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1. Preamble

Let ¢ be a power of some odd prime p. We use I, to denote the finite field of g elements
and the ring of polynomials in = over F, is denoted F,[z]. Let f € F,[z]. A polynomial
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f € Fylz] is a permutation polynomial (PP) over Fy if f induces a bijection of F, under
the evaluation map y — f(y). Permutation polynomials have undoubtably been a hot
topic over the past 40 years and there are a number of surveys giving overviews of these
results, the most recent of which we believe to be the survey of Hou [11].

A polynomial f is called planar if for every a € Fy, the difference operator Ay(z,a) =
f(z +a) — f(z) is a PP over F,. In this paper we are specifically interested in planar
monomials 2™ over [F,. As was noted by Coulter and Matthews in [5], the condition for
planarity simplifies significantly in the monomial case. Specifically, " is planar over [,
if and only if the polynomial (x+1)™ —z" is a permutation polynomial. Planar functions
were introduced in a more general context by Dembowski and Ostrom [6], while studying
projective planes with a collineation group acting transitively on the affine points. In [6],
the authors questioned whether, ignoring constants and linearised terms xpi, the only
planar functions over finite fields necessarily had the form

iy nd

+
E aijxp p’
()

a form nowadays commonly referred to as a Dembowski-Ostrom (DO) polynomial, or
quadratic polynomial. This query is nowadays called the Dembowski-Ostrom conjecture.
At the time of writing, the status of this conjecture is as follows:

[ Over prime fields it has been proved in full, independently by Gluck [8], Hiramine
[10], and Rényai and Szonyi [14]. It should be mentioned that the monomial case
was established earlier, by Johnson [12].

[1 Over fields of order p? it has been proved for monomials by Coulter [3].

[ Over fields of order p*, with p > 5, it has been proved for monomials by Coulter and
Lazebnik [4].

[J Over fields of characteristic 3 it is false. This was shown by Coulter and Matthews
[5], who provided an infinite class of counterexamples, the smallest counterexample
being 24 over Fsa.

[ Zieve [15] gives a classification of those monomials that are planar over infinitely
many extension fields of F,,, known as exceptionally planar monomials. In particular,
this gives a classification of all planar monomials 2™ over F, when (n — 1)* < ¢, as
any such planar monomial is necessarily exceptional. His result yields only the DO
monomials and the monomials of Coulter and Matthews mentioned above.

While the prime field classification of planar monomials gives a small impact on the
classification for any finite field — specifically that if 2™ is planar over Fpe, then n =
2 mod (p — 1) — taking into account the results of Coulter [3] and Zieve [15] it can be
seen that p? is the only field order for which we have no additional supporting evidence
for the DO conjecture for monomials. In this article, we fill this gap by giving a complete
classification of planar monomials over fields of order p3, establishing the DO conjecture
in this case. That is, in this article we prove
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Theorem 1. Let ¢ = p? with p an odd prime. The monomial x™ s planar over F, if and
only if n = p' + p? mod (¢ — 1) with 0 <i,j < 3.

Since for fields of order p,p? and p* with p > 5, the only planar monomials possible
yield the Desarguesian plane, our result is the first classification result on planar functions
which allows for a non-Desarguesian example. The planar monomial zPt! constructs
Albert’s twisted field plane of order p3. It is almost certain that the additional possibility
is one of the reasons obtaining a classification of planar monomials over fields of order p3
turns out to be so much more involved than the equivalent result for fields of order p.

The approach taken is similar to the previous classification results, whereby Hermite’s
criteria is used in a number of cases to eliminate all potential exponents that are not DO
exponents. Our proof falls into three main cases, with one of the cases very much more
complicated than the other two. In the next section we show how the problem can be
broken into these three cases. In Section 3, we resolve the two easier cases. The remainder
of the paper considers the more difficult remaining case. In Section 4 we outline how the
remaining case is broken down and resolved; there are 2 main subcases. For the first of
the 2 main subcases, we end up applying Hermite’s criteria with 2 exponents and playing
the results off against one another. We do not know of a previous instance of the criteria
being used in this way. These results can be found in Section 5. For the remaining main
subcase, a first application of Hermite’s criteria eliminates all but 11 explicit exponents,
see Section 6. These remaining 11 exponents we must contend with individually. The
remainder of the paper, the admittedly long Section 7, proceeds through the elimination
of these 11 subcases.

2. The basic principles of our approach

We wish to consider the planarity of 2™ over [F,. This involves examining the permu-
tation behaviour of the polynomial f,(z) = (z + 1)™ — z™. As planarity is a property
of functions (polynomials under evaluation, if you prefer), we need only consider n < g.
In fact, we may insist on n < ¢ — 3 as it is a necessary condition of planarity that
ged(n, g — 1) = 2, see [5], Proposition 2.4. We assume this throughout the paper.

In regards to studying permutation polynomials, we have the following criteria for a
polynomial to be one, commonly known as Hermite’s criteria.

Lemma 1 (Hermite, [9]; Dickson, [7]). A polynomial f € Fylx], ¢ = p°, is a permutation
polynomial over Fy if and only if

(i) f has exactly one root in Fy, and
(i) the reduction of f* mod (29 — ), with 0 <t < q—1 and t # 0 mod p, has degree
less than g — 1.
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The t in this lemma is often referred to as Hermite exponent. Hermite’s criteria is one
of the few general statements for testing whether a polynomial is a PP. It can often be
unwieldy, and over time has come to be viewed as not particularly effective. That said,
there has been a recent revival in its use, with several results being obtained using it,
such as the classifications of planar monomials over fields of order p? [3] and p* [4], and
the results of Chou and Hou [2].

There are several points about Hermite’s criteria and our specific problem which we
now expand on. For arbitrary 0 < t < ¢ — 1, we may write f,,(x)! mod (z? — z) as

frmod (27 —z) = i (t) (—1)t (= + 1)™ mod (x4 — z)] [z”(t*i) mod (z? — x)} ,

izo N
(1)
and first reduce each of the terms (z + 1)™ and z™(*~" independently. Subsequently,
unless both terms have degree ¢ — 1, the only way in which we can obtain 29! terms
in the reduced form of f,(x)! is via the actual 297! term generated. This allows for
much simplication in our arguments, and in what follows we shall rely on it consistently
without further explanation.
The value of binomial coefficients, whether it be in (1) or in the expansion of (x4 1),
is clearly something we will need to handle. Fortunately, we have the following classical
result of Lucas at our disposal.

Lemma 2 (Lucas, [13]). Let p be a prime and o > 8 be positive integers with o and (
having base-p expansions o = (ay -+ ap)p and B = (Be--- Bo)p, respectively. Then

(5) =IL () ot

where we use the convention (Z) =0ifn<k.

The theorem of Lucas encourages us to consider our exponent n in its base p expansion
form. Set n = (ae—1---ag)p, with 0 < a; < p for all 4. There are several advantages in
considering the base p expansion of n, over and above the possibility of applying Lucas’
Theorem.

Firstly, 2™ is planar over I, if and only if 2™ is planar over IF,, and the reduction of
2™ modulo 27 — z is 2™, where m = (ae_2 - -QoGe—1)p. Thus, we may cycle the base
p digits of n around and could, for instance, choose to place the largest a; in the most
significant bit.

Secondly, if 2™ is planar over [, then it is necessarily planar over [F,. This follows
at once from observing f, € F,[z]. The classification of planar monomials over F, now
forces n = 2 mod (p — 1). This provides the necessary condition

aptay+-+ +ae1 =95 =2mod (p—1).

Since a; < p for all 0 <4 < e, we have S =2+ k(p — 1) for some 0 < k < e.
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2.1. Fizing our setup and the three main cases

For the rest of the paper we fix ¢ = p3, where p is an odd prime, and consider the pla-
narity of the monomial z™ over IF,. In order to avoid certain degenerate situations later,
we further assume p > 11. The cases p € {3,5,7} can easily be checked computationally.
We write the base p expansion of the integer n with 0 < n < g by n = (az2a1a¢),. Based
on our above discussion, there are three possible cases we must deal with:

Case 1. §=2.
Case 2. S = 2p.
Case 3. S=p+1.

The first case will be shown to be the only positive case, in that the latter two cases will
prove to be empty of planar examples. The great majority of the paper is spent dealing
with Case 3.

3. Resolution of Cases 1 and 2

Coulter and Matthews showed 2 +7’ is planar over Fe if and only if e/ ged(j — ¢, €)
is odd, see [5], Theorem 3.3. This completely resolves Case 1.

Proposition 1. If S = 2, thenn = p' +p/ with 0 < i < j < 3, and 2™ is always planar
over IFg.

The case S = 2p is also relatively straightforward, the proof following very similarly
to the classification of planar monomials over IF,2, even down to the exponent used in

[3].
Proposition 2. If S = 2p, then x™ is never planar over F,.

Proof. For this case we must have a; > 2 for all ¢ and a; + a; > p whenever 7 # j. We
prove Hermite’s criteria fails with power t = p + 1. We have

(z+1)" —z™)' = (z + 1)) — (2 4 1)"P2" — (x4 1)"z"P + P+,

We determine the coefficient of 297! for each of these terms modulo z¢ — . Raising a
term 2* to the p and reducing modulo 29 — x results in a term with degree a cyclic shift
of the base p expansion of k. Thus, for example, we can calculate ™ modulo z? — x
easily as an interim step in determining z™®+1) mod (29 — z). Proceeding as described
we see

2 2
g (P — gnpgn = geataoptaip” paotaiptasr” yod (g9 — ).
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Set k = (ag + ag) + (ao + a1)p + (a1 + az)p?. Now n < q — 1, so that k < 2(¢ —1). On
the other hand, we also know a; + a > p, so that k > ¢. Consequently, ¥ mod (z? — z)
reduces to a term of degree not equal to ¢ — 1.

We move to consider the remaining three terms. We note that, as a consequence of
Lemma 2, we may write

3090 31 1 (A R

ap=0 a1=0 az=0

Following a similar method as above, we see that the coefficient of the term of degree
g—1in (z + 1)"2" mod (2% — ) is

2 o
H ( l) mod p,
. Q;
=0

where ag + as = a1 +ag = ag +a; = p—1. Since a; < p— 1, it is clear this coefficient is
non-zero. The same argument both shows that the coefficient of the term of degree g — 1
in (z+ 1)"2™ mod (z? — x) is

2 ai)
mod p,
I

with ag + ag = a1 + a9 = as + a1 = p — 1, and that this coefficient is nonzero also. We
note that the two coefficients for £9~! so far determined are, in fact, equal, so that their
sum is nonzero modulo p.

