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ABSTRACT

The last few years has seen a substantial push toward “Open Data”
by policy makers, researchers, archivists, and even the public. This
article postulates that the value of data is not intrinsic but instead
derives from its ability to produce knowledge; the extraction of
which from data is not deterministic. The value of data is realized
through a focus on the reproducibility of the findings from the data,
which acknowledges the complexity of the leap from data to knowl-
edge, and the inextricable interrelationships between data, software,
computational environments and cyberinfrastructure, and knowl-
edge. Modern information archiving practices have a long history
and were shaped in a pre-digital world comprised of physical ob-
jects such as books, monographs, film, paper, and other physical
artifacts. This article argues that “data,” the modern collection of
digital bits representing empirical measurements, is a wholly new
entity and not a digital analog to any physical object. It further
argues that a focus on the interrelationships between digital ar-
tifacts and their unique properties, instead of Open Data alone,
will instead produce an augmented and more useful understanding
of knowledge when it is derived from digital data. Data-derived
knowledge, represented by claims in the scholarly record, must
persistently link to immutable versions of the digital artifacts from
which it was derived, including 1) any data, 2) software that allows
access to the data and the regeneration of those claims that rely on
the version of the data, and 3) computational environment infor-
mation including input parameters, function invocation sequences,
and resource details. In this sense the epistemological gap between
data and extracted knowledge can be closed. Datasets and software
are often subject to change and revision, sometimes even with high
velocity, and such changes imply new versions with new unique
identifiers. We propose considering knowledge, rather than data in
isolation, with a schematic model representing the interconnect-
edness of datasets, software, and computational information upon
which its derivation depends. Capturing the interconnectedness
of these digital artifacts, and their relationship to the knowledge
they generate, is essential for supporting the reproducibility, trans-
parency, and cognitive tractability of scientific claims derived from
digital data.
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1 INTRODUCTION

The library has traditionally served the important role of steward
of the scholarly record. The traditional model from the print era
saw libraries maintaining rich archives of journals and conference
proceedings, accessible as bound paper volumes accessed in a phys-
ical library. Each article published in these volumes was presented
as a novel contribution extending our stock of knowledge, and was
self-contained in the sense that the information needed to under-
stand and verify the scientific claims made was contained in or
accessible through the published article itself. When research is
computationally-and data-enabled, the scientific scholarly publica-
tion is no longer self-contained as traditionally understood. Access
to data, verification of the computational steps and code that lead
from data to inference, and exposition of the relevant details about
the digital aspects of the research process do not yet have a broadly
accepted and structured place within the traditional published ar-
ticle and scholarly record. Access to supporting digital scholarly
objects and the importance of their long term stewardship is a
facet of reproducibility discussions in the scientific community
[12, 13, 28, 37, 38]. The 2019 National Academies of Science, Engi-
neering, and Medicine report on “Reproducibility and Replication
in Science” defined reproducibility as “obtaining consistent results
using the same input data, computational steps, methods, and code,
and conditions of analysis” and we follow this definition in this
writing [26]. Note that reproducibility does not necessarily imply
the ability to re-execute the software in perpetuity.

The “Open Data” effort recognizes that the majority of published
scientific research today, perhaps nearly all, rely on digital schol-
arly objects, such as data, that are not typically included in the
published article itself. This article traces previous work on the
evolving scholarly record in the digital age, then argues that claims



extracted from digital datasets and data collections require spe-
cial consideration with regard to archiving and access due to their
unique relationships to the digital artifacts upon which they depend.
Finally we present a model that links digital artifacts in support
of “Open Knowledge” through reproducibility. This linked model
indicates future directions in which the scholarly record is curated
with persistent links to digital objects that support its claims.

2 PREVIOUS WORK

The effect of digitization on the scholarly record, including the dig-
itization of books as well as scholarly publications in journals and
conference proceedings, has a rich history of scholarly attention
[4, 14, 20]. In addition, new scholarly objects are now routinely
archived by libraries including datasets and software [5, 6, 11, 19].
The nature of data archiving itself is evolving. Digital data archives
vary widely in organizational structure, mission, collection, fund-
ing, and relationships to their users and other stakeholders. Only
relatively recently have forums such as the Research Data Alliance
(founded 2013) and Forcell (founded 2011) coalesced to discuss
common interests, policies, practices, and technologies that span
research domains, countries, and communities. Kuny is the first
to our knowledge to explicitly note the existence of inextricable
relationships between digital scholarly objects from an archivist’s
perspective: “Some types of information, such as multimedia, are
so closely linked to the software and hardware technologies that
they cannot be used outside these proprietary environments” how-
ever this description does not refer to the essential epistemological
connections between digital artifacts for knowledge extracted from
data [17]. Borgman however makes this observation explicit for
data and code: “data are inseparable from the software code used
to clean, reduce, and analyze them” ([5] p. 106). However, there is
“a broad-based movement toward publication practices that permit
results to be readily reproduced, at least in the computational sci-
ences.” [22, 32, 33]. These efforts recognize the special and novel
nature of the relationships between data, code, and published claims
arising from data inference.

