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‘ A cycle that traces ways to define the
landscape of data science.

| BY VICTORIA STODDEN

The Data
cience

Life Cycle:

A Disciplined
Approach to
Advancing Data
Science as a Science

THE EDUCATION AND research enterprise is leveraging
opportunities to accelerate science and discovery
offered by computational and data-enabled
technologies, often broadly referred to as data
science. Ten years ago, we wrote that an “accurate
image [of a scientific researcher] depicts a computer
jockey working at all hours to launch experiments on
computer servers.”® Since then, the use of data and
computation has exploded in academic and industry
research, and interest in data science is widespread
in universities and institutions. Two key questions
emerge for the research enterprise: How to train
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the next generation of researchers and
scientists in the deeply computational
and data-driven research methods and
processes they will need and use? and
How to support the use of these methods
and processes to advance research and dis-
covery across disparate disciplines and, in
turn, define data science as a scientific
discipline in its own right? An identifi-
able discipline of data science would
encourage and reward research that fos-
ters the continued development of com-
putational and data-enabled methods
and their successful integration into
research and dissemination pipelines,
as well as accelerating the generation of
reliable knowledge from data science.
This article offers an intellectual
framing to address these two key ques-
tions—called the Data Science Life Cy-
cle—intended to aide decision makersin
institutions, policy makers and funding
agencyleadership,aswellasdatascience
researchers and curriculum developers.
The Data Science Life Cycle introduced
here can be used as a framing principle
to guide decision making in a variety of
educational settings, pointing the way
on topics such as: whether to develop
new data science courses (and which
ones) or rely on existing course offer-
ings or a mix of both; whether to design
data science curricula across existing
degree granting units or work within
them; how to relate new degrees and
programmatic initiatives to ongoing re-
search in data science and encourage
the development of a recognized re-
search area in data science itself; and

key insights

m For Data Science to emerge as a
fully fledged science, it is essential
to establish intellectual content,
ensure knowledge organization, and
incorporate external tests of validity
for findings.

m The Data Science Life Cycle provides
a flexible framework that knits
stakeholder efforts together to advance
Data Science as a science; providing
a principled way to include topics
such as ethics, reproducibility, and
cyberinfrastructure for Data Science, as
well as methodological, computational,
and domain-specific subjects.
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howto prioritize support for data science
research across a variety of disciplinary
domains. These can be difficult ques-
tions from an implementation point of
view since university governance struc-
tures typically separate disciplines into
effective siloes, with self-contained eval-
uation, degree-granting, and decision-
making authority. Data science presents
as a cross cutting methodological effort
with the needs of a full-fledged science in-
cluding: communities for idea sharing,
review, and assessment; standards for re-
producibility and replicability; journals
and/or conferences; vehicles for disciplin-
ary leadership and advancement; an un-

derstanding of its scope; and, broadly
agreed-upon core curricula and subjects
for training the next generation of re-
searchers and educators.

After motivating the key data sci-
ence challenges of interdisciplinarity
and scope, this article presents the
Data Science Life Cycle as a tool to en-
able the development of data science
as a rigorous scientific discipline flexi-
ble enough to capitalize on unique
institutional strengths and adapt to
the needs of different research do-
mains. Examples are given in curricu-
lum development and steps to defining
data science as a science.

Current Approaches

to Data Science

There are currently four main ap-
proaches taken toward data science at
post-secondary institutions and uni-
versities in the U.S., with some institu-
tions opting to take more than one ap-
proach. The first model involves
issuing data science degrees from an
existing department or school, such as
the computer science department (for
example, University of Southern Cali-
fornia, Carnegie Mellon University,
University of Illinois at Urbana-Cham-
paign), the statistics department (for
example, Stanford University), a pro-
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fessional studies or extension school
(Northwestern University, Harvard
University), engineering (Johns Hop-
kins University), or the School of Infor-
mation (UC Berkeley). This approach
can include innovative steps such as
online course offerings or collabora-
tive degrees that approximate data sci-
ence. An example of the latter is the
undergraduate CS+Xdegree pioneered
by the computer science department
at the University of Illinois at Urbana-
Champaign, where CS refers to com-
puter science and X refers to a domain
specific discipline such as economics,
anthropology, or linguistics. For a
CS+X degree students receive a degree
in discipline X with half their courses
comprising a common core of com-
puter science classes and half their
courses from their disciplinary area X.
Stanford University has a CS+X pro-
gram for undergraduates designed as a
joint major between computer science
and the humanities. Data science itself
has not been established as a sub-dis-
cipline in computer science or any oth-
er discipline to the best of my knowl-
edge, nor is there an ACM Special
Interest Group on Data Science.

