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ABSTRACT

The last few years has seen a substantial push toward łOpen Dataž

by policy makers, researchers, archivists, and even the public. This

article postulates that the value of data is not intrinsic but instead

derives from its ability to produce knowledge; the extraction of

which from data is not deterministic. The value of data is realized

through a focus on the reproducibility of the findings from the data,

which acknowledges the complexity of the leap from data to knowl-

edge, and the inextricable interrelationships between data, software,

computational environments and cyberinfrastructure, and knowl-

edge. Modern information archiving practices have a long history

and were shaped in a pre-digital world comprised of physical ob-

jects such as books, monographs, film, paper, and other physical

artifacts. This article argues that łdata,ž the modern collection of

digital bits representing empirical measurements, is a wholly new

entity and not a digital analog to any physical object. It further

argues that a focus on the interrelationships between digital ar-

tifacts and their unique properties, instead of Open Data alone,

will instead produce an augmented and more useful understanding

of knowledge when it is derived from digital data. Data-derived

knowledge, represented by claims in the scholarly record, must

persistently link to immutable versions of the digital artifacts from

which it was derived, including 1) any data, 2) software that allows

access to the data and the regeneration of those claims that rely on

the version of the data, and 3) computational environment infor-

mation including input parameters, function invocation sequences,

and resource details. In this sense the epistemological gap between

data and extracted knowledge can be closed. Datasets and software

are often subject to change and revision, sometimes even with high

velocity, and such changes imply new versions with new unique

identifiers. We propose considering knowledge, rather than data in

isolation, with a schematic model representing the interconnect-

edness of datasets, software, and computational information upon

which its derivation depends. Capturing the interconnectedness

of these digital artifacts, and their relationship to the knowledge

they generate, is essential for supporting the reproducibility, trans-

parency, and cognitive tractability of scientific claims derived from

digital data.
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1 INTRODUCTION

The library has traditionally served the important role of steward

of the scholarly record. The traditional model from the print era

saw libraries maintaining rich archives of journals and conference

proceedings, accessible as bound paper volumes accessed in a phys-

ical library. Each article published in these volumes was presented

as a novel contribution extending our stock of knowledge, and was

self-contained in the sense that the information needed to under-

stand and verify the scientific claims made was contained in or

accessible through the published article itself. When research is

computationally-and data-enabled, the scientific scholarly publica-

tion is no longer self-contained as traditionally understood. Access

to data, verification of the computational steps and code that lead

from data to inference, and exposition of the relevant details about

the digital aspects of the research process do not yet have a broadly

accepted and structured place within the traditional published ar-

ticle and scholarly record. Access to supporting digital scholarly

objects and the importance of their long term stewardship is a

facet of reproducibility discussions in the scientific community

[12, 13, 28, 37, 38]. The 2019 National Academies of Science, Engi-

neering, and Medicine report on łReproducibility and Replication

in Sciencež defined reproducibility as łobtaining consistent results

using the same input data, computational steps, methods, and code,

and conditions of analysisž and we follow this definition in this

writing [26]. Note that reproducibility does not necessarily imply

the ability to re-execute the software in perpetuity.

The łOpen Dataž effort recognizes that the majority of published

scientific research today, perhaps nearly all, rely on digital schol-

arly objects, such as data, that are not typically included in the

published article itself. This article traces previous work on the

evolving scholarly record in the digital age, then argues that claims



extracted from digital datasets and data collections require spe-

cial consideration with regard to archiving and access due to their

unique relationships to the digital artifacts upon which they depend.

Finally we present a model that links digital artifacts in support

of łOpen Knowledgež through reproducibility. This linked model

indicates future directions in which the scholarly record is curated

with persistent links to digital objects that support its claims.

2 PREVIOUS WORK

The effect of digitization on the scholarly record, including the dig-

itization of books as well as scholarly publications in journals and

conference proceedings, has a rich history of scholarly attention

[4, 14, 20]. In addition, new scholarly objects are now routinely

archived by libraries including datasets and software [5, 6, 11, 19].

The nature of data archiving itself is evolving. Digital data archives

vary widely in organizational structure, mission, collection, fund-

ing, and relationships to their users and other stakeholders. Only

relatively recently have forums such as the Research Data Alliance

(founded 2013) and Force11 (founded 2011) coalesced to discuss

common interests, policies, practices, and technologies that span

research domains, countries, and communities. Kuny is the first

to our knowledge to explicitly note the existence of inextricable

relationships between digital scholarly objects from an archivist’s

perspective: łSome types of information, such as multimedia, are

so closely linked to the software and hardware technologies that

they cannot be used outside these proprietary environmentsž how-

ever this description does not refer to the essential epistemological

connections between digital artifacts for knowledge extracted from

data [17]. Borgman however makes this observation explicit for

data and code: łdata are inseparable from the software code used

to clean, reduce, and analyze them.ž ([5] p. 106). However, there is

ła broad-based movement toward publication practices that permit

results to be readily reproduced, at least in the computational sci-

ences.ž [22, 32, 33]. These efforts recognize the special and novel

nature of the relationships between data, code, and published claims

arising from data inference.

