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1. Preamble

Let q be a power of some odd prime p. We use Fq to denote the finite field of q elements 
and the ring of polynomials in x over Fq is denoted Fq[x]. Let f ∈ Fq[x]. A polynomial 
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f ∈ Fq[x] is a permutation polynomial (PP) over Fq if f induces a bijection of Fq under 
the evaluation map y �→ f(y). Permutation polynomials have undoubtably been a hot 
topic over the past 40 years and there are a number of surveys giving overviews of these 
results, the most recent of which we believe to be the survey of Hou [11].

A polynomial f is called planar if for every a ∈ F�
q , the difference operator Δf (x, a) =

f(x + a) − f(x) is a PP over Fq. In this paper we are specifically interested in planar 
monomials xn over Fq. As was noted by Coulter and Matthews in [5], the condition for 
planarity simplifies significantly in the monomial case. Specifically, xn is planar over Fq

if and only if the polynomial (x +1)n −xn is a permutation polynomial. Planar functions 
were introduced in a more general context by Dembowski and Ostrom [6], while studying 
projective planes with a collineation group acting transitively on the affine points. In [6], 
the authors questioned whether, ignoring constants and linearised terms xpi , the only 
planar functions over finite fields necessarily had the form∑

i,j

aijxpi+pj

,

a form nowadays commonly referred to as a Dembowski-Ostrom (DO) polynomial, or 
quadratic polynomial. This query is nowadays called the Dembowski-Ostrom conjecture. 
At the time of writing, the status of this conjecture is as follows:

� Over prime fields it has been proved in full, independently by Gluck [8], Hiramine 
[10], and Rónyai and Szönyi [14]. It should be mentioned that the monomial case 
was established earlier, by Johnson [12].

� Over fields of order p2 it has been proved for monomials by Coulter [3].
� Over fields of order p4, with p ≥ 5, it has been proved for monomials by Coulter and 

Lazebnik [4].
� Over fields of characteristic 3 it is false. This was shown by Coulter and Matthews 

[5], who provided an infinite class of counterexamples, the smallest counterexample 
being x14 over F34 .

� Zieve [15] gives a classification of those monomials that are planar over infinitely 
many extension fields of Fp, known as exceptionally planar monomials. In particular, 
this gives a classification of all planar monomials xn over Fq when (n − 1)4 ≤ q, as 
any such planar monomial is necessarily exceptional. His result yields only the DO 
monomials and the monomials of Coulter and Matthews mentioned above.

While the prime field classification of planar monomials gives a small impact on the 
classification for any finite field – specifically that if xn is planar over Fpe , then n ≡
2 mod (p − 1) – taking into account the results of Coulter [3] and Zieve [15] it can be 
seen that p3 is the only field order for which we have no additional supporting evidence 
for the DO conjecture for monomials. In this article, we fill this gap by giving a complete 
classification of planar monomials over fields of order p3, establishing the DO conjecture 
in this case. That is, in this article we prove
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Theorem 1. Let q = p3 with p an odd prime. The monomial xn is planar over Fq if and 
only if n ≡ pi + pj mod (q − 1) with 0 ≤ i, j < 3.

Since for fields of order p, p2 and p4 with p ≥ 5, the only planar monomials possible 
yield the Desarguesian plane, our result is the first classification result on planar functions 
which allows for a non-Desarguesian example. The planar monomial xp+1 constructs 
Albert’s twisted field plane of order p3. It is almost certain that the additional possibility 
is one of the reasons obtaining a classification of planar monomials over fields of order p3

turns out to be so much more involved than the equivalent result for fields of order p4.
The approach taken is similar to the previous classification results, whereby Hermite’s 

criteria is used in a number of cases to eliminate all potential exponents that are not DO 
exponents. Our proof falls into three main cases, with one of the cases very much more 
complicated than the other two. In the next section we show how the problem can be 
broken into these three cases. In Section 3, we resolve the two easier cases. The remainder 
of the paper considers the more difficult remaining case. In Section 4 we outline how the 
remaining case is broken down and resolved; there are 2 main subcases. For the first of 
the 2 main subcases, we end up applying Hermite’s criteria with 2 exponents and playing 
the results off against one another. We do not know of a previous instance of the criteria 
being used in this way. These results can be found in Section 5. For the remaining main 
subcase, a first application of Hermite’s criteria eliminates all but 11 explicit exponents, 
see Section 6. These remaining 11 exponents we must contend with individually. The 
remainder of the paper, the admittedly long Section 7, proceeds through the elimination 
of these 11 subcases.

2. The basic principles of our approach

We wish to consider the planarity of xn over Fq. This involves examining the permu-
tation behaviour of the polynomial fn(x) = (x + 1)n − xn. As planarity is a property 
of functions (polynomials under evaluation, if you prefer), we need only consider n < q. 
In fact, we may insist on n ≤ q − 3 as it is a necessary condition of planarity that 
gcd(n, q − 1) = 2, see [5], Proposition 2.4. We assume this throughout the paper.

In regards to studying permutation polynomials, we have the following criteria for a 
polynomial to be one, commonly known as Hermite’s criteria.

Lemma 1 (Hermite, [9]; Dickson, [7]). A polynomial f ∈ Fq[x], q = pe, is a permutation 
polynomial over Fq if and only if

(i) f has exactly one root in Fq, and
(ii) the reduction of f t mod (xq − x), with 0 < t < q − 1 and t �≡ 0 mod p, has degree 

less than q − 1.
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The t in this lemma is often referred to as Hermite exponent. Hermite’s criteria is one 
of the few general statements for testing whether a polynomial is a PP. It can often be 
unwieldy, and over time has come to be viewed as not particularly effective. That said, 
there has been a recent revival in its use, with several results being obtained using it, 
such as the classifications of planar monomials over fields of order p2 [3] and p4 [4], and 
the results of Chou and Hou [2].

There are several points about Hermite’s criteria and our specific problem which we 
now expand on. For arbitrary 0 < t < q − 1, we may write fn(x)t mod (xq − x) as

f t
n mod (xq − x) =

t∑
i=0

(
t

i

)
(−1)t−i

[
(x + 1)ni mod (xq − x)

] [
xn(t−i) mod (xq − x)

]
,

(1)
and first reduce each of the terms (x + 1)ni and xn(t−i) independently. Subsequently, 
unless both terms have degree q − 1, the only way in which we can obtain xq−1 terms 
in the reduced form of fn(x)t is via the actual xq−1 term generated. This allows for 
much simplication in our arguments, and in what follows we shall rely on it consistently 
without further explanation.

The value of binomial coefficients, whether it be in (1) or in the expansion of (x +1)ni, 
is clearly something we will need to handle. Fortunately, we have the following classical 
result of Lucas at our disposal.

Lemma 2 (Lucas, [13]). Let p be a prime and α ≥ β be positive integers with α and β
having base-p expansions α = (αt · · · α0)p and β = (βt · · · β0)p, respectively. Then

(
α

β

)
≡

t∏
i=0

(
αi

βi

)
mod p,

where we use the convention 
(

n
k

)
= 0 if n < k.

The theorem of Lucas encourages us to consider our exponent n in its base p expansion 
form. Set n = (ae−1 · · · a0)p, with 0 ≤ ai < p for all i. There are several advantages in 
considering the base p expansion of n, over and above the possibility of applying Lucas’ 
Theorem.

Firstly, xnp is planar over Fq if and only if xn is planar over Fq, and the reduction of 
xnp modulo xq − x is xm, where m = (ae−2 · · · a0ae−1)p. Thus, we may cycle the base 
p digits of n around and could, for instance, choose to place the largest ai in the most 
significant bit.

Secondly, if xn is planar over Fq, then it is necessarily planar over Fp. This follows 
at once from observing fn ∈ Fp[x]. The classification of planar monomials over Fp now 
forces n ≡ 2 mod (p − 1). This provides the necessary condition

a0 + a1 + · · · + ae−1 = S ≡ 2 mod (p − 1).

Since ai < p for all 0 ≤ i < e, we have S = 2 + k(p − 1) for some 0 ≤ k < e.
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2.1. Fixing our setup and the three main cases

For the rest of the paper we fix q = p3, where p is an odd prime, and consider the pla-
narity of the monomial xn over Fq. In order to avoid certain degenerate situations later, 
we further assume p ≥ 11. The cases p ∈ {3, 5, 7} can easily be checked computationally. 
We write the base p expansion of the integer n with 0 ≤ n < q by n = (a2a1a0)p. Based 
on our above discussion, there are three possible cases we must deal with:

Case 1. S = 2.
Case 2. S = 2p.
Case 3. S = p + 1.

The first case will be shown to be the only positive case, in that the latter two cases will 
prove to be empty of planar examples. The great majority of the paper is spent dealing 
with Case 3.

3. Resolution of Cases 1 and 2

Coulter and Matthews showed xpi+pj is planar over Fpe if and only if e/ gcd(j − i, e)
is odd, see [5], Theorem 3.3. This completely resolves Case 1.

Proposition 1. If S = 2, then n = pi + pj with 0 ≤ i ≤ j < 3, and xn is always planar 
over Fq.

The case S = 2p is also relatively straightforward, the proof following very similarly 
to the classification of planar monomials over Fp2 , even down to the exponent used in 
[3].

Proposition 2. If S = 2p, then xn is never planar over Fq.

Proof. For this case we must have ai ≥ 2 for all i and ai + aj > p whenever i �= j. We 
prove Hermite’s criteria fails with power t = p + 1. We have

((x + 1)n − xn)t = (x + 1)n(p+1) − (x + 1)npxn − (x + 1)nxnp + xn(p+1).

We determine the coefficient of xq−1 for each of these terms modulo xq − x. Raising a 
term xk to the p and reducing modulo xq − x results in a term with degree a cyclic shift 
of the base p expansion of k. Thus, for example, we can calculate xnp modulo xq − x

easily as an interim step in determining xn(p+1) mod (xq − x). Proceeding as described 
we see

xn(p+1) = xnpxn ≡ xa2+a0p+a1p2
xa0+a1p+a2p2

mod (xq − x).
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Set k = (a2 + a0) + (a0 + a1)p + (a1 + a2)p2. Now n < q − 1, so that k < 2(q − 1). On 
the other hand, we also know a1 + a2 > p, so that k > q. Consequently, xk mod (xq − x)
reduces to a term of degree not equal to q − 1.

We move to consider the remaining three terms. We note that, as a consequence of 
Lemma 2, we may write

(x + 1)n =
a0∑

α0=0

a1∑
α1=0

a2∑
α2=0

( 2∏
i=0

(
ai

αi

))
xα0+α1p+α2p2

.

Following a similar method as above, we see that the coefficient of the term of degree 
q − 1 in (x + 1)nxnp mod (xq − x) is

2∏
i=0

(
ai

αi

)
mod p,

where α0 + a2 = α1 + a0 = α2 + a1 = p − 1. Since ai ≤ p − 1, it is clear this coefficient is 
non-zero. The same argument both shows that the coefficient of the term of degree q − 1
in (x + 1)npxn mod (xq − x) is

2∏
i=0

(
ai

αi

)
mod p,

with a0 + α2 = a1 + α0 = a2 + α1 = p − 1, and that this coefficient is nonzero also. We 
note that the two coefficients for xq−1 so far determined are, in fact, equal, so that their 
sum is nonzero modulo p.

The situation for (x +1)n(p+1) is slightly more complicated but still relatively straight-
forward. Expanding in much the same way as above, it can be seen that the coefficients 
of resulting terms of degree xq−1 in (x + 1)n(p+1) mod (xq − x) are given by

∏
i

∏
j

(
ai

αi

)(
aj

βj

)

where α0 + β2 = α1 + β0 = α2 + β1 = p − 1. Along with these equations, the bounds on 
αi, βj reduce the resulting coefficient of xq−1 in (x + 1)n(p+1) mod (xq − x) to

a0∑
α0=p−1−a2

a1∑
α1=p−1−a0

a2∑
α2=p−1−a1

( 2∏
i=0

(
ai

αi

)) (
a0

p − 1 − α1

)(
a1

p − 1 − α2

)(
a2

p − 1 − α0

)
.

We may rearrange this:
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(
a0∑

α0=p−1−a2

(
a0

α0

)(
a2

p − 1 − α0

)) (
a1∑

α1=p−1−a0

(
a1

α1

)(
a2

p − 1 − α1

))

×
(

a2∑
α2=p−1−a1

(
a2

α2

)(
a2

p − 1 − α2

))
.

Recalling a0 + a2 > p and ai ≤ p − 1 for all i, we have

a0∑
α0=p−1−a2

(
a0

α0

)(
a2

p − 1 − α0

)
=

a0+a2∑
j=p−1

(
a0

j − a2

)(
a2

p − 1 − (j − a2)

)

=
(

a0 + a2

p − 1

)
≡ 0 mod p.

Thus the coefficient of xq−1 in (x + 1)n(p+1) mod (xq − x) is zero.
From the above calculations we see the coefficient of xq−1 in ((x +1)n−xn)t mod (xq −

x) is

−2
(

a0

p − 1 − a2

)(
a1

p − 1 − a0

)(
a2

p − 1 − a1

)
�≡ 0 mod p.

By Hermite’s criteria, (x + 1)n − xn is not a permutation polynomial. Thus xn is not 
planar in this case. �

The techniques and ideas used in this proof will occur repeatedly in our remaining 
proofs.

4. Outline of Case 3 resolution

The remainder of the paper will solely be aimed at proving

Proposition 3. If S = p + 1, then xn is never planar over Fq.

To establish this statement, we will have to resort to dealing with a number of subcases 
involving a number of Hermite exponents. (Computational evidence shows there is no 
possible exponent that will work in all cases. Extensive testing was done before we were 
able to arrive at the “small” number of Hermite exponents used in our proof.) Recall 
n = a0 + pa1 + a2p2. A synthesis of our proof of Proposition 3 is as follows. We assume 
S = a0 + a1 + a2 = p + 1 with a2 ≥ a0, a1. We then proceed through a sequence of 
Hermite’s exponents. There are two scenarios.

