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the next generation of researchers and 

scientists in the deeply computational 

and data-driven research methods and 

processes they will need and use? and 

How to support the use of these methods 

and processes to advance research and dis-

covery across disparate disciplines and, in 

turn, define data science as a scientific 

discipline in its own right? An identifi-

able discipline of data science would 

encourage and reward research that fos-

ters the continued development of com-

putational and data-enabled methods 

and their successful integration into 

research and dissemination pipelines, 

as well as accelerating the generation of 

reliable knowledge from data science.

This article offers an intellectual 

framing to address these two key ques-

tions—called the Data Science Life Cy-

cle—intended to aide decision makers in 

institutions, policy makers and funding 

agency leadership, as well as data science 

researchers and curriculum developers. 

The Data Science Life Cycle introduced 

here can be used as a framing principle 

to guide decision making in a variety of 

educational settings, pointing the way 

on topics such as: whether to develop 

new data science courses (and which 

ones) or rely on existing course offer-

ings or a mix of both; whether to design 

data science curricula across existing 

degree granting units or work within 

them; how to relate new degrees and 

programmatic initiatives to ongoing re-

search in data science and encourage 

the development of a recognized re-

search area in data science itself; and THE EDUCATION AND research enterprise is leveraging 
opportunities to accelerate science and discovery 
offered by computational and data-enabled 
technologies, often broadly referred to as data 
science. Ten years ago, we wrote that an “accurate 
image [of a scientific researcher] depicts a computer 
jockey working at all hours to launch experiments on 
computer servers.”8 Since then, the use of data and 
computation has exploded in academic and industry 
research, and interest in data science is widespread 
in universities and institutions. Two key questions 
emerge for the research enterprise: How to train 
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 key insights

 ˽ For Data Science to emerge as a 

fully fledged science, it is essential 

to establish intellectual content, 

ensure knowledge organization, and 

incorporate external tests of validity  

for findings.

 ˽ The Data Science Life Cycle provides 

a flexible framework that knits 

stakeholder efforts together to advance 

Data Science as a science; providing 

a principled way to include topics 

such as ethics, reproducibility, and 

cyberinfrastructure for Data Science, as 

well as methodological, computational, 

and domain-specific subjects.
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Current Approaches 

to Data Science

There are currently four main ap-

proaches taken toward data science at 

post-secondary institutions and uni-

versities in the U.S., with some institu-

tions opting to take more than one ap-

proach. The first model involves 

issuing data science degrees from an 

existing department or school, such as 

the computer science department (for 

example, University of Southern Cali-

fornia, Carnegie Mellon University, 

University of Illinois at Urbana-Cham-

paign), the statistics department (for 

example, Stanford University), a pro-

how to prioritize support for data science 

research across a variety of disciplinary 

domains. These can be difficult ques-

tions from an implementation point of 

view since university governance struc-

tures typically separate disciplines into 

effective siloes, with self-contained eval-

uation, degree-granting, and decision-

making authority. Data science presents 

as a cross cutting methodological effort 

with the needs of a full-fledged science in-

cluding: communities for idea sharing, 

review, and assessment; standards for re-

producibility and replicability; journals 

and/or conferences; vehicles for disciplin-

ary leadership and advancement; an un-

derstanding of its scope; and, broadly 

agreed-upon core curricula and subjects 

for training the next generation of re-

searchers and educators.

After motivating the key data sci-

ence challenges of interdisciplinarity 

and scope, this article presents the 

Data Science Life Cycle as a tool to en-

able the development of data science 

as a rigorous scientific discipline flexi-

ble enough to capitalize on unique 

institutional strengths and adapt to 

the needs of different research do-

mains. Examples are given in curricu-

lum development and steps to defining 

data science as a science.
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data science disciplinary units (for ex-

ample, statistics, computer science 

and engineering, information sci-

ence) together under one organiza-

tional umbrella to determine degree 

programs, grant degrees, and house 

faculty lines and data science re-

search. This is the most recent ap-

proach, currently undertaken for ex-

ample at UC Berkeley (to my knowledge 

Berkeley is also the only institution to 

explicitly articulate a Data Science 

Life Cycle when describing one of its 

data science degrees).