The situation for (z+ 1)"(p+1) is slightly more complicated but still relatively straight-
forward. Expanding in much the same way as above, it can be seen that the coefficients
of resulting terms of degree 29~ in (2 4 1)"**1) mod (29 — z) are given by

11 () (%)

where ag + B2 = a1 + fg = as + 1 = p — 1. Along with these equations, the bounds on
i, B; reduce the resulting coefficient of 297! in (x + 1)+ mod (29 — ) to

oo s (m) ()6

ag=p—1l—az ar=p—1—ap az=p—1—a1

We may rearrange this:
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(= @60 @6 )

ap=p—1l—az ay=p—1—ag

(5 @)

az=p—1l—ay
Recalling ag + a2 > p and a; < p — 1 for all ¢, we have

2 @61m) = E 6560 )

ap=p—1—az Jj=p—1
. ag + as
- < p-1 >
= 0 mod p.

Thus the coefficient of 29~ ! in (x + 1)*®*+1) mod (29 — z) is zero.

From the above calculations we see the coefficient of 277! in ((z+1)"—2z")" mod (z,—

-2 a0 a a2 # 0 mod p.
p—1—ay/\p—1—ap/\p—1—a

By Hermite’s criteria, (z + 1)™ — 2™ is not a permutation polynomial. Thus z™ is not

x) is

planar in this case. O

The techniques and ideas used in this proof will occur repeatedly in our remaining
proofs.

4. Outline of Case 3 resolution

The remainder of the paper will solely be aimed at proving
Proposition 3. If S = p + 1, then z" is never planar over F,.

To establish this statement, we will have to resort to dealing with a number of subcases
involving a number of Hermite exponents. (Computational evidence shows there is no
possible exponent that will work in all cases. Extensive testing was done before we were
able to arrive at the “small” number of Hermite exponents used in our proof.) Recall
n = ag + pai + azp?. A synthesis of our proof of Proposition 3 is as follows. We assume
S =ag+a, +as = p+1 with as > ag,a;. We then proceed through a sequence of
Hermite’s exponents. There are two scenarios.

4.1. All of the a; are at least 2

In this scenario, we determine the coefficient of 247! in (1) for the exponent t =
24 p+p? when 2 < ag, a; < as. The situation splits into two subcases based on whether
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as > (p—1)/2 or az < (p —1)/2. In the former subcase, the coefficient is clearly non-
zero, and so there are no planar monomials in this subcase. When ay < (p — 1)/2 we
also determine the coefficient of 297! in (1) for the exponent t = 2 + 2p. We then show
that the coefficients of 277! for t = 2 + 2p and for t = 2 + p + p? cannot be zero
simultaneously, thereby showing that this subcase contains no planar monomials. This
concludes the situation where all of the a; are at least 2. The actual results pertaining
to this scenario can be found in Section 5.

4.2. At least one of the a; is less than 2

In this final situation, we first determine the coefficient of #9~! in (1) for the exponent
t = 2+ 2p + 2p? when at least one of ap and a; is less than 2. This eliminates many
situations, but leaves us with 11 explicit subcases to deal with. We then eliminate the
remaining explicit 11 subcases using various Hermite’s exponents. This is without doubt
the most protracted bit of the proof. The details of these results can be found in the
remaining sections.

We again note that calculating 2™ mod (27 — ) is the same as calculating na mod
(¢ —1), and that np mod (g — 1) results in simply a cyclic shift of the base p coefficients.
That is, np mod (¢—1) = (a1 agp a2),. Additionally, if a b; in na = (ba by by) is at least p,
say b, then determining the base p description of na results in a subtraction of p from the
1st coordinate, and an adding of 1 to the 3rd coordinate. That is (b b1 bg), mod (¢—1) =
((ba — p) by (bo +1))p. We will refer to such an occurrence as a carry. There is a clear
abuse of notation that we use with regards to the base p expansion in this regard. We
will, without further explanation, move carries around, and reduce modulo ¢ — 1 without
use of congruence notation.

5. Case 3 when a; > 2 for 1 = 0,1, 2

In this section, we assume 2 < ag,a; < ao. This forces as < p — 3. We need to deal
with two Hermite exponents.

5.1. The Hermite exponent t = 2 + p + p?

Via Lucas’ Theorem, the non-zero binomial coefficients in (1) correspond to the terms
(x + 1)"z"8 and (x + 1)"P2"* in the following table:

a B
2+p+p? 0
1+p+p2 1

p+p° 2
2+ p? p
1+p? 1+p

P’ 2+4p
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We proceed to work through these six scenarios. Recall that the only way we can obtain
an z97! term in the reduced form of f, () having already reduced (z + 1)"® and 2™,
is from the 297! term in the product of (z 4 1)"* and 2™”. We note that to obtain such
a term, the sum of the corresponding coordinates of na and nf must be at least p — 1
in each case.

511 a=2+p+p*and B=0
We have

na = 2ag + ay + 2as + p(2a1 + az + ao) + p*(2az + ag + a1)
=p+1l+ao+pp+1l+a)+p*(p+1+a)
=2+ag+p2+a1) +p*(2 + az).

To have an 277! term from (x +1)" or 2™, we would need 2+a; = p—1fori=0,1,2.
But this is impossible under the restriction ag+a; +a2 = p+1 and p > 11. So we obtain
no 29! term from this scenario.

51.2. a=1+p+p>and =1
We have

na = ag + as + a1 + plar + ag + az) + p*(az + a1 + ao)
=2+ 2p+ 2p?, and
nB = ag + aip + azp.

Since na+nB =2+ ap + p(2 + ay)p + p*(2 + az) < ¢ — 1, it is clear we cannot obtain
an 97! term from this scenario.

5.1.8. a=p+p? and B =2
We have

na = as + ay + plag + az) + p*(ar + ap), and
nf = 2ag + 2a1p + 2a9p.

If ag > (p — 1)/2. then there is a carry in the first coordinate of nf and a; < (p —1)/2
for i = 0,1. Thus nf8 = 2ag + 1 + 2a;p + p*(2as — p). However, now the sum of the p?
coefficients is ag + a1 +2a2 —p = as + 1 < p — 1. Hence we cannot obtain an z97! term
if ag > (p—1)/2.

Now suppose as < (p—1)/2. Then there is no carry in either na and nf, and the sum
of each coordinate is a; +p+1 > p — 1. So we must get an 29! term. For (x + 1)"*z"5,
the coefficient of the £97! term is
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= ai + ag ap + az az + a1
e p—1—2a3/\p—1—2a1/\p—1—2a9
_(ar+ao) fap+az2) a2+ a1 @)
- as + 2 a1 + 2 ag + 2 '
For (x 4+ 1)z, the coefficient of the 29! term is

= (p —1 —2?;1 + ao)) <P -1 *2?;0 + az)) (P -1 *2?22 + a1)>

- (2 : 2) (2 N 2) (2 Y z>~ (3)

5.14. a=2+p?>and f=p
We have

no = 2ag + ay + p(2a; + as) + p*(2az + ag), and
nf = as + agp + a1p”.
Now 2as +ag =az —ai; +p+ 1 > p, so na must have a carry. Hence
na = 2ag + ay + 1+ p(2a1 + az) + p*(az —ay +1).
If there is no carry in the 2nd coordinate of na, then the sum of the first coordinates of
naand nBisas+1 < p—2 < p—1, so we cannot get an ¢! term if there was no carry
in the 2nd coordinate.

If there is a carry in the 2nd coordinate, then the sum of the 2nd coordinates of na
and nS could be no larger than

21 +as—pt+ag=a1+1<p-—1,
as a1 < as. Hence we cannot obtain an 29! term in this situation either.

51.5. a=1+p*>and B=1+p
‘We have

na = ag + a1 + p(a1 + az) + p*(az + ap), and
nf = ag + az + p(ay + ag) + p*(az + ay).
There are no carries in either na or ng, while the sum of the corresponding coordinates

is a; +p+1 > p— 1. So we must obtain an z9~" term. For (z + 1)"*z™?, the coefficient
of the 77! term is
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C ( az + ap )( a1 +az )( ap +ay )

3 p—1—(az+a1))\p—1—(a1+ag)) \p—1—(ap+ az)
_faz+ao) a1 +az2) (a0 +a; (4)
o as + 2 ay + 2 ap+2)°

For (x + 1)z, the coefficient of the x9~! term is

C—< az +ay )( a1 + agp >< ao + az )

4 p—1—(az+ag))\p—1—(a1+a2))\p—1-(ap+a1)
_fa2+a1\fa1+ao) a0+ a2 (5)
a as + 2 a1 + 2 ag + 2 '

It is now a simple matter to show C3 = C}. Indeed, it is enough to expand each of

the binomial coefficients in C3 and C4 and observe that all numerator and denominator
terms pair off.

5.1.6. a=p*and B=2+p
This scenario can be dealt with using an argument very similar to that of the oo = 24p?
and 3 = p scenario. The conclusion will be the same, there is no £9~! term obtained.

5.1.7. Summary of the t = 2 + p + p? exponent
From our analysis of the above scenarios, we see that we have two situations.

B If ay > (p—1)/2, then we only get an 297! term from the case a = 1+p?, 3 = 1+p.
In this case, the coefficient of x4~ in f,(z)* mod (29 — x) is

Thus z™ is not planar if ag > (p — 1)/2.
[ If az < (p —1)/2, then the coefficient of 2971 in f,,(x)" mod (29 — ) is

4C5 + Cy + Cs. (6)

5.2. The Hermite exponent t = 2 + 2p

In light of the results for our previous exponent, we further restrict our a; to the
situation where 2 < ag,a1 < ag < (p—1)/2.

Via Lucas’ Theorem, the non-zero binomial coefficients in (1) correspond to the terms
(z + 1)"*z"8 and whenever a # 3, (z + 1)™2™ in the following table:
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@
24+ 2p
1+2p
2p
2+p
1+p |1

+ =8 o= ol

5.2.1. a=24+2pand =0
We have
no = 2ag + 2as + p(2a; + 2ag) + p?(2as + 2a;)
=2p+2—2a; + p(2p + 2 — 2az) + p*(2p + 2 — 2ay)
=p+3—2a1 +p(p+3—2a2) +p*(p+3—2a).
To obtain an 297! term in this scenario, we need p + 3 — 2a; = p — 1, so that a; = 2

for i = 0,1,2, implying p = 5. For p > 11 (as is assumed), we get no x9~! term in this
scenario.

