telescope (which, as we will show in Section 4,

we can generally obtain on the second-magnitude star Polaris

[α UMi]), a 5σ correlation peak above the noise (S/N= 5)

would be obtained when T≈ 19 hr of observing an unresolved

star (|V12|
2
= 1). Using a narrower filter would result in a larger

fraction of correlated photons but fewer photons detected in the

same proportion, so the S/N for a given observing time T

remains the same.

3. Instrument Description

The instrument we have constructed and used to date is a
two-station interferometer where, for on-campus observing, the
two telescopes may be easily moved to observe at a desired
baseline and orientation. The telescopes used are 0.6 m
Dobsonian telescopes made by Equatorial Platforms of Grass
Valley, California. Each has a focal length of 2 m, so that the
plate scale at the Newtonian focus is approximately 0 1 μm–1.
We have recently obtained a third identical telescope, and
future observations with the instrument will be made with all
three stations deployed.

An image of the main components and a block diagram of
the interferometer are shown in Figure 1. We place an SPAD
detector at the Newtonian focus of each telescope. Until 2019,
we used two Micro Photon Devices (MPD) PDM series SPADs
with a 50 μm diameter active area; given the plate scale
mentioned above, this maps to a 5″-diameter region on the sky.

Starting in 2019, we began using two 100 μm diameter PDM

series SPADs. We also have a 1× 8 SPAD array from the

Politecnico di Milano, Italy. A detailed description of the array

is given in Cammi et al. (2012); however, this device was only

used on one occasion for the observations described below.

Generally, the timing uncertainty of cross-correlations made

with any of these detectors is about 50 ps, and the dead time is

about ∼80 ns after each detected photon. This limits the count

rate that can be detected to less than about 10MHz, but for

astronomical purposes this is not a significant limitation since

the expected count rate will be below this limit for most stars

we wish to observe.
To mount the detector on the telescope, it is placed in a

harness made from a tube of PVC pipe. The tube is cut so that it

is in contact with the body of the detector and holds it from the

top and bottom. The arrangement is held in place with elastic

bands that create a pressure fit onto the back of the tube. Inside

the tube is an optical assembly consisting of a 35 mm focal

length acromatic lens, followed by a narrow bandpass filter,

followed by a second lens that is identical to the first. With the

front lens at the correct position in the focus tube of the

telescope, a collimated beam is created between the lenses, as

the light passes through the filter. Once reimaged by the second

lens, the light is focused on the detector with no change in plate

scale relative to the Newtonian focus. We currently have three

filters available for use with the setup that have specifications

shown in Table 1. No polarizers are used in the optical system.
Two timing correlators have been used with the instrument

so far to read out and record the events detected by the SPAD

detectors: a PicoHarp 300 and a HydraHarp 400, both made by

PicoQuant, Inc. The former has two input channels, whereas

the latter has eight. Both devices have a time-tagging mode,

where each photon event that is detected in any channel is time

stamped and the timing address and channel number are written

out in a 4-byte block. In this mode, the least significant bit of

the address corresponds to 4 ps in the case of the PicoHarp and

1 ps in the case of the HydraHarp. For the PicoHarp, the timing

addresses are the lower 28 bits of this address, and the upper

four bits encode the channel number, so that in a typical

observation for a single data file of tens or hundreds of seconds,

the timing address will roll over many times, roughly once per

0.8 ms. Each time the counter rolls over, an event is written

with a special code in the top 4 bits to indicate that a rollover

has occurred rather than a photon event. By keeping track of

the total number of rollovers that have occurred as the events

are subsequently processed, a unique timing can be associated

with each event even in a long observation. For the HydraHarp,

the upper six bits of the 4-byte data word are reserved for

encoding the channel number corresponding to the event and

special event markers; in this case, because the number of

timing bits is lower and yet the timing resolution is higher,

rollovers in timing occur roughly once per 30 μs. To minimize

the number of rollover markers written when count rates are

low, the rollover data word also contains the number of

rollovers since the last photon event.
Events are read out with a small desktop computer that is

placed on a table or a cart near the observing site. An

observation file is stored with a header that contains basic

instrument parameters, followed by the sequence of time

stamps for recorded events. A typical 5-minute file where the

count rate on each channel is 1 MHz results in a file that is
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approximately 2.5 GB in size; a typical observing session of 4
hr can therefore yield over 100 GB of data.

4. Expected System Performance

While optical path length requirements in intensity inter-
ferometry are not as stringent as in amplitude-base interfero-
metry, our instrument relies on photon counting with extremely
high timing resolution. Given this, coincidence of photon
arrivals can be affected at a level important for our data
reduction in three main ways: (1) electronic delay based on
detector response, propagation of the signals through cable, and
intrinsic timing differences between readout channels in the
timing correlators; (2) optical delay within each telescope
system; and (3) geometrical delays based on the location of the
star on the sky at the time of observation. We discuss each
aspect of the performance that we can expect from our
instrument below.

4.1. Electronic Considerations

Detector response is the primary factor that will influence the
detected correlation. Our detectors have measured FWHM
timing uncertainties of approximately 30 ps. This means that
two photons that are correlated are not generally detected as
coincident in time but could differ by tens of picoseconds in
terms of when the first detector pulse is created versus the
second. The correlation signal, which is a delta function in the
perfect case, is therefore smeared out in time. The timing
correlator then time stamps the pulses as they arrive, and when
the cross-correlation function is computed from the events
collected, the delta function is approximately recovered if the
timing interval Δt is chosen to match the width of the smeared
peak. In our case, because each detector has an FWHM of 30
ps, the cross-correlation width should be approximately