The second approach to data sci-
ence extends or transforms an exist-
ing department to explicitly include a
home for all of data science, not just
the data science degree programs. For
example, the statistics department may
be renamed Statistics and Data Science
(for example, Yale University) or a
School of Information Science or Infor-
matics renamed toinclude the Data Sci-
ence moniker (Drexel University). The
third approach is to create a coordinat-
ing mechanism such as a Data Science
institute or center at the university (Co-
lumbia University, University of Virgin-
ia, University of Delaware, University of
Chicago, UC Berkeley). Such an insti-
tute tends not to have faculty lines, but
affiliates faculty who have an appoint-
ment elsewhere on campus. It may
grant certificates and/or degrees in co-
ordination with affiliated faculty and
units, and often began with a focus on
professionals and executive educa-
tion. The University of Washington,
for example, extended an existing in-
stitute on campus, the eScience Insti-
tute, to house its cross-disciplinary
Data Science initiative. The final ap-
proachisto bring the institute’s major

The Data Science
Life Cycle explicitly
recoghizes

the need for data,
software, and
other artifacts,
along with

the research
findings, to be
made available

to the community
and enables
recognition

of the need for
dedicated research
on how this sharing
is accomplished.
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data science disciplinary units (for ex-
ample, statistics, computer science
and engineering, information sci-
ence) together under one organiza-
tional umbrella to determine degree
programs, grant degrees, and house
faculty lines and data science re-
search. This is the most recent ap-
proach, currently undertaken for ex-
ampleatUCBerkeley(tomyknowledge
Berkeley is also the only institution to
explicitly articulate a Data Science
Life Cycle when describing one of its
data science degrees).

In some institutions, the trappings
of data science have emerged organi-
cally within departments themselves
without the data science label. For ex-
ample, offering more classes in statis-
tics and computational methods, or-
creating data facilities to manage the
increasing volumes of data used in
departmental research such as the
Brain Imaging Data Structure (BIDS)
in the Department of Psychology at
Stanford University or the Data Analyt-
ics and Biostatistics Core in the Emory
University School of Medicine. Estab-
lished domain specific data reposito-
ries such as the Protein Data Bank can
be central to established research and
have long histories of knowledge and
expertise development. As data sci-
ence progresses, we would be remiss
not to take the broad advances made
by these efforts into account.

It is clear the potential of data sci-
ence has captured the imagination of
students and the broader society.'® In
my experience, however, students can
perceive a gap in our pedagogical of-
ferings when it comes to supporting
theirinterestin data science. Forastu-
dent seeking to do advanced course-
work in data science it can appear that
statistics is not computational
enough, computer science isn’t data
inference focused enough, informa-
tion science is too broad, and the do-
main sciences do not provide a suffi-
ciently deep pedagogical agenda in
data science. The research context to-
day is markedly different to even a de-
cade ago in the use of computational
and data-enabled methods in a wide
range of long-established disciplines
from biology (bioinformatics®) to
physics (computational physics*) to
mathematics (computer-enabled
mathematical proofs'?) to English



(quantitative analyses of literary
texts'®) to sociology (digital social sci-
ence'’), and students are asking the
right questions about where data sci-
ence fits in their education. Not only
has it increased the types, scales, and
sources of data-accelerated discov-
ery,” data has opened new vistas of
scientific investigation, methodologi-
cal advances, and innovation through
the creation of novel comprehensive
datasets available to communities.>'¢
Data science is inherently interdisci-
plinary, yet must have a coherent
scope in order to develop as a disci-
pline.