522. a=14+2pand B =1
‘We have

na = ag + 2a2 + p(ar + 2ag) + pz(a,g + 2a1), and
nB = ag + a1p + asp*.

Now na must have at least one carry, as the sum of its coordinates is 3(ap + a1 + az) =
3(p+1) > 3(p — 1). If there are 2 or more carries, then the sum of the coordinates of
na + nf will be at most

3p+1) —2(p—1)+as+ai1+ay=2p+6 <3(p—1) for p > 11,

and so we cannot possibly obtain an z97! term in that situation.
Suppose, then, there is exactly one carry in na. It can either occur in the 1st or 3rd
coordinate of na. If it is in the 1st coordinate, then

na = ag + 2az + 14 play + 2a0) + p*(az + 2a; — p).
Now the sum of the p? coefficients of no and ng is
2a9 +2a1 —p<2(p—1)—-p=p—-2<p-1,

so we cannot obtain an z?7! term in this scenario. A similar argument shows that the
p° coefficient carry in no cannot generate an £9~! term also. Thus we do not obtain an
297! term in this scenario.
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5.2.8. a=2pand f =2
We have

na = 2as + 2aop + 2a1p%, and
nf = 2ag + 2a1p + 2a2p>.

There are no carries as a; < (p — 1)/2. Additionally,
20; +2a; =2(p+1) =20, >2(p+1)—(p—1)=p+3>p—1,

and so we must obtain 7! terms here. For (z 4 1)"*2™”, the coefficient of the 277!

_ 2(12 2(11 2&0
05_(p—1—2a1>(p—1—2a0><p—1—2a2)' (7)

For (z + 1)™P2™, the coefficient of the 297! term is

B 2a1 2a0 2as
CG_(p—1—2a2>(p—1—2a1>(p—1—2a0)' (8)

It is not difficult to show C5 = Cg.

term is

5.2.4. a=24+pand f=p
The argument for this scenario is almost a replica of the argument for o = 1+ 2p and
B = 1. The conclusion will be the same, there is no ¢! term obtained.

5.25. a=14+pandf=1+p
We have

na = ag + az + play + ag) + p(az + ay).

As a; < (p—1)/2, there are no carries. In this scenario, we must get an 2971 term. For
(x + 1)"*z"8, the coefficient of the 97! term is

c ( az +a; )( a1 + ao )( ap + az )
T p—1—(az+a1))\p—1—(a1+ag)) \p—1—(ap+ az)
_f(a2+a1) (a1 +ag) (ao+ az )
- a0—2 a2—2 a1—2 '
5.2.6. Summary of the t = 2 4+ 2p exponent

From our analysis of the above scenarios, we see that the coefficient of 297! in
fo(z)t mod (27 — ) is

2 2
(1) (1) C + Cs + Cg = 4C + 2Cs. (10)
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5.8. Playing the two Hermite exponentst = 2+ p+p? and t = 2+ 2p against each other

In this final subsection, we shall show that for 2 < ag,a1 < as < (p — 1)/2 and
ap + a1 + as = p + 1, it is impossible for both Hermite exponents t = 2 + p + p? and
t = 2 + 2p to fail to generate an 27! term, and consequently " cannot be planar over
F,. The following identity will prove useful.

Lemma 3. For odd prime p and arbitrary 0 < k < p we have

(p—l—k)!zﬂ

] mod p.

The lemma can be established by first proving

("3 1) = (-0 mods.

n—1 n—1

using an inductive argument and the identity (k_l) + ( & ) = (Z) The result then
follows from observing (p — 1)! = —1 mod p.
For convenience, we preemptively set

U = (ao —+ (ZQ)! (a1 —+ ao)! ((12 —+ al)!,
V = (ag — 2)! (a1 — 2)! (a2 — 2)!,
W = (2@0)' (20,1)' (2@2)!,

and view U,V and W (and hence ag, a1, az2) as elements of F,,. We first derive a relation
between U and V. In fact, we prove

Lemma 4. With 2 < ag,a; < az < (p—1)/2 and U and V as defined above, we have
UV = —1.

Proof. From Lemma 3 we find
GO
(p+1—ap)!
(1)
(a1 + ag)!’

(CLQ — 2)' =

A similar identity can be derived for (a3 — 2)! and (a2 — 2)!. It now follows that

(_1)ao+a1+a2—3

V= i

-1

U )

as claimed. O
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Now assume that both the coefficients of 2971, given in (6) and (10), are zero. We
next simplify (6). Taking the equation 4C5 + Cq + C3 = 0 and multiplying through by
[1(a; +2)!, we have

0=4Z ¢ v L

Vv (a1+a2—a0—2)!(a2+a0—a1—2)!(a0+a1—a2—2)! 14
U W
42 w
v UW+V,

where we have again used Lemma 3. We therefore find
20+ W =0. (11)

Next we shall simplify (10). Taking the equation 2C7 + C5 = 0 and multiplying through
by [1(p + 3 — 2a;)!, we have

0-22 v
TV (p—1-=2a0)! (p—1—2a1)! (p—1— 2ay)!

= 207 + (-1)*W?,

again using Lemma 3. From (11) we have W2 = 4U?, and so 6U% = 0 must hold.
However, this is a contradiction as U # 0 and p > 11. This means that it is impossible
for the Hermite exponents ¢t = 2 + p + p? and t = 2 + 2p to simultaneously generate
a zero coefficient for 247! in f,(z)! mod (z¢ — x). Hence, 2" cannot be planar when
n=ag+ap+ap?®, ap+a;+az=p+1and 2 <ag,a; <az < (p—1)/2.

We note that we are unaware of another application of Hermite’s criteria which uses
two Hermite exponents and two coefficients simultaneously to get a non-PP proof through
as we do here.

6. Case 3 when at least one of the a; is less than 2

We have reached our final scenario, where we know at least one of the a; is less than 2.
Unfortunately, we have more Hermite exponents to deal with in this last situation than
in all of the previous work in this paper. This section will deal with only the one Hermite
exponent, specifically t = 2+ 2p+2p?. Using this exponent we can eliminate many of the
remaining possible choices for the a;. However, we shall be left with 11 explicit choices
for n.

6.1. The Hermite exponent t = 2 + 2p + 2p?

Assume that as > ag,a; and ag + a; + as = p + 1. To simplify the equations let
T =1+ p+ p® We have 27T = glaotarp+azp®)(1+p+p°) — 22T Tp this case we have
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((1‘-‘1-1)”— )2T ($+1) +x4T_8x2T(x+1>2T
+A+ AP+ A” £ B4+ BP 4+ B” (12)

with

A= (x+ 1)"(p2+1)m"p
x (42T = 2(x + 1)*T + (x + 1)"(p2+1)x"p - 2x"(p2+p)(x + 1) — 22" (1 4 1)"p2),

B=(z+ 1)nxn(p2+p)(4(x +1)27 — 2227 4 (3 + 1)nxn(p2+p))_
We have

(z+1)" =1+z+a”+ 2P’ 4 gPtL g gLy P e et
(24 1)2T =1+ 22 4+ 22 + 22" 4 g2(TD) 4 207D | 2207 4p) 4 20" +p+)
+2(x+ 2P + 2P’ 4 2Pt 4 9P L 4 9P e o g ptptl
I Ry A I e I I

4 m2p2+1 + m2122-&-p + 2x2p2+p+1 + xp2+2p+2 + m2122-&-1)-‘:-2 + x2p2+2p+1).

We want to show that in equation (12) the only terms of degree p® — 1 are in A (and
AP, AP,
Clearly (z + 1)*T 4+ 247 — 8227 (2 4 1)?T cannot have a monomial of degree p® — 1 if
p> 5.
We rewrite B as B = 4B, — 2By + B3 with
By =(z + 1)) (3 4 1)2T
By =(z + 1)"xn(p2+p)x2T

b

Bs =(z + 1)2”$2n(z)2+1)).
Using

(E‘l‘ 1 io: i Z H <(Il) aotarptazp?

ap=0 a1=0 az=01i=0
we have
B, x—l—l 2T § : E : § :H <al> ao+a1+az)+(a1+a2+ao)p+(a2+ao+a1)p
ap= Oa1—0a2 04=0

If ap =0 (so a1 +az = p+ 1), then
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By =(z 4+ 1)*" Z Z H (“)x (a1+a2)+ (a1 +az)p+(azt+ar)p?

a1= 00¢2 0:2=1

(1) Z Z H (Z)x 1)+ (01 +an)p(atpt1—az)p?

= 00¢2 04i=1

.’L'+1 2T Z Z H (Z") 24+ (ar1+az+1)p+(az+1— (12)
i

a1= 00¢2 0:2=1

Hence it cannot have a term of degree ¢ — 1.
If ap =1 (a1 + az = p), then

3
By =(z+1)*" Z Z H <Zj>x(a”“l+a2>+(a1+az+1)p+(az+1+a1)p2

3
$+ 1 2T Z Z H( )x ao+p)+(a1taz+1)p+(az+1+p—az)p?
0i=1

CE()_O CE1_O Qo=

=(z+1)*" Z > Z <a%>x ao+1)+ (e +az+2)p+ (o +1-a2)p*
1

apg= OCE]—O CEQ—O’L

Hence it cannot have a term of degree ¢ — 1. The argument is more or less the same for
the cases a; = 0, 1. Moreover, the same arguments work for Bs.
Now we consider Bz. We have

Bs =(z + 1)2nx2n(p2+p)
_ Z H (ai> (aj) p(@0+Bo+2a14+2a2)+(n +,6‘1+2a2+2a0)p+(o¢2+[32+2a0+2a1)p2'
i) \B;

If ag =0 (so a1 + as =p+ 1), then

B; = ( ( > 2(a1+az)+(a1+B1+2a2)p+(az+B2+2a1)p?

ZH( )( >2(;D+1 +(a1+B142a2)p+ (oo +B2+2p+2—2a2)p>
_ZH( )( ) 4+ (a1+pB1+2a2+2)p+ (a2 +PB2+2—2az)p®

Hence it cannot have a term of degree ¢ — 1.
If ap =1 (a1 + a2 = p), then

By = ZH( )( ) (ao+Bo+2a1+2a2)+ (a1 +B1+2a2+2)p+(az+B2+2+2a1 )p?