In some institutions, the trappings 

of data science have emerged organi-

cally within departments themselves 

without the data science label. For ex-

ample, offering more classes in statis-

tics and computational methods, or-

creating data facilities to manage the 

increasing volumes of data used in 

departmental research such as the 

Brain Imaging Data Structure (BIDS) 

in the Department of Psychology at 

Stanford University or the Data Analyt-

ics and Biostatistics Core in the Emory 

University School of Medicine. Estab-

lished domain specific data reposito-

ries such as the Protein Data Bank can 

be central to established research and 

have long histories of knowledge and 

expertise development. As data sci-

ence progresses, we would be remiss 

not to take the broad advances made 

by these efforts into account.

It is clear the potential of data sci-

ence has captured the imagination of 

students and the broader society.18 In 

my experience, however, students can 

perceive a gap in our pedagogical of-

ferings when it comes to supporting 

their interest in data science. For a stu-

dent seeking to do advanced course-

work in data science it can appear that 

statistics is not computational 

enough, computer science isn’t data 

inference focused enough, informa-

tion science is too broad, and the do-

main sciences do not provide a suffi-

ciently deep pedagogical agenda in 

data science. The research context to-

day is markedly different to even a de-

cade ago in the use of computational 

and data-enabled methods in a wide 

range of long-established disciplines 

from biology (bioinformatics23) to 

physics (computational physics22) to 

mathematics (computer-enabled 

mathematical proofs12) to English 

fessional studies or extension school 

(Northwestern University, Harvard 

University), engineering (Johns Hop-

kins University), or the School of Infor-

mation (UC Berkeley). This approach 

can include innovative steps such as 

online course offerings or collabora-

tive degrees that approximate data sci-

ence. An example of the latter is the 

undergraduate CS+X degree pioneered 

by the computer science department 

at the University of Illinois at Urbana-

Champaign, where CS refers to com-

puter science and X refers to a domain 

specific discipline such as economics, 

anthropology, or linguistics. For a 

CS+X degree students receive a degree 

in discipline X with half their courses 

comprising a common core of com-

puter science classes and half their 

courses from their disciplinary area X. 

Stanford University has a CS+X pro-

gram for undergraduates designed as a 

joint major between computer science 

and the humanities. Data science itself 

has not been established as a sub-dis-

cipline in computer science or any oth-

er discipline to the best of my knowl-

edge, nor is there an ACM Special 

Interest Group on Data Science.

The second approach to data sci-

ence extends or transforms an exist-

ing department to explicitly include a 

home for all of data science, not just 

the data science degree programs. For 

example, the statistics department may 

be renamed Statistics and Data Science 

(for example, Yale University) or a 

School of Information Science or Infor-

matics renamed to include the Data Sci-

ence moniker (Drexel University). The 

third approach is to create a coordinat-

ing mechanism such as a Data Science 

institute or center at the university (Co-

lumbia University, University of Virgin-

ia, University of Delaware, University of 

Chicago, UC Berkeley). Such an insti-

tute tends not to have faculty lines, but 

affiliates faculty who have an appoint-

ment elsewhere on campus. It may 

grant certificates and/or degrees in co-

ordination with affiliated faculty and 

units, and often began with a focus on 

professionals and executive educa-

tion. The University of Washington, 

for example, extended an existing in-

stitute on campus, the eScience Insti-

tute, to house its cross-disciplinary 

Data Science initiative. The final ap-

proach is to bring the institute’s major 

The Data Science 
Life Cycle explicitly 
recognizes  
the need for data, 
software, and  
other artifacts, 
along with  
the research 
findings, to be  
made available  
to the community 
and enables 
recognition  
of the need for 
dedicated research 
on how this sharing 
is accomplished.



JULY 2020  |   VOL.  63  |   NO.  7   |   COMMUNICATIONS OF THE ACM     61

contributed articles

Life Cycle describes the various stages 

a dataset traverses as it undergoes sci-

entific collection and investigation and 

is typically used to guide data manage-

ment decisions and practices. I extend 

this idea beyond its focus on data to de-

scribe the complete process of data sci-

ence with the Data Science Life Cycle. 