Researchers sometimes take steps on their own initiative to

make digital artifacts that support their published claims available,

frequently citing reproducibility, often using platforms and infras-

tructures developed outside the scholarly community and typically

intended for other purposes [12]. For example, some researchers use

the web-based platform GitHub.com for software development as

well as software archiving and access [16, 42]. However GitHub.com

is not designed for housing or archiving data as it is explicitly a

software development platform (e.g. file size limitations of 2GB),

and its use by the research community indicates an infrastructure

divide between data and software from an archiving perspective.

GitHub and other software development platforms have collabora-

tive aspects in its infrastructure (e.g. the ability to commit, branch,

fork, merge software contributions) that are not typically associated

with infrastructure that archives and preserves datasets. There are

entirely distinct infrastructure ecosystems for data and software

and in the next section we proffer reasons as to why that might be,

from differing policies to intrinsic attributes of data and code.

The research community has taken several steps to encourage,

facilitate, and require data citation when data relied on to make

claims in a publication, and when data are published independently.

Some of the most notable examples are discussed in this section. As

yet, broadly accepted citation standards are evolving and are not

yet uniform or standardized. Publishers, journals, and repositories

are providing predefined łbadgesž that can be used to kitemark

a publication. An example is the łOpen Dataž badge defined by

the Center for Open Science (see https://cos.io/our-services/open-

science-badges/). The Association for ComputingMachinery (ACM)

Digital Library, in concert with its publishing arm, offers badges

to indicate a publication’s level of reproducibility including the

łArtifacts Availablež badge and the łArtifacts Evaluatedž badge.

Data is considered included in the definition of artifact [25]. Finally,

a National Information Standards Organization (NISO) Taxonomy,

Definitions, and Recognition Badging Scheme Working Group1 is

charged with advancing badging scheme standardization across

the Computational and Computing Sciences (https://www.niso.org/

standards-committees/reproducibility-badging). As discussed in the

next section, journals and publishers are taking steps to encourage

and require data availability for their articles, and data citation [36,

40]. Two of the most prominent examples of author requirements

to make data and code that support the claims in the article openly

available, prior to publication, come from Science andNature [23, 29].

Finally, there are broad community-wide efforts to guide data access

and citation practices, along with other artifacts. For example, the

Center for Open Science hosts the Transparency and Openness

Promotion (TOP) guidelines for journals and publishers,2 which

define four levels at which journals can comply with openness

and transparency in their publication policies and practices (https:

//cos.io/top/) [24].

3 PRESERVING DIGITAL ARTIFACTS THAT

SUPPORT SCIENTIFIC CLAIMS IS

NECESSARY FOR REPRODUCIBILITY

Data preservation is motivated by many reasons: including re-use,

reproducibility of scholarly claims, verification, and avoidance of

duplication of effort to name a few [38]. The data preservation

policies of research funding bodies, journals, and libraries can also

influence what is preserved and why.

3.1 Policies Must Recognize the Relationships

Between Digital Artifacts That Generate

Knowledge

In 2011 the National Science Foundation began requiring two page

Data Management Plans to be submitted with research propos-

als. Data in this context can mean datasets, software, workflow

information, samples or other products or output of the funded

research, however the use of the term data means the emphasis

tends to be on datasets generated by the grant. Since 2011 the

seven directorates comprising the National Science Foundation

have developed their own guidance and requirements for the Data

Management Plans submitted with proposal to their directorate.

1I am a member of the NISO Taxonomy, Definitions, and Recognition Badging Scheme
Working Group.
2I am a member of the TOP steering committee.



In October of 2018 The National Institutes for Health released a

Request for Information entitled łRequest for Information (RFI)

on Proposed Provisions for a Draft Data Management and Shar-

ing Policy for NIH Funded or Supported Researchž https://grants.

nih.gov/grants/guide/notice-files/NOT-OD-19-014.html. Unlike the

National Science Foundation, the National Institutes for Health

has a long history of supporting its own repositories and infras-

tructure for specific types of output data from its research, e.g.