18 E. Bergman et al. / Finite Fields and Their Applications 78 (2022) 101959

= Z H <“i> (a]—) (@0+B0+2p)+ (a1 +B1+2as+2)p+(az+B2+2+2p—2a2)p”
;) \B;

-0 (ai> (“j) (@0+Bo+2)+(01+B1+2a2 +)p- (a2 +Ba+2-2a2)p”
a; ) \Bj

Hence it cannot have a term of degree ¢ — 1. Again the a; = 0,1 cases are more or less
the same.
Let us now consider A. We set

A =44, — 24y + Ay — 2A4 — 245,

with

We will show A;, Ao, A3 have no monomial of degree ¢ — 1.
For A; we have

Ay = (z+ 1)n(p2+1)x7lp+2T

=(z+ 1)(a0+a1)+(a1+a2)P+(a2+ao)P2x(a2+2)+(ao+2)p+(a1+2)p2.

Ifap=0,a; +as =p+1and
A = (x + 1)(al)Jr(erl)pHaz)pzac(aer2)+2p+(al+2)p2

= (2 + 1)(@)tpH(a21)p® p(aa+2)+2p (a1 +2)p”

From this we see this cannot have a monomial of maximal degree.
If ap =1, a1 + a3 = p and

A = (z + 1)@ D +@pH(a2+1)p? g (a2+2)+3p+ (a1 +2)p”

=(z+ 1)(a1+1)+(a2+2)p2$(a2+2)+3p+(a1+2)p2'

Again it cannot have a monomial of maximal degree.
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For A; we have

Ay = (z+ 1)@ HD+2T gnp

_ (m + 1)(ao+a1+2)+(a1+a2+2)p+(a2+ao+2)p2m(a2)+(ao)p+(a1)p2'

Ifap=0,a1 +as =p+1and
Ay = (z+ 1)(al+2)+(P+3)P+(a2+2)172x(a2)+(0)P+(a1)P2

= (z + 1)@+ +3p+(ax43)p" pastarp®

and we observe there cannot be a monomial of maximal degree.
Ifap=1, a1 +ay =pand

Ay = (z + 1)@ +EF2)p+(a2+3)p p (a2)+(Dp+(ar)p?

= (z+1)=n +3)+2p+(az+4)p” paz+ptaip?

Again we cannot generate a monomial of maximal degree.
For A3 we have the following;:

Az = (z + 1)”(2p2+2)x2"p
= (z+ 1)(2a0+2a1)+(2a1+2a2)p+(2a2+2a0)p2x(2a2)+(2a0)p+(2a1)p2’
Ifag=0,a1+as=p+ 1 and
Ay = (z+ 1)(2a1)+(2p+2)p+(2az)p2x(2az)+(0)p+(2a1)p2
=(z+ 1)2(11+2p+(a2+2)p2x2a2+2a1p2.
This cannot have a monomial of maximal degree. If ag =1, a1 + a3 = p and

A = (z + 1)1 T2+(2p)p+ (202 4+2)p 1, (2a2) +2p+(2a1)p?

= (z + 1)20r T2+ Qax+4)p" 1 (2a2)+2p+(201)p”

19

Again we do not obtain a monomial of maximal degree. Similar arguments deal with A;,

As and A3 when a; = 0,1 too.
For A, we have the following:

Ay = (z+ 1)n(p2+2)xn(p2+2p)

— (.%' + 1)(2a0+a1)+(2a1+a2)p+(202+a0)p2x(2a2+al)+(2ao+a2)P+(2a1+ao)102'

The case As, up to considering a p power, is symmetrical. Indeed we have
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A§2 - xn(p2+2)(x + 1)n(p2+2p)

_ x(2ao+a1)+(2a1+a2)p+(2a2+ao)p2 (:E + 1)(2a2+a1)+(2ao+a2)p+(2a1+ao)p2‘

Hence we will just analyse A4 and then swap the exponents for x and z + 1. For ease
of description, we split this final analysis into four subcases. In each case we use ¢4 for
the coefficient of 97! in A4 and cs5 for the coefficient of 297! in A5. We emphasise that
there will be a number of exceptions encountered in this final analysis, and these are set
aside for later.

o Ifa0:0,thena1—|—a2:p+1and2§a1§pTH.Wehave

Ay = (m + 1)(a1)+(a1-i-p-&-l);o-i-(2az)172x(az+p-i-1)-i-(az)p+(2al)p2
= (z+ 1)(al)+(a1+1)p+(2a2+1)p2x(az+1)+(az+1)p+(2a1)p2

_ (I + 1)(al+1)+(a1+1)p+(2<12+1*17)172x(a2+1)+(a2+1)p+(2a1)172’

where the last step is due to the fact % <ay<p-1.Ta;=20ra;=(p+1)/2,
then we do not get a maximal degree term here. These two cases will be dealt with
later as explicit exponents #10 and #1, respectively. If 3 < a3 < ”2;1, then all
the exponents are smaller than p and we obtain a term with maximal degree, the
coefficient of which is

“ <p - 1ai J(rai + 1)) <p - 1ai zLai + 1)) <p2a21+1(2_a11))> '

For As; we have essentially the same situation with coefficient

“o (p— 1ajai + 1)) (p— lajai + 1)) (p— 1- (;Z; +1 ‘p))

It is not difficult to verify that ¢4 = c5.

. Ifaozl,thena1#0a1+a2=p,1§a1§%7aﬂd

Ay = (z + 1)@ D+ (@ tp)p+ea+1)p" g (a2+p)+(az+2)p+(2a1 +1)p°

(z + 1)(@+D+(@)p+2a2+2)p" (a2)+ (a2 +3)p+ (201 +1)p”

= (z + 1)@+ H(@)p+(2a2+2-p)p® (a2) + (a2 +3)p+(2a1 +1)p"

where the last step is due to the fact that % <ay <p—1. We have ao +3 > p
ifa; <3,and 2a; +1 > pif a; > p—;l. If a; <3 ora; = (p—1)/2, then we do
not obtain a maximal degree term. These exponents will be dealt with later as the
explicit exponents #6, #7, #11 and #3. If 4 < a1 < %, then all exponents are
smaller than p and we get a maximal degree term with coefficient
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. ( a +3 )( ay )( 2a9 +2—p )
T\l a)\p—1—(a2+3))\p-1-Q2a+ 1))

For A5 we have the same situation with coefficient

. _( az >< az + 3 )( 2a; +1 >
5 p—1—(a1+3))\p—1—a1/\p—1—-2a2+2-p))°

Again it is not difficult to verify that ¢4 = c5.

Ifa1:O,thena0+a2:p—|—1,2§a0§p—;l,%gaggp—l,and

Ay = (z + 1)Ra0)+(a2)pt(aztp1)p® 1 (2a2)+(ao+p+1)p+(a0)p®
= (z 4 1)@ootD)+(a2)p+(az+1)p (2a2) + (a0 +1)p+(ao+1)p”
= (z+ 1)(2ao+1)+(a2)p+(a2+1)p2x(2a2*p)+(ao+2)p+(ao+1)p2'

If ag = 2 or ag > (p — 1)/2, then we do not obtain a maximal degree term. These

cases will be dealt with later as explicit exponents #9, #2 and #5. If 3 < a¢ < %,

then all the exponents are smaller than p and we obtain a maximal degree term with
coefficient

“T (p - 12?0(;:11 —p)) <p -1 —a?ao + 2)) (p - 1aiJ(rai + 1)>'

For As; we have the same situation producing a maximal degree term with coefficient

. ( 2a9 — p )( ag + 2 >( ag+1 )
g p—1—(2a+1))\p—1—a)\p—1—(az+1))"

It is not difficult to verify that ¢4 = c5.

Ifalzl,thenao#o,ao—i-ag:p,1§ao§p—;1,and

Ay = (z + 1)(2ao+1)+(2+az)p+(a2+p)p2x(2az+1)+(ao+p)p+(2+ao)p2

(z + 1)@00FT2)+(2+a2)p+(a2)p® 1 (2a2+1-p)+ (a0 +1)p+(3+ao)p®

since we have % <ap<p—1.1Tfay <2o0ray=(p—1)/2, then we do not obtain

a maximal degree term. These cases will be dealt with later as explicit exponents
#8, #11 and #4. I[f 3 < ap < ”2;3, then all the exponents are smaller than p and we
obtain a maximal degree term with coefficient

“= (p -1 —2?2Oaji 1 p)) (p - 16??@3 + 1)) <P -1 *a(an + 3)>.

For A5 we have the same situation producing a maximal degree term with coefficient
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c < 2a2+17p )< (l0+1 )( a0+3 )
> p—1—2a+2)/\p—1—(a2+2))\p—1—ay)’

It is not difficult to verify that ¢4 = c5.

Summarising all the cases above shows that, exceptions aside, the coefficient of the
2
297! term is —4(cy + f + 4 ) = —12¢4 # 0. Thus, apart from the 11 explicit cases set
aside, no exponent remaining in Case 3 can be planar.

7. Case 3 and the 11 explicit choices for n

From all of the above analysis, we are left with 11 explicit choices for n which need
to be eliminated to complete the proof of Proposition 3 and hence Theorem 1. These
11 remaining exponents n are listed here, along with the Hermite exponent ¢ we use to
eliminate them.

Exp.#l.n:%(pﬁ— ) witht = (p—2)+pand t = (p—6) +p+ 4p?,
Exp.#Q.n:l(l—i— ) witht=(p—2)+pand t=(p—6)+p+4p?
EXp.#&n:l—i—(er 1)p +p+1p with t = 2p + 4p?,

Exp#4. n= (22 — 1) +p+ P;1p2 with ¢ = (p — 2) + p,

Exp.#5. n = (% 1)+(% + 1)p? with t = (p — 6) + p + 2p?,

Exp.#6. n =1+ 3p+ (p — 3)p? with t = 2 + 4p + 4p?,

Exp.#7. n=1+2p+ (p—2)p* with t = (p — 1)(p + p?),

Exp.#8. n=2+p+ (p— 2)p? with t = 1 + 2p + 3p?,

Exp.#9. n =2+ (p — 1)p* with t = 1 + 2p + 3p?,
Exp.#10. n=2p+ (p — 1)p? with t =2+ (p — 1)p,
Exp.#11. n=1+p+ (p—1)p* with t =p — 1.

In the remainder of this paper, we deal with each of these remaining exponents in turn. As
can be observed, we have to resort to some computational tests for certain characteristics
p > 11. Specifically:

(] Exponents #1 and #2 need to be eliminated computationally for p = 29 when
m = (p—1)/2 is even, and
(] Exponent #6 needs to be eliminated computationally for p < 17 and p = 373.