4.1. All of the ai are at least 2

In this scenario, we determine the coefficient of xq−1 in (1) for the exponent t =
2 + p + p2 when 2 ≤ a0, a1 ≤ a2. The situation splits into two subcases based on whether 
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a2 > (p − 1)/2 or a2 ≤ (p − 1)/2. In the former subcase, the coefficient is clearly non-
zero, and so there are no planar monomials in this subcase. When a2 ≤ (p − 1)/2 we 
also determine the coefficient of xq−1 in (1) for the exponent t = 2 + 2p. We then show 
that the coefficients of xq−1 for t = 2 + 2p and for t = 2 + p + p2 cannot be zero 
simultaneously, thereby showing that this subcase contains no planar monomials. This 
concludes the situation where all of the ai are at least 2. The actual results pertaining 
to this scenario can be found in Section 5.

4.2. At least one of the ai is less than 2

In this final situation, we first determine the coefficient of xq−1 in (1) for the exponent 
t = 2 + 2p + 2p2 when at least one of a0 and a1 is less than 2. This eliminates many 
situations, but leaves us with 11 explicit subcases to deal with. We then eliminate the 
remaining explicit 11 subcases using various Hermite’s exponents. This is without doubt 
the most protracted bit of the proof. The details of these results can be found in the 
remaining sections.

We again note that calculating xnα mod (xq − x) is the same as calculating nα mod
(q − 1), and that np mod (q − 1) results in simply a cyclic shift of the base p coefficients. 
That is, np mod (q −1) = (a1 a0 a2)p. Additionally, if a bi in nα = (b2 b1 b0) is at least p, 
say b2, then determining the base p description of nα results in a subtraction of p from the 
1st coordinate, and an adding of 1 to the 3rd coordinate. That is (b2 b1 b0)p mod (q−1) =
((b2 − p) b1 (b0 + 1))p. We will refer to such an occurrence as a carry. There is a clear 
abuse of notation that we use with regards to the base p expansion in this regard. We 
will, without further explanation, move carries around, and reduce modulo q −1 without 
use of congruence notation.

5. Case 3 when ai ≥ 2 for i = 0, 1, 2

In this section, we assume 2 ≤ a0, a1 ≤ a2. This forces a2 ≤ p − 3. We need to deal 
with two Hermite exponents.

5.1. The Hermite exponent t = 2 + p + p2

Via Lucas’ Theorem, the non-zero binomial coefficients in (1) correspond to the terms 
(x + 1)nαxnβ and (x + 1)nβxnα in the following table:

α β

2 + p + p2 0
1 + p + p2 1

p + p2 2
2 + p2 p

1 + p2 1 + p

p2 2 + p
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We proceed to work through these six scenarios. Recall that the only way we can obtain 
an xq−1 term in the reduced form of fn(x)t having already reduced (x + 1)nα and xnβ, 
is from the xq−1 term in the product of (x + 1)nα and xnβ. We note that to obtain such 
a term, the sum of the corresponding coordinates of nα and nβ must be at least p − 1
in each case.

5.1.1. α = 2 + p + p2 and β = 0
We have

nα = 2a0 + a1 + 2a2 + p(2a1 + a2 + a0) + p2(2a2 + a0 + a1)

= p + 1 + a0 + p(p + 1 + a1) + p2(p + 1 + a2)

= 2 + a0 + p(2 + a1) + p2(2 + a2).

To have an xq−1 term from (x + 1)nα or xnα, we would need 2 + ai = p − 1 for i = 0, 1, 2. 
But this is impossible under the restriction a0 +a1 +a2 = p +1 and p ≥ 11. So we obtain 
no xq−1 term from this scenario.

5.1.2. α = 1 + p + p2 and β = 1
We have

nα = a0 + a2 + a1 + p(a1 + a0 + a2) + p2(a2 + a1 + a0)

= 2 + 2p + 2p2, and

nβ = a0 + a1p + a2p.

Since nα + nβ = 2 + a0 + p(2 + a1)p + p2(2 + a2) < q − 1, it is clear we cannot obtain 
an xq−1 term from this scenario.

5.1.3. α = p + p2 and β = 2
We have

nα = a2 + a1 + p(a0 + a2) + p2(a1 + a0), and

nβ = 2a0 + 2a1p + 2a2p.

If a2 > (p − 1)/2. then there is a carry in the first coordinate of nβ and ai < (p − 1)/2
for i = 0, 1. Thus nβ = 2a0 + 1 + 2a1p + p2(2a2 − p). However, now the sum of the p2

coefficients is a0 + a1 + 2a2 − p = a2 + 1 < p − 1. Hence we cannot obtain an xq−1 term 
if a2 > (p − 1)/2.

Now suppose a2 ≤ (p −1)/2. Then there is no carry in either nα and nβ, and the sum 
of each coordinate is ai + p + 1 > p − 1. So we must get an xq−1 term. For (x + 1)nαxnβ, 
the coefficient of the xq−1 term is



10 E. Bergman et al. / Finite Fields and Their Applications 78 (2022) 101959
C1 =
(

a1 + a0

p − 1 − 2a2

)(
a0 + a2

p − 1 − 2a1

)(
a2 + a1

p − 1 − 2a0

)

=
(

a1 + a0

a2 + 2

)(
a0 + a2

a1 + 2

)(
a2 + a1

a0 + 2

)
. (2)

For (x + 1)nβxnα, the coefficient of the xq−1 term is

C2 =
(

2a2

p − 1 − (a1 + a0)

)(
2a1

p − 1 − (a0 + a2)

)(
2a0

p − 1 − (a2 + a1)

)

=
(

2a2

a2 + 2

)(
2a1

a1 + 2

)(
2a0

a0 + 2

)
. (3)

5.1.4. α = 2 + p2 and β = p

We have

nα = 2a0 + a1 + p(2a1 + a2) + p2(2a2 + a0), and

nβ = a2 + a0p + a1p2.

Now 2a2 + a0 = a2 − a1 + p + 1 > p, so nα must have a carry. Hence

nα = 2a0 + a1 + 1 + p(2a1 + a2) + p2(a2 − a1 + 1).

If there is no carry in the 2nd coordinate of nα, then the sum of the first coordinates of 
nα and nβ is a2 + 1 ≤ p − 2 < p − 1, so we cannot get an xq−1 term if there was no carry 
in the 2nd coordinate.

If there is a carry in the 2nd coordinate, then the sum of the 2nd coordinates of nα

and nβ could be no larger than

2a1 + a2 − p + a0 = a1 + 1 < p − 1,

as a1 ≤ a2. Hence we cannot obtain an xq−1 term in this situation either.

5.1.5. α = 1 + p2 and β = 1 + p

We have

nα = a0 + a1 + p(a1 + a2) + p2(a2 + a0), and

nβ = a0 + a2 + p(a1 + a0) + p2(a2 + a1).

There are no carries in either nα or nβ, while the sum of the corresponding coordinates 
is ai + p + 1 > p − 1. So we must obtain an xq−1 term. For (x + 1)nαxnβ , the coefficient 
of the xq−1 term is
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C3 =
(

a2 + a0

p − 1 − (a2 + a1)

)(
a1 + a2

p − 1 − (a1 + a0)

)(
a0 + a1

p − 1 − (a0 + a2)

)

=
(

a2 + a0

a2 + 2

)(
a1 + a2

a1 + 2

)(
a0 + a1

a0 + 2

)
. (4)

For (x + 1)nβxnα, the coefficient of the xq−1 term is

C4 =
(

a2 + a1

p − 1 − (a2 + a0)

)(
a1 + a0

p − 1 − (a1 + a2)

)(
a0 + a2

p − 1 − (a0 + a1)

)

=
(

a2 + a1

a2 + 2

)(
a1 + a0

a1 + 2

)(
a0 + a2

a0 + 2

)
. (5)

It is now a simple matter to show C3 = C4. Indeed, it is enough to expand each of 
the binomial coefficients in C3 and C4 and observe that all numerator and denominator 
terms pair off.

5.1.6. α = p2 and β = 2 + p

This scenario can be dealt with using an argument very similar to that of the α = 2 +p2

and β = p scenario. The conclusion will be the same, there is no xq−1 term obtained.

5.1.7. Summary of the t = 2 + p + p2 exponent
From our analysis of the above scenarios, we see that we have two situations.

� If a2 > (p −1)/2, then we only get an xq−1 term from the case α = 1 +p2, β = 1 +p. 
In this case, the coefficient of xq−1 in fn(x)t mod (xq − x) is

(
2
1

)
C3 +

(
2
1

)
C4 = 4C3 �= 0.

Thus xn is not planar if a2 > (p − 1)/2.
� If a2 ≤ (p − 1)/2, then the coefficient of xq−1 in fn(x)t mod (xq − x) is

4C3 + C1 + C2. (6)

5.2. The Hermite exponent t = 2 + 2p

In light of the results for our previous exponent, we further restrict our ai to the 
situation where 2 ≤ a0, a1 ≤ a2 ≤ (p − 1)/2.

Via Lucas’ Theorem, the non-zero binomial coefficients in (1) correspond to the terms 
(x + 1)nαxnβ and whenever α �= β, (x + 1)nβxnα in the following table:
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α β

2 + 2p 0
1 + 2p 1

2p 2
2 + p p

1 + p 1 + p

5.2.1. α = 2 + 2p and β = 0
We have

nα = 2a0 + 2a2 + p(2a1 + 2a0) + p2(2a2 + 2a1)

= 2p + 2 − 2a1 + p(2p + 2 − 2a2) + p2(2p + 2 − 2a0)

= p + 3 − 2a1 + p(p + 3 − 2a2) + p2(p + 3 − 2a0).

To obtain an xq−1 term in this scenario, we need p + 3 − 2ai = p − 1, so that ai = 2
for i = 0, 1, 2, implying p = 5. For p ≥ 11 (as is assumed), we get no xq−1 term in this 
scenario.

5.2.2. α = 1 + 2p and β = 1
We have

nα = a0 + 2a2 + p(a1 + 2a0) + p2(a2 + 2a1), and

nβ = a0 + a1p + a2p2.

Now nα must have at least one carry, as the sum of its coordinates is 3(a0 + a1 + a2) =
3(p + 1) > 3(p − 1). If there are 2 or more carries, then the sum of the coordinates of 
nα + nβ will be at most

3(p + 1) − 2(p − 1) + a2 + a1 + a0 = 2p + 6 < 3(p − 1) for p ≥ 11,

and so we cannot possibly obtain an xq−1 term in that situation.
Suppose, then, there is exactly one carry in nα. It can either occur in the 1st or 3rd 

coordinate of nα. If it is in the 1st coordinate, then

nα = a0 + 2a2 + 1 + p(a1 + 2a0) + p2(a2 + 2a1 − p).

Now the sum of the p2 coefficients of nα and nβ is

2a2 + 2a1 − p ≤ 2(p − 1) − p = p − 2 < p − 1,

so we cannot obtain an xq−1 term in this scenario. A similar argument shows that the 
p0 coefficient carry in nα cannot generate an xq−1 term also. Thus we do not obtain an 
xq−1 term in this scenario.
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5.2.3. α = 2p and β = 2
We have

nα = 2a2 + 2a0p + 2a1p2, and

nβ = 2a0 + 2a1p + 2a2p2.

There are no carries as ai ≤ (p − 1)/2. Additionally,

2ai + 2aj = 2(p + 1) − 2ak ≥ 2(p + 1) − (p − 1) = p + 3 > p − 1,

and so we must obtain xq−1 terms here. For (x + 1)nαxnβ , the coefficient of the xq−1

term is

C5 =
(

2a2

p − 1 − 2a1

)(
2a1

p − 1 − 2a0

)(
2a0

p − 1 − 2a2

)
. (7)

For (x + 1)nβxnα, the coefficient of the xq−1 term is

C6 =
(

2a1

p − 1 − 2a2

)(
2a0

p − 1 − 2a1

)(
2a2

p − 1 − 2a0

)
. (8)

It is not difficult to show C5 = C6.

5.2.4. α = 2 + p and β = p

The argument for this scenario is almost a replica of the argument for α = 1 + 2p and 
β = 1. The conclusion will be the same, there is no xq−1 term obtained.

5.2.5. α = 1 + p and β = 1 + p

We have

nα = a0 + a2 + p(a1 + a0) + p2(a2 + a1).

As ai ≤ (p − 1)/2, there are no carries. In this scenario, we must get an xq−1 term. For 
(x + 1)nαxnβ, the coefficient of the xq−1 term is

C7 =
(

a2 + a1

p − 1 − (a2 + a1)

)(
a1 + a0

p − 1 − (a1 + a0)

)(
a0 + a2

p − 1 − (a0 + a2)

)

=
(

a2 + a1

a0 − 2

)(
a1 + a0

a2 − 2

)(
a0 + a2

a1 − 2

)
. (9)

5.2.6. Summary of the t = 2 + 2p exponent
From our analysis of the above scenarios, we see that the coefficient of xq−1 in 

fn(x)t mod (xq − x) is (
2
) (

2
)

C7 + C5 + C6 = 4C7 + 2C5. (10)
1 1
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5.3. Playing the two Hermite exponents t = 2 + p + p2 and t = 2 + 2p against each other

In this final subsection, we shall show that for 2 ≤ a0, a1 ≤ a2 ≤ (p − 1)/2 and 
a0 + a1 + a2 = p + 1, it is impossible for both Hermite exponents t = 2 + p + p2 and 
t = 2 + 2p to fail to generate an xq−1 term, and consequently xn cannot be planar over 
Fq. The following identity will prove useful.

Lemma 3. For odd prime p and arbitrary 0 ≤ k < p we have

(p − 1 − k)! ≡ (−1)k+1

k! mod p.

The lemma can be established by first proving
(

p − 1
k

)
≡ (−1)k mod p,

using an inductive argument and the identity 
(

n−1
k−1

)
+

(
n−1

k

)
=

(
n
k

)
. The result then 

follows from observing (p − 1)! ≡ −1 mod p.
For convenience, we preemptively set

U = (a0 + a2)! (a1 + a0)! (a2 + a1)!,

V = (a0 − 2)! (a1 − 2)! (a2 − 2)!,

W = (2a0)! (2a1)! (2a2)!,

and view U, V and W (and hence a0, a1, a2) as elements of Fp. We first derive a relation 
between U and V . In fact, we prove

Lemma 4. With 2 ≤ a0, a1 ≤ a2 ≤ (p − 1)/2 and U and V as defined above, we have 
UV = −1.

Proof. From Lemma 3 we find

(a0 − 2)! = (−1)a0−1

(p + 1 − a0)!

= (−1)a0−1

(a1 + a2)! .