NCBI BioCollections (https://www.ncbi.nlm.nih.gov/biocollections)

and genotype data in the dbGaP repository (https://www.ncbi.nlm.

nih.gov/gap). Research proposals to the Department of Energy

have required Data Management Plans since 2014. This effort men-

tions data, meta data, and software: łA statement of plans for data

and metadata content and format including, where applicable, a

description of documentation plans, annotation of relevant soft-

warež and łSharing and Preservation: any special requirements

for data sharing, for example, proprietary software needed to ac-

cess or interpret data, applicable policies, provisions, and licenses

for re-use and re-distribution, and for the production of deriva-

tives, including guidance for how data and data products should

be citedž (https://science.energy.gov/funding-opportunities/digital-

data-management/suggested-elements-for-a-dmp/). The Depart-

ment of Energy has the most specific directive regarding software,

stating in 2016 that software produced from grants must be at least

20% released open source (e.g. on GitHub.com): łestablishes a pilot

program that requires agencies, when commissioning new custom

software, to release at least 20 percent of new custom-developed

code as Open Source Software (OSS) for three years, and collect

additional data concerning new custom software to inform metrics

to gauge the performance of this pilotž (https://sourcecode.cio.gov/).

Due May 6 2020, the Office of Science and Technology Policy

in the Whitehouse requested information on łPublic Access to

Peer-Reviewed Scholarly Publications, Data and Code Resulting

From Federally Funded Researchž (https://www.federalregister.gov/

documents/2020/03/31/2020-06622/request-for-information-public-

access-to-peer-reviewed-scholarly-publications-data-and-code).

3.2 Policies Often Prioritize Open Data, and

Open Code Lags

Recent research has shown a meaningful increase in the number

of journals with data and/or code release policies associated with

the claims in the manuscripts they choose to publish. Interestingly,

journal policies regarding access to research code tend to come

about several years after data policies [36].

Publishers, libraries, and independent organizations have de-

veloped efforts to coordinate the elements of the scholarly record.

CrossRef (crossref.org), established in 1999 by a consortium of pub-

lishers, establishes a system to implement and recognize unique

identifiers for articles in the scholarly record. Unique identifiers

were developed shortly afterwards in 2000, called Digital Object

Identifiers or DOIs (doi.org) and used by CrossRef to uniquely

identify objects across a variety of publishers and other entities.

DataCite, an organization in the same vein, was created in 2009

and acts as a registration agency for research data. The identifying

information for both articles and data is collected in standardized

schemas. We note that software is not explicitly included in the

current management of digital objects, although software objects

are often classified as data objects. The Scholix Framework (SCHOl-

arly LInk eXchange) was launched in 2016 [1] łto create an open

global information ecosystem to collect and exchange links between

research data and literaturež (see http://www.scholix.org/about).

4 BEYOND DATA: INCLUDING ALL

SUPPORTING DIGITAL ARTIFACTS

This section seeks to motivate the importance of linking published

computational claims to all their supporting digital artifacts, typi-

cally software, data, and other information on the computational

environment, function invocation sequences, and information on

inputs, parameters and other settings. These supporting artifacts

are inextricably related to each other, for example the software

that extracted scientific inferences from the data, or generated the

data. We argue that that digital infrastructure designed for data

archiving is not a perfect fit for software artifacts or other informa-

tion needed for computational reproducibility of scientific claims,

and expansion in the conceptualization, design, and deployment

of infrastructure is needed. What follows is an enumeration of

challenges in realizing the vision of pervasively linked artifacts

for reproducibility. As is evident by the challenges, advancing this

vision requires the coordinated engagement of a variety of stake-

holders, including researchers, scientific societies, publishers and

journal editors, libraries and repositories, and funders. The solu-

tions will differ for each challenge and our purpose is to motivate

the landscape of differences between artifacts that give rise to their

differential treatment when sharing, preserving and re-use, and the

need to ensure these artifacts are linked and discoverable through

the scientific claim they support.

4.1 Challenge 1: Data and Software Can

Change Frequently

Datasets are subject to change and revision, often with high veloc-

ity, and such changes may require new unique identifiers for new

versions of datasets that are derived from previous versions. The ex-

istence of these relationships between datasets imply relationships

between object identifiers that embed information about these rela-

tionships. Similarly, software can be updated and changed (often

for different reasons and in different ways than data) and unique

identifiers may also be appropriate to assign to new versions. This

mimics the current approach to the publication of findings, where

new evidence is also published, allowing the community to revise

their understanding of the underlying research (of course in the

case of outright mistakes or fraud it should be possible to retract

any digital scholarly object from the scholarly record, just as for

publications).