Defining Data Science
as a Discipline: The Challenges
of Interdisciplinarity and Scope
In what institutional unit or entity
should a data science program reside,
and what subject matter is consid-
ered within the scope of data science?
These questions belie the two princi-
pal challenges to the advancement of
data science as a discipline: its inher-
ently interdisciplinary nature, and the
lack of a well-defined scope.
Challenge 1. Data science is inher-
ently interdisciplinary. Data science is
emergent from a plurality of disci-
plines, a fact that has been widely not-
ed.” These disciplines often exist in
different parts of the institution, po-
tentially posing coordination and im-
plementation challenges both within
the institution and for data science as
an emerging field of research. Few
would dispute the central role of data
inference methods or software devel-
opment in data science, yet even those
two examples have different loci with-
in the institutional structure: the for-
mer typicallyin a Department of Statis-
tics (often situated in the Faculty of
Arts and Sciences) and the latter in
computer science departments (often
located in the School of Engineering).
In addition, schools of information
science contribute expertise in data
discovery, storage and retrieval, stew-
ardship, archiving, and artifact reuse;
engineering and the physical sciences
disciplines perform deeply computa-
tional simulation-based research; and
business schools advance business in-
telligence and carry out data analytics.
The list of examples goes on. These
disciplines contribute different but

necessary aspects of a data science dis-
cipline and many of the skills used in
data science already exist in estab-
lished departments.

Challenge 2: Data science must have
a well-defined scope. Many definitions
of data science have been put forward,
indeed this publication presented its
own in 2013: “Data science [involves]
data and, by extension, statistics, or the
systematic study of the organization,
properties, and analysis of data and its
role in inference, including our confi-
dence in the inference” or, “Data sci-
ence is the study of the generalizable
extraction of knowledge from data.”®
Through conversations in 2013, the fol-
lowing definition was developed by Iain
Johnstone, Peter Bickel, Bin Yu, and
myself: “Data Science is the science of
(collaboratively) generating, acquiring,
managing, analyzing, carrying out in-
ference, and reporting on data.” This
broad scope means that data science
covers a large proportion of the re-
search carried out in institutions today,
and implementations of data science
programs can be markedly different at
different institutions.?

A Framing for Data Science:

The Data Science Life Cycle

Although the Data Science Life Cycle
is a new concept, it is an extension of
“the Data Life Cycle,” which has a long
history in the information sciences
and many domain sciences.' The Data
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Life Cycle describes the various stages
a dataset traverses as it undergoes sci-
entific collection and investigation and
is typically used to guide data manage-
ment decisions and practices. I extend
thisidea beyond its focus on data to de-
scribe the complete process of data sci-
ence with the Data Science Life Cycle.
This work extends research in the Data
Life Cycle by focusing on the genera-
tion of scientific findings, and thereby
including computational components,
inferential methodology, and articu-
lating a clear role for ethics and meta
research within the scope of data sci-
ence. It can also provide a foundational
grounding for data science pedagogical
program design.

Extending the concept of the data
life cycle. Figure 1 shows a depiction of
a Data Life Cycle, following a dataset
from acquisition, through cleaning,
use, publication of the resulting dataset,
and then through to an eventual pre-
serve/destroy decision for the dataset.
It is important to note that there is no
single fixed definition of a Data Life
Cycle, ratherit’sathematic abstraction
whose manifestation may change de-
pending on the specific dataset or col-
lection of datasets towhichitisapplied
and the purpose of the data collection.
A Data Science Life Cycle expands the
area of focus beyond the dataset, to the
complete bundle of artifacts (for ex-
ample, data, code, workflow and com-
putational environment information)

Figure 1. Example of a data life cycle and surrounding data ecosystem (reprinted with

permission).!
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and knowledge (scientific results) pro-
duced in the course of data science
research results.

Figure 2 shows a depiction of a Data
Science Life Cycle describing stages of
data science research, extending the
Data Life Cycle reprinted in Figure 1. As
in Figure 1, Figure 2 depicts an abstrac-
tion, intended to be customized to par-
ticular data science projects.

The act of scientific discovery in
data science produces findings just
like any area of research, and typically
creates or leverages other artifacts as
well, for example, the data used to sup-
portthe findings and the code that pro-
duces the findings from the data (it
may even produce other artifacts as
well, for example, curriculum materi-
als, software tools, and hardware pro-
totypes). Research findings and arti-
facts are viewed with dissemination to

the research community at the point of
publication when created. This is what
is meant by the term “life cycle”—an
explicit recognition that artifacts pass
to the community at the point of publi-
cation, readied to begin the life cycle
again in a new research effort, as in-
puts. The Data Science Life Cycle ex-
plicitly recognizes the need for data,
software, and other artifacts, along
with the research findings, to be made
available to the community and en-
ables recognition of the need for dedi-
cated research on how this sharing is
accomplished.