A similar identity can be derived for (a1 − 2)! and (a2 − 2)!. It now follows that

V = (−1)a0+a1+a2−3

U

= −1
U

,

as claimed. �



E. Bergman et al. / Finite Fields and Their Applications 78 (2022) 101959 15
Now assume that both the coefficients of xq−1, given in (6) and (10), are zero. We 
next simplify (6). Taking the equation 4C3 + C1 + C2 = 0 and multiplying through by ∏

(ai + 2)!, we have

0 = 4U

V
+ U

(a1 + a2 − a0 − 2)! (a2 + a0 − a1 − 2)! (a0 + a1 − a2 − 2)! + W

V

= 4U

V
− UW + W

V
,

where we have again used Lemma 3. We therefore find

2U + W = 0. (11)

Next we shall simplify (10). Taking the equation 2C7 + C5 = 0 and multiplying through 
by 

∏
(p + 3 − 2ai)!, we have

0 = 2U

V
+ W

(p − 1 − 2a0)! (p − 1 − 2a1)! (p − 1 − 2a2)!

= −2U2 + (−1)3W 2,

again using Lemma 3. From (11) we have W 2 = 4U2, and so 6U2 = 0 must hold. 
However, this is a contradiction as U �= 0 and p ≥ 11. This means that it is impossible 
for the Hermite exponents t = 2 + p + p2 and t = 2 + 2p to simultaneously generate 
a zero coefficient for xq−1 in fn(x)t mod (xq − x). Hence, xn cannot be planar when 
n = a0 + a1p + a2p2, a0 + a1 + a2 = p + 1 and 2 ≤ a0, a1 ≤ a2 ≤ (p − 1)/2.

We note that we are unaware of another application of Hermite’s criteria which uses 
two Hermite exponents and two coefficients simultaneously to get a non-PP proof through 
as we do here.

6. Case 3 when at least one of the ai is less than 2

We have reached our final scenario, where we know at least one of the ai is less than 2. 
Unfortunately, we have more Hermite exponents to deal with in this last situation than 
in all of the previous work in this paper. This section will deal with only the one Hermite 
exponent, specifically t = 2 +2p +2p2. Using this exponent we can eliminate many of the 
remaining possible choices for the ai. However, we shall be left with 11 explicit choices 
for n.

6.1. The Hermite exponent t = 2 + 2p + 2p2

Assume that a2 ≥ a0, a1 and a0 + a1 + a2 = p + 1. To simplify the equations let 
T = 1 + p + p2. We have xnT = x(a0+a1p+a2p2)(1+p+p2) = x2T . In this case we have
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((x + 1)n − xn)2T =(x + 1)4T + x4T − 8x2T (x + 1)2T

+ A + Ap + Ap2
+ B + Bp + Bp2

, (12)

with

A = (x + 1)n(p2+1)xnp

× (4x2T − 2(x + 1)2T + (x + 1)n(p2+1)xnp − 2xn(p2+p)(x + 1)n − 2xn(p+1)(x + 1)np2
),

B = (x + 1)nxn(p2+p)(4(x + 1)2T − 2x2T + (x + 1)nxn(p2+p)).

We have

(x + 1)T =1 + x + xp + xp2
+ xp+1 + xp2+1 + xp2+p + xp2+p+1,

(x + 1)2T =1 + x2 + x2p + x2p2
+ x2(p+1) + x2(p2+1) + x2(p2+p) + x2(p2+p+1)

+ 2(x + xp + xp2
+ 2xp+1 + 2xp2+1 + 2xp2+p + 4xp2+p+1

+ xp+2 + xp2+2 + 2xp2+p+2 + x2p+1 + xp2+2p + 2xp2+2p+1

+ x2p2+1 + x2p2+p + 2x2p2+p+1 + xp2+2p+2 + x2p2+p+2 + x2p2+2p+1).

We want to show that in equation (12) the only terms of degree p3 − 1 are in A (and 
Ap, Ap2).

Clearly (x + 1)4T + x4T − 8x2T (x + 1)2T cannot have a monomial of degree p3 − 1 if 
p > 5.

We rewrite B as B = 4B1 − 2B2 + B3 with

B1 =(x + 1)nxn(p2+p)(x + 1)2T ,

B2 =(x + 1)nxn(p2+p)x2T ,

B3 =(x + 1)2nx2n(p2+p).

Using

(x + 1)n =
a0∑

α0=0

a1∑
α1=0

a2∑
α2=0

3∏
i=0

(
ai

αi

)
xα0+α1p+α2p2

we have

B1 = (x + 1)2T
a0∑

α0=0

a1∑
α1=0

a2∑
α2=0

3∏
i=0

(
ai

αi

)
x(α0+a1+a2)+(α1+a2+a0)p+(α2+a0+a1)p2

.

If a0 = 0 (so a1 + a2 = p + 1), then
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B1 =(x + 1)2T
a1∑

α1=0

a2∑
α2=0

3∏
i=1

(
ai

αi

)
x(a1+a2)+(α1+a2)p+(α2+a1)p2

=(x + 1)2T
a1∑

α1=0

a2∑
α2=0

3∏
i=1

(
ai

αi

)
x(p+1)+(α1+a2)p+(α2+p+1−a2)p2

=(x + 1)2T
a1∑

α1=0

a2∑
α2=0

3∏
i=1

(
ai

αi

)
x2+(α1+a2+1)p+(α2+1−a2)p2

.

Hence it cannot have a term of degree q − 1.
If a0 = 1 (a1 + a2 = p), then

B1 =(x + 1)2T
1∑

α0=0

a1∑
α1=0

a2∑
α2=0

3∏
i=1

(
ai

αi

)
x(α0+a1+a2)+(α1+a2+1)p+(α2+1+a1)p2

=(x + 1)2T
1∑

α0=0

a1∑
α1=0

a2∑
α2=0

3∏
i=1

(
ai

αi

)
x(α0+p)+(α1+a2+1)p+(α2+1+p−a2)p2

=(x + 1)2T
1∑

α0=0

a1∑
α1=0

a2∑
α2=0

3∏
i=1

(
ai

αi

)
x(α0+1)+(α1+a2+2)p+(α2+1−a2)p2

.

Hence it cannot have a term of degree q − 1. The argument is more or less the same for 
the cases a1 = 0, 1. Moreover, the same arguments work for B2.

Now we consider B3. We have

B3 =(x + 1)2nx2n(p2+p)

=
∑ ∏ (

ai

αi

)(
aj

βj

)
x(α0+β0+2a1+2a2)+(α1+β1+2a2+2a0)p+(α2+β2+2a0+2a1)p2

.

If a0 = 0 (so a1 + a2 = p + 1), then

B3 =
∑ ∏ (

ai

αi

)(
aj

βj

)
x2(a1+a2)+(α1+β1+2a2)p+(α2+β2+2a1)p2

=
∑ ∏ (

ai

αi

)(
aj

βj

)
x2(p+1)+(α1+β1+2a2)p+(α2+β2+2p+2−2a2)p2

=
∑ ∏ (

ai

αi

)(
aj

βj

)
x4+(α1+β1+2a2+2)p+(α2+β2+2−2a2)p2

.

Hence it cannot have a term of degree q − 1.
If a0 = 1 (a1 + a2 = p), then

B3 =
∑ ∏ (

ai

)(
aj

)
x(α0+β0+2a1+2a2)+(α1+β1+2a2+2)p+(α2+β2+2+2a1)p2
αi βj
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=
∑ ∏ (

ai

αi

)(
aj

βj

)
x(α0+β0+2p)+(α1+β1+2a2+2)p+(α2+β2+2+2p−2a2)p2

=
∑ ∏ (

ai

αi

)(
aj

βj

)
x(α0+β0+2)+(α1+β1+2a2+4)p+(α2+β2+2−2a2)p2

.

Hence it cannot have a term of degree q − 1. Again the a1 = 0, 1 cases are more or less 
the same.

Let us now consider A. We set

A = 4A1 − 2A2 + A3 − 2A4 − 2A5,

with

A1 =(x + 1)n(p2+1)xnpx2T ,

A2 =(x + 1)n(p2+1)xnp(x + 1)2T ,

A3 =(x + 1)2n(p2+1)x2np,

A4 =(x + 1)n(p2+2)xn(p2+2p),

A5 =(x + 1)n(2p2+1)xn(2p+1).

We will show A1, A2, A3 have no monomial of degree q − 1.
For A1 we have

A1 = (x + 1)n(p2+1)xnp+2T

= (x + 1)(a0+a1)+(a1+a2)p+(a2+a0)p2
x(a2+2)+(a0+2)p+(a1+2)p2

.

If a0 = 0, a1 + a2 = p + 1 and

A1 = (x + 1)(a1)+(p+1)p+(a2)p2
x(a2+2)+2p+(a1+2)p2

= (x + 1)(a1)+p+(a2+1)p2
x(a2+2)+2p+(a1+2)p2

.

From this we see this cannot have a monomial of maximal degree.
If a0 = 1, a1 + a2 = p and

A1 = (x + 1)(a1+1)+(p)p+(a2+1)p2
x(a2+2)+3p+(a1+2)p2

= (x + 1)(a1+1)+(a2+2)p2
x(a2+2)+3p+(a1+2)p2

.

Again it cannot have a monomial of maximal degree.
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For A2 we have

A2 = (x + 1)n(p2+1)+2T xnp

= (x + 1)(a0+a1+2)+(a1+a2+2)p+(a2+a0+2)p2
x(a2)+(a0)p+(a1)p2

.

If a0 = 0, a1 + a2 = p + 1 and

A2 = (x + 1)(a1+2)+(p+3)p+(a2+2)p2
x(a2)+(0)p+(a1)p2

= (x + 1)(a1+2)+3p+(a2+3)p2
xa2+a1p2

,

and we observe there cannot be a monomial of maximal degree.
If a0 = 1, a1 + a2 = p and

A2 = (x + 1)(a1+3)+(p+2)p+(a2+3)p2
x(a2)+(1)p+(a1)p2

= (x + 1)(a1+3)+2p+(a2+4)p2
xa2+p+a1p2

.

Again we cannot generate a monomial of maximal degree.
For A3 we have the following:

A3 = (x + 1)n(2p2+2)x2np

= (x + 1)(2a0+2a1)+(2a1+2a2)p+(2a2+2a0)p2
x(2a2)+(2a0)p+(2a1)p2

.

If a0 = 0, a1 + a2 = p + 1 and

A3 = (x + 1)(2a1)+(2p+2)p+(2a2)p2
x(2a2)+(0)p+(2a1)p2

= (x + 1)2a1+2p+(a2+2)p2
x2a2+2a1p2

.

This cannot have a monomial of maximal degree. If a0 = 1, a1 + a2 = p and

A3 = (x + 1)(2a1+2)+(2p)p+(2a2+2)p2
x(2a2)+2p+(2a1)p2

= (x + 1)(2a1+2)+(2a2+4)p2
x(2a2)+2p+(2a1)p2

.

Again we do not obtain a monomial of maximal degree. Similar arguments deal with A1, 
A2 and A3 when a1 = 0, 1 too.

For A4 we have the following:

A4 = (x + 1)n(p2+2)xn(p2+2p)

= (x + 1)(2a0+a1)+(2a1+a2)p+(2a2+a0)p2
x(2a2+a1)+(2a0+a2)p+(2a1+a0)p2

.

The case A5, up to considering a p power, is symmetrical. Indeed we have
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Ap2

5 = xn(p2+2)(x + 1)n(p2+2p)

= x(2a0+a1)+(2a1+a2)p+(2a2+a0)p2
(x + 1)(2a2+a1)+(2a0+a2)p+(2a1+a0)p2

.

Hence we will just analyse A4 and then swap the exponents for x and x + 1. For ease 
of description, we split this final analysis into four subcases. In each case we use c4 for 
the coefficient of xq−1 in A4 and c5 for the coefficient of xq−1 in A5. We emphasise that 
there will be a number of exceptions encountered in this final analysis, and these are set 
aside for later.

• If a0 = 0, then a1 + a2 = p + 1 and 2 ≤ a1 ≤ p+1
2 . We have

A4 = (x + 1)(a1)+(a1+p+1)p+(2a2)p2
x(a2+p+1)+(a2)p+(2a1)p2

= (x + 1)(a1)+(a1+1)p+(2a2+1)p2
x(a2+1)+(a2+1)p+(2a1)p2

= (x + 1)(a1+1)+(a1+1)p+(2a2+1−p)p2
x(a2+1)+(a2+1)p+(2a1)p2

,

where the last step is due to the fact p+1
2 ≤ a2 ≤ p − 1. If a1 = 2 or a1 = (p + 1)/2, 

then we do not get a maximal degree term here. These two cases will be dealt with 
later as explicit exponents #10 and #1, respectively. If 3 ≤ a1 ≤ p−1

2 , then all 
the exponents are smaller than p and we obtain a term with maximal degree, the 
coefficient of which is

c4 =
(

a1 + 1
p − 1 − (a2 + 1)

)(
a1 + 1

p − 1 − (a2 + 1)

)(
2a2 + 1 − p

p − 1 − (2a1)

)
.

For A5 we have essentially the same situation with coefficient

c5 =
(

a2 + 1
p − 1 − (a1 + 1)

)(
a2 + 1

p − 1 − (a1 + 1)

)(
2a1

p − 1 − (2a2 + 1 − p)

)
.

It is not difficult to verify that c4 = c5.
• If a0 = 1, then a1 �= 0 a1 + a2 = p, 1 ≤ a1 ≤ p−1

2 , and

A4 = (x + 1)(a1+2)+(a1+p)p+(2a2+1)p2
x(a2+p)+(a2+2)p+(2a1+1)p2

= (x + 1)(a1+2)+(a1)p+(2a2+2)p2
x(a2)+(a2+3)p+(2a1+1)p2

= (x + 1)(a1+3)+(a1)p+(2a2+2−p)p2
x(a2)+(a2+3)p+(2a1+1)p2

,

where the last step is due to the fact that p+1
2 ≤ a2 ≤ p − 1. We have a2 + 3 ≥ p

if a1 ≤ 3, and 2a1 + 1 ≥ p if a1 ≥ p−1
2 . If a1 ≤ 3 or a1 = (p − 1)/2, then we do 

not obtain a maximal degree term. These exponents will be dealt with later as the 
explicit exponents #6, #7, #11 and #3. If 4 ≤ a1 ≤ p−3

2 , then all exponents are 
smaller than p and we get a maximal degree term with coefficient
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c4 =
(

a1 + 3
p − 1 − a2

)(
a1

p − 1 − (a2 + 3)

)(
2a2 + 2 − p

p − 1 − (2a1 + 1)

)
.