Researchers sometimes take steps on their own initiative to
make digital artifacts that support their published claims available,
frequently citing reproducibility, often using platforms and infras-
tructures developed outside the scholarly community and typically
intended for other purposes [12]. For example, some researchers use
the web-based platform GitHub.com for software development as
well as software archiving and access [16, 42]. However GitHub.com
is not designed for housing or archiving data as it is explicitly a
software development platform (e.g. file size limitations of 2GB),
and its use by the research community indicates an infrastructure
divide between data and software from an archiving perspective.
GitHub and other software development platforms have collabora-
tive aspects in its infrastructure (e.g. the ability to commit, branch,
fork, merge software contributions) that are not typically associated
with infrastructure that archives and preserves datasets. There are
entirely distinct infrastructure ecosystems for data and software
and in the next section we proffer reasons as to why that might be,
from differing policies to intrinsic attributes of data and code.

The research community has taken several steps to encourage,
facilitate, and require data citation when data relied on to make
claims in a publication, and when data are published independently.
Some of the most notable examples are discussed in this section. As
yet, broadly accepted citation standards are evolving and are not
yet uniform or standardized. Publishers, journals, and repositories
are providing predefined “badges” that can be used to kitemark
a publication. An example is the “Open Data” badge defined by
the Center for Open Science (see https://cos.io/our-services/open-
science-badges/). The Association for Computing Machinery (ACM)
Digital Library, in concert with its publishing arm, offers badges
to indicate a publication’s level of reproducibility including the
“Artifacts Available” badge and the “Artifacts Evaluated” badge.
Data is considered included in the definition of artifact [25]. Finally,
a National Information Standards Organization (NISO) Taxonomy,
Definitions, and Recognition Badging Scheme Working Group! is
charged with advancing badging scheme standardization across
the Computational and Computing Sciences (https://www.niso.org/
standards-committees/reproducibility-badging). As discussed in the
next section, journals and publishers are taking steps to encourage
and require data availability for their articles, and data citation [36,
40]. Two of the most prominent examples of author requirements
to make data and code that support the claims in the article openly
available, prior to publication, come from Science and Nature [23, 29].
Finally, there are broad community-wide efforts to guide data access
and citation practices, along with other artifacts. For example, the
Center for Open Science hosts the Transparency and Openness
Promotion (TOP) guidelines for journals and publishers,? which
define four levels at which journals can comply with openness
and transparency in their publication policies and practices (https:
//cos.io/top/) [24].

3 PRESERVING DIGITAL ARTIFACTS THAT
SUPPORT SCIENTIFIC CLAIMS IS
NECESSARY FOR REPRODUCIBILITY

Data preservation is motivated by many reasons: including re-use,
reproducibility of scholarly claims, verification, and avoidance of
duplication of effort to name a few [38]. The data preservation
policies of research funding bodies, journals, and libraries can also
influence what is preserved and why.