This work extends research in the Data 

Life Cycle by focusing on the genera-

tion of scientific findings, and thereby 

including computational components, 

inferential methodology, and articu-

lating a clear role for ethics and meta 

research within the scope of data sci-

ence. It can also provide a foundational 

grounding for data science pedagogical 

program design.

Extending the concept of the data 
life cycle. Figure 1 shows a depiction of 

a Data Life Cycle, following a dataset 

from acquisition, through cleaning, 

use, publication of the resulting dataset, 

and then through to an eventual pre-

serve/destroy decision for the dataset. 

It is important to note that there is no 

single fixed definition of a Data Life 

Cycle, rather it’s a thematic abstraction 

whose manifestation may change de-

pending on the specific dataset or col-

lection of datasets to which it is applied 

and the purpose of the data collection. 

A Data Science Life Cycle expands the 

area of focus beyond the dataset, to the 

complete bundle of artifacts (for ex-

ample, data, code, workflow and com-

putational environment information) 

(quantitative analyses of literary 

texts13) to sociology (digital social sci-

ence17), and students are asking the 

right questions about where data sci-

ence fits in their education. Not only 

has it increased the types, scales, and 

sources of data-accelerated discov-

ery,25 data has opened new vistas of 

scientific investigation, methodologi-

cal advances, and innovation through 

the creation of novel comprehensive 

datasets available to communities.5,16 

Data science is inherently interdisci-

plinary, yet must have a coherent 

scope in order to develop as a disci-

pline.

Defining Data Science  

as a Discipline: The Challenges 

of Interdisciplinarity and Scope

In what institutional unit or entity 

should a data science program reside, 

and what subject matter is consid-

ered within the scope of data science? 

These questions belie the two princi-

pal challenges to the advancement of 

data science as a discipline: its inher-

ently interdisciplinary nature, and the 

lack of a well-defined scope.

Challenge 1. Data science is inher-
ently interdisciplinary. Data science is 

emergent from a plurality of disci-

plines, a fact that has been widely not-

ed.28 These disciplines often exist in 

different parts of the institution, po-

tentially posing coordination and im-

plementation challenges both within 

the institution and for data science as 

an emerging field of research. Few 

would dispute the central role of data 

inference methods or software devel-

opment in data science, yet even those 

two examples have different loci with-

in the institutional structure: the for-

mer typically in a Department of Statis-

tics (often situated in the Faculty of 

Arts and Sciences) and the latter in 

computer science departments (often 

located in the School of Engineering). 

In addition, schools of information 

science contribute expertise in data 

discovery, storage and retrieval, stew-

ardship, archiving, and artifact reuse; 

engineering and the physical sciences 

disciplines perform deeply computa-

tional simulation-based research; and 

business schools advance business in-

telligence and carry out data analytics. 

The list of examples goes on. These 

disciplines contribute different but 

necessary aspects of a data science dis-

cipline and many of the skills used in 

data science already exist in estab-

lished departments.

Challenge 2: Data science must have 
a well-defined scope. Many definitions 

of data science have been put forward, 

indeed this publication presented its 

own in 2013: “Data science [involves] 

data and, by extension, statistics, or the 

systematic study of the organization, 

properties, and analysis of data and its 

role in inference, including our confi-

dence in the inference” or, “Data sci-

ence is the study of the generalizable 

extraction of knowledge from data.”6 

Through conversations in 2013, the fol-

lowing definition was developed by Iain 

Johnstone, Peter Bickel, Bin Yu, and 

myself: “Data Science is the science of 

(collaboratively) generating, acquiring, 

managing, analyzing, carrying out in-

ference, and reporting on data.” This 

broad scope means that data science 

covers a large proportion of the re-

search carried out in institutions today, 

and implementations of data science 

programs can be markedly different at 

different institutions.20

A Framing for Data Science: 

The Data Science Life Cycle

Although the Data Science Life Cycle 

is a new concept, it is an extension of 

“the Data Life Cycle,” which has a long 

history in the information sciences 

and many domain sciences.1 The Data 

Figure 1. Example of a data life cycle and surrounding data ecosystem (reprinted with  

permission).1
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the research community at the point of 

publication when created. This is what 

is meant by the term “life cycle”—an 

explicit recognition that artifacts pass 

to the community at the point of publi-

cation, readied to begin the life cycle 

again in a new research effort, as in-

puts. The Data Science Life Cycle ex-

plicitly recognizes the need for data, 

software, and other artifacts, along 

with the research findings, to be made 

available to the community and en-

ables recognition of the need for dedi-

cated research on how this sharing is 

accomplished.