For A5 we have the same situation with coefficient

c5 =
(

a2

p − 1 − (a1 + 3)

)(
a2 + 3

p − 1 − a1

)(
2a1 + 1

p − 1 − (2a2 + 2 − p)

)
.

Again it is not difficult to verify that c4 = c5.
• If a1 = 0, then a0 + a2 = p + 1, 2 ≤ a0 ≤ p+1

2 , p+1
2 ≤ a2 ≤ p − 1, and

A4 = (x + 1)(2a0)+(a2)p+(a2+p+1)p2
x(2a2)+(a0+p+1)p+(a0)p2

= (x + 1)(2a0+1)+(a2)p+(a2+1)p2
x(2a2)+(a0+1)p+(a0+1)p2

= (x + 1)(2a0+1)+(a2)p+(a2+1)p2
x(2a2−p)+(a0+2)p+(a0+1)p2

.

If a0 = 2 or a0 ≥ (p − 1)/2, then we do not obtain a maximal degree term. These 
cases will be dealt with later as explicit exponents #9, #2 and #5. If 3 ≤ a0 ≤ p−3

2 , 
then all the exponents are smaller than p and we obtain a maximal degree term with 
coefficient

c4 =
(

2a0 + 1
p − 1 − (2a2 − p)

)(
a2

p − 1 − (a0 + 2)

)(
a2 + 1

p − 1 − (a0 + 1)

)
.

For A5 we have the same situation producing a maximal degree term with coefficient

c5 =
(

2a2 − p

p − 1 − (2a0 + 1)

)(
a0 + 2

p − 1 − a2

)(
a0 + 1

p − 1 − (a2 + 1)

)
.

It is not difficult to verify that c4 = c5.
• If a1 = 1, then a0 �= 0, a0 + a2 = p, 1 ≤ a0 ≤ p−1

2 , and

A4 = (x + 1)(2a0+1)+(2+a2)p+(a2+p)p2
x(2a2+1)+(a0+p)p+(2+a0)p2

= (x + 1)(2a0+2)+(2+a2)p+(a2)p2
x(2a2+1−p)+(a0+1)p+(3+a0)p2

since we have p+1
2 ≤ a2 ≤ p − 1. If a0 ≤ 2 or a0 = (p − 1)/2, then we do not obtain 

a maximal degree term. These cases will be dealt with later as explicit exponents 
#8, #11 and #4. If 3 ≤ a0 ≤ p−3

2 , then all the exponents are smaller than p and we 
obtain a maximal degree term with coefficient

c4 =
(

2a0 + 2
p − 1 − (2a2 + 1 − p)

)(
a2 + 2

p − 1 − (a0 + 1)

)(
a2

p − 1 − (a0 + 3)

)
.

For A5 we have the same situation producing a maximal degree term with coefficient
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c5 =
(

2a2 + 1 − p

p − 1 − (2a0 + 2)

)(
a0 + 1

p − 1 − (a2 + 2)

)(
a0 + 3

p − 1 − a2

)
.

It is not difficult to verify that c4 = c5.

Summarising all the cases above shows that, exceptions aside, the coefficient of the 
xq−1 term is −4(c4 + cp

4 + cp2

4 ) = −12c4 �= 0. Thus, apart from the 11 explicit cases set 
aside, no exponent remaining in Case 3 can be planar.

7. Case 3 and the 11 explicit choices for n

From all of the above analysis, we are left with 11 explicit choices for n which need 
to be eliminated to complete the proof of Proposition 3 and hence Theorem 1. These 
11 remaining exponents n are listed here, along with the Hermite exponent t we use to 
eliminate them.

Exp.#1. n = p+1
2 (p + p2) with t = (p − 2) + p and t = (p − 6) + p + 4p2,

Exp.#2. n = p+1
2 (1 + p2) with t = (p − 2) + p and t = (p − 6) + p + 4p2,

Exp.#3. n = 1 + (p+1
2 − 1)p + p+1

2 p2 with t = 2p + 4p2,
Exp.#4. n = (p+1

2 − 1) + p + p+1
2 p2 with t = (p − 2) + p,

Exp.#5. n = (p+1
2 − 1) + (p+1

2 + 1)p2 with t = (p − 6) + p + 2p2,
Exp.#6. n = 1 + 3p + (p − 3)p2 with t = 2 + 4p + 4p2,
Exp.#7. n = 1 + 2p + (p − 2)p2 with t = (p − 1)(p + p2),
Exp.#8. n = 2 + p + (p − 2)p2 with t = 1 + 2p + 3p2,
Exp.#9. n = 2 + (p − 1)p2 with t = 1 + 2p + 3p2,

Exp.#10. n = 2p + (p − 1)p2 with t = 2 + (p − 1)p,
Exp.#11. n = 1 + p + (p − 1)p2 with t = p − 1.

In the remainder of this paper, we deal with each of these remaining exponents in turn. As 
can be observed, we have to resort to some computational tests for certain characteristics 
p ≥ 11. Specifically:

� Exponents #1 and #2 need to be eliminated computationally for p = 29 when 
m = (p − 1)/2 is even, and

� Exponent #6 needs to be eliminated computationally for p ≤ 17 and p = 373.

We give some details for the p = 373 instance, but as the others are computationally 
trivial we make no further statements about them. Otherwise, our proofs go through 
under the general condition p ≥ 11. Throughout our intent is to provide enough detail to 
show the coefficient of xq−1 is non-zero. We give a full account of one exponent (#7, the 
most involved one), and otherwise sufficient details to outline the proofs in all others. In 
the following subsections we use the following notations: m = p−1 and y = x + 1.
2
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7.1. Exponent #1

7.1.1. With m odd
We have n = (m + 1)p + (m + 1)p2 and t = (p − 2) + p. We claim (yn − xn)t has 

maximal degree with coefficient

cM = −
(

p − 1
m

)
= (−1)m+1 �= 0.

More details in the following. We have

(yn − xn)t =
p−2∑
i=0

(−1)p−2−i

(
p − 2

i

)
ynixn(p−2−i)(ynp − xnp)

=
p−2∑
i=0

(−1)p−2−i

(
p − 2

i

)
(Ai − Bi).

Notice that x2n = x1+p+2p2 . For i = 2k (with k = 0, . . . , m − 1), then we have

A2k = y(m+1+k)+kp+(m+1+2k)p2
x(m−k)+(p−1−k)p+(m−2−2k)p2

,

B2k = yk+kp+2kp2
x(p−k)+(p−1−k)p+(p−2−2k)p2

.

We see B2k cannot reach maximal degree, instead A2k reaches maximal degree only when 
m is odd and 2k = m − 1. If i = 2k + 1 (with k = 0, . . . , m − 1), then we have

A2k+1 = y(m+2+k)+(m+1+k)p+(1+2k)p2
x(m−k−1)+(m−1−k)p+(p−3−2k)p2

,

B2k+1 = yk+(k+m+1)p+(m+1+2k)p2
x(p−k)+(m−1−k)p+(m−2−2k)p2

.

We see that A2k+1 cannot reach maximal degree. Instead B2k+1 reaches maximal degree 
only when m is odd and 2k = m − 1. Hence for the term of degree p3 − 1 we have the 
following coefficient:

c = (−1)p−2−(m−1)
(

p − 2
m − 1

)
− (−1)p−2−(m)

(
p − 2

m

)

= −
(

p − 2
m − 1

)
−

(
p − 2

m

)
= −

(
p − 1

m

)
= (−1)m+1 �= 0.

7.1.2. Exponent #1 with m even
We have n = (m + 1)p + (m + 1)p2 and t = (p − 6) + p + 4p2. The case p = 29 can 

be eliminated computationally and we assume p �= 29 for the remainder of this case. We 
claim (yn − xn)t has maximal degree with coefficient
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cM = 1
2

(
p − 6
m − 1

)
145
3

�= 0.

More details in the following. In the following we consider only the case m even and set 
v = m/2. We have

(yn − xn)t

= (yn − xn)p−6(ynp − xnp)(y4np2 − 4y3np2
xnp2

+ 6y2np2
x2np2 − 4ynp2

x3np2
+ x4np2

)

=
p−6∑
i=0

(−1)p−6−i

(
p − 6

i

)

× (Ai
1 − 4Ai

2 + 6Ai
3 − 4Ai

4 + Ai
5 − Bi

1 + 4Bi
2 − 6Bi

3 + 4Bi
4 − Bi

5),

where

Ai
j = ynp+n(5−j)p2

xn(j−1)p2
ynixn(p−6−i),

Bi
j = yn(5−j)p2

xnp+n(j−1)p2
ynixn(p−6−i).

We consider whether i is even or not. For i = 2k (0 ≤ k ≤ m − 3) we have the following:

A2k
1 = y(m+3+k)+(k+4)p+(m+3+2k)p2

x(m−2−k)+(p−3−k)p+(m−6−2k)p2
,

B2k
1 = y(2+k)+(k+4)p+(2+2k)p2

x(p−2−k)+(p−3−k)p+(p−6−2k)p2
,

A2k
2 = y(2+k)+(m+k+4)p+(m+2+2k)p2

x(p−2−k)+(m−2−k)p+(m−5−2k)p2
,

B2k
2 = y(m+2+k)+(m+k+3)p+(1+2k)p2

x(m−1−k)+(m−1−k)p+(p−5−2k)p2
,

A2k
3 = y(m+2+k)+(k+2)p+(m+2+2k)p2

x(m−1−k)+(p−1−k)p+(m−5−2k)p2
,

B2k
3 = y(1+k)+(k+2)p+(1+2k)p2

x(p−1−k)+(p−1−k)p+(p−5−2k)p2
,

A2k
4 = y(1+k)+(m+k+2)p+(m+1+2k)p2

x(p−1−k)+(m−k)p+(m−4−2k)p2
,

B2k
4 = y(m+1+k)+(m+k+1)p+(2k)p2

x(m−k)+(m+1−k)p+(p−4−2k)p2
,

A2k
5 = y(m+1+k)+(k)p+(m+1+2k)p2

x(m−k)+(p+1−k)p+(m−4−2k)p2
,

B2k
5 = y(k)+(k)p+(2k)p2

x(p−k)+(p+1−k)p+(p−4−2k)p2
.

The terms B2k
j cannot have terms of maximal degree. The only terms A2k

j of maximal 
degree are the following (we indicate the corresponding coefficients):

Am−4
1 →

(
m + m/2 + 1

p − m/2

)(
m/2 + 2

m/2

)(
p − 2

1

)
= (v + 2)(v + 1)

2 (p − 2)

= −(v + 2)(v + 1)
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Am−4
2 →

(
m/2
m/2

)(
m + m/2 + 2

p − 1 − m + m/2

)(
p − 3

0

)
= (3v + 2)(3v + 1)

2

Am−2
2 →

(
m/2 + 1
m/2 + 1

)(
m + m/2 + 3
p − m + m/2

)(
p − 1

2

)
= (3v + 3)(3v + 2)

2

Am−4
3 →

(
m + m/2

p − 1 − m + m/2

)(
m/2

m/2 − 2

)(
p − 3

0

)
= v(v − 1)

2

Am−2
3 →

(
m + m/2 + 1
p − m + m/2

)(
m/2 + 1
m/2 − 1

)(
p − 1

2

)
= v(v + 1)

2

Am−2
4 →

(
m/2
m/2

)(
m + m/2 + 1

p − m + m/2 − 2

)(
p − 2

1

)
= (3v + 1)(3v)

2 (p − 2) = −(3v + 1)(3v)

Am−2
5 →

(
m + m/2

p − 1 − m + m/2

)(
m/2 − 1
m/2 − 3

)(
p − 2

1

)

= (v − 1)(v − 2)
2 (p − 2) = −(v − 1)(v − 2)

Hence the overall coefficient (corresponding to i even) of the term of maximal degree is 
the following

ce = −
(

p − 6
m − 4

)
[−(v + 2)(v + 1) − 4(3v + 2)(3v + 1)

2 + 6v(v − 1)
2 ]

−
(

p − 6
m − 2

)
[−4(3v + 3)(3v + 2)

2 + 6(v + 1)(v)
2 + 4(3v + 1)(3v) − (v − 1)(v − 2)]

=
(

p − 6
m − 4

)
[16v2 + 24v + 6] −

(
p − 6
m − 2

)
[20v2 − 12v − 10]

=
(

p − 6
m − 4

)
+

(
p − 6
m − 2

)
[v + 10].

For i = 2k + 1 (0 ≤ k ≤ m − 3) we have the following

A2k+1
1 = y(m+4+k)+(m+k+5)p+(3+2k)p2

x(m−3−k)+(m−3−k)p+(p−7−2k)p2
,

B2k+1
1 = y(2+k)+(m+k+5)p+(m+3+2k)p2

x(p−2−k)+(m−3−k)p+(m−6−2k)p2
,

A2k+1
2 = y(3+k)+(k+4)p+(3+2k)p2

x(p−3−k)+(p−3−k)p+(p−7−2k)p2
,

B2k+1
2 = y(m+2+k)+(k+3)p+(m+3+2k)p2

x(m−1−k)+(p−2−k)p+(m−6−2k)p2
,

A2k+1
3 = y(m+3+k)+(m+k+3)p+(2+2k)p2

x(m−2−k)+(m−1−k)p+(p−6−2k)p2
,

B2k+1
3 = y(1+k)+(m+k+3)p+(m+2+2k)p2

x(p−1−k)+(m−1−k)p+(m−5−2k)p2
,

A2k+1
4 = y(2+k)+(k+2)p+(2+2k)p2

x(p−2−k)+(p−1−k)p+(p−6−2k)p2
,

B2k+1
4 = y(m+1+k)+(k+1)p+(m+2+2k)p2

x(m−k)+(p−k)p+(m−5−2k)p2
,



26 E. Bergman et al. / Finite Fields and Their Applications 78 (2022) 101959
A2k+1
5 = y(m+2+k)+(m+1+k)p+(1+2k)p2

x(m−1−k)+(m+1−k)p+(p−5−2k)p2
,

B2k+1
5 = y(k)+(k+m+1)p+(2k+m+1)p2

x(p−k)+(m+1−k)p+(m−4−2k)p2
.