4.2 Challenge 2: Data and Software Ownership

and Rights Structures Are Different

The preceding discussion is predicated on the author having the

ability and legal rights to share data and code associated with claims.

When claims are self contained within articles ś the model from

the print era ś rights over the text and figures in the article gen-

erally resided with the authors, who were then able to publish or



otherwise release their manuscript. Rights over data and code are

not so clear cut: they may have different authors or creators than

the manuscript, and data and code may have many different con-

tributors at different points in time. Data is different to software in

ways that alter the rights assigns and ability to publish. Data may

be, for example, obtained or scraped from many sources each with

its own terms of use. Software, like text and figures, is subject to

copyright in the United States, whereas data generally are not [31].

Software may contain proprietary or potentially patentable algo-

rithms. Each of these facets engenders different treatment regarding

rights, accessibility, sharing, and re-use. In short, software cannot

be considered as another form of data in scholarly communication

with regard to sharing, re-use, and reproducibility.

This questions of artifact ownership and rights is complicated

when viewed from a global perspective. Different countries and re-

gions employ different Intellectual Property approaches and regimes

which can shapes rights regarding research artifact sharing and

re-use in different ways. For example in the United States Feist

Pubs., Inc. v. Rural Tel. Svc. Co., Inc., 499 U.S. 340 (1991) established

no copyright for raw facts up to "original selection and arrange-

ment," a holding brought to bear for data, and the European Union

has copyright protection for data. If there has been a substantial

investment in obtaining, verifying or presenting the contents of a

database, EU law may endow a sui generis database right to the

database owner which lasts for 15 years and permits the owner the

exclusive right to extract large or repeated small amounts of data

from the database. These regional differences in rights and polices

can introduce legal complications when, for example, merging and

sharing data for difference regions. For more detail on Intellectual

Property and computational science see e.g. [8, 34, 35].

4.3 Challenge 3: Data and Software Engender

Different Preservation Strategies

Software, by definition, is meant to execute on a computational sys-

tem. Data, by contrast, can exist in a fixed form, without adapting to

computational systems. Software requires specialized maintenance

to keep running and has different types of dependences to data since

it relies on other software components to execute. Data, however

can reach a size and scale that software is very unlikely to reach.

Even a complex set of codes is unlikely to reach multiple GBs in size,

whereas there are numerous examples of data at that scale and sig-

nificantly larger. The CMIP5 climate science data set is over 3PB, and

one set of products (DR12) in the Sloan Digital Sky Survey is over

116TB in size (https://www.sdss.org/dr12/data_access/volume/) for

example.

Extensive work developing provenance standards for data (for

example PROV-O, BPMN, DCAT, SDMX, DataCube, SSN/SOSA

and Schema.org, see e.g. https://www.w3.org/TR/prov-overview/)

are not directly applicable to code which evolves differently and

comprises fundamentally different digital objects, nor were they

designed with a focus on scientific results. Rather than measure-

ments typically embodied in data, software is designed to execute

on computational platforms and is more closely related to language

than measurement requiring a rethinking of data best practices

in the software context [2, 15, 39]. Data itself is not a monolithic

concept. Different types of data also require different preservation

strategies, such as digital images vs scanned images, human sub-

jects data, derived vs collected data, and data generated by software

simulation, just to name a few [41]. In addition, the effects of resolv-

ing the various preservation complexities associated with different

artifacts may fall disproportionately on some fields vs others. Fields

that rely on complex or large data and code bases, data with privacy

concerns, or proprietary code for example, may have a need to

undertake more extensive preservation and archiving approaches.

4.4 Challenge 4: Ethical Considerations Differ

for Data and Code

Throughout this discussion, we have presumed digital artifacts are

legally sharable. This may not always be the case and policy frame-

works are developing around data sharing and access. Data may

contain personally identifiable information when generated in the

course of human subjects research or even through behavior such

as internet browsing. Many types of data with private or confiden-

tial information are subject to federal rules controlling its release

e.g. the Federal Acts HIPAA, FERPA [18]. There is no comparable

set of privacy protecting regulations regarding the release of soft-

ware, however software is subject to a set of Intellectual Property

rights that data are not. These rights can create barriers to release,

including copyright and potentially patentability. These aspects of

data and software imply a different set of ethics around steward-

ship of each, for the collection of the data or writing of the code,

right through to curation and archiving. Privacy in data is an area

under rapid policy development and scholarly research and a full

treatment is beyond the scope of this work [3, 10].