“Reproducibility of Results and Ar-

tifact Reuse” is listed as a topic in the 

overarching grey arrow in Figure 2. 

The life cycle approach allows a prin-

cipled incorporation of the notion of 

computational reproducibility—the 

practice of ensuring artifacts and 

computational information needed to 

regenerate computational results is 

openly available post-publication.4,15,28 

Figure 2 emphasizes that artifact 

preservation activities occur both be-

fore and during computation, for the 

duration of the discovery process. An 

attempt to recreate computational 

and data manipulation steps for pres-

ervation purposes after publication 

can be difficult and time consuming, if 

not impossible. The Data Management 

Plan, required by the National Sci-

ence Foundation and other science 

funders, is therefore included at the 

beginning of the Data Science Life 

Cycle, to emphasize the importance 

of early planning for the artifact pres-

ervation that will occur at the point of 

eventual publication (of the results as 

well as the supporting artifacts). The 

need for improved tools for documen-

and knowledge (scientific results) pro-

duced in the course of data science 

research results.

Figure 2 shows a depiction of a Data 

Science Life Cycle describing stages of 

data science research, extending the 

Data Life Cycle reprinted in Figure 1. As 

in Figure 1, Figure 2 depicts an abstrac-

tion, intended to be customized to par-

ticular data science projects.

The act of scientific discovery in 

data science produces findings just 

like any area of research, and typically 

creates or leverages other artifacts as 

well, for example, the data used to sup-

port the findings and the code that pro-

duces the findings from the data (it 

may even produce other artifacts as 

well, for example, curriculum materi-

als, software tools, and hardware pro-

totypes). Research findings and arti-

facts are viewed with dissemination to 

Figure 2. An example of a Data Science Life Cycle. 

The light-yellow layer is the Application/Domain Science level. This level portrays the steps of 

a research project described at the domain level. The green layer beneath is the Infrastructure 

level, describing the computational infrastructure that enables the Application level. The blue 

arrow underlying both the application and infrastructure levels is the System level, describing 

system elements upon which the data science discovery process depends. Similarly, the 

overarching grey arrow is the meta-scientific level “The Science of Data Science.” The arrows 

are intended to depict the life cycle: that the output of data science discovery (the findings and 

the artifacts that enable reproducibility such as code, data, and workflow and computational 

environment information for example) are published for verification and reuse by others. The 

figure provides a way to consider tool use explicitly for each discovery step. Some tools may 

support more than one discovery step, for example, notebooks, and some application level steps 

may use more than one tool. Different steps in the discovery pipeline, whether at the domain, 

infrastructure, system, or science of data science level, may be carried out by different people.

The Science of

Data Science

Application/

Domain Level

Infrastructure

System

Computational Environments and Quantitative Programming Environments (QPEs);
Specizalized Hardware; Cloud Computing Infrastructure; Systems and System Management;

Data Warehousing Architectures; Storage Capabilities; Security; and others.

Data Science Research Ethics; Reproducibility of Results and Artifact Re-use;
Cyberinfrastructure Design Ethics and Trust; Metascience; Metadata Creation and Documentation;

Artifact Licensing, Governance, Curation, and Stewardship; Regulatory and Legal Considerations; and others.

Experimental
Design; Data
Management

Plan

Workflow
Software; Data
Management

Plan Tools

Obtain/Collect/
Generate Data;

Build Data
Models

Database
Structures

Hypothesis
Generation;

Data
Exploration

Provenance
Capture;

Preregistration
Tools

Data
Cleaning/

Organization/
Merging

Data
Management

Tools

Data
Preparation;

Missing Value
Imputation/

Feature 
Selection

Scripts/
Notebooks;
Workflow
Software

Model
Estimation;
Statistical
Inference

Scripts/
Notebooks;

Scalable
Algorithms

Simulation;
Cross-validation

Documentation
Tools;

Workflow
Software

Visualization

Visualization
Software;