=30 2 42· ps in width, just from the detector timing
characteristics.
Two further contributions to this smearing arise from the

spreading of the pulse as it travels through the cable to the
timing module and from the intrinsic timing resolution of the
timing correlator itself (regardless of the precision of the timing
address). To measure these effects, we split the output cable
from a single detector into two lines and fed these into two
(independent) channels of the timing correlator in the
laboratory. We then exposed the detector assembly (the SPAD
detector and the fore-optics) to diffuse light and read out pulses
from both channels. In this case, the uncertainty in the detector
timing is eliminated because we correlate the same pulses, just
repeated in the two channels. In cross-correlating events from a
data file taken in this way, we find an FWHM of approximately
24 ps for the typical cable lengths that we use for on-campus
observing. On this basis, we conclude that the final intrinsic
limitation of the timing resolution of a cross-correlation

between channels is approximately + =42 24 482 2 ps for
our system.
Using the same experimental setup, we can also measure any

intrinsic timing offset between the readout channels, as well as
the timing delay associated with each cable. Figure 2(a) shows
sample results that we obtain when inserting three short extra
cable lengths into one of the two channels prior to taking data.
Repeated measurements indicate that cable delays are deter-
mined with a precision of approximately 6 ps. We also find that
small intrinsic offsets do exist between the channels of our
correlators, on the order of a few tens of picoseconds for the
two channels in the PicoHarp, and as much as ∼400 ps for
channels in the HydraHarp. Furthermore, these offsets appear
to drift over a period of months by 10–20 ps. To account for
this, we measured the offsets and cable delays three to four
times per year and applied the offsets obtained closest in time
to the observations being reduced.
We also used this experimental setup to check that our

software computing the cross-correlation function is working
properly. For reducing data from stars, the changing position of
the object across the sky implies that the delay between the two
channels also changes. Thus, one must correct for this effect in
software, even within a single data file containing a few
minutes of data. The lab measurements of course do not have
this effect, so that if we analyze the lab data as if the peak
position is changing, we should observe a smearing of the
correlation peak in the opposite direction. In Figure 2(b), we
show the result when assuming that the file has a± 1 ns shift in

Figure 1. (a) The instrument setup at the standard observing location on the SCSU campus. (b) A block diagram of the simpler two-telescope arrangement, which will
be the focus of this paper.

Table 1

Current SCSI Filter Optionsa

Manufacturer λ0 Δλ Max.

(nm) (FWHM, nm) Trans.

Edmund Optics 532 2.02–3.7 0.90

Edmund Optics 532 1.2 0.95

Newport Optics 633 1.0 0.30

Note.
a
All values are as stated by the filter vendors.
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the location of the peak during the exposure time. (A typical
expected shift for our observing sessions would be on the order
of 1 ns to a few nanoseconds, depending on baseline, sky
position, and the time spent on the target.) The (strongly
peaked) original cross-correlation function is then spread into a
top-hat function in the expected direction and with the correct
width.

Lastly, when the time stamps for photons in each channel are
to be cross-correlated, a coincidence requirement must be
established. In general, one would expect that the timing “bins”
would be chosen so that they have nearly the same width as the
expected cross-correlation response discussed just above of 48
ps. However, to verify this, we constructed a simulation
program that outputs data with effective time stamps as short as
1 ps, but with the combination of detector timing and electronic
jitter at the measured level. To do this, the cross-correlation
function is constructed directly with 1 ps timing bins as
follows. We select a mean number of random correlations per
bin and a fraction of correlated photons for the simulation. The
parent probability function for the cross-correlation is then a
constant function with value of the mean number of

correlations per picosecond plus a Gaussian function with
integral determined by the fraction of correlated photons and
with width given by the detector plus electronic jitter as
discussed above. We then select Poisson deviates from the
input values in each 1 ps timing bin in the parent distribution.
By rebinning the 1 ps precision cross-correlation to different,
coarser bin widths, we can investigate the effect on the S/N.
This simulates using different timing bin widths (coincidence
requirements) in the analysis. The results are shown in
Figure 3, where in the left panel the S/N obtained as a
function of timing bin width is shown for four different
simulations. In the right panel, we compare the level of S/N
observed as a fraction of the theoretical value input into the
simulation. At the peak value, the S/N calculated from the data
is 89% of the theoretical value, at a bin width of 64 ps. (It is not
100% of the value one would calculate from Equation (8)
because timing jitter sends some correlated photons into the
wings of the detector response, and thus they did not appear in
the timing bin of the expected peak location.) If a timing bin
above 64 ps is used to establish coincidence, then more signal
counts are included, but at the price of a higher number of

Figure 2. (a) Correlation plots for three different cable inserts placed into one channel. The signal from a single detector is split as described in the text, and then cable
inserts of 1, 2, and 3 feet are added to the Channel 1 cable run. (b) A test of the timing correction software by using a data file as in panel (a). There is no delay through
the file, but if we attempt a correction for a shift of the peak in either direction, the correlations are spread out in the opposite direction, as expected.

Figure 3. (a) S/N obtained in simulation results assuming a timing uncertainty of 30 ps for each detector and 20 ps uncertainty in the time stamp from the correlator.
These are shown as a function of the timing bin width used to correlate the data and span a wide range of count rates and total exposure times per night. (b) The same
data shown as a fraction of the theoretical S/N. Here the error bars are removed for clarity. In both plots, some of the symbols are offset slightly in the horizontal
direction to avoid overlap.
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random correlations. On the other hand, if a bin width less than
64 ps is used, more signal counts fall outside the criterion for
coincidence, also leading to a loss of S/N. For the data
described in this paper, a timing bin of 64 ps will be used in the
data reduction for all observations here.