3.1 DPolicies Must Recognize the Relationships
Between Digital Artifacts That Generate
Knowledge

In 2011 the National Science Foundation began requiring two page
Data Management Plans to be submitted with research propos-
als. Data in this context can mean datasets, software, workflow
information, samples or other products or output of the funded
research, however the use of the term data means the emphasis
tends to be on datasets generated by the grant. Since 2011 the
seven directorates comprising the National Science Foundation
have developed their own guidance and requirements for the Data
Management Plans submitted with proposal to their directorate.
T am a member of the NISO Taxonomy, Definitions, and Recognition Badging Scheme
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In October of 2018 The National Institutes for Health released a
Request for Information entitled “Request for Information (RFI)
on Proposed Provisions for a Draft Data Management and Shar-
ing Policy for NIH Funded or Supported Research” https://grants.
nih.gov/grants/guide/notice-files/NOT-OD-19-014.html. Unlike the
National Science Foundation, the National Institutes for Health
has a long history of supporting its own repositories and infras-
tructure for specific types of output data from its research, e.g.
NCBI BioCollections (https://www.ncbinlm.nih.gov/biocollections)
and genotype data in the dbGaP repository (https://www.ncbi.nlm.
nih.gov/gap). Research proposals to the Department of Energy
have required Data Management Plans since 2014. This effort men-
tions data, meta data, and software: “A statement of plans for data
and metadata content and format including, where applicable, a
description of documentation plans, annotation of relevant soft-
ware” and “Sharing and Preservation: any special requirements
for data sharing, for example, proprietary software needed to ac-
cess or interpret data, applicable policies, provisions, and licenses
for re-use and re-distribution, and for the production of deriva-
tives, including guidance for how data and data products should
be cited” (https://science.energy.gov/funding-opportunities/digital-
data-management/suggested-elements-for-a-dmp/). The Depart-
ment of Energy has the most specific directive regarding software,
stating in 2016 that software produced from grants must be at least
20% released open source (e.g. on GitHub.com): “establishes a pilot
program that requires agencies, when commissioning new custom
software, to release at least 20 percent of new custom-developed
code as Open Source Software (OSS) for three years, and collect
additional data concerning new custom software to inform metrics
to gauge the performance of this pilot” (https://sourcecode.cio.gov/).
Due May 6 2020, the Office of Science and Technology Policy
in the Whitehouse requested information on “Public Access to
Peer-Reviewed Scholarly Publications, Data and Code Resulting
From Federally Funded Research” (https://www.federalregister.gov/
documents/2020/03/31/2020-06622/request-for-information-public-
access-to-peer-reviewed-scholarly-publications-data-and-code).

3.2 Policies Often Prioritize Open Data, and
Open Code Lags

Recent research has shown a meaningful increase in the number
of journals with data and/or code release policies associated with
the claims in the manuscripts they choose to publish. Interestingly,
journal policies regarding access to research code tend to come
about several years after data policies [36].

Publishers, libraries, and independent organizations have de-
veloped efforts to coordinate the elements of the scholarly record.
CrossRef (crossref.org), established in 1999 by a consortium of pub-
lishers, establishes a system to implement and recognize unique
identifiers for articles in the scholarly record. Unique identifiers
were developed shortly afterwards in 2000, called Digital Object
Identifiers or DOIs (doi.org) and used by CrossRef to uniquely
identify objects across a variety of publishers and other entities.
DataCite, an organization in the same vein, was created in 2009
and acts as a registration agency for research data. The identifying
information for both articles and data is collected in standardized
schemas. We note that software is not explicitly included in the

current management of digital objects, although software objects
are often classified as data objects. The Scholix Framework (SCHOI-
arly LInk eXchange) was launched in 2016 [1] “to create an open
global information ecosystem to collect and exchange links between
research data and literature” (see http://www.scholix.org/about).

4 BEYOND DATA: INCLUDING ALL
SUPPORTING DIGITAL ARTIFACTS

This section seeks to motivate the importance of linking published
computational claims to all their supporting digital artifacts, typi-
cally software, data, and other information on the computational
environment, function invocation sequences, and information on
inputs, parameters and other settings. These supporting artifacts
are inextricably related to each other, for example the software
that extracted scientific inferences from the data, or generated the
data. We argue that that digital infrastructure designed for data
archiving is not a perfect fit for software artifacts or other informa-
tion needed for computational reproducibility of scientific claims,
and expansion in the conceptualization, design, and deployment
of infrastructure is needed. What follows is an enumeration of
challenges in realizing the vision of pervasively linked artifacts
for reproducibility. As is evident by the challenges, advancing this
vision requires the coordinated engagement of a variety of stake-
holders, including researchers, scientific societies, publishers and
journal editors, libraries and repositories, and funders. The solu-
tions will differ for each challenge and our purpose is to motivate
the landscape of differences between artifacts that give rise to their
differential treatment when sharing, preserving and re-use, and the
need to ensure these artifacts are linked and discoverable through
the scientific claim they support.

4.1 Challenge 1: Data and Software Can
Change Frequently

Datasets are subject to change and revision, often with high veloc-
ity, and such changes may require new unique identifiers for new
versions of datasets that are derived from previous versions. The ex-
istence of these relationships between datasets imply relationships
between object identifiers that embed information about these rela-
tionships. Similarly, software can be updated and changed (often
for different reasons and in different ways than data) and unique
identifiers may also be appropriate to assign to new versions. This
mimics the current approach to the publication of findings, where
new evidence is also published, allowing the community to revise
their understanding of the underlying research (of course in the
case of outright mistakes or fraud it should be possible to retract
any digital scholarly object from the scholarly record, just as for
publications).