We give some details for the p = 373 instance, but as the others are computationally
trivial we make no further statements about them. Otherwise, our proofs go through
under the general condition p > 11. Throughout our intent is to provide enough detail to
show the coefficient of 97! is non-zero. We give a full account of one exponent (#7, the
most involved one), and otherwise sufficient details to outline the proofs in all others. In
the following subsections we use the following notations: m = u and y =z + 1.
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7.1. Exponent #1

7.1.1. With m odd
We have n = (m + 1)p + (m + 1)p? and t = (p — 2) + p. We claim (y” — 2™) has
maximal degree with coefficient

cear = —(p 1) = (—1)™+1 £ 0.

m

More details in the following. We have

Notice that 22" = z1¥P+2P’ For i = 2k (with k =0,...,m — 1), then we have

Aoy = y(m+1+k)+kp+(m+1+2k)p2x(m—k)+(p—1—k)p+(m—2—2k)p2

)

k+kp+2kp?  (p—k —1—k —2—-2k)p?
Bor =y +kp+2kp” \.(p—k)+(p )p+(p o

We see By, cannot reach maximal degree, instead Aoy, reaches maximal degree only when
misodd and 2k =m —1. If i =2k + 1 (with £ =0,...,m — 1), then we have

A2k+1 — y(m+2+k)+(m+1+k)p+(1+2k)p2x(mfkfl)Jr(mf17k:)p+(p7372k)p2
B2k+1 — yk+(k+7n+1)p+(m+1+2k)p2x(p—k)—i—(m—1—k)p+(m—2—2k)p2-

We see that Agi41 cannot reach maximal degree. Instead Bai41 reaches maximal degree
only when m is odd and 2k = m — 1. Hence for the term of degree p® — 1 we have the
following coeflicient:

¢ = (—1)p-2—(m) (z:i)  (—1ypetm) <p7;2>

(220 e

7.1.2. Ezxponent #1 with m even

We have n = (m + 1)p+ (m + 1)p? and t = (p — 6) + p + 4p?. The case p = 29 can
be eliminated computationally and we assume p # 29 for the remainder of this case. We
claim (y" — z™)" has maximal degree with coefficient
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1/p—6)145
=z =2 2o
oM Q(m—l) 5 7

More details in the following. In the following we consider only the case m even and set
v =m/2. We have

(y" — ")
_ (yn o xn)p—G(ynp o xnp)(y4np2 o 4y3np2xnp2 4 6y2np2x2np2 o 4ynp2x3np2 + x4np2)
p—6
_6—i[P—6
=S (P70
(3
=0

x (AL —4AL +6AL — 4A) + AL — Bl + 4B} — 6B% + 4B} — B}),
where

Al = yPn(5=0)p® pn(i=1)p® i n(p—6-i)

Bji- - y”(5—j)172xnp-l-n(j—l)pzynixn(p—ﬁ—i).

We consider whether i is even or not. For ¢ = 2k (0 < k < m — 3) we have the following:

A2k — y(m+3+k)+(k+4)p+(m+3+27€);02x(m—2—k)+(p—3—k)p+(m—6—2k)p2

1 )

B%k _ y(2+k:)+(k:+4)p+(2+2k)p2x(p727k)+(p737k)p+(p7672k)p2’

Agk _ y(2+k)+(m+k+4)p+(m+2+2k)p2x(p72fk)+(m727k)p+(m7572k)p2

)

ng _ y(m+2+k)+(m+k+3)p+(l+2k)p2x(m—l—k)—i—(m—1—k)p+(p—5—2k)p2

)

A%k _ y(m+2+k)+(k+2)p+(m+2+2k)p2x(m—l—k)—i—(p—1—k)p+(m—5—2k)p2

)

ng _ y(1+k:)+(k:+2)p+(l+2k:)p2x(pflfk)+(p717k)p+(p7572k)p2 7

A% = y(Hk)+(m+k+2)p+(m+1+2k)pzI(p,1,k)+(m,k)p+(m,4,2k)p2,
B2k — y(m+1+k)+(m+k+1)p+(2k)pzm(m,k)ﬂm“,k)p+(p,4,2k)p27

A2k — o (mALER) (k) (mA142k)p? ) (m—k)+(p+1—k)p+(m—4—2k)p?
5 Yy z )
B = y<k>+<k>p+(2k)p2 2(P=F)+(+1=k)p+(p—4—-2k)p*

The terms B?k cannot have terms of maximal degree. The only terms A?k of maximal
degree are the following (we indicate the corresponding coefficients):

e () (A
= (v +2) (0 +1)



Am 4
Am 2
Am 4
Am 2
Am 2
Am 2
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25

) e
= (otoan) o) (2 ) = B
ot ) ) (0) =5
() Gt ) =
- (Z@ (p Tnff,/f/i 2) <p12> - W@ —2) = —(3v+1)(3v)
> 1) () (1)

R T I )

Hence the overall coefficient (corresponding to i even) of the term of maximal degree is

the following

Ce =

3 (pﬁ)[_4(3v+3)(3v+2) +6(v+1)(v)

_(2_i>[_(v+2)(v+1) _4(3v+2)2(3v+1) +6fu(v; 1)]

m— 2 2 2

— (p 6)[16v + 24v + 6] — (2_62)[20112—1211—10]

m — 4

_ <Ti_i) + (Z_Z) [v + 10].

For i =2k +1 (0 < k < m — 3) we have the following

A2kHL ) (mAAtk)+(mAk+5)p+(3+2k)p? 1. (m—3—k)+(m—3—k)p+(p—T—2k)p
1 y €T )
B2k+1 _ (24+K)+(m+k+5)p+(m+3+2k)p?  (p—2—k)+(m—3—k)p+(m—6—2k)p>
1 =Y x )
A2k+L ) (3+K)+(k+4)p+(3+2k)p” 1. (p—3—k)+(p—3—k)p+(p—T—2k)p
2 y x 9
B2k+1 _ (mA2+k)+(k+3)p+(m+3+2k)p? . (m—1—k)+(p—2—k)p+(m—6—2k)p?
2 - y &€ )

A2k+L (mA4-34+k)+(m4+-k+3)p+(24+2k)p?  (m—2—k)+(m—1—k)p+(p—6—2k)p>
3 - y &€ )

B2k+1 _ (1+k)+(m+k+3)p+(m+242k)p? _ (p—1—k)+(m—1—k)p+(m—5—2k)p>
3 Yy € s

AL — y(2+k)+(k+2)p+(2+2k)p2x(p—2—k)+(p—1—k)p+(p—6—2k)p2’

2k+1 _  (m+1+k)+(k+1)p+(m+2+2k)p® .(m—k)+(p—k)p+(m—5—2k)p?
B4 - y €T )

+4Bv+1)(3v) — (v —1)(v — 2)]
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Angrl _ y(m+2+k)+(m+1+k)p+(1+2k)p2x(m—1—k)+(m+1—k)p+(p—5—2k)p2
b

B2k — y<k)+(k+m+1)p+(2k+m+1)p2 2 (P=F)+(m+1=k)p+(m—4-2k)p*

The terms A?’Hl cannot have terms of maximal degree. The only terms szkﬂ
degree are the following (we indicate the corresponding coefficients):

Bt (m/2> (m +m/2+ 3) (p I 2> _ (3u+3)Bv+2)

of maximal

m/2) \m+m/2+1 2 (r—2)
—(3v+3)(3v +2)

i) 1) () =

m/2 — 1) <m+m/2 + 1) <p03> _ B+ 1)(3v)

1

d

Bm 3
B3
Bm 1

(
<m/2—1 m+m/2—1 .
S () () - e
N (e [ R =
e () () (1) =

mrto (M) (e ) (71 ) - B2 -0~ —eoee -

Hence the overall coefficient (corresponding to ¢ odd) of the term of maximal degree is
the following

3”U+2 3U+1) +4(v)(v—1)
2

2 2
6
(p 1) + (3v)(3v — 1)]
p—=6
m—3
p—6 p—6
= 1
(m—S)[U+ O]—l—(m_l)
In total, our coefficient is
_ _(p—6 p—06 p—=6 p—6
CM = Ce+Co = (m—4> +(m_2>[v+10]—|— (m_3>[v+10]+<m_1>
_,(P—6 p—6
—2<m_1>+2<m_2)[v+10]

Co—( ) (30 +3)(3v +2) — 4(v + 1)(v) — 6(3U+1)(3v)+4(vf1)(v—2)]

—6
(2042 — 4t + 10] + (p )[—161}2—3211—6]
m—1
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p—©6 37 1/p—61)\145
=2 ==z =2
<m—2)(”+3) 2<m—2> 3

Hence c¢p; = 0 only for p = 5,29.
7.2. Exponent #2

Exponent #2 is very similar (a swapping of ag and a1) to Exponent #1, and the proof
works the same.

7.3. Exponent #3
For Exponent #3 we have n =1+ mp + (m + 1)p? and ¢t = 2 + 4p. Note that

2n=2+2mp+ (2m+2)p* =2+ (p— Vp+ (p + 1)p?
=3+(p—-1p+p’

4n =64 (2p — 2)p + 2p?
=6+ (p—2)p+ 3p>.