Scripts

Manuscript and
Artifact 

Publication;
Archiving for
Re-use and

Reproducibility

Containerization
and Packaging
Tools; Artifact
Linking and 

Metadata Tools



JULY 2020  |   VOL.  63  |   NO.  7   |   COMMUNICATIONS OF THE ACM     63

contributed articles

notebooks and workflow software; vi-

sualization tools; statistical inference 

languages; data management tools; 

and archiving and artifact linking 

tools. Running across the entire Data 

Science Life Cycle, and depicted in 

the blue arrow at the bottom of Figure 

2, are the hardware and other techno-

logical structures on which the data 

science experiment is carried out, in-

cluding compute infrastructure, 

cloud computing systems, data struc-

tures, storage capabilities, and quan-

titative programming environments 

(QPEs).9 This is called the System Lev-

el. Computational reproducibility is 

an important factor when deciding 

which artifacts and details in the dis-

covery process to preserve and share. 

For example, information on how and 

why parameters were selected in mod-

el selection could be included in the 

documentation and workflow infor-

mation. The Data Science Life Cycle 

highlights the various contributions 

made to the research by different peo-

ple and could help indicate ways to 

give appropriate credit by including 

information on who has contributed 

what to the discovery process.

Two simpflied examples of the Data 

Science Life Cycle in research settings. 

Here, I present two applications of the 

Data Science Life Cycle to simplified 

but representative descriptions of re-

search that illustrate how this ap-

proach can surface nuanced and im-

portant aspects of data science in 

different settings. In the first example 

researchers wish to classify two types 

of cancer using gene expression data.10-

11 The steps the authors describe for an 

experiment are as follows:

1. Obtain gene expression data (the 

data are already split into train/test sub-

sets based on clinical conditions).

2. Normalize the data (including 

both train/test subsets).

3. Apply Recursive Feature Elimination:

a. Train classifier using Support 

Vector Machines (SVMs).

b. Compute a ranking criterion 

for each feature.

c. Remove features with the 

smallest ranking criteria.

d. Iterate until a tolerance thresh-

old is reached.

4. Perform cross-tests with the base-

line method from Golub et al.10 to com-

pare gene sets and classifiers.

tation and recording of the steps in 

the data science discovery process be-

comes evident with this approach as 

does greater recognition that the pro-

duction of reusable research artifacts 

(for example, data, software that sup-

port a published scientific finding) is 

a valuable researcher activity.

Computational and meta-scientific 
aspects of data science must be ex-
plicitly considered. Crucially, the Data 

Science Life Cycle adds an additional 

dimension to the Data Life Cycle: the 

computational layer that enables data 

science research. A data scientist may 

proceed through the steps depicted in 

the Data Science Life Cycle in Figure 2: 

experimental design; obtaining/gen-

erating/collecting data; data explora-

tion and hypothesis generation; data 

cleaning, merging, and organization; 

feature selection and data prepara-

tion; model estimation and statistical 

inference; simulation and cross-vali-

dation, visualization; publication and 

artifact preservation/archiving. This 

series of steps is called the “Applica-

tion Level” (depicted in pale yellow in 

Figure 2), referring to the scientific ap-

plication or domain of research. As 

noted, the Data Science Life Cycle is an 

abstraction and any particular re-

search project may include a subset of 

these steps.

There are additional components 

beyond the Application Level in every 

data science project, depicted by the 

grey arrow across the top of Figure 2 

mentioned earlier, including data sci-

ence ethics; documentation of the re-

search and meta data creation; repro-

ducibility; and policy and legal aspects 

including governance, privacy, and 

intellectual property considerations.26 

This is the “Science of Data Science Lev-

el.” In addition, data science projects 

encompass computational skills and 

technologies (for example, interpret-

ed languages such as R and Python, 

data querying languages, distributed 

computing resources) represented in 

the green, lower layer, called the “In-

frastructure Level” of the Data Science 

Life Cycle. None of the technologies 

listed in Figure 2 are prescriptive but 

they support the steps in the Data Sci-

ence Life Cycle, in particular the Ap-

plication Level. Importantly, each are 

research areas of research and devel-

opment in their own right, including 

A life cycle 
approach 
encourages  
and enables  
a unification  
of views regarding 
data science  
and gives us  
a footing from 
which to adapt  
and evolve  
the practice and 
teaching of data 
science to research 
projects and 
to institutional 
strengths.
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more easily detected and recognized as 

part of a comprehensive Data Science 

research agenda, including for exam-

ple algorithms; containerization tech-

nologies; abstractions of data manipu-

lations; data structures; distributed 

computing; parallel, cloud or edge 

computing; hardware design (for ex-

ample, application specific integrated 

circuits and their development such as 

TPUs, or networking capabilities for 

data distribution).