4.2 Challenge 2: Data and Software Ownership
and Rights Structures Are Different

The preceding discussion is predicated on the author having the
ability and legal rights to share data and code associated with claims.
When claims are self contained within articles — the model from
the print era - rights over the text and figures in the article gen-
erally resided with the authors, who were then able to publish or



otherwise release their manuscript. Rights over data and code are
not so clear cut: they may have different authors or creators than
the manuscript, and data and code may have many different con-
tributors at different points in time. Data is different to software in
ways that alter the rights assigns and ability to publish. Data may
be, for example, obtained or scraped from many sources each with
its own terms of use. Software, like text and figures, is subject to
copyright in the United States, whereas data generally are not [31].
Software may contain proprietary or potentially patentable algo-
rithms. Each of these facets engenders different treatment regarding
rights, accessibility, sharing, and re-use. In short, software cannot
be considered as another form of data in scholarly communication
with regard to sharing, re-use, and reproducibility.

This questions of artifact ownership and rights is complicated
when viewed from a global perspective. Different countries and re-
gions employ different Intellectual Property approaches and regimes
which can shapes rights regarding research artifact sharing and
re-use in different ways. For example in the United States Feist
Pubs., Inc. v. Rural Tel. Svc. Co., Inc., 499 U.S. 340 (1991) established
no copyright for raw facts up to "original selection and arrange-
ment," a holding brought to bear for data, and the European Union
has copyright protection for data. If there has been a substantial
investment in obtaining, verifying or presenting the contents of a
database, EU law may endow a sui generis database right to the
database owner which lasts for 15 years and permits the owner the
exclusive right to extract large or repeated small amounts of data
from the database. These regional differences in rights and polices
can introduce legal complications when, for example, merging and
sharing data for difference regions. For more detail on Intellectual
Property and computational science see e.g. [8, 34, 35].

4.3 Challenge 3: Data and Software Engender
Different Preservation Strategies

Software, by definition, is meant to execute on a computational sys-
tem. Data, by contrast, can exist in a fixed form, without adapting to
computational systems. Software requires specialized maintenance
to keep running and has different types of dependences to data since
it relies on other software components to execute. Data, however
can reach a size and scale that software is very unlikely to reach.
Even a complex set of codes is unlikely to reach multiple GBs in size,
whereas there are numerous examples of data at that scale and sig-
nificantly larger. The CMIP5 climate science data set is over 3PB, and
one set of products (DR12) in the Sloan Digital Sky Survey is over
116TB in size (https://www.sdss.org/dr12/data_access/volume/) for
example.

Extensive work developing provenance standards for data (for
example PROV-O, BPMN, DCAT, SDMX, DataCube, SSN/SOSA
and Schema.org, see e.g. https://www.w3.org/TR/prov-overview/)
are not directly applicable to code which evolves differently and
comprises fundamentally different digital objects, nor were they
designed with a focus on scientific results. Rather than measure-
ments typically embodied in data, software is designed to execute
on computational platforms and is more closely related to language
than measurement requiring a rethinking of data best practices
in the software context [2, 15, 39]. Data itself is not a monolithic
concept. Different types of data also require different preservation

strategies, such as digital images vs scanned images, human sub-
jects data, derived vs collected data, and data generated by software
simulation, just to name a few [41]. In addition, the effects of resolv-
ing the various preservation complexities associated with different
artifacts may fall disproportionately on some fields vs others. Fields
that rely on complex or large data and code bases, data with privacy
concerns, or proprietary code for example, may have a need to
undertake more extensive preservation and archiving approaches.

4.4 Challenge 4: Ethical Considerations Differ
for Data and Code

Throughout this discussion, we have presumed digital artifacts are
legally sharable. This may not always be the case and policy frame-
works are developing around data sharing and access. Data may
contain personally identifiable information when generated in the
course of human subjects research or even through behavior such
as internet browsing. Many types of data with private or confiden-
tial information are subject to federal rules controlling its release
e.g. the Federal Acts HIPAA, FERPA [18]. There is no comparable
set of privacy protecting regulations regarding the release of soft-
ware, however software is subject to a set of Intellectual Property
rights that data are not. These rights can create barriers to release,
including copyright and potentially patentability. These aspects of
data and software imply a different set of ethics around steward-
ship of each, for the collection of the data or writing of the code,
right through to curation and archiving. Privacy in data is an area
under rapid policy development and scholarly research and a full
treatment is beyond the scope of this work [3, 10].