5 A LINKED STRUCTURE FOR DATA, CODE,

AND PUBLISHED SCIENTIFIC CLAIMS IS

NECESSARY

Links between digital scholarly objects imply the need for im-

mutable versioning, for example through the assignment of a DOI,

that are persistent and persistently connected both to claims in

the scholarly record. This points to a corollary: the software asso-

ciated with published claims, whether creating the claims itself

or deriving claims from data, also needs a version and unique

persistent identifiers as do data. These three identifiers: for ex-

ample the published article containing the scholarly claims; the

data supporting those claims; and the software that analyzed the

data to discover or generate the claims, rely on each other to sup-

port the research. The metadata schemas associated with DOIs (e.g.

https://schema.datacite.org/) contain relational information regard-

ing the interconnectedness of digital scholarly objects, implying

that such a change in information representation requires very

little new infrastructure to recognize the inseparability of data and

software, and the claims they support.

Use of DOI schema information for example can achieve per-

sistent and discoverable connections between digital artifacts nec-

essary for reproducibility of computationally- and data-enabled

claims in the scholarly literature. Even if such a linked structure for

the digital artifacts that support scientific claims became routine

with publication, we still face other issues such as the appropriate

repositories for stewardship of these sets of artifacts and support

for their curation, definitions and standards for digital artifacts



intended to support reproducibility, and incentive structures for

data and code producing researchers to make these artifacts avail-

able. Providing incentives tomake reproducibility-enabling artifacts

available for stewardship and curation implies fundamental changes

in the research reward system. Such changes are underway, for ex-

ample the National Science Foundation recently began recognizing

relevant artifacts on its biosketch, a change from only permitting

publications; and journals are increasingly implementing data and

code availability policies [21, 36].

When considering next steps in advancing the vision of linked

artifacts, each of the challenges in the previous section come to

bear. A community effort, extending that under way for Open Data,

is essential. There are some examples and efforts underway for

example, considering and applying features used for software de-

velopment and versioning in GitHub and/or BitBucket may be use-

ful; learning from repositories such as Zenodo.org, DataVerse.org,

and SoftwareHeritage.org regarding artifact preservation for the

research community to enable effective preservation of data, soft-

ware, and other artifacts and their linking to scientific findings; and

examining pilot solutions for generating linked archival artifacts

from the research process itself such as wholetale.org [7, 9] and the

Open Science Framework [27]. Greater coordination and alignment

of efforts around a vision of archiving research artifacts that are

linked to scientific claims is essential.

A system of linked data and software opens new possibilities

for automatic analysis of the scholarly record, including enabling

different reproducibility checks. Versioning and artifact linking

can enable, at least at the time of publication, the ability to under-

stand the computational steps that lead to a particular scientific

conclusions and, depending on computational details (such as de-

pendencies and backward compatibility) could enable automated

computational regeneration of results. With this linked publication

model, changes to artifacts such as dataset updates or code bug

fixes, can be tracked along with the revisions to scientific find-

ings. One could imagine research suggestions aimed at extending

published results to revised data or new methods. Linking may

indicate future avenues and recommendations for replicability, e.g.

new experiments, not only computational reproducibility, extend-

ing longstanding visions of artificial intelligence contributions to

information retrieval [30].

Today human-in-the-loop intervention is a significant part of

research and a researcher needs to understand the contents and

implementation of reproducible packages to use them correctly.

Linking may also require efforts to understand data and software

in relation to each other as well as individual artifacts. For example

provenance models do not translate to subsets of data or determine

the parts of a research or data processing activity will affect data.

With a linked model, traditional notions of provenance may be

enhanced in these ways to become more effective or useful to the

research community from a reproducibility point of view.

6 CONCLUSIONS

The use of computationally- and data-enabled methods for scien-

tific discovery is expanding the scope of the scholarly record, by

including digital scholarly objects upon which published claims

rely. We intend to spark a conversation about the interconnected

reliance of the claims on these artifacts and how infrastructures

can enable persistence through linking and repositories that accom-

modate these artifacts as a collection, including software as well as

data. Notions of provenance for datasets in the archival sense of

a chain of custody and in the computing sense of transformations

from original state are well developed in comparison to provenance

for changes to software [5]. Incentives to make supporting artifacts

available must come with the development of the knowledge in-

frastructures to support them. We present an argument that claims

extracted from digital datasets and data collections require special

consideration with regard to reproducibility due to their interre-

lated nature. Being able to access the data from which claims were

extracted does not guarantee the ability to understand why those

claims may or may not be correct, for any particular publication.

We present an approach that is designed to allow a consumer of

published research to access a collection of digital artifacts, includ-

ing open data and evolving away from a sole focus on open data,

that permit computational reproducibility, including transparency

in how the claims were derived.
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