The terms A2k+1
j cannot have terms of maximal degree. The only terms B2k+1

j of maximal 
degree are the following (we indicate the corresponding coefficients):

Bm−3
1 →

(
m/2
m/2

)(
m + m/2 + 3
m + m/2 + 1

)(
p − 2

1

)
= (3v + 3)(3v + 2)

2 (p − 2)

= −(3v + 3)(3v + 2)

Bm−3
2 →

(
m + m/2
m + m/2

)(
m/2 + 1
m/2 − 1

)(
p − 2

1

)
= −(v + 1)(v)

Bm−3
3 →

(
m/2 − 1
m/2 − 1

)(
m + m/2 + 1
m + m/2 − 1

)(
p − 3

0

)
= (3v + 1)(3v)

2

Bm−1
3 →

(
m/2
m/2

)(
m + m/2 + 2

m + m/2

)(
p − 1

2

)
= (3v + 2)(3v + 1)

2

Bm−3
4 →

(
m + m/2 − 1
m + m/2 − 1

)(
m/2 − 1
m/2 − 3

)(
p − 3

0

)
= (v − 1)(v − 2)

2

Bm−1
4 →

(
m + m/2
m + m/2

)(
m/2

m/2 − 2

)(
p − 1

2

)
= (v)(v − 1)

2

Bm−1
5 →

(
m/2 − 1
m/2 − 1

)(
m + m/2

m + m/2 − 2

)(
p − 2

1

)
= (3v)(3v − 1)

2 (p − 2) = −(3v)(3v − 1)

Hence the overall coefficient (corresponding to i odd) of the term of maximal degree is 
the following

co =
(

p − 6
m − 3

)
[(3v + 3)(3v + 2) − 4(v + 1)(v) − 6(3v + 1)(3v)

2 + 4(v − 1)(v − 2)
2 ]

+
(

p − 6
m − 1

)
[−6(3v + 2)(3v + 1)

2 + 4(v)(v − 1)
2 + (3v)(3v − 1)]

=
(

p − 6
m − 3

)
[−20t2 − 4t + 10] +

(
p − 6
m − 1

)
[−16v2 − 32v − 6]

=
(

p − 6
m − 3

)
[v + 10] +

(
p − 6
m − 1

)

In total, our coefficient is

cM = ce + co =
(

p − 6
m − 4

)
+

(
p − 6
m − 2

)
[v + 10] +

(
p − 6
m − 3

)
[v + 10] +

(
p − 6
m − 1

)

= 2
(

p − 6
)

+ 2
(

p − 6
)

[v + 10]

m − 1 m − 2
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= 2
(

p − 6
m − 2

)
(v + 37

3
) = 1

2

(
p − 6
m − 2

)
145
3

.

Hence cM = 0 only for p = 5, 29.

7.2. Exponent #2

Exponent #2 is very similar (a swapping of a0 and a1) to Exponent #1, and the proof 
works the same.

7.3. Exponent #3

For Exponent #3 we have n = 1 + mp + (m + 1)p2 and t = 2 + 4p. Note that

2n = 2 + 2mp + (2m + 2)p2 = 2 + (p − 1)p + (p + 1)p2

= 3 + (p − 1)p + p2,

4n = 6 + (2p − 2)p + 2p2

= 6 + (p − 2)p + 3p2.

With y = (x + 1),

(yn − xn)2+4p

= (y2n − 2xnyn + x2n)(y4np − 4xnpy3np + 6x2npy2np − 4x3npynp + x4np)

= y2n+4np − 4xnpy2n+3np + 6x2npy2n+2np − 4x3npy2n+np + x4npy2n

− 2xnyn+4np + 8xn+npyn+3np − 12xn+2npyn+2np + 8xn+3npyn+np − 2xn+4npyn

+ x2ny4np − 4x2n+npy3np + 6x2n+2npy2np − 4x2n+3npynp + x2n+4np

= y7+5p − 4xm+1+p+mp2
ym+6+3p+(m+1)p2

+ 6x1+3p+(p−1)p2
y5+2p+p2

− 4xm+3+4p+(m−1)p2
y4+m+(m+2)p2

+ x3+6p+(p−2)p2
y3+(p−1)p+p2

− 2x1+mp+(m+1)p2
y5+(m+6)p+(m−1)p2

+ 8xm+3+(m+1)pym+4+(m+4)p+(p−1)p2

− 12x3+(m+3)p+mp2
y3+(m+3)p+mp2

+ 8xm+4+(m+4)p+(p−1)p2
ym+3+(m+1)p

− 2x5+(m+6)p+(m−1)p2
y1+mp+(m+1)p2

+ x3+(p−1)p+p2
y3+6p+(p−2)p2

− 4x4+m+(m+2)p2
ym+3+4p+(m−1)p2

+ 6x5+2p+p2
y1+3p+(p−1)p2

− 4xm+6+3p+(m+1)p2
ym+1+p+mp2

+ x7+5p.

For p > 7 it is not difficult to check that the only blocks that allow a term of maximal 
degree are
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8xm+3+(m+1)pym+4+(m+4)p+(p−1)p2
and 8xm+4+(m+4)p+(p−1)p2

ym+3+(m+1)p.

In this case we have

xm+3+(m+1)pym+4+(m+4)p+(p−1)p2

=
m+4∑
α0=0

m+4∑
α1=0

p−1∑
α2=0

(
m + 4

α0

)(
m + 4

α1

)(
p − 1

α2

)
x(m+3+α0)+(m+1+α1)p+α2p2

,

xm+4+(m+4)p+(p−1)p2
ym+3+(m+1)p

=
m+3∑
α0=0

m+1∑
α1=0

(
m + 3

α0

)(
m + 1

α1

)
x(m+4+α0)+(m+4+α1)p+(p−1)p2

.

In the first monomial we have α0 = m − 3, α1 = m − 1 and α2 = p − 1. Hence we obtain

(
m + 4
m − 3

)(
m + 4
m − 1

)(
p − 1
p − 1

)
x(p−1)(1+p+p2).

In the second case we have α0 = α1 = m − 4, hence we obtain

(
m + 3
m − 4

)(
m + 1
m − 4

)
x(p−1)(1+p+p2).

The condition m ≥ 4 is satisfied since we are considering p > 7. Therefore we just need 
to verify that

(
m + 4
m − 3

)(
m + 4
m − 1

)
+

(
m + 3
m − 4

)(
m + 1
m − 4

)
�= 0.

This follows immediately upon recognising that the two terms of the sum are equal:

(
m + 4
m − 3

)(
m + 4
m − 1

)
= (m + 4) · · · (m − 2)

7! · (m + 4) · · · (m)
5! ,

(
m + 3
m − 4

)(
m + 1
m − 4

)
= (m + 3) · · · (m − 3)

7! · (m + 1) · · · (m − 3)
5! ,

(m + 4)2(m + 3)(m + 2) = (m2 + 12)2 · (m2 + m + 4) mod p,

(m − 1)(m − 2)(m − 3)2 = (m2 + m + 4) · (m2 + 12)2 mod p.

This eliminates this exponent.
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7.4. Exponent #4

In this case n = p−1
2 + p + p+1

2 p2 = m + p + (m + 1)p2. Set t = (p − 2) + p. Therefore

(yn − xn)t = (yn − xn)p−2(yn − xn)p

=
p−2∑
i=0

(−1)p−2−i

(
p − 2

i

)
ynixn(p−2−i)(ynp − xnp)

=
p−2∑
i=0

(−1)i+1
(

p − 2
i

)
[yni+npxn(p−2−i) − ynixn(p−2−i)+np]

=
p−2∑
i=0

(−1)i+1
(

p − 2
i

)
[Ai − Bi].

We consider whether i is even or not, and obtain

A2k = y(m+1)+(m+3k)p+(k+1)p2
x(m)+(m−3−3k)p+(p−k)p2

,

B2k = y(3k)p+(k)p2
x(p−3−3k)p+(p+1−k)p2

,

A2k+1 = y(m+3k+2)p+(m+k+2)p2
x(m−4−3k)p+(m−k)p2

,

B2k+1 = y(m)+(3k+1)p+(m+k+1)p2
x(m+1)+(p−5−3k)p+(m+1−k)p2

,

where in both cases 0 ≤ k ≤ m − 1. The only possible terms of maximal degree are A2k

for m−2
3 ≤ k ≤ m

3 and B2k+1 for p−4
3 ≤ k ≤ p−2

3 (only one integer k in both ranges). 
The coefficients are the following

cA = (m + 1)(k + 1)
(

m + 3k

p − 3

)

cB = m(m + 1 + k)
(

3k + 1
p − 3

)
.

Consider now the three possible cases: m mod 3 ≡ 0, 1, 2. The condition m mod 3 ≡ 1 is 
never satisfied since m = 3j + 1 implies p = 2m + 1 = 6j + 3 so that p is not prime.

• If m = 3j (p = 6j +1), then m−2
3 ≤ k ≤ m

3 implies k = j and p−4
3 ≤ k ≤ p−2

3 implies 
k = 2j − 1. Hence the general coefficient of maximal degree is

cM = (−1)2j+1
(

p − 2
2j

)
(m + 1)(j + 1)

(
m + 3j

p − 3

)

− (−1)2(2j−1)+1+1
(

p − 2
)

m(m + 1 + 2j − 1)
(

3(2j − 1) + 1
)

2(2j − 1) + 1 p − 3
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= −
(

p − 2
2j

)
(m + 1)(j + 1)

(
p − 1
p − 3

)
−

(
p − 2

m + j − 1

)
m(m + 2j)

(
p − 3
p − 3

)

= −
(

p − 2
2j

)
(m + 1)(j + 1) −

(
p − 2

m + j − 1

)
m(−j − 1)

= −(j + 1)[
(

p − 2
2j

)
(m + 1) −

(
p − 2
4j − 1

)
m]

= −(j + 1)[
(

p − 2
2j

)
(m + 1) −

(
p − 2

2j

)
m] �= 0.

• If m = 3j + 2 (p = 6j + 5), then m−2
3 ≤ k ≤ m

3 implies k = j and p−4
3 ≤ k ≤ p−2

3
implies k = 2j + 1. Hence the general coefficient of maximal degree is

cM = (−1)2j+1
(

p − 2
2j

)
(m + 1)(j + 1)

(
m + 3j

p − 3

)

− (−1)2(2j+1)+1+1
(

p − 2
2(2j + 1) + 1

)
m(m + 1 + 2j + 1)

(
3(2j + 1) + 1

p − 3

)

= −
(

p − 2
2j

)
(m + 1)(j + 1)

(
2m − 2
p − 3

)
−

(
p − 2

j + m + 1

)
m(2m − j)

(
2m

p − 3

)

= −
(

p − 2
2j

)
(m + 1)(j + 1) −

(
p − 2

j + m + 1

)
m(−1 − j)

= −(j + 1)[
(

p − 2
2j

)
(m + 1) −

(
p − 2
4j + 3

)
m]

= −(j + 1)[
(

p − 2
2j

)
(m + 1) −

(
p − 2

2j

)
m] �= 0.

7.5. Exponent #5

In this case n = p−1
2 + p+3

2 p2 = m + (m + 2)p2. Set t = (p − 6) + p + 2p2. Then

(yn − xn)t = (yn − xn)p−6(ynp − xnp)(y2np2 − 2ynp2
xnp2

+ x2np2
)

=
p−6∑
i=0

(−1)p−6−i

(
p − 6

i

)
(Ai

1 − 2Ai
2 + Ai

3 − Bi
1 + 2Bi

2 − Bi
3),

where

Ai
j = ynp+n(3−j)p2

xn(j−1)p2
ynixn(p−6−i)

Bi
j = yn(3−j)p2

xnp+n(j−1)p2
ynixn(p−6−i).

We consider whether i is even or not. For i = 2k (0 ≤ k ≤ m − 3) we have the following:
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A2k
1 = y(m+3)+(m+k+3)p+(3k)p2

x(m+1)+(m−3−k)p+(p−9−3k)p2
,

B2k
1 = y(1)+(k+3)p+(3k)p2

x2+(p−3−k)p+(p−9−3k)p2
,

A2k
2 = y(m+2)+(k+1)p+(m+1+3k)p2

x(m+2)+(p−2−k)p+(m−9−3k)p2
,

B2k
2 = y(m+2+k)p+(m+3k)p2

x3+(m−1−k)p+(m−8−3k)p2
,

A2k
3 = y(m+2)+(m+k)p+(3k)p2

x(m+2)+(m−k)p+(p−9−3k)p2
,

B2k
3 = y(0)+(k)p+(3k)p2

x3+(p−k)p+(p−9−3k)p2
.

The terms B2k
j do not have terms of maximal degree. The only terms A2k

j of maximal 
degree are the following ones (where we also list the corresponding coefficient).

A2k
1 with 2m − 7

3 ≤ k ≤ 2m

3 →
(

m + 3
m

)(
3k

p − 8

)
,

A2k
2 with m − 8

3 ≤ k ≤ m − 1
3 →

(
m + 2
m − 1

)(
3k + 1 + m

p − 8

)
,

A2k
3 with 2m − 7

3 ≤ k ≤ 2m

3 →
(

m + 2
m − 1

)(
3k

p − 8

)
.

For i = 2k + 1 (0 ≤ k ≤ m − 3) we have the following

A2k+1
1 = y2+(m+k+4)p+(m+2+3k)p2

x(1)+(m−3−k)p+(m−10−3k)p2
,

B2k+1
1 = y(m+1)+(k+3)p+(3k+m+2)p2

x(m+3)+(p−4−k)p+(m−10−3k)p2
,

A2k+1
2 = y2+(k+2)p+(2+3k)p2

x(1)+(p−2−k)p+(p−11−3k)p2
,

B2k+1
2 = y(m+1)+(m+2+k)p+(1+3k)p2

x(m+3)+(m−2−k)p+(p−10−3k)p2
,

A2k+1
3 = y(1)+(m+k+1)p+(m+2+3k)p2

x2+(m−k)p+(m−10−3k)p2
,

B2k+1
3 = y(m)+(k)p+(3k+m+2)p2

x(m+4)+(p−1−k)p+(m−10−3k)p2
.

The terms A2k+1
j do not have terms of maximal degree. The only terms B2k+1

j of maximal 
degree are the following ones (where we also list the corresponding coefficient).