5 A LINKED STRUCTURE FOR DATA, CODE,
AND PUBLISHED SCIENTIFIC CLAIMS IS
NECESSARY

Links between digital scholarly objects imply the need for im-
mutable versioning, for example through the assignment of a DOI,
that are persistent and persistently connected both to claims in
the scholarly record. This points to a corollary: the software asso-
ciated with published claims, whether creating the claims itself
or deriving claims from data, also needs a version and unique
persistent identifiers as do data. These three identifiers: for ex-
ample the published article containing the scholarly claims; the
data supporting those claims; and the software that analyzed the
data to discover or generate the claims, rely on each other to sup-
port the research. The metadata schemas associated with DOIs (e.g.
https://schema.datacite.org/) contain relational information regard-
ing the interconnectedness of digital scholarly objects, implying
that such a change in information representation requires very
little new infrastructure to recognize the inseparability of data and
software, and the claims they support.

Use of DOI schema information for example can achieve per-
sistent and discoverable connections between digital artifacts nec-
essary for reproducibility of computationally- and data-enabled
claims in the scholarly literature. Even if such a linked structure for
the digital artifacts that support scientific claims became routine
with publication, we still face other issues such as the appropriate
repositories for stewardship of these sets of artifacts and support
for their curation, definitions and standards for digital artifacts



intended to support reproducibility, and incentive structures for
data and code producing researchers to make these artifacts avail-
able. Providing incentives to make reproducibility-enabling artifacts
available for stewardship and curation implies fundamental changes
in the research reward system. Such changes are underway, for ex-
ample the National Science Foundation recently began recognizing
relevant artifacts on its biosketch, a change from only permitting
publications; and journals are increasingly implementing data and
code availability policies [21, 36].

When considering next steps in advancing the vision of linked
artifacts, each of the challenges in the previous section come to
bear. A community effort, extending that under way for Open Data,
is essential. There are some examples and efforts underway for
example, considering and applying features used for software de-
velopment and versioning in GitHub and/or BitBucket may be use-
ful; learning from repositories such as Zenodo.org, DataVerse.org,
and SoftwareHeritage.org regarding artifact preservation for the
research community to enable effective preservation of data, soft-
ware, and other artifacts and their linking to scientific findings; and
examining pilot solutions for generating linked archival artifacts
from the research process itself such as wholetale.org [7, 9] and the
Open Science Framework [27]. Greater coordination and alignment
of efforts around a vision of archiving research artifacts that are
linked to scientific claims is essential.

A system of linked data and software opens new possibilities
for automatic analysis of the scholarly record, including enabling
different reproducibility checks. Versioning and artifact linking
can enable, at least at the time of publication, the ability to under-
stand the computational steps that lead to a particular scientific
conclusions and, depending on computational details (such as de-
pendencies and backward compatibility) could enable automated
computational regeneration of results. With this linked publication
model, changes to artifacts such as dataset updates or code bug
fixes, can be tracked along with the revisions to scientific find-
ings. One could imagine research suggestions aimed at extending
published results to revised data or new methods. Linking may
indicate future avenues and recommendations for replicability, e.g.
new experiments, not only computational reproducibility, extend-
ing longstanding visions of artificial intelligence contributions to
information retrieval [30].

Today human-in-the-loop intervention is a significant part of
research and a researcher needs to understand the contents and
implementation of reproducible packages to use them correctly.
Linking may also require efforts to understand data and software
in relation to each other as well as individual artifacts. For example
provenance models do not translate to subsets of data or determine
the parts of a research or data processing activity will affect data.
With a linked model, traditional notions of provenance may be
enhanced in these ways to become more effective or useful to the
research community from a reproducibility point of view.

6 CONCLUSIONS

The use of computationally- and data-enabled methods for scien-
tific discovery is expanding the scope of the scholarly record, by
including digital scholarly objects upon which published claims
rely. We intend to spark a conversation about the interconnected

reliance of the claims on these artifacts and how infrastructures
can enable persistence through linking and repositories that accom-
modate these artifacts as a collection, including software as well as
data. Notions of provenance for datasets in the archival sense of
a chain of custody and in the computing sense of transformations
from original state are well developed in comparison to provenance
for changes to software [5]. Incentives to make supporting artifacts
available must come with the development of the knowledge in-
frastructures to support them. We present an argument that claims
extracted from digital datasets and data collections require special
consideration with regard to reproducibility due to their interre-
lated nature. Being able to access the data from which claims were
extracted does not guarantee the ability to understand why those
claims may or may not be correct, for any particular publication.
We present an approach that is designed to allow a consumer of
published research to access a collection of digital artifacts, includ-
ing open data and evolving away from a sole focus on open data,
that permit computational reproducibility, including transparency
in how the claims were derived.
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