4.2. Optical Considerations

Another factor that can reduce the degree of correlations
seen is a red leak or other out-of-band contributions to the light
that reaches the detector through the optical system. By using
standard incandescent, fluorescent, and LED light sources in
the laboratory, we have checked for any evidence of
measurable out-of-band light reaching the detectors through
the optical harness that includes the filter. Reflecting the light
off of a white, flat screen and covering the detector assembly in
black cloth except for the entrance pupil, we detect counts
through the optical harness, i.e., the detector assembly as it is
attached to the telescope. For the 633 nm and narrow 532 nm
filters, count rates obtained in the lab do not show evidence for
measurable out-of-band contributions; the ratio of counts
obtained is, after accounting for the difference in spectral
power generated by each lamp at the two different wave-
lengths, largely consistent with the known widths and peak
transmissions of the filters. On the other hand, the wider 532
nm filter has a larger-than-expected count rate when viewing
the incandescent source, suggesting that this filter has a red
leak. This implies that some percentage of the light we detect
from stars in this filter will be uncorrelated, even when viewing
an unresolved object, decreasing the correlated fraction of light
by the same percentage as the out-of-band light to the total
amount detected. By using standard (blackbody) emission
curves available for an incandescent source, we find we are
able to approximately match the observed count rate obtained
by including a red leak transmission model of perhaps 10%
transmission in the range of 750–1100 nm.

The stellar sources we observe have spectra that peak at
much bluer wavelengths than the standard incandescent
laboratory light source. If one assumes a red leak at this level
and computes the out-of-band fraction of light that would be
obtained for the spectral type of each star we have observed, we
find that the out-of-band contribution is at most a few percent.
The spectra found in the spectral library of Pickles (1998) were
used for this calculation. As a consequence, we will ignore this
effect at present. Nonetheless, the wider 532 nm filter is likely
to be useful to us, particularly on the fainter sources we wish to
observe, so we plan to more fully characterize the transmission
at all wavelengths in the future.

An effect that the optical design may have on the width of
the correlation peak is to create a spread due to optical path
length differences between paraxial and marginal rays in the
optical system. However, to first order the telescopes
themselves will not contribute to this because the figures of
their mirrors are such that they give good image quality at the
Newtonian focus. A marginal ray will reflect off of the primary
mirror first for a plane wave input beam, but it travels a longer
distance to reach the focal point, largely canceling the initial
timing difference from the point of reflection. The optical
harness in front of the detector includes two lenses, and one
may roughly estimate the maximum possible optical path
difference from the telescope focus to the detector focus using a
thin lens approximation. A paraxial ray would travel up to the
first lens along the optical axis, while a marginal ray will travel

the hypotenuse of the triangle whose legs are the focal length of
the lens (35 mm) and the radius of the lens (12.5 mm), a
difference in distance of 2.2 mm. Because the second lens
reimages the light onto the detector with the same focal length,
the optical path difference estimate is simply the double of this,
namely, ∼4.4 mm. In time, this difference amounts to a
maximum delay of 14 ps in terms of the arrival time of the
photons. Averaging over all rays uniformly distributed in the
collimated beam of a circular aperture, the result would be 7.5
ps with a standard deviation of 4.3 ps. Thus, we will ignore this
spread in the work presented later in this paper.

4.3. Geometrical Timing Delay and Telescope Placement

We define the geometrical timing delay as the timing
difference between when a photon would reach the input pupil
on Telescope 1 and when it would reach Telescope 2. This
delay is therefore equivalent to the path length difference
between the two telescopes starting from the same wave front
above the telescope apertures, divided by the speed of light. If
the star being observed is overhead or on the Great Circle that
passes through the zenith and is perpendicular to the orientation
of the baseline, then this timing delay would be zero, but
depending on the position of the object on the sky, there can be
a substantial difference in arrival times between correlated
photons, especially given our level of timing precision. The
consequence of this is that, during data taking, the position of
the correlation peak in the cross-correlation will shift as the
star’s diurnal motion across the sky proceeds. As discussed by
Dyck (2000), the timing delay, Δ, may be calculated as
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where (bE, bN, bZ) are the (right-handed) components of the

baseline vector b in the directions of east, north, and toward the

zenith; δ is the decl. of the star; h is the hour angle of the

observation; and f is the latitude of the observing site. For

other groups performing intensity interferometry observations,

the positions of the telescopes are either fixed or repeatable and

well-known. One of the challenges with the instrumentation

and observing site that we have is that the telescopes are

brought from a storage location to the observing site for each

observing session, and so the placement of the telescopes is

slightly different from night to night. The above formula allows

us to characterize the importance of the telescope alignment in

the context of our timing precision. In particular, it is easy to

show using Equation (11) that a change of only a few

millimeters in any of the three baseline components can affect

Δ by 50 ps or more, depending on the sky position of the star.

This is of importance because it is comparable to the width of

the cross-correlation peak we seek to observe.
Determining the separation between telescopes is a relatively

straightforward procedure of measuring from a fixed point on
one telescope and moving to the same point on the other using
a retractable metal tape measure. Typically, two observers
measure the separation independently, and both measures are
recorded. By studying the differences in separation obtained on
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a number of nights, we find that we have a precision of
approximately 1 mm in this parameter for a given placement of
the telescopes. Likewise, the pavement on which we place the
telescopes for our observing has been studied for height
differences, and these have been characterized. The height
difference is established using a spirit level and placing it in a
sequence of adjacent positions along the north–south line that
we use to align the telescopes. At each position, a digital image
of the position of the bubble inside the level is recorded. These
are then compared with images taken in the lab of the spirit
level when one end is elevated above the other by a known
height. In this way, we can establish the slope of the pavement
at each position along the north–south line and derive the
height of the pavement at each position relative to the starting
point. We have also repeated this measurement three times over
a period of approximately 2 yr and obtained the same results
each time within 1 mm. Thus, for a north–south baseline, both
bN and bZ can generally be known at a level where the
uncertainty contributes a shift of ∼10 ps or less to the expected
location of the cross-correlation peak in the data.

However, given our observing site, measuring the angle
made with north by the telescope baseline each night is a more
difficult task. We have identified the direction to north on the
pavement using a plumb bob and marking its shadow at solar
noon, but the painted markings are about 2 cm wide. When the
telescopes are placed, we must sight down along the telescope
base to determine the alignment with the paint mark. We
estimate that this can typically be done only to within several
millimeters at present. In this arrangement, we therefore have a
much larger uncertainty in bE than in the other two components
of the baseline.