Considering the Data Science Life 

Cycle as a life cycle enables a natural 

consideration of crucial overarching 

factors such as reproducibility, docu-

mentation and meta data, ethics, and 

archiving of research artifacts such as 

data and code. The Data Science Life 

Cycle provides guidance on the multi-

faceted set of skills and personnel 

needed for data science, for example 

“skills for dealing with organizational 

artifacts of large-scale cluster comput-

ing. The new skills cope with severe 

new constraints on algorithms posed by 

the multiprocessor/networked world.”7 

Workforce development is therefore 

incorporated into the life cycle ap-

proach, which is especially germane to 

data science as “enthusiasm feeds on 

the notable successes scored in the 

last decade by brand-name global in-

formation technology (IT) enterprises, 

such as Google and Amazon.”7

The Data Science Life Cycle engages 

relevant stakeholders in the larger re-

search community in a systematic way, 

including not only data science re-

searchers but others such as archi-

vists, libraries and librarians, legal ex-

perts, publishers, funding agencies, 

and scientific societies. It gives a 

framework to clarify how different 

contributions knit together to support 

each other to advance data science.

Leveraging the Data 

Science Life Cycle

A life cycle approach encourages and 

enables a unification of views regard-

ing data science and gives us a footing 

from which to adapt and evolve the 

practice and teaching of data science 

to research projects and to institution-

al strengths. There are commonalities 

to nearly all data science efforts, for ex-

ample, data wrangling, data inference, 

code writing, artifact creation and shar-

ing. A common intellectual framework 

Mapping this experimental de-

scription to the Application Layer of 

the Data Science Life Cycle could pro-

ceed as follows: Obtain Data → Data 

Preparation → Feature Selection/Model 

Estimation → Cross-tests and Valida-

tion → Publication and Archiving. In-

formation regarding the tools and soft-

ware used for each step is then mapped 

to the Infrastructure Layer and over-

arching issues, such as data governance 

and sharing policies, detailed in the Sci-

ence of Data Science Level. Notice this 

data science pipeline incorporates a cy-

clical loop in the pipeline when Recur-

sive Feature Elimination is employed.

The second example gives a stylized 

description of hypothesis-driven re-

search experiment to test whether a 

journal’s impact factor is related to the 

existence of a data or code sharing au-

thor policy.27 The steps are as follows:

1. Determine the hypothesis to test.

2. Design an appropriate experi-

ment to test the hypothesis.

3. Collected data on journal impact 

factors and artifact policies as well as 

other descriptive information.

4. Test the hypothesis.

5. Report the results.

We map the steps to the Data Sci-

ence Life Cycle as follows: Determine 

Hypothesis → Experimental Design → 

Collect Data → Statistical Inference → 

Publication. Computational tools 

used in each step can be detailed in 

the Infrastructure Level description, 

and issues that apply to the entire life 

cycle considered in the Science of 

Data Science Level, such as data and 

code availability, preregistration of 

hypothesis tests, Institutional Re-

view Board (IRB) information, if rel-

evant. Although simplified, these 

two examples represent different re-

search questions and two differ-

ent instantiations of the Data Sci-

ence Life Cycle, but both show how 

the Data Science Life Cycle frame-

work allows important aspects of the 

research, such as computational im-

plementations and data ethics, to be 

cogently and deliberately incorporat-

ed as part of the research and publica-

tion process.