“Reproducibility of Results and Ar-
tifact Reuse” is listed as a topic in the
overarching grey arrow in Figure 2.
The life cycle approach allows a prin-
cipled incorporation of the notion of
computational reproducibility—the
practice of ensuring artifacts and

computational information needed to
regenerate computational results is
openly available post-publication.*!>?
Figure 2 emphasizes that artifact
preservation activities occur both be-
fore and during computation, for the
duration of the discovery process. An
attempt to recreate computational
and data manipulation steps for pres-
ervation purposes after publication
can be difficult and time consuming, if
notimpossible. The Data Management
Plan, required by the National Sci-
ence Foundation and other science
funders, is therefore included at the
beginning of the Data Science Life
Cycle, to emphasize the importance
of early planning for the artifact pres-
ervation thatwill occur at the point of
eventual publication (of the results as
well as the supporting artifacts). The
need for improved tools for documen-

Figure 2. An example of a Data Science Life Cycle.

The light-yellow layer is the Application/Domain Science level. This level portrays the steps of
a research project described at the domain level. The green layer beneath is the Infrastructure
level, describing the computational infrastructure that enables the Application level. The blue
arrow underlying both the application and infrastructure levels is the System level, describing
system elements upon which the data science discovery process depends. Similarly, the
overarching grey arrow is the meta-scientific level “The Science of Data Science." The arrows
are intended to depict the life cycle: that the output of data science discovery (the findings and
the artifacts that enable reproducibility such as code, data, and workflow and computational
environment information for example) are published for verification and reuse by others. The
figure provides a way to consider tool use explicitly for each discovery step. Some tools may
support more than one discovery step, for example, notebooks, and some application level steps
may use more than one tool. Different steps in the discovery pipeline, whether at the domain,
infrastructure, system, or science of data science level, may be carried out by different people.
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tation and recording of the steps in
the data science discovery process be-
comes evident with this approach as
does greater recognition that the pro-
duction of reusable research artifacts
(for example, data, software that sup-
port a published scientific finding) is
avaluable researcher activity.

Computational and meta-scientific
aspects of data science must be ex-
plicitly considered. Crucially, the Data
Science Life Cycle adds an additional
dimension to the Data Life Cycle: the
computational layer that enables data
science research. A data scientist may
proceed through the steps depicted in
the Data Science Life Cycle in Figure 2:
experimental design; obtaining/gen-
erating/collecting data; data explora-
tion and hypothesis generation; data
cleaning, merging, and organization;
feature selection and data prepara-
tion; model estimation and statistical
inference; simulation and cross-vali-
dation, visualization; publication and
artifact preservation/archiving. This
series of steps is called the “Applica-
tion Level” (depicted in pale yellow in
Figure 2), referring to the scientific ap-
plication or domain of research. As
noted, the Data Science Life Cycle is an
abstraction and any particular re-
search project may include a subset of
these steps.

There are additional components
beyond the Application Level in every
data science project, depicted by the
grey arrow across the top of Figure 2
mentioned earlier, including data sci-
ence ethics; documentation of the re-
search and meta data creation; repro-
ducibility;and policyand legal aspects
including governance, privacy, and
intellectual property considerations.
This is the “Science of Data Science Lev-
el.” In addition, data science projects
encompass computational skills and
technologies (for example, interpret-
ed languages such as R and Python,
data querying languages, distributed
computing resources) represented in
the green, lower layer, called the “In-
frastructure Level” of the Data Science
Life Cycle. None of the technologies
listed in Figure 2 are prescriptive but
they support the steps in the Data Sci-
ence Life Cycle, in particular the Ap-
plication Level. Importantly, each are
research areas of research and devel-
opment in their own right, including

A life cycle
approach
encourages

and enables

a unification

of views regarding
data science

and gives us

a footing from
which to adapt
and evolve

the practice and
teaching of data
science to research
projects and

to institutional
strengths.
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notebooks and workflow software; vi-
sualization tools; statistical inference
languages; data management tools;
and archiving and artifact linking
tools. Running across the entire Data
Science Life Cycle, and depicted in
the blue arrow at the bottom of Figure
2, are the hardware and other techno-
logical structures on which the data
science experiment is carried out, in-
cluding compute infrastructure,
cloud computing systems, data struc-
tures, storage capabilities, and quan-
titative programming environments
(QPEs).° This is called the System Lev-
el. Computational reproducibility is
an important factor when deciding
which artifacts and details in the dis-
covery process to preserve and share.
For example, information on how and
why parameters were selected in mod-
el selection could be included in the
documentation and workflow infor-
mation. The Data Science Life Cycle
highlights the various contributions
made to the research by different peo-
ple and could help indicate ways to
give appropriate credit by including
information on who has contributed
what to the discovery process.