To study this effect further, we first plot the expected timing
difference for a typical observing sequence as a function of the
baseline azimuth in Figure 4(a). We use the decl. of Vega and
the latitude of New Haven, and we show the timing delay (Δ

from Equation (11)) obtained for three different hour angles.
(This range in hour angle is comparable to the observing
sequence of Vega on 2020 August 19 that will be discussed in
the next section, and that observing sequence is illustrated in
the plot.) In Figure 4(b), we show the relative timing
difference, if the timing delay were to be corrected based on

the assumption of a north–south baseline. At a 0° baseline
azimuth, the relative delay is always zero, as the timing shifts
used throughout the sequence are always correct, but if the
baseline azimuth differs from zero, we see that there is a shift in
the final location of the peak, which is more severe at higher
hour angles. The effect of this in the final cross-correlation
function computed from the timing data of the entire observing
sequence is twofold: first, there is an average shift of the cross-
correlation peak away from the expected location, and second,
the peak is spread out because of the variation in the shift as the
hour angle changes.
Next, we constructed a simulation of the data-taking process

that inputs a baseline azimuth offset and outputs a collection of
25 individual cross-correlations, assumed to be taken over 2 hr,
building in a timing shift throughout that is based on the path of
Vega across the sky during that time. We then compute the
cross-correlation plot for the entire simulated data set,
correcting for Δ. In Figures 5(a) and (b), we show two
examples of final cross-correlations obtained in this way, for an
input baseline azimuth of 0°.5 and a count rate of 1 MHz. For
panel (a) the timing delays used to correct the data assume a
baseline azimuth of 0°, while in panel (b) the shifts assume a
baseline azimuth of 0°.44. We see that, since the first case uses
shifts based on an azimuth that is 0°.5 away from the true input
angle, the peak appears shifted and spread out. On the other
hand, when a value close to the actual azimuth is used to
determine the timing corrections, the peak is narrower and
appears at the predicted location. We can then vary the baseline
azimuth through a range of− 1°.5 to +1°.5, recomputing the
final cross-correlation in each case. Figure 5(c) plots the S/N of
these final cross-correlation peaks as a function of baseline
azimuth. The original input azimuth is marked (in green), and it
can be seen that a broad peak in S/N occurs in this vicinity as
more correlation counts are placed at the expected peak
location when applying timing shifts generated from those
azimuth values. We constructed a routine to estimate the
location of this peak from a smoothed version of the S/N
curve, and the location of that is also shown in the graph (in
red). While typical results show that the input azimuth and the
recovered value can differ by up to 0°.1–0°.2 given the expected
S/Ns per night, the “tuning” of the azimuth value in software

Figure 4. (a) The timing delay given by Equation (11)) in the case of Vega, observed from New Haven, as a function of the baseline azimuth. Curves are drawn at
three different hour angles, 2, 3, and 4 hr, as indicated by the blue solid curve, green dotted curve, and red dashed curve, respectively. The black vertical line indicates
the hour angle range during our actual 2020 August 19 observation of Vega as an example, with the starting point indicated with the cross and the end point indicated
with the filled circle. (b) The relative timing delay, if a north–south baseline is assumed and the timing corrections indicated along the black vertical line are applied for
the entire observing sequence, as a function of baseline azimuth. Curves for the same three hour angles are shown, where again the blue solid curve represents an hour
angle of 2 hr, the green dotted curve represents 3 hr, and the red dashed curve represents 4 hr.
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can nonetheless help recover S/N that is lost if the assumption
of a 0° azimuth is made. In panel (d) of the figure, we show the
results of four samples of simulations (simulation families)
done at two different count rates, where measuring the azimuth
from the data results in an S/N that is consistent with
expectations, once the data are binned in 64 ps increments,
whereas if a north–south baseline is assumed, some S/N is lost.

5. Observations

In this paper, we discuss observations obtained on 16 nights
on campus at SCSU and three nights where the timing
correlator and detectors were taken to Anderson Mesa in
Arizona and used with the 1.0 m Hall Telescope and 1.8 m
Perkins Telescope at Lowell Observatory.

5.1. On-campus Observations

The observations taken on campus have been obtained over a
period of nearly 5 yr, with the observing site being a relatively
secluded area of blacktop near one of our science buildings. A
listing of the observations at SCSU is given in Table 2. We
have so far only observed with a north–south arrangement of
the telescopes, and to place these telescopes, we align them

with paint markings that were made for that purpose as
described in the previous section. Data were taken on several
other nights that are not in Table 2, but on these occasions,
either we did not collect enough data to warrant inclusion, or,
on two occasions, the electronics exhibited noise that was
uncharacteristic of the system and that led to strong systematic
signatures in the cross-correlation function.
A typical observing sequence consists of placing the

telescopes and making the baseline measurements needed for
the reductions, checking the collimation of each telescope with
a laser collimator, and then sighting on two stars with an
eyepiece so that the control units on each telescope can begin
tracking the diurnal motion. With the telescopes tracking, we
move to the star to be observed and check the placement of the
star in the eyepiece to make sure it is coincident with the center
of the finder. We then replace the eyepiece with the SPAD
detector and optical harness and attempt to place the star image
on the detector by guiding the telescopes manually. This is
done simply by trying to maximize the count rate. Positions of
good focus were determined early on in our work with the
system, and so the detectors are set at the location of good
focus as we mount them, but to further maximize count rates
once on the target, we would slightly adjust the focus as

Figure 5. (a) Simulation using the hour angle variation of Vega for 2020 August 19 and computing the final, corrected cross-correlation plot assuming a north–south
baseline. The S/N here in the expected peak location is 0.80, and the input baseline azimuth was 0°. 5. (b) The same data as in panel (a), but with timing corrections
made assuming a baseline azimuth of 0°. 44. Here the S/N is 2.12. (c) The S/N obtained for the simulation as a function of baseline azimuth. (d) Total S/Ns obtained
for the samples created from the summation of 10 simulations in each case. Black circles indicate 89% of the theoretical correlation (i.e., what we would expect to
recover using a timing bin of 64 ps given the result in Figure 3), the red squares indicate the results of the summations if the input angles are not estimated and
corrected, and the green diamonds indicate the result of measuring the input angle as in panel (c) and then co-adding. This process returns the S/N to the level
expected.
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needed. Generally, we begin data taking when a count rate of
1 MHz or higher was seen on each channel, and we collect data
in 5-minute intervals. Because our telescopes have no
autoguiders at this stage, it is necessary to manually guide
using the telescope hand paddle throughout the observation
sequence. As with many alt-az telescopes, our telescopes track
poorly near the zenith. Typically, at an altitude of 85° or
higher, manual guiding becomes difficult, and one must wait
for the star to pass through the meridian to continue observing.