These examples also illustrate how 

the Data Science Life Cycle tests whether 

a particular research effort fits under 

the rubric of data science. Gaps at the 

Infrastructure or System Levels can be 

Data science is 
benefitting from 
close association 
with industry as 
computer science 
did at its inception.
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Elevating the practice of data science 
to a science. The Data Science Life Cycle 

framework is an essential conceptual-

ization in the development of data sci-

ence as a science. A recent National 

Academies of Sciences, Engineering, 

and Medicine consensus report on “Re-

producibility and Replication in Sci-

ence” spotlights the need to better de-

velop scientific underpinnings for 

computationally and data-enabled re-

search investigations21 and a March 

can facilitate knowledge sharing about 

data science as a discipline across dif-

ferent the fields and domains using 

data science methods in their research.

A data science curriculum. Concep-

tualizing data science as a life cycle also 

gives a way to position classes and se-

quences to teach core and elective data 

science skills, indicating where exist-

ing courses may fit and where new 

courses may need to be developed. It 

helps define a curriculum by using the 

steps of the Data Science Life Cycle as a 

pedagogical sequence and provides for 

the inclusion of overarching topics 

such as data science ethics, and intel-

lectual property, reproducibility, or 

data governance considerations.24 Per-

haps most importantly the Data Sci-

ence Life Cycle can indicate courses 

that may be out of scope and new course 

topics essential to data science.

The accompanying table shows how 

several commonly offered courses 

could be matched to the steps described 

by the Data Science Life Cycle described 

in Figure 2. Although not included in 

the table, each step can be augmented 

by the creation of new targeted classes 

if needed, such as Data Policy, Repro-

ducibility in Data Science, Data Science 

Ethics, Circuit Design for Deep Learn-

ing, Software Engineering Principles 

for Data Science, Mathematics for Data 

Science, Interoperability and Integra-

tion of Different Data Sources, Data Sci-

ence with Streaming Data, Software 

Preservation and Archiving, Workflow 

Tools for Data Science, Intellectual 

Property for Scientific Code and Data. 

The list goes on. The addition of do-

main specific optional courses could 

define tracks or specializations within 

a data science curriculum (for example, 

Earth sciences, bioinformatics, sociol-

ogy; cyberinfrastructure for data sci-

ence) to create a potential DS+X degree 

in the spirit of the CS+X degrees dis-

cussed previously.

The emergence of a discipline of 

data science is necessary to advance 

data science as well as encourage reli-

able and reproducible discoveries, ele-

vating the endeavor to a branch of the 

scientific method. Data science may 

eventually develop as a set of discipline-

adapted discovery techniques and prac-

tices, perhaps including a cross-disci-

plinary core. Data science is benefitting 

from close association with industry as 

computer science did at its inception, 

for example, IBM’s creation of the Wat-

son Scientific Computing Laboratory at 

Columbia University in 1945.14 Analysis 

of consumer data by Google, Facebook, 

and Amazon is generating prominent 

successes in image identification and 

voice transcription among other areas. 

Opportunities for industry employ-

ment and workforce development cre-

ate an attractive feature of data science 

at the institutional level.

An example mapping from some routinely offered courses to the steps of the Data Science 

Life Cycle. 

Data Science Life Cycle 

Step Possible (Existing) Courses

Experimental design  ˲ Introduction to Probability

 ˲ Introduction to Statistics

 ˲ Design of Experiments (including Human Subjects and Informed Consent)

Obtaining data  ˲ Experimental Methodology

 ˲ Introduction to Databases

 ˲ Introduction to SQL, noSQL

 ˲ Sensor Integration and Control

Data exploration  ˲ Introduction to R

 ˲ Introduction to python

 ˲ Graphics and Data Visualization

 ˲ Introduction to Statistics

Databases and data 

structures including 

cleaning/organizing

 ˲ Introduction to Database Systems

 ˲ Introduction to SQL, noSQL

 ˲ Natural Language Processing (NLP)

Software engineering  ˲ Python, R, C, C++, Julia

 ˲ Distributed Systems, MapReduce

 ˲ Software Testing

Feature selection  ˲ Statistical Learning

 ˲ Domain-specific courses, for example, Bioinformatics for 

Transcriptomics; Brain Imaging in Cognitive Neuroscience Research

Model estimation  ˲ Mathematics (Probability, Linear Algebra, Calculus, Real Analysis)