B2k
1 with m − 9

3 ≤ k ≤ m − 2
3 →

(
m + 1
m − 2

)(
3k + m + 2

p − 8

)
,

B2k
2 with 2m − 8

3 ≤ k ≤ 2m − 1
3 →

(
m + 1
m − 2

)(
3k + 1
p − 8

)
,

B2k
3 with m − 9

3 ≤ k ≤ m − 2
3 →

(
m

m − 3

)(
3k + m + 2

p − 8

)
.
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We consider in the following the case m ≡ 0 mod 3 and m ≡ 2 mod 3 (as already noted 
if m ≡ 1 mod 3, then 3 | p). The overall coefficient for the term of maximal degree is the 
following:

cM = −
2m

3∑
k= 2m−7

3

(
p − 6

2k

)(
3k

p − 8

)
[
(

m + 3
m

)
+

(
m + 2
m − 1

)
]

+ 2
m−1

3∑
k= m−8

3

(
p − 6

2k

)(
m + 2
m − 1

)(
3k + m + 1

p − 8

)

−
m−2

3∑
k= m−9

3

(
p − 6
2k + 1

)(
3k + m + 2

p − 8

)
[
(

m + 1
m − 2

)
+

(
m

m − 3

)
]

+ 2
2m−1

3∑
k= 2m−8

3

(
p − 6
2k + 1

)(
m + 1
m − 2

)(
3k + 1
p − 8

)

= −
2m

3∑
k= 2m−7

3

(
p − 6

2k

)(
3k

p − 8

)
(m + 2)(m + 1)

3

+ 2
m−1

3∑
k= m−8

3

(
p − 6

2k

)(
m + 2
m − 1

)(
3k + m + 1

p − 8

)

+
m−2

3∑
k= m−9

3

(
p − 6
2k + 1

)(
3k + m + 2

p − 8

)
m(m − 1)

3

+ 2
2m−1

3∑
k= 2m−8

3

(
p − 6
2k + 1

)(
m + 1
m − 2

)(
3k + 1
p − 8

)
.

7.5.1. m = 3t

In this case p = 6t + 1.

cM =−
2t∑

k=2t−2

(
p − 6

2k

)(
3k

p − 8

)
(m + 2)(m + 1)

3

+2
t−1∑

k=t−2

(
p − 6

2k

)(
m + 2
m − 1

)(
3k + m + 1

p − 8

)

+
t−1∑ (

p − 6
2k + 1

)(
3k + m + 2

p − 8

)
m(m − 1)

3 + 2
2t−1∑ (

p − 6
2k + 1

)(
m + 1
m − 2

)(
3k + 1
p − 8

)

k=t−3 k=2t−2
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= 1
2

[7
(

p − 6
2t − 1

)
− 35

(
p − 6
2t − 3

)
+

(
p − 6
2t − 5

)
] − 21

4
[
(

p − 6
2t − 4

)
−

(
p − 6
2t − 2

)
]

= −21
4

(
p − 6
2t − 4

)
2 t + 1

(t − 1)(2t − 3) �= 0.

7.5.2. m = 3t + 2
In this case p = 6t + 5.

cM = −
2t+1∑

k=2t−1

(
p − 6

2k

)(
3k

p − 8

)
(m + 2)(m + 1)

3

+ 2
t∑

k=t−2

(
p − 6

2k

)(
m + 2
m − 1

)(
3k + m + 1

p − 8

)

+
t∑

k=t−2

(
p − 6
2k + 1

)(
3k + m + 2

p − 8

)
m(m − 1)

3 +2
2t+1∑

k=2t−1

(
p − 6
2k + 1

)(
m + 1
m − 2

)(
3k + 1
p − 8

)

= −1
3(m − 1)[

(
p − 6
2t + 1

)
− 35

(
p − 6
2t − 1

)
+ 7

(
p − 6
2t − 3

)
]

− 1
2(m + 1)[

(
p − 6
2t − 4

)
− 35

(
p − 6
2t − 2

)
+ 7

(
p − 6

2t

)
]

= −1
6(m + 1)

(
p − 6
2t − 2

)
2t + 25

(t + 1)(2t + 3)t(2t − 1) �= 0.

In either scenario, Exponent #5 is eliminated.

7.6. Exponent #6

Let n = 1 + 3p + (p − 3)p2 and t = 2 + 4p + 4p2. The cases with p ≤ 17 can be checked 
computationally, and we assume p ≥ 19 for this case. A similar approach to that used 
for Exponent #3 can be performed here. Note

n = 1 + 3p + (p − 3)p2,

2n = 3 + 6p + (p − 6)p2,

3n = 5 + 9p + (p − 9)p2,

4n = 7 + 12p + (p − 12)p2.

We have a more complicated expression to consider:

(yn − xn)2+4p+4p2

= (y2n − 2xnyn + x2n)(y4np − 4xnpy3np + 6x2npy2np − 4x3npynp + x4np)
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· (y4np2 − 4xnp2
y3np2

+ 6x2np2
y2np2 − 4x3np2

ynp2
+ x4np2

)

= (y3+6p+(p−6)p2 − 2x1+3p+(p−3)p2
y1+3p+(p−3)p2

+ x3+6p+(p−6)p2
)

· (y(p−12)+7p+12p2 − 4x(p−3)+p+3p2
y(p−9)+5p+9p2

+ 6x(p−6)+3p+6p2
y(p−6)+3p+6p2

− 4x(p−9)+5p+9p2
y(p−3)+p+3p2

+ x(p−12)+7p+12p2
)

· (y12+(p−12)p+7p2 − 4x3+(p−3)p+p2
y9+(p−9)p+5p2

+ 6x6+(p−6)p+3p2
y6+(p−6)p+3p2

− 4x9+(p−9)p+5p2
y3+(p−3)p+p2

+ x12+(p−12)p+7p2
)

A careful analysis of all the blocks xiyj obtained and the relative exponents, it is clear 
that the only blocks that contain a monomial of maximal degree are the following ones:

A1 = −4xnp2+2ny4np+3np2

= −4x6+3p+(p−4)p2
y(p−3)+(p−2)p+17p2

,

A2 = −4x3np2+2ny4np+np2

= −4x12+(p−3)p+(p−1)p2
y(p−9)+4p+14p2

A3 = −4x4np+3np2
ynp2+2n

= −4x(p−3)+(p−2)p+17p2
y6+3p+(p−4)p2

,

A4 = −4x4np+np2
y3np2+2n

= −4x(p−9)+4p+14p2
y12+(p−3)p+(p−1)p2

.

If we set ci to be the coefficient of the monomial of maximal degree, we obtain

c1 = −4
(

p − 3
p − 7

)(
p − 2
p − 4

)(
17
3

)
,

c2 = −4
(

p − 9
p − 13

)(
4
2

)(
14
0

)
,

c3 = −4
(

6
2

)(
3
1

)(
p − 4
p − 18

)
,

c4 = −4
(

12
8

)(
p − 3
p − 5

)(
p − 1
p − 15

)
.

Therefore we need to prove that c1 + c2 + c3 + c4 �= 0. We first do some simplifications. 
Working modulo p we have

c1 = −4
(

p − 3
)(

p − 2
)(

17
)

p − 7 p − 4 3



E. Bergman et al. / Finite Fields and Their Applications 78 (2022) 101959 35
= −4
(

p − 3
4

)(
p − 2

2

)(
17
3

)

= −43 × 4 × 5 × 6
4!

2 × 3
2

17 × 16 × 15
3!

= −25325217.

Next,

c2 = −4
(

p − 9
p − 13

)(
4
2

)(
14
0

)

= −4
(

p − 9
4

)
4 × 3

2

= −49 × 10 × 11 × 12
4! × 2 × 3

= −23335 × 11.

For c3, we find

c3 = −4
(

6
2

)(
3
1

)(
p − 4
p − 18

)

= −46 × 5
2 × 3 × 4 × 5 × · · · × 17

14!
= −25325217 = c1.

On a similar note, we find

c4 = −4
(

12
8

)(
p − 3
p − 5

)(
p − 1
p − 15

)

= −412 × 11 × 10 × 9
4!

3 × 4
2 × (−1)p−15

= −23335 × 11 = c2.

Thus, we find

c1 + c2 + c3 + c4 = −26325217 + −24335 × 11

= −24325(340 + 33)

= −24 × 32 × 5 × 373.

Thus, for p �= 373, we have a non-zero coefficient for the maximal degree term. For 
p = 373, we test directly using the Magma Algebra package [1]. Using Magma’s standard 
construction of Fq, with q = 3733, and the planar equivalent exponent n′ = p2n mod (q−
1), we find (gi +1)n′ −gin′ = (gj +1)n′ −gjn′ with i = 92, j = 5737 where g is a primitive 
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element of Fq. This eliminates the final possible prime for which Exponent #6 could be 
planar, and so it is never planar.

7.7. Exponent #7

Set n = 1 + 2p + (p − 2)p2. and t = (p − 1)(p + 1). This case turns out to be the most 
involved of all of our explicit exponents. Firstly, with y = x + 1, we have

(yn − xn)t =
t∑

k=0

(
t

k

)
ynk(−1)kxnt−nk

=
p−1∑

i,j=0
(−1)i+jyni+njp(−1)i+jx4p2−4p−ni−njp

=
p−1∑

i,j=0
yni+njpx4p2−4p−ni−njp.

Set i + j = w. Then it can be shown that, with x4p2−4p−ni−njp = xα and yni+njp = yβ , 
we have

α = (4j − 2w) + p(p − (2w + 4)) + p2(2w + 3 − 4j)

β = (2w − 4j) + 2pw + p2(4j − 2w).

It is immediate that we can never have an xq−1 term when i = j, that is when 2j = w. 
As shall be shown, we obtain non-zero coefficients for the xq−1 term only when w ∈
{(p − 3)/2, (p − 1)/2, p − 2, p − 1, p, p + (p − 3)/2, p + (p − 1)/2}. For ease of notation, we 
define four binomial sums. Specifically, we set si, with 0 ≤ i ≤ 3, to be

si =
k∑

j=0

(
4j + i

3

)
,

where k is the largest integer satisfying 4k + i < p.

7.7.1. When w < (p − 3)/2
Since w < (p − 3)/2, we see that 2w + 4 < p. We concentrate on the p term of α and 

β. Now p − 1 − (p − (2w + 4)) = 2w + 3, and the most carries we can see occur for the p
terms of α and of β is a shift of 1 in either direction, with one going up while the other 
goes down, so that (with ε = ±1)

(
2w + ε

2w + 3 + ε

)

is clearly always 0 and we can never obtain a xq−1 term from this case.
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7.7.2. When w = (p − 3)/2
We now have

α = (4j + 3) + p(p − 2) + p2(p − (4j + 1))

β = (p − (4j + 3)) + p(p − 3) + p2((4j + 3) − p).

Keeping in mind that 2j �= w, we have the following cases to deal with: 4j + 3 < p, 
4j + 1 = p, and p + 2 < 4j + 3 ≤ 2p − 3. It is immediate from consideration of the p2

terms of α and β that there is no xq−1 term when 4j + 1 = p.
For 4j + 3 < p, only β has a carry, becoming

β = (p − (4j + 4)) + p(p − 3) + p2(4j + 3).

We now obtain an xq−1 term with coefficient(
p − (4j + 4)

p − 1 − (4j + 3)

)(
p − 3

1

)(
4j + 3

p − 1 − (p − (4j + 1))

)
= (p − 3)

(
4j + 3

3

)
.

Consequently, it can be seen that we obtain an overall coefficient of

d1 = −3s3.

For p + 2 < 4j + 3 ≤ 2p − 3, after dealing with carries we have

α = (4j + 2 − p) + p(p − 1) + p2(2p − (4j + 1))

β = (2p − (4j + 3)) + p(p − 4) + p2((4j + 3) − p).

This yields an xq−1 term with coefficient
(

2p − (4j + 3)
p − 1 − (4j + 2 − p)

)(
p − 4

0

)(
4j + 3 − p

p − 1 − (2p − (4j + 1))

)
=

(
4j + 3 − p

3

)
.

Summing over all cases, we obtain an overall coefficient of

d2 =
{

s2 if p ≡ 1 mod 4,
s0 if p ≡ 3 mod 4.

7.7.3. When w = (p − 1)/2
In this case our exponents simplify to

α = (4j + 1) + p(p − 4) + p2(p − (4j − 1))

β = (p − (4j + 1)) + p(p − 1) + p2((4j + 1) − p).
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As 2j �= w, we are left with three situations: 4j + 1 < p, 4j − 1 = p, and p + 2 < 4j + 1 ≤
2p − 1. When 4j − 1 = p, it is clear from inspecting the p2 terms of α and β that there 
is no xq−1 term.

For 4j + 1 < p, only β has a carry, becoming

β = (p − (4j + 2)) + p(p − 1) + p2(4j + 1).

The coefficient of the xq−1 term so generated is(
p − (4j + 2)

p − 1 − (4j + 1)

)(
p − 1

3

)(
4j + 1

p − 1 − (p − (4j − 1))

)
= (−1)

(
4j + 1

3

)
.

Summing, we obtain the coefficient

d3 = −s1.

For p + 2 < 4j + 1 ≤ 2p − 1, we find

α = (4j − p) + p(p − 3) + p2(2p − (4j − 1))

β = (2p − (4j + 1)) + p(p − 2) + p2((4j + 1) − p).

This generates an xq−1 term with coefficient(
2p − (4j + 1)

p − 1 − (4j − p)

)(
p − 2

2

)(
4j + 1 − p

p − 1 − (2p − (4j − 1))

)
= 3

(
4j + 1 − p

3

)
.

Proceeding to sum over all cases yields the coefficient

d4 =
{

3s0 if p ≡ 1 mod 4,
3s2 if p ≡ 3 mod 4.

7.7.4. When (p − 1)/2 < w < p − 2
With w in this range, we first deal with some carries for α and β, obtaining

α = (4j − 2w) + p(2p − (2w + 4)) + p2(2w + 2 − 4j)

β = (2w − 4j) + p(2w − p) + p2(4j + 1 − 2w).

We concentrate on the p terms of α and β. As −2p < 2w − 4j < 2p, the p terms can 
only ever receive a carry of 1 in either direction, with one going up while the other goes 
down. Thus to construct an xq−1 term, the binomial generated by the p term would be(

2w − p + ε

p − 1 − (2p − (2w + 4) − ε)

)
=

(
2w − p + ε

2w − p + 3 + ε

)
= 0.

Hence there is no xq−1 term generated in this case.
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7.7.5. When w = p − 2
For w = p − 2, we have

α = (4j + 5) + p(p − 2) + p2(p − (4j + 3))

β = p − (4j + 6) + p(p − 3) + p2(4j + 5).