With y = (z + 1),

(yn _ xn)2+4p
_ (yZn o 2xnyn + xQn)(y4np o 41,npy3np 4 6x2npy2np o 4x3npynp + x4np)

_ y2n+4np o 4xnpy2n+3np 4 6x2npy2n+2np o 41,3npy2n+np 4 x4npy2n
o 2l,nyn+4np + 81,n+npyn+3np o 121,n+2npyn+2np + 8xn+3npyn+np o 21,n+4npyn
+ x?nyélnp o 4x2n+npy3np + 6x2n+2npy2np o 4x2n+3npynp + x2n+4np

5 2 2 a2 = 2
_ y7+0p _ ggmt14+ptmp ym+6+3p+(m+1)p + Gl t3p+—1p yo+2p+p

2 2 2 2
_ fgpmA3+4p+(m—1)p y4+m+(m+2)p 4 g3top+(p—2)p y3+(p71)p+p

7 2x1+mp+(m+1)p2y5+(m+6)p+(m71)p2 + 8xm+3+(m+1)py

_ 12x3+(m+3)p+mp2y3+(m+3)p+mp2 + Sxm+4+(m+4)p+(pfl)p2ym+3+(m+1)p

— 9B (mFE)p+(m—1)p  1+mp+(m+1)p® 4 3+(p—1)p+p” 3+6p+(p-2)p”

m+3+4p+(m—1)p? +6x5+2p+p2 1+3p+(p—1)p?

m—+4+(m+4)p+(p—1)p*

_ 4x4+m+(m+2>p2y

o 4xm+6+3p+(m+1)p2ym+1+p+mp2 + x7+5p

Y

For p > 7 it is not difficult to check that the only blocks that allow a term of maximal
degree are
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grmH3H(m+DpymAdt(mAd)p+(p—1p* 5y ggm+a+(m+)p+(p—1)p*ym+3+(m+1)p,

In this case we have

g3 +(mAD)pymea+ (m+-4)p+(p—1)p®

m+4 m+4 p—1
-y Y % mA 4\ (mtd\ (p—1)\ (misrao)t(mt1raptasp?
ap oy Qs ’

ap= OOtl_O Qo= 0

g (mE)p+H(p—1)p® | m+3+(m+1)p

m—+3 m+1
-y 3 (" 3 (A1 Lontatao)+ntdtanp (-0
(7)) a1

apg= OOt] =0

In the first monomial we have ag = m — 3, a1 = m —1 and ay = p— 1. Hence we obtain

m+ 4\ (m+4) (p—1 2 (=1 (1+p+p?)
m—3)\m—1/\p—1 '

In the second case we have g = a; = m — 4, hence we obtain

mA 3\ (mA 1\ o)
m—4/\m—4

The condition m > 4 is satisfied since we are considering p > 7. Therefore we just need

() ()= (D) () o

This follows immediately upon recognising that the two terms of the sum are equal:

to verify that

<m+4)<z+4> (m+4)---(m-2) (m+4)---(m)
(n

B 7! 5! ’
<m+3) )_ (m+3)---(m—3) (m+1)---(m—3)
(m+4)%(m + 3)(m +2) = (m? + 12)% - (m? + m + 4) mod p,
(m —1)(m —2)(m —3)? = (m?> +m +4) - (m* + 12)? mod p.

7! ' 51 ’

This eliminates this exponent.
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7.4. Exponent #/
In this case n = Z5= ! +p+p+ p? =m+p+ (m+1)p2 Set t = (p—2) + p. Therefore
R L A

S

7

—~

(y" —a")' =

|
N

P
>ynizn(p2i) (ynp . :Enp)

I
i

p—2 _9
— Z(_l)z—i-l <p . )[yni+npxn(p—2—z) ynlxn(p 2— 1)+np]
=0
p—2
it1(P—2
=0

We consider whether 4 is even or not, and obtain
Agp = y(m+1)+(m+3k¢)p+(k+1)p2‘T(m)+(m7373k)p+(p,k)p2
ng — y(Sk)p+(k)p2l.(p—3—3k)p+(p+1_k)p27

2 2
Agpyr = y(m+3k+2)p+(m+k+2)p (m—4=3k)p+(m—Fk)p ;

Boji1 = y(m>+(3k+1)p+(m+k+1)p2x(m+1>+(p7573k)p+(m+17k)p27

where in both cases 0 < k < m — 1. The only possible terms of maximal degree are Ay
for 222 < k < % and Bagyq for % <k< % (only one integer k in both ranges).
The coefficients are the following

ca=(m+1)(k+ 1)(";f§k>
cg =m(m+1+k) <3kj31).

Consider now the three possible cases: m mod 3 = 0, 1, 2. The condition m mod 3 =1 is
never satisfied since m = 3j + 1 implies p = 2m + 1 = 65 + 3 so that p is not prime.

o Ifm=3j(p==6j+1), then —2 <k < 7% implies k = j and T4 <k< % implies
k = 27 — 1. Hence the general coefﬁment of maximal degree is

e = (024 (72 4 (M)
32— 1) + 1)

o 2(25—1)4141 p—2 .
(-1) (2(2j_1)+1>m(m+1+2] 1)( b3
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(o om0 Zy) - (155 s 20 ()
— (" )G+ (577 Jmi-i -
——G+0l("5, )= (173 )m
w0y )z

e Ifm=3j+2(p=06j+5), then 22 < k < 2 implies k = j and 5% < k < 22

implies £ = 25 + 1. Hence the general coefficient of maximal degree is

= (oo 5)

. -2 ) 327 +1)+1
(—1)2@5+)+1+1 p 149541
(=) 2(2j +1)+1) MM FIH2 D) 3

- _<p2_jQ) (m+1)(j + 1)(2g__32) — <j fn_%i 1)m(2mj)<p2fl3)
:_<p2_j2)(m+1)(j+1)— (jffH)m(—l—j)

=-(G+ 1)[( ;) (m+1) - (fj_+23>m]

s R o o

In this case n = ’72;1 + p—;?’pQ =m+ (m+2)p? Set t = (p — 6) + p + 2p*. Then
(yn _ xn)t — (yn _ xn)p—G(ynp _ xnp)(yanz _ 2ynp2mnp2 + x2np2>
p—6 _6
= z(_1)f)—6—1 <p . >(A11 —2A4 + A4 — B} + 2Bl — BY),
where

A;z _ ynp+n(3—j)p2xn(j—1)p2ym‘mn(p—ﬁ—i)

Bji- - y”(3—j)p2xnp-l-"(j—l)pzyniwn(p—ﬁ—i).

We consider whether i is even or not. For ¢ = 2k (0 < k < m — 3) we have the following:
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A2k — o (mAB)H (mA ke 3)p+(3K)p° o (A1) + (m—3—k)p+(p—9-3k)p*
B2k = (D H(k3)p+(3R)p° 2+ (p=3=k)pt(p—9—3k)p*
AZF = (A2 (A Dp+H(mA143k)P% 1 (mF2)+(p—2—k)p+(m—9-3k)p*
B2k = y(m+2+k)P+(m+3k)p2x3+(m717k)p+(m7873k)p27

AZF = (A2 (ARt BR)P (Mt 2+ (m—k)p+(p=9-3k)p*

B2k = O+ (R)pt(3k)p* 1 3+(p—k)p+(p—9-3k)p"

The terms BJQ-’“ do not have terms of maximal degree. The only terms A?k of maximal
degree are the following ones (where we also list the corresponding coefficient).

— 2
A% with 2m3 7§k§?m_> <m+3)< 3k )7

m p—38
-8 m—1 m+2\/3k+1+m
AZF with % <k <
A T B VRS ) - b
2m — 7 2m m+ 2 3k
AZF with <k< - .
A T P B P

For i =2k+1 (0 <k <m — 3) we have the following

A%k-&-l _ y2+(m+k+4)p+(m+2+3k)p2x(1)+(m737k)p+(m71073k)p2
3
B%kJrl — y(m+1)+(k+3)p+(3k+m+2)p2x(m+3)+(p—4—k)p+(m—10—3k)p2
)
A2k+L 24 (k+2)p+(243K)p” 1.(1)+(p—2—k)p+(p—11-3k)p®
2 =Y € ’
B§k+1 — y(m+1)+(m-l—2-l—k)p—&-(1—&-31§)p2x(m-ﬁ-S)—‘,—(m—2—k)p—i—(p—lO—?;k)p2
)

A§k+1 _ 1)+(m+k+1)p+(m+2+3k)p2$2+(m7k)p+(m71073k:)p2

y(
B§k+1 — y(m)+(k)p+(3k+m+2)p2x(m+4)+(p—1—k)p+(m—10—3k)p2.

)

The terms A?kH do not have terms of maximal degree. The only terms B?k *1 of maximal

degree are the following ones (where we also list the corresponding coefficient).

B%k with m3—9 << m—2 . (m+1><3k+m+2>,

3 m—2 p—38

2m — 2m —1 1 k+1
ngwith m 8§k§ m o m + 3k + ’

3 3 m — 2 p—3_8

ngwithm—9§k§m—2_> m 3k+m+2 .
3 m—3 p—28
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We consider in the following the case m = 0 mod 3 and m = 2 mod 3 (as already noted
if m = 1 mod 3, then 3 | p). The overall coefficient for the term of maximal degree is the

following:
%
_ p—=6 3k m+3 m+ 2
e k;7<2k)<p_8)[< m >+(m—1>]
=73
m,;l
p—6\/m+2\/3k+m-+1
2
i ;8(%)("11)( p—38
=73
m—2
_23: p=6)(Bktm+2) (ma1y (om o,
e \2k 41 p—8 m—2 m—3
=73
2711371
p—6\/m+1\/3k+1
2 3 ()00
k_;"gs 2k+1 m— 2 p_8
2m
_ oy (PO (3R Y2+
- f— 2m=T 2k p_8 3
- 3
m;l
- p—6\/m+2\/3k+m-+1
2
! ;8(%)(”&—1)( p—38 >
=73
m—2
I i: p—6)\ (3k+m+2 (m—1)
e 2k +1 p—28 3
- 3
27113—1
p—6\/m+1\/3k+1
23 ()00
k=;'§8 2]€+1 m— 2 p_8
7.5.1. m =3t

In this case p = 6t + 1.
2t

Py (p’z;f) (ﬁQW

k=2t—2

t—1

p—6\/m+2\ (3k+m+1
2
22 ()G

N Qe ol G [Ty

k=t—3 k=2t—2
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1 p—©6 p—=6 p—©6 21 (p—6 p—©6
2[7(%—1) 35<2t—3)+<2t—5)] 4[<2t 4 2t — 2 ]
21 — 1
LY S A PR Y
1\2t—4) -1t -3)

7.5.2. m=3t+2
In this case p = 6t + 5.

o %i <p2—k6>< 3k8> (m+2)3(m+1)
v_8) 3

k=2t—1

23 (L))
S s ()G ()
som i3, 5) (5 75) +7(5 )

-5 0i(50) =555 5) +7(7)

%( )(5_62> o 1)(22;:32;(% 70

In either scenario, Exponent #5 is eliminated.

+

3
+

7.6. Ezxponent #6

Let n = 1+3p+ (p—3)p? and t = 2+4p+4p>. The cases with p < 17 can be checked
computationally, and we assume p > 19 for this case. A similar approach to that used
for Exponent #3 can be performed here. Note

n=1+3p+ (p—3)p?