Two simpflied examples of the Data
Science Life Cycle in research settings.
Here, I present two applications of the
Data Science Life Cycle to simplified
but representative descriptions of re-
search that illustrate how this ap-
proach can surface nuanced and im-
portant aspects of data science in
different settings. In the first example
researchers wish to classify two types
of cancerusinggene expressiondata.'”
"' The steps the authors describe for an
experiment are as follows:

1. Obtain gene expression data (the
dataarealreadysplitinto train/test sub-
sets based on clinical conditions).

2. Normalize the data (including
both train/test subsets).

3. ApplyRecursive Feature Elimination:

a. Train classifier using Support

Vector Machines (SVMs).

b. Compute a ranking criterion
for each feature.

c. Remove features
smallest ranking criteria.

d. Iterate until a tolerance thresh-
old is reached.

4. Perform cross-tests with the base-
line method from Golub et al.’ to com-
pare gene sets and classifiers.

with the
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Mapping this experimental de-
scription to the Application Layer of
the Data Science Life Cycle could pro-
ceed as follows: Obtain Data — Data
Preparation — Feature Selection/Model
Estimation — Cross-tests and Valida-
tion — Publication and Archiving. In-
formation regarding the tools and soft-
ware used for each step is then mapped
to the Infrastructure Layer and over-
archingissues, such as data governance
and sharing policies, detailed in the Sci-
ence of Data Science Level. Notice this
data science pipeline incorporates a cy-
clical loop in the pipeline when Recur-
sive Feature Elimination is employed.

The second example gives a stylized
description of hypothesis-driven re-
search experiment to test whether a
journal’s impact factor is related to the
existence of a data or code sharing au-
thor policy.”” The steps are as follows:

1. Determine the hypothesis to test.

2. Design an appropriate experi-
ment to test the hypothesis.

3. Collected data on journal impact
factors and artifact policies as well as
other descriptive information.

4. Test the hypothesis.

5. Report the results.

We map the steps to the Data Sci-
ence Life Cycle as follows: Determine
Hypothesis — Experimental Design —
Collect Data — Statistical Inference —
Publication. Computational tools
used in each step can be detailed in
the Infrastructure Level description,
and issues that apply to the entire life
cycle considered in the Science of
Data Science Level, such as data and
code availability, preregistration of
hypothesis tests, Institutional Re-
view Board (IRB) information, if rel-
evant. Although simplified, these
two examples represent different re-
search questions and two differ-
ent instantiations of the Data Sci-
ence Life Cycle, but both show how
the Data Science Life Cycle frame-
work allows important aspects of the
research, such as computational im-
plementations and data ethics, to be
cogently and deliberately incorporat-
ed as part of the research and publica-
tion process.

These examples also illustrate how
the Data Science Life Cycle tests whether
a particular research effort fits under
the rubric of data science. Gaps at the
Infrastructure or System Levels can be
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more easily detected and recognized as
part of a comprehensive Data Science
research agenda, including for exam-
ple algorithms; containerization tech-
nologies; abstractions of data manipu-
lations; data structures; distributed
computing; parallel, cloud or edge
computing; hardware design (for ex-
ample, application specific integrated
circuits and their development such as
TPUs, or networking capabilities for
data distribution).

Considering the Data Science Life
Cycle as a life cycle enables a natural
consideration of crucial overarching
factors such as reproducibility, docu-
mentation and meta data, ethics, and
archiving of research artifacts such as
data and code. The Data Science Life
Cycle provides guidance on the multi-
faceted set of skills and personnel
needed for data science, for example
“skills for dealing with organizational
artifacts of large-scale cluster comput-
ing. The new skills cope with severe
new constraints on algorithms posed by
the multiprocessor/networked world.””
Workforce development is therefore
incorporated into the life cycle ap-
proach, which is especially germane to
data science as “enthusiasm feeds on
the notable successes scored in the
last decade by brand-name global in-
formation technology (IT) enterprises,
such as Google and Amazon.””