For this case, we split the situation into multiple subcases: 4j + 5 < p, 4j + 5 = p, 
4j + 3 = p, p + 3 < 4j + 6 < 2p, 4j + 6 = 2p, 2p + 1 < 4j + 5 < 3p, 4j + 5 = 3p, 
4j + 3 = 3p, 3p + 2 < 4j + 5.

It is very quickly checked that we get no xq−1 term from the cases where 4j + 5 = p, 
4j + 3 = p, 4j + 5 = 3p and 4j + 3 = 3p.

For 4j + 5 < p, the coefficient is
(

p − 4j − 6
p − 1 − 4j − 5

)(
p − 3

1

)(
4j + 5

p − 1 − p + 4j + 3

)
= (p − 3)

(
4j + 5
4j + 2

)
= (p − 3)

(
4j + 5

3

)
.

This situation thus yields the overall coefficient of

d5 = −3s1.

For p + 3 < 4j + 6 < 2p, after dealing with carries we find

α = (4j + 4 − p) + p(p − 1) + p2(2p − (4j + 3))

β = 2p − (4j + 5) + p(p − 4) + p2(4j + 5 − p).

Thus the coefficient of xq−1 when p + 3 < 4j + 6 < 2p is
(

2p − (4j + 5)
p − 1 − (4j + 4 − p)

)(
p − 4

0

)(
4j + 5 − p

p − 1 − (2p − (4j + 3))

)
=

(
4j + 5 − p

3

)
.

If we sum, we find that since 4j + 5 < 2p − 1, we’re missing the very last term in either 
s0 or s2, depending on p mod 4. In either case this would be 

(
p−1

3
)

= −13 = −1. Thus 
we obtain the overall coefficient of

d6 = 1 +
{

s0 if p ≡ 1 mod 4,
s2 if p ≡ 3 mod 4.

For 4j + 6 = 2p, we have

α = (p − 2) + p(p − 1) + 3p2

β = 1 + p(p − 4) + p2(p − 1).

The coefficient of xq−1 generated from yβxα is
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(
1
1

)(
p − 4

0

)(
p − 1

p − 1 − 3

)
= (−1)3 = −1.

This singleton case thus produces the coefficient d7 = −1.
For 2p + 1 < 4j + 5 < 3p, we after carries we find

α = (4j + 3 − 2p) + 0 × p + p2(3p − (4j + 2))

β = 3p − (4j + 4) + p(p − 5) + p2(4j + 5 − 2p),

from which it is clear we get no xq−1 term.
Finally, for 3p + 2 < 4j + 5, after carries we have

α = (4j + 2 − 3p) + p + p2(4p − (4j + 2))

β = 4p − (4j + 3) + p(p − 6) + p2(4j + 5 − 3p),

from which it is again clear we have no xq−1 term.

7.7.6. When w = p − 1
A first simplification of our exponents produces

α = (4j + 2) + p(p − 4) + p2(2p − (4j + 1))

β = (2p − (4j + 2)) + p(p − 2) + p2(4j + 3 − 2p).

We have the following eight cases to consider: 4j + 3 < p, 4j + 3 = p, 4j + 1 = p, 
p + 2 < 4j + 3 < 2p, 2p < 4j + 3 < 3p, 4j + 3 = 3p, 4j + 1 = 3p, 3p < 4j + 1 ≤ 4p − 3. 
The four cases involving equalities are easily eliminated by considering either of the p0

or p2 terms of α and β. This leaves us just the four cases 4j + 3 < p, p + 2 < 4j + 3 < 2p, 
2p < 4j + 3 < 3p, and 3p < 4j + 1 ≤ 4p − 3.

When 4j + 3 < p, dealing with our carries produces

α = (4j + 3) + p(p − 4) + p2(p − (4j + 1))

β = (p − (4j + 4)) + p(p − 1) + p2(4j + 3).

We obtain an xq−1 term with coefficient
(

p − (4j + 4)
p − 1 − (4j + 3)

)(
p − 1

3

)(
4j + 3

p − 1 − (p − (4j + 1))

)
= (−1)

(
4j + 3

3

)
.

We sum and obtain the overall coefficient of

d8 = −s3.
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When p + 2 < 4j + 3 < 2p, after considering carries, we have

α = (4j + 2 − p) + p(p − 3) + p2(2p − (4j + 1))

β = (2p − (4j + 3)) + p(p − 2) + p2(4j + 3 − p).

Here we obtain an xq−1 term with coefficient(
2p − (4j + 3)

p − 1 − (4j + 2 − p)

)(
p − 2

2

)(
4j + 3 − p

p − 1 − (2p − (4j + 1))

)
= 3

(
4j + 3 − p

3

)
.

Overall, this produces the coefficient

d9 =
{

3s2 if p ≡ 1 mod 4,
3s0 if p ≡ 3 mod 4.

When 2p < 4j + 3 < 3p, we must have also have 4j + 1 > 2p as otherwise w = 2j. 
Dealing with carries, our exponents are

α = (4j + 1 − 2p) + p(p − 2) + p2(3p − (4j + 1))

β = (3p − (4j + 2)) + p(p − 3) + p2(4j + 3 − 2p).

The coefficient for the xq−1 term is(
3p − (4j + 2)

p − 1 − (4j + 1 − 2p)

)(
p − 3

1

)(
4j + 3 − 2p

p − 1 − (3p − (4j + 1))

)
= −3

(
4j + 3 − 2p

3

)
.

Now we get the coefficient

d10 = −3s1.

Finally, when 3p < 4j + 1 ≤ 4p − 3, we simplify our exponents to find

α = (4j − 3p) + p(p − 1) + p2(4p − (4j + 1))

β = (4p − (4j + 1)) + p(p − 4) + p2(4j + 3 − 3p).

The coefficient for the xq−1 term is(
4p − (4j + 1)

p − 1 − (4j − 3p)

)(
p − 4

0

)(
4j + 3 − 3p

p − 1 − (4p − (4j + 1))

)
=

(
4j + 3 − 3p

3

)
,

and summing we get the overall coefficient

d11 =
{

s0 if p ≡ 1 mod 4,
s if p ≡ 3 mod 4.
2
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7.7.7. When w = p

A first simplification of our exponents produces

α = (4j + 1) + p(p − 6) + p2(p − (4j − 1))

β = (p − (4j + 2)) + p + p2(4j + 2).

An immediate observation from looking at the coefficient of the p terms is that we cannot 
possibly obtain an xq−1 term with 4j +2 ≤ 2p. We therefore have just the following three 
cases: 2p < 4j − 1 < 3p − 2, 4j + 1 = 3p, 4j + 1 > 3p. The case where 4j + 1 = 3p is also 
quickly eliminated.

When 2p < 4j − 1 < 3p − 2, we find α and β become

α = (4j − 1 − 2p) + p(p − 4) + p2(3p − (4j − 1))

β = (3p − 4j) + p(p − 1) + p2(4j + 1 − 2p).

The coefficient for the xq−1 term is
(

3p − 4j

p − 1 − (4j − 1 − 2p)

)(
p − 1

3

)(
4j + 1 − 2p

p − 1 − (3p − (4j − 1))

)
= −

(
4j + 1 − 2p

3

)
.

Taking the sum of these coefficients produces the overall coefficient

d12 = −s3.

When 4j + 1 > 3p, we find

α = (4j − 2 − 3p) + p(p − 3) + p2(4p − (4j − 1))

β = (4p − (4j − 1)) + p(p − 2) + p2(4j + 1 − 3p).

This produces an xq−1 term with coefficient

(
4p − 4j + 1

p − 1 − (4j − 2 − 3p)

)(
p − 2

2

)(
4j + 1 − 3p

p − 1 − (4p − (4j − 1))

)
= 3

(
4j + 1 − 3p

3

)
.

We sum to obtain

d13 =
{

3s2 if p ≡ 1 mod 4,
3s0 if p ≡ 3 mod 4.

7.7.8. When p < w < p + (p − 3)/2
For this situation, let us rewrite w as w = p + w′ with 0 < w′ < (p − 3)/2. A first 

simplification of α and β yields
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α = (4j + 2 − 2w′) + p(p − (2w′ + 6)) + p2(2w′ + 1 − 4j)

β = (2w′ − 2 − 4j) + p(2w′ + 2) + p2(4j + 2 − 2w′).

Concentrating on the p terms of both α and β one sees that then it is impossible to 
construct a p − 1 multiple of p, as the carries will only ever make a difference of at most 
2 when we need a minimum of 3 carries in total. Hence, we never get an xq−1 term in 
this case.

7.7.9. When w = p + (p − 3)/2
In this case, we note that j ≥ (p − 1)/2, so that 4j + 3 > 2p always. With this in 

mind, our first simplification of our exponents leads us to

α = (4j + 3 − 2p) + p(p − 2) + p2(3p − (4j + 3))

β = (3p − (4j + 4)) + p(p − 3) + p2(4j + 5 − 2p).

There are 4 cases to deal with: 2p < 4j + 3 < 3p − 2, 4j + 5 = 3p, 4j + 3 = 3p, 
3p < 4j + 3 ≤ 4p − 2, and j = p − 1 (4j + 5 = 4p + 1). By inspection it is immediate that 
when 4j + 5 = 3p, 4j + 3 = 3p or j = p − 1, we cannot possibly generate an xq−1 term.

When 2p < 4j + 3 < 3p − 2, we can immediately read off the coefficient of xq−1, 
finding

(
3p − 4j − 4

p − 1 − 4j − 3 + 2p

)(
p − 3

1

)(
4j + 5 − 2p

p − 1 − (3p − (4j + 3))

)
= −3

(
4j + 5 − 2p

3

)
.

Summing over them all produces the overall coefficient

d14 = −3s3.

When 4j + 3 > 3p, after dealing with carries we obtain

α = (4j + 2 − 3p) + p(p − 1) + p2(4p − (4j + 3))

β = (4p − (4j + 3)) + p(p − 4) + p2(4j + 5 − 3p).

When generating an xq−1 term we now get the coefficient
(

4p − 4j − 3
p − 1 − 4j − 2 + 3p

)(
p − 4

0

)(
4j + 5 − 3p

p − 1 − (4p − (4j + 3))

)
=

(
4j + 5 − 3p

3

)
,

and summing now produces the overall coefficient of

d15 =
{

s2 if p ≡ 1 mod 4,
s if p ≡ 3 mod 4.
0
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7.7.10. When w = p + (p − 1)/2
Now we have j ≥ (p + 1)/2, so that 4j > 2p + 1 always holds. With this in mind, our 

first simplification of our exponents leads us to

α = (4j + 1 − 2p) + p(p − 4) + p2(3p − (4j + 1))

β = (3p − (4j + 2)) + p(p − 1) + p2(4j + 3 − 2p).

There are 4 cases: 2p < 4j + 1 < 3p − 2, 4j + 3 = 3p, 4j + 1 = 3p, and 4j + 1 > 3p. It 
is again easily seen that the 4j + 3 = 3p and 4j + 1 = 3p cases cannot possibly generate 
an xq−1 term.

When 2p < 4j + 1 < 3p − 2, we read off the coefficient of xq−1, finding
(

3p − 4j − 2
p − 1 − 4j − 1 + 2p

)(
p − 1

3

)(
4j + 3 − 2p

p − 1 − (3p − (4j + 1))

)
= −

(
4j + 3 − 2p

3

)
.

This produces the overall coefficient

d16 = −s1.

When 4j + 1 > 3p, we get

α = (4j − 3p) + p(p − 3) + p2(4p − (4j + 1))

β = (4p − (4j + 1)) + p(p − 2) + p2(4j + 3 − 3p).

When generating an xq−1 term we now get the coefficient
(

4p − 4j − 1
p − 1 − 4j + 3p

)(
p − 2

2

)(
4j + 3 − 3p

p − 1 − (4p − (4j + 1))

)
= 3

(
4j + 3 − 3p

3

)
.

This gives an the overall coefficient of

d17 =
{

3s0 if p ≡ 1 mod 4,
3s2 if p ≡ 3 mod 4.

7.7.11. When w > p + (p − 1)/2
Again we rewrite w as w = p + w′ with (p − 1)/2 < w′ < p − 2. Simplifying our 

exponents, while utilising the fact p < 4j − 2w′ < 3p, we obtain

α = (4j − 2w′ − p) + p(2p − 2w′ − 5) + p2(2p − (4j − 2w′))

β = (2p − (4j + 1 − 2w′)) + p(2w′ − p) + p2(4j + 3 − 2w′ − p).

Examination of the p terms of α and β in two separate cases, namely p < 4j − 2w′ < 2p

and 2p < 4j − 2w′ < 3p, shows that it is again impossible to construct a p − 1 multiple 
of p. We therefore cannot obtain an xq−1 term here.
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7.7.12. Final determination of the coefficient
We are now in a position to finally determine the coefficient of the maximal degree 

term. Denote this coefficient by D. We have D = d1 + d2 + · · · + d17, all of which are 
some multiple of si, apart from d6 and d7, which together sum to an si. We can split the 
situation into two components C and Cp, with C independent of p, while Cp appears to 
depend on p mod 4 (though in the end it doesn’t).

Thus, D = C + Cp where

C = −8(s1 + s3)

and

Cp = 8(s0 + s2).

Thus our coefficient is

D = 8
p−1∑
k=3

(−1)k

(
k

3

)
.

It remains to determine this sum. For any natural number n we define W (n) to be

W (n) =
n∑

k=1

(−1)kk(k + 1)(k + 2),

so that

p−1∑
k=3

(−1)k

(
k

3

)
= 1

6W (p − 3).

We now determine a closed formula for W (n). We restrict ourselves to n even for sim-
plicity. Induction easily proves

S(n) =
n∑

k=1

(−1)kk = n

2

T (n) =
n∑

k=0

(−1)kk2 = n(n + 1)
2

U(n) =
n∑

k=0

k3 = n2(n + 1)2

4 .

We need to determine

V (n) =
n∑

(−1)kk3.

k=0
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For n even we have

V (n) =
n∑

k=0

(−1)kk3

= 2
n/2∑
k=0

(2k)3 − n3 −
n−1∑
k=0

k3

= 16U(n/2) − n3 − U(n − 1)

= n2(2n + 3)
4 .

Combining these we find

W (n) =
n∑

k=1

(−1)kk(k + 1)(k + 2)

=
n∑

k=1

(−1)k(k3 + 3k2 + 2k)

= V (n) + 3T (n) + 2S(n)

= n(n + 2)(2n + 5)
4 .