)

)P
2n =3+ 6p+ (p — 6)p?,
3n=5+9+ (p — 9)p°,

dn =T+ 12p+ (p — 12)p*
We have a more complicated expression to consider:
(yn _ xn)2+4p+4p2

— (an _ anyn 4 xQn)(yAan _ 4xnpy3np 4 6I2npy2np _ 4m3npynp 4 m4np)
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2 2 2 2 2 2 2 2
. (y4np — AP y3np +6w2np anp _ 4‘,E3np ynp +1,4np )

= (y3TOPHE=6P" _ 9pl43p+(p=3)p® L+3p+(p=3)p" | p3+6p+(p—6)p”)

(yPTIDFTERI2DY (0= 8)+p+3p% (D= 9)+5p+9p” | . (p—6)+3p+6p% ) (p—6)+3p+6p”
— 4P F5pp® (p=3)p 3"y o (p—12)+TpH12p7)

124(p=12)p+7p* _ 4.3+ (p=3)p+p*, 9+(p—9)p+5p° _,_6336-5-(17—6)p+3p2 6+(p—6)p+3p°

(y y

_ Y0t (=9)p+5p?

Y

y3+(p—3)p+p2 + pl2+- 12)p+7p? )

A careful analysis of all the blocks z’y’ obtained and the relative exponents, it is clear
that the only blocks that contain a monomial of maximal degree are the following ones:

2 2

Al — AP +2ny4np+3np
64+3p+(p—4)p?, (p—3)+(p—2)p+17p>
— 483t (=)p7y (P=3)+(p=2)p+17p"

q 2 2

A2 _4$dnp +2ny4np+np

- _41,124’(17*3)?4’(?71)?2y(p*9)+4p+14p2

2 2
A3 — _4x4np+3np ynp +2n
2 - 2
= —4g(P=3)FP=2p 17" 643p+(p—4)p”
2 o 2
A4 — _41,4np+np ydnp +2n

— 4P 124 (p=3)p(p—Dp”

If we set ¢; to be the coefficient of the monomial of maximal degree, we obtain
p—3\[(p—2\ /17
CcC1 = —4 )
p—T7)\p—4 3
AP 9 4\ (14
co = —
2 p—13)\2/\ o)
6\ /3\/(p—4
=—4
o==1) ()6 )
4 12\ (p—=3\(p—1
C = — .
* 8 )\p-5)\p—15

Therefore we need to prove that ¢; + ¢ + ¢3 + ¢4 # 0. We first do some simplifications.
Working modulo p we have

S [ 6
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£ 00)

4 2 3

43><4><5><62><317><16><15
4! 2 3!

= —2%325217.

== () ()
_ (p 9) <3

9 x 10 x 11 x 12

Next,

:_4TX2X3
—-233%5 x 11.
For c3, we find
()()( gy
_ 6 3><4><5>< x 17

14!
= —25325217 = .

On a similar note, we find

12\ (p—3 p—1
C4:74
8/ \p—5/\p—-15
_ _412 X 114>'< 10><93>2<4 X (—1)p-15

—23335 x 11 = ¢o.

Thus, we find

e+ co 4 ey +eq =—26325217 + —243%35 x 11
—2%325(340 + 33)
24 % 32 x 5 x 373.

Thus, for p # 373, we have a non-zero coefficient for the maximal degree term. For
p = 373, we test directly using the Magma Algebra package [1]. Using Magma’s standard
construction of F, with ¢ = 3733, and the planar equivalent exponent n’ = p*n mod (q—
1), we find (g'+1)" — g™ = (g7 +1)" — g7 with i = 92, j = 5737 where g is a primitive
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element of F,. This eliminates the final possible prime for which Exponent #6 could be
planar, and so it is never planar.

7.7. Ezponent #7

Set n =1+2p+ (p—2)p?. and t = (p—1)(p+1). This case turns out to be the most
involved of all of our explicit exponents. Firstly, with y = x + 1, we have

t
t
n n\t __ nk k_nt—nk
(y"—a")' = y"(=1)
k
k=0
p—1
_ (71)i+jyni+njp(71)i+jx4p274p7nifnjp
i,j=0
p—1
_ E yni+njpx4p274p7nifnjp.
i,j=0

Set i + 7 = w. Then it can be shown that, with 24P’ —4p—ni—nip — g and yitnipr = yf
we have

o= (45 — 2w) + p(p — (2w +4)) + p*(2w + 3 — 47)

B = (2w — 4j) + 2pw + p*(45 — 2w).
It is immediate that we can never have an 29! term when i = j, that is when 2j = w.
As shall be shown, we obtain non-zero coefficients for the 79! term only when w €

{(p—3)/2,(p—1)/2,p—2,p—1,p,p+ (p—3)/2,p+ (p—1)/2}. For ease of notation, we
define four binomial sums. Specifically, we set s;, with 0 < ¢ < 3, to be

k . .
47 +1
S = E ( 3 >a
Jj=0

where k is the largest integer satisfying 4k + i < p.

7.7.1. When w < (p—3)/2

Since w < (p — 3)/2, we see that 2w + 4 < p. We concentrate on the p term of a and
B.Nowp—1—(p—(2w+4)) = 2w+ 3, and the most carries we can see occur for the p
terms of a and of § is a shift of 1 in either direction, with one going up while the other

2w+ €
2w+ 3+¢€

is clearly always 0 and we can never obtain a 29~ ! term from this case.

goes down, so that (with e = £1)
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7.7.2. When w= (p—3)/2
We now have

a=(4j+3)+plp—2)+p°(p— (45 +1))
B=(p—(4j+3))+pp—3)+p (4 +3) —p).

Keeping in mind that 25 # w, we have the following cases to deal with: 45 + 3 < p,
47+ 1=p,and p+2 < 4j + 3 < 2p — 3. It is immediate from consideration of the p?
terms of a and 8 that there is no 29! term when 45 + 1 = p.

For 45 + 3 < p, only 8 has a carry, becoming

B=(p— (45 +4) +plp—3) +p*(4j +3).
We now obtain an z77! term with coefficient
p— (45 +4) p—3 4743 454+ 3
: , =(—3) :
p—1—(4j+3) 1L J\p=1-(p—(4j+1)) 3
Consequently, it can be seen that we obtain an overall coefficient of
d1 = —383.
For p 42 < 4j + 3 < 2p — 3, after dealing with carries we have

a=4j+2-p)+plp—1)+p*(2p— (45 + 1))
B=02p— (45 +3)) +p(p—4) + (45 + 3) — p).

This yields an 2971 term with coefficient
( 2p — (45 + 3) )(p—4)< 454+3—p )(4j+3p)
p—1-(j+2-p/\ 0 J\p-1-02p—(4j+1)) 3 '
Summing over all cases, we obtain an overall coefficient of

so if p =1 mod 4,
do =
so if p=3 mod 4.

7.7.3. When w=(p—1)/2
In this case our exponents simplify to

a=4j+1)+plp—4)+p°(p— (45— 1))
B=(p—4j+1)+pp—1)+p*((4j+1) —p).
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As 2j # w, we are left with three situations: 4j+1 < p,4j—1=p,and p+2 <4j+1 <
2p — 1. When 45 — 1 = p, it is clear from inspecting the p? terms of a and 3 that there
is no 297! term.

For 45 + 1 < p, only § has a carry, becoming

B=p—-(4j+2)+plp—1)+p*(4j+1).

The coefficient of the 297! term so generated is

G )0 ) G ) =M )

Summing, we obtain the coefficient
d3 = —51.
Forp+2<45+1<2p—1, we find
a=(4j —p)+plp—3)+p*2p— (4j — 1))
B=02p— (4 +1) +pp—2)+p*((4j +1) - p).
This generates an 29! term with coefficient
<2p—(4j+1)>(p—2>< 4j+1—-p )_3<4j+1—p)
p=1-Wi-p))\ 2 J\p—-1-(2p—(4-1)) 3 '

Proceeding to sum over all cases yields the coefficient

4 — 359 if p=1mod 4,
! 3sy if p = 3 mod 4.

7.7.4. When (p—1)/2 <w <p—2
With w in this range, we first deal with some carries for o and (3, obtaining

a= (47 — 2w) + p(2p — (2w + 4)) + p*(2w + 2 — 4§)
B = (2w — 4j) + p(2w — p) + p*(45 + 1 — 2w).

We concentrate on the p terms of a and 5. As —2p < 2w — 45 < 2p, the p terms can
only ever receive a carry of 1 in either direction, with one going up while the other goes
down. Thus to construct an 29! term, the binomial generated by the p term would be

2W—p+e _ 2w—p+e _0
p—1—(2p—Q2w+4)—¢)) \2w—-p+3+e)

Hence there is no £97! term generated in this case.
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7.7.5. When w=p—2
For w = p — 2, we have

a=(4j+5)+plp—2)+p*(p— (4 +3))
B=p— (45 +6) +p(p—3) +p*(4j +5).

For this case, we split the situation into multiple subcases: 45 +5 < p, 45 +5 = p,
45 4+3=p,p+3<454+6<2p,4j+6=2p,2p+1<4j+5<3p, 47+5 = 3p,
45 4+3=3p, 3p+2 <45 +5.

It is very quickly checked that we get no x9~! term from the cases where 4j + 5 = p,
4574+3=p,4j+5=3pand 45 + 3 = 3p.

For 4j 4+ 5 < p, the coefficient is

(pp14j4;65) <p13) <p14jp++54j+3) - (p—&(iﬁi) B (p_3)<4j3+5>'

This situation thus yields the overall coefficient of
d5 = —381.
For p+ 3 < 4j + 6 < 2p, after dealing with carries we find

a=4j+4—p)+plp—1)+p°(2p— (45 +3))
B=2p— (45 +5) +p(p—4) +p*(4j + 5 —p).

Thus the coefficient of 2971 when p+ 3 < 45 +6 < 2p is

( 2p — (45 +5) )(p—4>< 4574+5—p )_(4j+5—p)
p—1-4j+4-p)J\ 0 J\p—1-(2p—(4j+3)) 3 '
If we sum, we find that since 4j + 5 < 2p — 1, we’re missing the very last term in either

Sp or sz, depending on p mod 4. In either case this would be (”gl) = —1%3 = —1. Thus
we obtain the overall coefficient of

so if p =1 mod 4,
de =1+
sy if p =3 mod 4.

For 45 + 6 = 2p, we have

a=(p-2)+plp-1)+3p°
B=1+plp—4)+p°(p—1).