 ˲ Applied Statistics

 ˲ Machine Learning

 ˲ Data Mining

 ˲ Deep Learning

 ˲ Scalable Algorithms

 ˲ Statistical Decision Theory

Simulation and cross-

validation

 ˲ Fundamentals of Numerical Methods

 ˲ Introduction to Computer Modeling and Simulation

 ˲ Statistical Learning

Visualization  ˲ Information Visualization

 ˲ Scientific Visualization and Graphics

 ˲ [Domain specific courses such as Learning ArcGIS;  

Spatial Data Visualization]

Publication/Archiving  ˲ Introduction to Information

 ˲ Data Archiving and FAIR Data

 ˲ Scientific Report Writing

 ˲ Research Data Management

 ˲ Open Access and Scholarly Communication

 ˲ Digital Libraries and Preservation

Overarching topics  ˲ Ethics for Scientists

 ˲ Data Privacy

 ˲ National and International Regulatory Trends in Data Protection

The table is not intended as a complete and comprehensive description of all skills 

required to be an effective data scientist, but an illustration of how current courses could 

be incorporated into a data science training curriculum, within which students may pursue 

pathways of interest. Possible new courses to be developed can be gleaned from such a 

presentation. Some courses are listed in more than one step to illustrate various ways they 

might be included in curriculum design.
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Conclusion

Without a flexible yet unified overarch-

ing framework we risk missing opportu-

nities for discovering and addressing 

research issues within data science and 

training students in effective scientific 

methodologies for reliable and trans-

parent data-enabled discovery. Data 

science brings new research topics, for 

example, computational reproducibil-

ity; ethics in data science; cyberinfra-

structure and tools for data science. 

Without the Data Science Life Cycle ap-

proach, we risk an implementation of 

data science that too closely hews to a 

view that reflects the perspective of a 

particular discipline and could miss 

opportunities to share knowledge on 

data science research and teaching 

broadly across disciplines. In addition, 

a Data Science Life Cycle approach can 

give university leadership a framework 

to leverage their existing resources on 

campus as they strategize support for a 

cross-disciplinary data science curricu-

lum and research agenda. The life cycle 

approach allows data science research 

and curriculum efforts to support the 

development of a scientific discipline, 

enabling progress toward fulfilling 

Tukey’s three criteria for a science. 
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2019 National Academy of Sciences Col-

loquium entitled “The Science of Deep 

Learning” aimed to bring scientific 

foundations to the fore of the deep 

learning research agenda.19 The discus-

sion regarding the scientific underpin-

nings of data analysis began in 1962, 

when John Tukey presented three crite-

ria a discipline ought to meet in order to 

be considered a science:30

1. Intellectual content.

2. Organization into an understand-

able form.

3. Reliance upon the test of experi-

ence as the ultimate standard of validity.

If one accepts these criteria, the Data 

Science Life Cycle can be leveraged to 

demonstrate intellectual content, pro-

mote its organization (see Figure 2), and 

incorporate external tests of the validity 

of findings. On this last point, the struc-

ture of the Data Science Life Cycle 

builds in reproducibility, reuse, and 

verification of results with its embed-

ded notion that artifacts supporting the 

claims (such as data, code, workflow 

information) be made available as part 

of the publication (life cycle) process. 

Research on platforms and infrastruc-

ture for data science facilitates Tukey’s 

second criterion by advancing organi-

zational topics such as artifact meta 

data; containerization, packaging and 

dissemination standards; and commu-

nity expectations regarding FAIR (find-

ability, accessibility, interoperability, 

and reusability), archiving, and persis-

tence of the artifacts produced by data 

science. These efforts also help enable 

comparisons of data science pipelines 

to increase understanding of any dif-

ferences in outcomes of “tests of expe-

rience.”29 The Data Science Life Cycle 

exposes these topics as areas for re-

search within the discipline of data sci-

ence.2 Several conferences and jour-

nals have begun to require artifact 

availability and infrastructure projects 

are emerging to support reproducibil-

ity across the data science discovery 

pipeline.3 Considering these issues 

through a Data Science Life Cycle gives 

a frame for their inclusion as research 

areas integral to the discipline of Data 

Science. Data science without a unify-

ing framework risks being a set of 

disparate computational activities in 

various scientific domains, rather than 

a coherent field of inquiry producing 

reliable reproducible knowledge.