Working in Fq, we now find

D = 8
p−1∑
k=3

(−1)k

(
k

3

)

= 8
6W (p − 3)

= 8
6

(p − 3)(p − 1)(2p − 1)
4

= 8
6

(−3)(−1)(−1)
4

= −1.

Thus we have a non-zero coefficient for the xq−1 term, and Exponent #7 is never planar 
over Fp3 . We conclude the consideration of this case by noting that for all the effort 
needed to deal with this exponent, the whole case is remarkably well behaved.
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7.8. Exponent #8

We set n = 2 + p + (p − 2)p2 and t = 1 + 2p + 3p2. Then we have

(yn − xn)t = y2+p+9p2 − 3y1+3p+6p2
x1+(p−2)p+2p2

+ 3y5p+3p2
x2+(p−4)p+5p2

− y(p−1)+6px3+(p−6)p+8p2 − 2y4+(p−2)p+7p2
x(p−2)+2p+p2

+ 6y3+5p2
x(p−1)+4p2 − 6y2+2p+2p2

x(p−1)p+6p2
+ 2y4p+(p−1)p2

x1+(p−3)p+9p2

+ y6+(p−5)p+6p2
x(p−4)+5p+2p2 − 3y5+(p−3)p+3p2

x(p−3)+3p+5p2

+ 3y4+(p−1)px(p−2)+p+8p2 − y2+p+(p−2)p2
x(p−1)+(p−1)p+10p2

− y(p−1)+(p−1)p+10p2
x2+p+(p−2)p2

+ 3y(p−2)+p+8p2
x4+(p−1)p

− 3y(p−3)+3p+5p2
x5+(p−3)p+3p2

+ y(p−4)+5p+2p2
x6+(p−5)+6p2

+ 2y1+(p−3)p+9p2
x4p+(p−1)p2 − 6y5+(p−3)p+3p2

x2+2p+2p2

+ 6y(p−1)+4p2
x3+5p2 − 2y(p−2)+2p+p2

x4+(p−2)p+7p2

− y3+(p−6)p+8p2
x(p−1)+6p + 3y2+(p−4)p+5p2

x5p+3p2

− 3y1+(p−2)p+2p2
x1+3p+6p2

+ x2+p+9p2
.

It is clear that, for p > 7, the only blocks that can admit a monomial of maximal degree 
are

A1 = −y2+p+(p−2)p2
x(p−1)+(p−1)p+10p2

= −
∑ (

2
α0

)(
1

α1

)(
p − 2

α2

)
x(p−1+α0)+(p−1+α1)p+(10+α2)p2

A2 = −y(p−1)+(p−1)p+10p2
x2+p+(p−2)p2

= −
∑ (

p − 1
α0

)(
p − 1

α1

)(
10
α2

)
x(2+α0)+(1+α1)p+(p−2+α2)p2

,

hence the two coefficients for the monomial of maximal degree are

c1 = −
(

2
0

)(
1
0

)(
p − 2
p − 11

)

= −
(

p − 2
p − 11

)

= 2 × 3 × · · · × 10
9!

= 10.
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c2 = −
(

p − 1
p − 3

)(
p − 1
p − 2

)(
10
1

)

= −(−1)2p−510

= 10.

Hence the coefficient of the maximal degree term is 20 �= 0. This eliminates this exponent.

7.9. Exponent #9

We consider n = 2 + (p − 1)p2 and t = 1 + 2p + 3p2. Then we have

(yn − xn)t = y1+3p+8p2 − 3y1+4p+5p2
x(p−1)p+2p2

+ 3y1+5p+2p2
x(p−2)p+5p2

− y6p+(p−1)p2
x(p−3)p+8p2 − 2y2+8p2

x(p−1)+2p

+ 6y2+p+5p2
x(p−1)+p+3p2 − 6y2+2p+2p2

x(p−1)+6p2

+ 2y1+3p+(p−1)p2
x(p−1)+(p−1)p+8p2

+ y3+(p−3)p+7p2
x(p−2)+5p

− 3y3+(p−2)p+4p2
x(p−2)+4p+3p2

+ 3y3+(p−1)p+p2
x(p−2)+3p+6p2

− y2+(p−1)p2
x(p−2)+2p+9p2 − y(p−2)+2p+9p2

x2+(p−1)p2

+ 3y(p−2)+3p+6p2
x3+(p−1)p+p2 − 3y(p−2)+4p+3p2

x3+(p−2)p+4p2

+ y(p−2)+5px3+(p−3)p+7p2
+ 2y(p−1)+(p−1)p+8p2

x1+3p+(p−1)p2

− 6y(p−1)+6p2
x2+2p+2p2

+ 6y(p−1)+p+3p2
x2+p+5p2

− 2y(p−1)+2px2+8p2 − y(p−3)p+8p2
x6p+(p−1)p2

+ 3y(p−2)p+5p2
x1+5p+2p2 − 3y(p−1)p+2p2

x1+4p+5p2
+ x1+3p+8p2

.

Clearly, for p > 7, the only blocks that admit a monomial of maximal degree are

A1 = 2y1+3p+(p−1)p2
x(p−1)+(p−1)p+8p2

= 2
∑ (

1
α0

)(
3

α1

)(
p − 1

α2

)
x(p−1+α0)+(p−1+α1)p+(8+α2)p2

A2 = 2y(p−1)+(p−1)p+8p2
x1+3p+(p−1)p2

= 2
∑ (

p − 1
α0

)(
p − 1

α1

)(
8

α2

)
x(1+α0)+(3+α1)p+(p−1+α2)p2

,

hence the two coefficients for the monomial of maximal degree are

c1 = 2
(

1
)(

3
)(

p − 1
)

0 0 p − 9



E. Bergman et al. / Finite Fields and Their Applications 78 (2022) 101959 49
= 2(−1)8

= 2.

c2 = 2
(

p − 1
p − 2

)(
p − 1
p − 4

)(
8
0

)

= 2(−1)2p−6

= 2.

Thus the coefficient of the xq−1 term is 4, and we have eliminated this exponent.

7.10. Exponent #10

Let n = 2p + (p − 1)p2 and t = 2 + (p − 1)p. Then

n(p − 1 − i) = (2p − 2 − 2i)p + (p − 1)(p − 1 − i)p2

= (2p − 2 − 2i)p + (p − 1) − (i + 1) + (i + 1)p2

= (p − i − 2) + (2p − 2i − 2)p + (i + 1)p2,

ni = 2ip + i(p − 1)p2

= (i − 1) + 2ip + (p − i)p2.

Now

(yn − xn)2 = y2n − 2xnyn + x2n

= y1+4p+(p−2)p2 − 2x2p+(p−1)p2
y2p+(p−1)p2

+ x1+4p+(p−2)p2
.

Hence we have

(yn − xn)(p−1)p =
p−1∑
i=0

yinpxn(p−1−i)p

=
p−1∑
i=0

y(p−i)+(i−1)p+2ip2
x(i+1)+(p−i−2)p+(2p−2i−2)p2

.

Then

(yn − xn)t = A1 − 2A2 + A3,

where we set
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A1 = y1+4p+(p−2)p2
p−1∑
i=0

y(p−i)+(i−1)p+2ip2
x(i+1)+(p−i−2)p+(2p−2i−2)p2

=
p−1∑
i=0

y(p−i+2)+(i+3)p+(2i−2)p2
x(i+1)+(p−i−2)p+(2p−2i−2)p2

A2 = x2p+(p−1)p2
y2p+(p−1)p2

p−1∑
i=0

y(p−i)+(i−1)p+2ip2
x(i+1)+(p−i−2)p+(2p−2i−2)p2

=
p−1∑
i=0

y(p−i+1)+(i+1)p+(2i−1)p2
x(i+2)+(p−i)p+(2p−2i−3)p2

A3 = x1+4p+(p−2)p2
p−1∑
i=0

y(p−i)+(i−1)p+2ip2
x(i+1)+(p−i−2)p+(2p−2i−2)p2

=
p−1∑
i=0

y(p−i)+(i−1)p+2ip2
x(i+3)+(p−i+2)p+(2p−2i−4)p2

.

We start analysing A1 for which we have the following exponents:

3 ≤ p − i + 2 ≤ p + 2, 3 ≤ i + 3 ≤ p + 2, −2 ≤ 2i − 2 ≤ 2p − 4,

1 ≤ i + 1 ≤ p, −1 ≤ p − i − 2 ≤ p − 2, 0 ≤ 2p − 2i − 2 ≤ 2p − 2.

For i ≤ 2 we cannot obtain a term of maximal degree since p − i + 2 ≥ p and (p − i +
2 − p) + (i + 1) = 3. The same holds for i = p − 1, since (p − i + 2) + (i + 1 − p) = 3, and 
for i = p − 2, since (i + 3 − p) + (p − i − 2) = 1. (It is easy to check these terms.) Hence 
we just need to consider the following:

p−3∑
i=3

y(p−i+2)+(i+3)p+(2i−2)p2
x(i+1)+(p−i−2)p+(2p−2i−2)p2

.

Apart from the coefficients related to the p2 part, all the rest are positive and less than 
p. Now if i ≤ p−3

2 , we have 2i − 2 ≤ p − 5 and 2p − 2i − 2 ≥ 2p − p + 3 − 2 = p + 1. 
Therefore the maximal degree cannot be reached since (2i −2) +(2p −2i −2 −p) = p −4. 
If i ≥ p+3

2 we have 2i − 2 ≥ p + 1 and 2p − 2i − 2 ≤ p − 5. Therefore the maximal degree 
cannot be reached since (2i − 2 − p) + (2p − 2i − 2) = p − 4. Hence we remain with 
i ∈ {p−1

2 , p+1
2 } = {m, m + 1}. Hence the coefficient related to the maximal degree is

c1 =
(

m + 3
m − 1

)(
m + 3
m + 1

)(
p − 3

0

)
+

(
m + 2
m − 2

)(
m + 4
m + 2

)(
p − 1

2

)

= (m + 3)(m + 2)(m + 1)m
2!4! [(m + 3)(m + 2) + (m + 4)(m − 1)]

= (m + 3)(m + 2)(m + 1)m · (−m − 2)
2!4!
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= −(m + 3)(m + 2)2(m + 1)m
2 × 4! .

Analysing A2, we have

A2 =
p−1∑
i=0

y(p−i+1)+(i+1)p+(2i−1)p2
x(i+2)+(p−i)p+(2p−2i−3)p2

.

We have the following exponents:

2 ≤ p − i + 1 ≤ p + 1, 1 ≤ i + 1 ≤ p, −1 ≤ 2i − 1 ≤ 2p − 3,

2 ≤ i + 1 ≤ p + 1, 1 ≤ p − i ≤ p, −1 ≤ 2p − 2i − 3 ≤ 2p − 3.

If one of the exponents is greater than or equal to p, then similarly to the previous case, 
we cannot obtain a monomial of maximal degree. Hence analysing the restriction on the 
exponents it is possible to derive that the only value for i which produces a maximal 
degree term is i = m. Therefore the coefficient is

c2 =
(

m + 2
m − 2

)(
m + 1
m − 1

)(
p − 2

1

)

= −(m + 2)(m + 1)2m2(m − 1)
4! .

For A3,

A3 =
p−1∑
i=0

y(p−i)+(i−1)p+2ip2
x(i+3)+(p−i+2)p+(2p−2i−4)p2

.

We have the following exponents:

1 ≤ p − i ≤ p, −1 ≤ i − 1 ≤ p − 2, 0 ≤ 2i ≤ 2p − 2,

3 ≤ i + 3 ≤ p + 2, 3 ≤ (p − i + 2) ≤ p − 2, −2 ≤ 2p − 2i − 4 ≤ 2p − 4.

With the same argument as before we have the only possible monomial of maximal 
degree for i ∈ {p−3

2 , p−1
2 } = {m − 1, m}. Hence we have coefficient

c3 =
(

m + 2
m − 2

)(
m − 2
m − 4

)(
p − 3

0

)
+

(
m + 1
m − 3

)(
m − 1
m − 3

)(
p − 1

2

)
.

It is not difficult to prove that c1 = c3. In total we have a maximal degree term with 
coefficient c = 2c1 − 2c2. Now
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c1 − c2 = −(m + 3)(m + 2)2(m + 1)m
2 × 4! + (m + 2)(m + 1)2m2(m − 1)

4!

= m(m + 1)(m + 2)
2 × 4! (2(m − 1)(m)(m + 1) − (m + 3)(m + 2))

= m(m + 1)(m + 2)
2 × 4!

(
2m3 − m2 − 7m − 6

)
= m(m + 1)(m + 2)

2 × 4!

(
2−1

23 − 1
22 + 7

2 − 6
)

= m(m + 1)(m + 2)
2 × 4! (−3) ,

which is clearly non-zero for p ≥ 11. Thus Exponent #10 is eliminated.

7.11. Exponent #11

Let n = 1 + p + (p − 1)p2 and t = p − 1. Then

n(p − 1 − i) = (p − 1 − i) + (p − 1 − i)p + (p − 1 − i)(p − 1)p2

= (p − 3 − 2i) + (p − i)p + (i + 1)p2,

ni = i + ip + i(p − 1)p2

= (2i − 1) + ip + (p − i)p2.

In this case we have

(yn − xn)p−1 =
p−1∑
i=0

ynixn(p−1−i)

=
p−1∑
i=0

y2i−1+ip+(p−i)p2
x(p−3−2i)+(p−i)p+(i+1)p2

.

For i = 0 or i = p − 1 it is easy to verify that we cannot obtain a monomial of maximal 
degree. For i ≤ p−3

2 and for i ≥ p+1
2 , by analysing the coefficients related to the p0

exponent, it can be observed that no term of maximal degree can be obtained. Hence we 
are left with the case i = p−1

2 = m, which is

yp−2+mp+(m+1)p2
x(p−2)+mp+(m+1)p2

.

Hence the coefficient corresponding to the term of degree p3 − 1 is

c =
(

p − 2
p − 1 − (p − 2)

)(
m

p − 1 − m

)(
m + 1

p − 1 − (m + 1)

)

=
(

p − 2
)(

m
)(

m + 1
)

1 m m − 1
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= − 2(m + 1)(m)
2

= −
(

−1
2 + 1

) (
−1

2

)

=1
4 �= 0.

This eliminates Exponent #11, the last remaining explicit case.
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