We first discuss the count rates achieved for the on-campus
setup. Figure 6 shows two typical examples of the instanta-
neous count rates detected, the first for Vega and the second for
Polaris. Both observations use the wider 532 nm filter. It is seen
here that, although Vega is brighter than Polaris by
approximately 2 mag, the average count rates for the two
observations are comparable. This is due to the fact that the
SPAD detectors and the timing correlator have relatively low
maximum count rates that can be read out. For the detector, the

Table 2

SCSU Observing Summary

Object Bayer HR HD Date Tel. Sep.a Filter Northern Total Observing

Desig. (UT) (m) (λ0/Δλ, nm) Configuration Time (hr)

Altair α Aql 7557 187642 2016 Aug 09 3.01 532/3 Tel 2, +1ft, Ch 1 0.61

Arcturus α Boo 5340 124897 2017 Jun 04 2.099 532/3 Tel 2, Ch 1 0.34

Arcturus α Boo 5340 124897 2021 Jun 07 2.497 532/1.2 Tel 2, Ch 1 1.10

Arcturus α Boo 5340 124897 2021 Jun 18 2.488 532/1.2 Tel 2, Ch 7b 1.33

Arcturus α Boo 5340 124897 2021 Aug 07 2.488 532/1.2 Tel 2, Ch 7b 0.58

Deneb α Cyg 7924 197345 2020 Aug 19 2.513 532/3 Tel 2, Ch 0 0.58

Deneb α Cyg 7924 197345 2020 Aug 25 2.497 532/3 Tel 2, Ch 0 1.24

Deneb α Cyg 7924 197345 2020 Aug 26 2.493 532/3 Tel 2, Ch 0 1.54

Deneb α Cyg 7924 197345 2021 Jun 07 2.497 532/1.2 Tel 2, +1ft, Ch 1 0.67

Polaris α UMi 424 8890 2020 Sep 12 9.167 532/3 Tel 2, Ch 0 2.17

Vega α Lyr 7001 172167 2016 Jun 23 3.05 532/3 Tel 1, +1ft, Ch 1 0.50

Vega α Lyr 7001 172167 2016 Jul 27 2.31 532/3 Tel 2, +1ft, Ch 1 0.51

Vega α Lyr 7001 172167 2016 Sep 14 2.98 532/3 Tel 2, −1ft, Ch 0 0.73

Vega α Lyr 7001 172167 2017 Jun 04 2.099 532/3 Tel 2, +1ft, Ch 1d 2.91

Vega α Lyr 7001 172167 2017 Jun 21 2.331 532/3 Tel 2, Ch 1 1.93

Vega α Lyr 7001 172167 2017 Aug 09 2.532 532/3 Tel 2, Ch 1 1.39

Vega α Lyr 7001 172167 2018 May 30 2.502 532/3 Tel 2, +2ft, Ch 7b 0.65

Vega α Lyr 7001 172167 2020 Aug 19 2.513 532/3 Tel 2, +1ft, Ch 1c 2.08

Vega α Lyr 7001 172167 2020 Aug 25 2.497 532/3 Tel 2, +1ft, Ch 1 1.24

Vega α Lyr 7001 172167 2020 Aug 26 2.493 532/3 Tel 2, +1ft, Ch 1 1.82

Vega α Lyr 7001 172167 2020 Sep 24 2.496 633/1 Tel 2, +1ft, Ch 1 3.70

Vega α Lyr 7001 172167 2021 Jun 07 2.497 532/1.2 Tel 2, +1ft, Ch 1 2.09

Vega α Lyr 7001 172167 2021 Jun 18 2.488 532/1.2 Tel 2, Ch 7b 1.83

Vega α Lyr 7001 172167 2021 Aug 07 2.488 532/1.2 Tel 2, Ch 7b 3.00

Notes.
a
All observations taken with an N–S orientation between the telescopes.

b
The eight-channel HydraHarp timing module was used on this night.

c
Files 0–3 had the 1-foot cable on Channel 0 (Tel 1).

d
Files 0–5 had no 1-foot cable on Channel 1 (Tel 2).

Figure 6. Instantaneous count rates observed for two stars using the wider 532 nm filter: (a) Vega, on 2020 August 19, and (b) Polaris, observed on 2020 September
12. Blue curves represent the count rate in Channel 0 of the correlator, and red curves show the result for Channel 1.
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cause of this is the relatively long dead time. However, when
reading out in time tag mode, the timing correlator also has a
limitation in how fast it can write events. Events are stored in a
first-in-first-out (FIFO) buffer as they are transferred to the host
computer, and if a large burst of events occurs in a short
amount of time, then the FIFO buffer can be overfilled. This
causes data taking to stop. There is a good chance of an FIFO
overrun in a file if the average count rate exceeds approxi-
mately 2MHz, and so, even on bright objects, the count rate
was kept below this value to prevent having to restart files
often. (This was done by defocusing and/or moving the star
slightly off the center position relative to the detector active
area.) In the most recent data taken (in 2021), we have been
able to upgrade our host computer, and it handles data faster.
Thus, moving forward, we expect to be able to increase our
average count rates accordingly. However, at present, we see
that count rates in excess of 1 MHz can be obtained on second-
magnitude stars with Southern Connecticut Stellar Interferom-
eter (SCSI).