The Data Science Life Cycle engages
relevant stakeholders in the larger re-
search communityin a systematic way,
including not only data science re-
searchers but others such as archi-
vists, libraries and librarians, legal ex-
perts, publishers, funding agencies,
and scientific societies. It gives a
framework to clarify how different
contributions knit together to support
each other to advance data science.

Leveraging the Data

Science Life Cycle

A life cycle approach encourages and
enables a unification of views regard-
ing data science and gives us a footing
from which to adapt and evolve the
practice and teaching of data science
to research projects and to institution-
al strengths. There are commonalities
to nearly all data science efforts, for ex-
ample, data wrangling, data inference,
codewriting, artifactcreationand shar-
ing. A common intellectual framework



can facilitate knowledge sharing about
data science as a discipline across dif-
ferent the fields and domains using
datascience methodsin theirresearch.

A data science curriculum. Concep-
tualizing data science as a life cycle also
gives a way to position classes and se-
quences to teach core and elective data
science skills, indicating where exist-
ing courses may fit and where new
courses may need to be developed. It
helps define a curriculum by using the
steps of the Data Science Life Cycle as a
pedagogical sequence and provides for
the inclusion of overarching topics
such as data science ethics, and intel-
lectual property, reproducibility, or
data governance considerations.* Per-
haps most importantly the Data Sci-
ence Life Cycle can indicate courses
thatmaybe out of scope and new course
topics essential to data science.

The accompanying table shows how
several commonly offered courses
couldbematchedtothestepsdescribed
bythe Data Science Life Cycle described
in Figure 2. Although not included in
the table, each step can be augmented
by the creation of new targeted classes
if needed, such as Data Policy, Repro-
ducibility in Data Science, Data Science
Ethics, Circuit Design for Deep Learn-
ing, Software Engineering Principles
for Data Science, Mathematics for Data
Science, Interoperability and Integra-
tion of Different Data Sources, Data Sci-
ence with Streaming Data, Software
Preservation and Archiving, Workflow
Tools for Data Science, Intellectual
Property for Scientific Code and Data.
The list goes on. The addition of do-
main specific optional courses could
define tracks or specializations within
adata science curriculum (for example,
Earth sciences, bioinformatics, sociol-
ogy; cyberinfrastructure for data sci-
ence) to create a potential DS+X degree
in the spirit of the CS+X degrees dis-
cussed previously.

The emergence of a discipline of
data science is necessary to advance
data science as well as encourage reli-
able and reproducible discoveries, ele-
vating the endeavor to a branch of the
scientific method. Data science may
eventually develop as a set of discipline-
adapted discoverytechniques and prac-
tices, perhaps including a cross-disci-
plinary core. Data science is benefitting
from close association with industry as

computer science did at its inception,
for example, IBM’s creation of the Wat-
son Scientific Computing Laboratory at
Columbia Universityin 1945.'* Analysis
of consumer data by Google, Facebook,
and Amazon is generating prominent
successes in image identification and
voice transcription among other areas.
Opportunities for industry employ-
ment and workforce development cre-
ate an attractive feature of data science
at the institutional level.
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Elevating the practice of data science
toascience. The Data Science Life Cycle
framework is an essential conceptual-
ization in the development of data sci-
ence as a science. A recent National
Academies of Sciences, Engineering,
and Medicine consensus report on “Re-
producibility and Replication in Sci-
ence” spotlights the need to better de-
velop scientific underpinnings for
computationally and data-enabled re-
search investigations* and a March

An example mapping from some routinely offered courses to the steps of the Data Science
Life Cycle.

The table is not intended as a complete and comprehensive description of all skills
required to be an effective data scientist, but an illustration of how current courses could
be incorporated into a data science training curriculum, within which students may pursue
pathways of interest. Possible new courses to be developed can be gleaned from such a
presentation. Some courses are listed in more than one step to illustrate various ways they

might be included in curriculum design.