A second point can be made using the count rates shown in
Figure 6. For the observation of Vega, the star was rising
toward the zenith, and we can see that the telescopes do not
track well enough to keep the star on the detector throughout
the file. If we compare the average count rate that we obtain in
a file versus the maximum instantaneous rate, there is as much
as a factor of two difference. In contrast, with Polaris, we see
that the count rates are much more consistent, due to the fact
that the star is nearly fixed on the sky, hence the tracking errors
develop more slowly over time and it is easier to stay on the
target. This indicates that a significant increase in average count
rate is possible once better tracking can be made routine.

Figure 7 shows aggregate results for count rates obtained for
targets observed on 6 of the 15 nights listed in Table 2. We
compare the values recorded with an estimate of the number of
photons that should reach the detectors, given the source
brightness, telescope aperture size, optical efficiency (including
filter width, optical transmission, and atmospheric transmis-
sion), and detector quantum efficiency. In each of the six
graphs, the expected maximum count rate is shown as the solid
black curve. This changes over the course of the night because
we incorporate into our calculations the decrease in count rate
expected at higher zenith angles. We then fit our count rate data
to a similar curve and derive an overall efficiency estimate for
each observation. Typical efficiencies at present are in the 20%
range, with some variation due to the effects discussed above.

5.2. Lowell Observations

Observations at Lowell Observatory occurred on three
nights, 2015 June 6–8. The observing procedure was largely
the same as described above except that, because the telescopes
at Lowell are fixed, the baseline did not change from night to
night. The observations at Lowell were also at a much larger
separation than we have used in the case of the campus
telescopes so far. We used the Hall 1.0 m and Perkins 1.8 m
telescopes to form the interferometer in this case, which are
separated by 53 m on the Anderson Mesa site. The telescope
positions are well-known, so the issue of placement and its
effect on the timing precision is removed. Likewise, telescope
pointing and tracking were much less of an issue at Lowell.
Detector mounts were constructed for the SPADs for each
telescope, but these did not include the two achromats; thus, the
filter was not in the collimated beam, leading to a lack of good

focus at the detector. Nonetheless, the apertures were large
enough to generate count rates for Vega that were comparable
to what we achieve with our campus telescopes, roughly
1MHz per channel. Over the three nights, we obtained about 5
hr of data on Vega in the wider 532 nm filter. The correlator
was placed between the two domes, and approximately 50 m of
cable was stretched from that location to reach the SPAD
attached to each telescope.

6. Analysis of the Data

6.1. Data Reduction

To measure the significance of a correlation peak, one would
like to determine the total number of correlated events and to
compare that with the standard deviation of the number of
random correlations detected in the same time interval. There
are multiple ways that this might be done, but our approach so
far has been to use a binning interval of 64 ps to retain as much
signal as possible while keeping the data processing simple and
straightforward. In the future, we hope to continue to improve
our reduction tools.
Specifically, we start with a given data file containing the

arrival times of photons detected and divide the data into
“frames,” that is, smaller intervals that are determined by the
rollover time in the internal clock of the timing correlator.
Within each frame, we compute timing differences between
events in Channel 2 versus Channel 1. These timing differences
then populate a histogram of timing differences, which is
equivalent to the cross-correlation of the two data streams.
Using the timing information of when the file started and
ended, we compute the location of the star on the sky at the
start of the file and the shift of its position through the file. This
determines the expected location of the correlation peak in the
cross-correlation and its smear during the file. Using the latter,
we shift cross-correlations from each frame accordingly before
co-adding them. Finally, a global shift of the cross-correlation
is performed to move the starting offset to a fiducial location
(usually zero timing delay). Included in the global shift are the
known intrinsic channel timing differences and the cable
differences measured in the laboratory. Repeating these steps
for each file in the observing sequence, we can co-add to have a
final result for the night on that object. Finally, once all
unresolved targets observed on a given night are analyzed in
the same way, we establish the baseline azimuth offset from
north–south by computing curves similar to the simulated
results shown in Figure 5. We then boxcar-smooth the curve
with a width of 0°.14 and find the local maximum closest to
zero offset in the smoothed version. This gives the final
azimuth assumed for a given night.

6.2. Correlation Results

If an intensity interferometry experiment is successful, then
the cross-correlation peak should build up with the inclusion of
more and more data files. Rewriting Equation (8) in a slightly
different way, we obtain
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The right-hand side consists of two terms, the first of which is

the factor multiplying |V12|
2 in Equation (4); that is, it

represents the fraction of correlated photons. Recalling that
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(rΔt)2 correlations are produced in a given timing bin of width

Δt, the term under the square root may be seen as the total

number of correlations obtained in that timing bin for an

experiment of duration T. Thus, the S/N is a linear function of

the square root of the number of correlations seen in a typical

timing bin in the final cross-correlation function for an

observing session, where the slope is the fraction of correlated

photons. For examaple, a 1 MHz detection rate at each

telescope generates 1012 correlations per second, but these are

spread over a large number of 64 ps bins (Δt= 64 ps).

Figure 7. Six examples of count rates obtained for the full sequence of data files using the three different filters and observing four different stars. In all panels, curves
are drawn at 100% and 50% of the expected maximum count rate determined from atmospheric and instrumental parameters as described in the text. The blue
diamonds and red squares represent the highest average count rate sustained for a 5 s interval in each file for Channels 0 and 1, respectively, and the filled circles
represent the average count rate obtained for each file as a whole (including averaging over both telescopes). (a) Vega observed with the wider 532 nm filter. (b) Vega
observed with the 633 nm filter. (c) Vega observed with the narrower 532 nm filter. (d) Arcturus observed with the narrower 532 nm filter. (e) Deneb (α Cyg) observed
with the wider 532 nm filter. (f) Polaris observed with the wider 532 nm filter.
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Therefore, a typical bin will have 64 counts after cross-

correlating 1 s of data. However, if the observing session lasts 2

hr, then the cross-correlation function will have an average of

460,800 counts per 64 ps bin. Given a correlation fraction of

0.24%, the predicted S/N would be

=0.0024 460800 1.63· . Following this thinking, we can

plot the S/N achieved for the observing sequences shown in

Table 2. This is shown in Figure 8 for all sources expected to

be unresolved at the baselines of our observations. (That is, we

do not include observations of Arcturus here because, with a

known diameter of 21 mas, the star is expected to be partially

resolved and to have a reduced correlation.) The plot indicates

that the S/Ns obtained are generally in the expected range, with
the longest observing generating the highest S/Ns. We plot

these S/N values as a function of the square root of the mean

number of correlations per 64 ps bin; this should be a linear

relationship with S/N, with the slope being the correlation

fraction. Taking the data at face value and fitting a line to the

complete data set regardless of filter, we obtain a slope of

0.00231± 0.00039. The wider of the two 532 nm filters

dominates the data set at present, so we find our correlation

fraction to be in line with the expected value discussed in

Section 2.
Taking this same set of observations, we can co-add all of

the results to generate a single cross-correlation plot. Although
this contains data of four separate sources, all are expected to
be unresolved from previous diameter determinations. This is
shown in Figure 9 in four different representations. Panels (a)
and (b) show the cross-correlation result at a resolution of 16
ps. We do not measure the S/N from these plots, but the cross-
correlation peak should have a width that is close to 48 ps
according to the detector parameters we have measured. It can
be seen in panel (a) that if the baseline azimuth tuning is not
done in the data reduction, there is a spreading out of the peak,
whereas when the tuning is applied, the result is that in panel

(b). Here the peak does have the expected width of three to four

timing samples, as well as the correct position, once all of the

timing offsets have been applied. In Figures 9(c) and (d), we

show the same data as in panels (a) and (b) respectively, but at

a timing resolution of 64 ps. In this case, the correlation should

appear as essentially a delta function. The S/N can be

estimated by comparing the number of excess correlations in

that single sample point with the samples nearby. For the noise

calculation, we use the samples between −2 and 2 ns,

excluding the three central samples, the middle of which has

the correlation peak. We obtain an S/N of 4.70 if the baseline

azimuths are not tuned in software, and 6.76 when that tuning

is applied.
Finally, we took these data and separated out the measures of

each star to create five individual excess correlation plots at the

final timing resolution of 64 ps (i.e., the same as in Figures 9(c)

and (d)). Setting aside our single observation of Altair (α Aql),

Figure 10 shows the results for the four other stars we have

observed: Deneb, Polaris, Arcturus, and Vega. The fifth plot is

again of Vega, showing the result from Lowell observations

only. Given these results, we would expect that our SCSU

observations of Vega, Deneb, and Polaris should show a

correlation peak, as our observations were taken at baselines

generally under 3 m on campus. (Polaris is the exception,

where, at a baseline of 9 m, the correlation peak may start to

decrease.) In contrast, Arcturus has a much larger angular

diameter, and the Lowell observations of Vega are at baselines

large enough to expect little or no correlation. Although the S/
N is low in the plots shown in Figure 10, this trend is indeed

seen, where the highest correlations are seen for Deneb and the

SCSU observations of Vega, whereas the results for Polaris and

Arcturus are consistent with expectations of partial correlation

within the uncertainties, and there is no evidence of correlation

with the Lowell observations of Vega.

Figure 8. The S/N of the observations shown in Table 2 as a function of the square root of the mean number of correlations per 64 ps interval. The open circles
represent observations taken with the 532/3 nm filter, whereas filled circles represent the two narrower filters, with blue for the 532/1.2 nm filter and red for the 633/1
nm filter. The linear fit obtained on the entire set of observations is shown as a solid line. The dotted line at zero is meant to guide the eye.
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6.3. Visibility Measurements

Given that the instrument is detecting excess photon
correlations at the expected level, we seek to use
Equation (4) to derive information about the visibility as a
function of baseline for our observations, in order to make
statements about the diameters of the stars observed. For
comparison, we show a summary of previous diameter
measurements of these four stars in Table 3.

To begin this process, we return to Dyck (2000), where the
object’s irradiance distribution on the sky is related to its two-
dimensional Fourier transform. Defining u and v to be the
Fourier conjugate variables to orthogonal spatial coordinates x
and y on the image plane, the (u, v) components in the Fourier
plane are determined by the following equations involving the
observational parameters discussed in Section 4.3:
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We can use the above to generate a (u, v) plot of observations

on a given target each time we observe it. Four examples are

shown in Figure 11. We note that, although these sequences

trace out an arc in the (u, v)-plane, the magnitude of the spatial

frequency sampled generally does not change very much. For

radially symmetric sources observed over the period of time

and sky position that we typically observe them, we are

normally acquiring signal at a very narrow range of the

magnitude of the spatial frequency vector, |u|.
This allows us to combine the data on each star and plot it as

a function of |u|. We normalize |u| in the typical way as

l
=u

b

206265
, 15∣ ∣ ( )

where the units of |u| will be cycles per arcsecond. However, to
put all our observations on equal footing given the known

angular diameters, we can parameterize the relationship

between the spatial frequency sampled and the width of the

Airy disk in the Fourier plane using the following expression:

pq
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l
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. 16LD
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Figure 9. Excess correlations obtained as a function of corrected timing difference when summing all observations where the source is expected to be unresolved. (a)
In this plot, no correction for the baseline azimuth has been applied. (b) The same data as in panel (a), but in this case the baseline azimuth tuning described in the text
has been applied for each night prior to summing the results. In these two panels, the plots are drawn at a resolution of 16 ps, and the green vertical lines indicate the
expected placement of the peak after the timing delays are corrected to the same fiducial. The red dashed curve indicates the best-fit Gaussian of FWHM of 48 ps
centered on the predicted location. (c) The same data as in panel (a), but drawn at a resolution of 64 ps. The formal significance of the peak is = 4.70σ above the noise.
(d) The same data as for panel (b), but at a resolution of 64 ps. The formal significance here is 6.76σ. In panels (c) and (d), the expected location of the peak is again
marked.
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Here, following Baines et al. (2018), θLD represents the limb-

darkened angular diameter of the (radially symmetric) source.