Data Science Life Cycle
Step

Possible (Existing) Courses

Experimental design

Introduction to Probability
Introduction to Statistics
Design of Experiments (including Human Subjects and Informed Consent)

Obtaining data

Experimental Methodology
Introduction to Databases
Introduction to SQL, noSQL
Sensor Integration and Control

Data exploration Introduction to R

Introduction to python
Graphics and Data Visualization
Introduction to Statistics

Databases and data
structures including
cleaning/organizing

Introduction to Database Systems
Introduction to SQL, noSQL
Natural Language Processing (NLP)

Software engineering

Software Testing

Python, R, C, C++, Julia
Distributed Systems, MapReduce

Feature selection Statistical Learning

VY| VYYY VVYY VVYYY VVYVYVY | VYVY

Domain-specific courses, for example, Bioinformatics for

Transcriptomics; Brain Imaging in Cognitive Neuroscience Research

Model estimation
Applied Statistics
Machine Learning
Data Mining
Deep Learning

Scalable Algorithms
Statistical Decision Theory

Mathematics (Probability, Linear Algebra, Calculus, Real Analysis)

Simulation and cross-
validation
Statistical Learning

Fundamentals of Numerical Methods
Introduction to Computer Modeling and Simulation

Visualization

YVYVY| VYY | VYYYVYVYYVYY

Information Visualization
Scientific Visualization and Graphics
[Domain specific courses such as Learning ArcGIS;

Spatial Data Visualization]

Publication/Archiving

Introduction to Information

Data Archiving and FAIR Data

Scientific Report Writing

Research Data Management

Open Access and Scholarly Communication
Digital Libraries and Preservation

Ethics for Scientists
Data Privacy

Overarching topics

VYV YVYVYVYYVYY

National and International Regulatory Trends in Data Protection
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contributed articles

2019 National Academy of Sciences Col-
loquium entitled “The Science of Deep
Learning” aimed to bring scientific
foundations to the fore of the deep
learning research agenda.' The discus-
sion regarding the scientific underpin-
nings of data analysis began in 1962,
when John Tukey presented three crite-
riaadiscipline ought to meetin order to
be considered a science:*

1. Intellectual content.

2. Organization into an understand-
able form.

3. Reliance upon the test of experi-
ence as the ultimate standard of validity.

If one accepts these criteria, the Data
Science Life Cycle can be leveraged to
demonstrate intellectual content, pro-
mote its organization (see Figure 2),and
incorporate external tests of the validity
of findings. On this last point, the struc-
ture of the Data Science Life Cycle
builds in reproducibility, reuse, and
verification of results with its embed-
ded notion thatartifacts supporting the
claims (such as data, code, workflow
information) be made available as part
of the publication (life cycle) process.
Research on platforms and infrastruc-
ture for data science facilitates Tukey’s
second criterion by advancing organi-
zational topics such as artifact meta
data; containerization, packaging and
dissemination standards; and commu-
nity expectations regarding FAIR (find-
ability, accessibility, interoperability,
and reusability), archiving, and persis-
tence of the artifacts produced by data
science. These efforts also help enable
comparisons of data science pipelines
to increase understanding of any dif-
ferences in outcomes of “tests of expe-
rience.”* The Data Science Life Cycle
exposes these topics as areas for re-
searchwithin the discipline of data sci-
ence.” Several conferences and jour-
nals have begun to require artifact
availabilityand infrastructure projects
are emerging to support reproducibil-
ity across the data science discovery
pipeline.® Considering these issues
through a Data Science Life Cycle gives
a frame for their inclusion as research
areas integral to the discipline of Data
Science. Data science without a unify-
ing framework risks being a set of
disparate computational activities in
various scientific domains, rather than
a coherent field of inquiry producing
reliable reproducible knowledge.
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Conclusion

Without a flexible yet unified overarch-
ing framework we risk missing opportu-
nities for discovering and addressing
research issues within data science and
training students in effective scientific
methodologies for reliable and trans-
parent data-enabled discovery. Data
science brings new research topics, for
example, computational reproducibil-
ity; ethics in data science; cyberinfra-
structure and tools for data science.
Without the Data Science Life Cycle ap-
proach, we risk an implementation of
data science that too closely hews to a
view that reflects the perspective of a
particular discipline and could miss
opportunities to share knowledge on
data science research and teaching
broadly across disciplines. In addition,
a Data Science Life Cycle approach can
give university leadership a framework
to leverage their existing resources on
campus as they strategize support for a
cross-disciplinary data science curricu-
lum and research agenda. The life cycle
approach allows data science research
and curriculum efforts to support the
development of a scientific discipline,
enabling progress toward fulfilling
Tukey’s three criteria for a science.
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