The advantage of this parameterization is that, regardless of a

star’s angular diameter, the first zero of stellar profile in the

Fourier domain will occur in the same place (which would be

x= 3.83 for a perfect Airy pattern, the Fourier transform of a

uniform disk). In Baines et al. (2018), those authors use a limb-

darkening model that depends on a parameter they define as μ,

which they measure for each star that they report on. The range

of μ varies from approximately 0.4 to 0.8. In Figure 12(a), we

show limb-darkened profiles for these two extremes of μ using

the same formulation as in Baines et al. (2018) and overplot our

results for the four stars for which we can measure the squared

visibility (the same stars as in Figure 10). These show that as

the baseline approaches the first zero of the parameterized

stellar profile, the correlation we observe decreases. From this,

we conclude that it is possible to measure stellar diameters with

our instrument.
In Figure 12(b), we replot the results obtained so far for

Vega and Arcturus, where in this case the x-coordinate is

plotted in cycles per arcsecond. We then change the value of

θLD so that the visibility curves pass through the upper limit of

the error bar for the measurement at highest spatial frequency.

For Vega, this data point is the one derived from the

observations at Lowell, and we can pass a second pair of

curves through the lower limit of the small-|u| observation in a

similar fashion (this data point being derived from the on-

campus observations). The values of θLD corresponding to

these curves then set limits on the range of the diameters for

each star that are currently consistent with our data. For

Arcturus, we find θLD> 15 mas, and for Vega,

17 mas> θLD> 0.8 mas. While the uncertainties are large,

Figure 10. Individual excess correlation plots for each star. (a) Deneb. (b) Polaris. (c) Arcturus. (d) Vega observed at the smaller baselines used at SCSU. (e) Vega
observed at the larger baselines at Lowell. In all plots, the timing resolution is 64 ps, and the red filled circle represents the predicted location of a full-correlation peak
given the mean number of correlations of each data set and assuming a correlation fraction of 0.000231 ± 0.00039.

Table 3

Previous Angular Diameter Measurements for Stars Observed with SCSI

Object Bayer HR HD θLD Instrument Reference

Desig. (mas)

Altair α Aql 7557 187642 3.462 ± 0.035 Mark III Mozurkewich et al. (2003)

Altair α Aql 7557 187642 3.309 ± 0.006 NPOI Baines et al. (2018)

Arcturus α Boo 5340 124897 21.373 ± 0.247 Mark III Mozurkewich et al. (2003)

Deneb α Cyg 7924 197345 2.420 ± 0.060 Mark III Mozurkewich et al. (2003)

Polaris α UMi 424 8890 3.123 ± 0.008 CHARA Mérand et al. (2006)

Vega α Lyr 7001 172167 3.24 ± 0.07 Narrabri Hanbury Brown et al. (1974)

Vega α Lyr 7001 172167 3.28 ± 0.01 PTIa Ciardi et al. (2001)

Vega α Lyr 7001 172167 3.225 ± 0.032 Mark III Mozurkewich et al. (2003)

Vega α Lyr 7001 172167 3.280 ± 0.006 NPOI Baines et al. (2018)

Vega α Lyr 7001 172167 3.33 ± 0.01 CHARA Aufdenberg et al. (2006)

Note.
a
Palomar Testbed Interferometer; Colavita et al. (1999).
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these results are nonetheless consistent with the previous
measures shown in Table 3.

Our results for Vega may be directly compared with those of
a recent experiment observing the same star with the Asiago
Stellar Intensity Interferometer (Zampieri et al. 2021). That
instrument has a much larger distance between the two
telescopes used than at Lowell, but the telescopes used in both
cases are comparable in size and the detection and timing
instrumentation likewise has similar properties overall. Both
their results and ours show a high degree of consistency, giving
confidence that the SPAD approach with small telescopes is a
viable means with which to conduct intensity interferometry.

7. Conclusions and Future Work

We have built a new stellar intensity interferometer that is
based on detecting coincident photons at two or more different
telescopes using a high-precision timing module and SPAD
detectors. The timing precision of the instrument is found to be

approximately 50 ps. This allows us to use smaller telescopes

that have been used in other modern intensity interferometers,

although it also requires us to measure our baselines and other

instrument parameters very precisely. We have shown that

photon correlations are observed at the level expected based on

the design of our instrument and that the data taken to date are

consistent with partial correlation within the uncertainties for

Arcturus and Polaris. In taking our instrumentation to Lowell

Observatory, we observed Vega at a baseline of approximately

50 m using the Hall and Perkins telescopes on Anderon Mesa.

This allowed us to add a null result for Vega at that baseline,

with large uncertainty. Together, these observations permit us

to conclude that the angular diameter of Arcturus is larger than

15 mas, and that of Vega between 0.8 and 17 mas. As we have

timing correlators with up to eight channels, our instrument is

easily upgraded to include more telescopes; we have already

integrated a third telescope identical to the original two and

plan to use all three telescopes in ongoing observations moving

Figure 11. Fourier plane coverage for four representative observing sequences.

Figure 12. (a) Visibility plot for observations taken to date with SCSI. The solid and dashed curves indicate the two limb-darkened profiles of different μ value as
discussed in the text. (b) The points for Vega and Arcturus are plotted again with the same plot symbol and color, but as a function of the spatial frequency. The solid
and dashed lines are the limb-darkened profiles that represent the 1σ lower limit of the angular diameter as discussed for Arcturus and both upper and lower limits for
Vega. The abscissa in panel (b) is plotted on a log scale for clarity.
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forward. This will permit us to observe at three baselines
simultaneously, making our observations much more efficient.
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