The coefficient of 29! generated from y’z® is
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()3 L) ==

This singleton case thus produces the coefficient d; = —1.
For 2p+ 1 < 45 4+ 5 < 3p, we after carries we find

a=(4j+3—2p) +0xp+p*(3p — (45 +2))
B =3p—(4j +4) +p(p —5) +p*(4j + 5 — 2p),

from which it is clear we get no z97! term.
Finally, for 3p + 2 < 45 + 5, after carries we have

a=(4j+2-3p)+p+p*(dp— (45 +2))
B=4dp— (45 +3) +p(p— 6) + p*(4j + 5 — 3p),

from which it is again clear we have no 297! term.

7.7.6. When w=p—1
A first simplification of our exponents produces
a=(4j+2)+p(p—4) +p*(2p — (45 + 1))
B=(2p— (45 +2)) +plp—2) +p*(4j +3 — 2p).
We have the following eight cases to consider: 45 +3 < p, 454+ 3 = p, 4j +1 = p,
P+2<4j+3<2p,2p<4j+3<3p,45+3=3p,4j+1=3p,3p<4j+1<4p-3.
The four cases involving equalities are easily eliminated by considering either of the p®
or p? terms of & and 3. This leaves us just the four cases 47 +3 < p, p+2 < 45+ 3 < 2p,
2p<47+3<3p,and 3p <45 +1<4p—3.
When 45 + 3 < p, dealing with our carries produces
a=(4j+3)+p(p—4) +p°(p— (47 +1))
B=(p—(4j+4) +plp—1) +p°(4j +3).

We obtain an 97! term with coefficient
( p—(4j+4) )(pl)( 45+ 3 )(1)(4j+3)
p—1—(45+3) 3 p—1—(p—(4j+1)) 3 )
We sum and obtain the overall coefficient of

dg — —S83.
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When p 4 2 < 45 + 3 < 2p, after considering carries, we have

a=4j+2-p)+plp—3)+p°2p— (4j+1))
B=02p— (45 +3)) +p(p—2)+p°(4j + 3 —p).

Here we obtain an 297! term with coefficient
( 2 — (45 + 3) )(p—Q)( 4j 13— p >3(4j+3—p)
p—1-j+2-p))\ 2 J\p—1-02p—(4j+1)) 3 '
Overall, this produces the coefficient

o — 3sy if p =1 mod 4,
’ 3sg if p = 3 mod 4.

When 2p < 45 + 3 < 3p, we must have also have 45 + 1 > 2p as otherwise w = 2j.
Dealing with carries, our exponents are

a=(4+1-2p)+plp—2)+p°Bp— (4 +1))
B=(Bp—(4j+2)+plp—3)+p°(4j +3—2p).

The coefficient for the #4971 term is
( 3p— (45 + 2) >(p—3>( 454+3—2p )3<4j+3—2p)
p=1-j+1-2p))J\ 1 J\p—1-(3p—(4j+1)) 3 '
Now we get the coefficient
dig = —3s1.
Finally, when 3p < 45 + 1 < 4p — 3, we simplify our exponents to find

a= (47 —3p) +pp—1)+p*(4p— (45 + 1))
B=(4p— (45 +1)+p(p—4)+p*(4j+3—3p).

The coefficient for the £97! term is
( dp — (45 + 1) )<p4)< 454+3—-3p >_<4j+33p>
p—1—(4j —3p) 0 p—1—(p—(4j+1)) 3 ’
and summing we get the overall coefficient

so if p=1mod 4,
di = ,
so if p=3 mod 4.
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7.7.7. When w =p
A first simplification of our exponents produces

a=4j+1)+plp—6)+p*(p—(4j—1))
B=(p—(4j+2)+p+p°(4j+2).

An immediate observation from looking at the coefficient of the p terms is that we cannot
possibly obtain an 29! term with 45 42 < 2p. We therefore have just the following three
cases: 2p < 4j—1<3p—2,45+1=3p, 45+ 1 > 3p. The case where 45+ 1 = 3p is also
quickly eliminated.

When 2p < 45 — 1 < 3p — 2, we find a and 8 become

a=(4j—1-2p)+plp—4)+p°(Bp— (45 — 1))
B=(Bp—4j)+plp—1)+p*(4j +1 - 2p).

The coefficient for the 7~ ! term is

( 3p —4j )(p—l)( 45+1—2p )_(4j+12p>
p—1-(4j—-1-2p))\ 3 J\p—1-0Cp—(4j—1) 3 '
Taking the sum of these coefficients produces the overall coefficient
d12 = —S8s3.
When 45 + 1 > 3p, we find
a=(47—2—-3p)+pp—3)+p*(4p— (45 — 1))
B=(4p— (45— 1)) +plp—2) +p*(4j + 1 - 3p).

This produces an 29! term with coefficient

(p - 14? (_4;%]}21— 3p)> <P ; 2) <p -1 ij(jlrpl—_(i)f; - 1))) N 3(4j : fl’) : 3P> '

We sum to obtain

3sy  if p =1 mod 4,
di3 = _
3sp if p =3 mod 4.

7.7.8. Whenp<w<p+ (p—3)/2
For this situation, let us rewrite w as w = p 4+ w’ with 0 < w’ < (p — 3)/2. A first
simplification of a and [ yields
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a= (4 +2—2w') +p(p — 2w’ +6)) + p*(2w' +1 — 4j)
B= (2w —2—45) + p2w +2) + p*(4j + 2 — 2u').

Concentrating on the p terms of both o and 5 one sees that then it is impossible to
construct a p — 1 multiple of p, as the carries will only ever make a difference of at most
2 when we need a minimum of 3 carries in total. Hence, we never get an 297! term in
this case.

7.7.9. Whenw=p+ (p—3)/2
In this case, we note that j > (p — 1)/2, so that 45 + 3 > 2p always. With this in
mind, our first simplification of our exponents leads us to

a=(4j+3—2p)+plp—2)+p°Bp— (4 +3))
B=@3p—(4j+4))+p(p—3)+p*4j+5—2p).

There are 4 cases to deal with: 2p < 45 4+3 < 3p—2, 45+ 5 = 3p, 47 + 3 = 3p,
3p<4j+3<4p—2,and j=p—1(4j+5 =4p—+1). By inspection it is immediate that
when 45 + 5 =3p, 4j +3 =3p or j = p — 1, we cannot possibly generate an 29! term.

When 2p < 45 + 3 < 3p — 2, we can immediately read off the coefficient of z97!,
finding

( 3p—45—4 )(p—?))( 45+5—2p ):_3<4j+5—2p).
p—1-45-3+2p 1 p—1-0Bp—(4+3)) 3
Summing over them all produces the overall coefficient
dig = —383.
When 45 + 3 > 3p, after dealing with carries we obtain

a=(4+2-3p)+plp—1)+p°(4p— (4 +3))
B=(4p— (45 +3)) +p(p—4) +p*(4j + 5 — 3p).

When generating an 29! term we now get the coefficient

( 4p — 45 — 3 )<p4)< 4j+5—3p >_<4j+53p>
p—1—45—-2+3p 0 p—1—(4p—(45+3))/) 3 ’

and summing now produces the overall coeflicient of

so if p=1mod 4,
di5 = ,
sop if p=3 mod 4.
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7.7.10. Whenw =p+ (p—1)/2
Now we have j > (p+1)/2, so that 45 > 2p + 1 always holds. With this in mind, our
first simplification of our exponents leads us to
a=(4j+1-2p)+plp—4) +p*(Bp— (4j +1))
B=(3p— (45 +2) +plp—1) +p*(4j +3 — 2p).

There are 4 cases: 2p <47 +1<3p—2,4j+3=3p,4j+1=3p,and 45+ 1 > 3p. It
is again easily seen that the 45 + 3 = 3p and 45 + 1 = 3p cases cannot possibly generate
an 97! term.

When 2p < 45 + 1 < 3p — 2, we read off the coefficient of z971, finding

( 3p—45—2 )(p—l)( 45+ 3 —2p )__<4j—|-3—2p>
p—1—45j—1+42p 3 p—1—0Bp—(4j+1))) 3 ’
This produces the overall coefficient
d16 = —81.
When 45 + 1 > 3p, we get
a = (45 = 3p) +p(p — 3) + p*(4p — (45 +1))
B=(4p—(4j+1)+p(p—2)+p*(4j+3—3p).

When generating an 29! term we now get the coefficient

< dp—4j—1 ><p—2>( 45 +3—3p >_3(4j+3—3p>
p—1-45+3p/\ 2 J\p—1-(p— (45 +1)) 3 '
This gives an the overall coeflicient of

3sp if p =1 mod 4,
di7 = ,
3sy  if p = 3 mod 4.

7.7.11. Whenw >p+(p—1)/2
Again we rewrite w as w = p + w’ with (p —1)/2 < w’ < p — 2. Simplifying our
exponents, while utilising the fact p < 47 — 2w’ < 3p, we obtain

a = (4 — 2w —p) +p(2p — 20" —5) + p*(2p — (45 — 2u"))
B=(2p—(4j+1—-2w"))+puw —p)+p*(4j +3— 2w —p).

Examination of the p terms of & and 8 in two separate cases, namely p < 45 — 2w’ < 2p
and 2p < 45 — 2w’ < 3p, shows that it is again impossible to construct a p — 1 multiple
of p. We therefore cannot obtain an 29! term here.
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7.7.12. Final determination of the coefficient

We are now in a position to finally determine the coefficient of the maximal degree
term. Denote this coefficient by D. We have D = dy + ds + - -+ 4+ dy7, all of which are
some multiple of s;, apart from dg and d7, which together sum to an s;. We can split the
situation into two components C' and Cj, with C independent of p, while C), appears to
depend on p mod 4 (though in the end it doesn’t).

Thus, D = C + Cp, where

C = —8(81 + 83)
and
Cp = 8(50 + 52).
Thus our coefficient is
p—1

()

It remains to determine this sum. For any natural number n we define W(n) to be

D =28

n

W(n)=> (~1)*k(k+1)(k +2),

k=1

so that

pf(—l)k(’;) )

We now determine a closed formula for W(n). We restrict ourselves to n even for sim-
plicity. Induction easily proves

Stn) =Y (-D)*k =3
k=1
T(n) = Y (-2 = 20t
k=0
” n%(n+1)>2
U(n) = k3 =
2 i

We need to determine
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For n even we have

n/2
= Z% —n 721&

=16U(n/2) —n® —U(n — 1)

~ n*(2n+3)
Combining these we find
(—1)*k(k 4+ 1)(k +2)

(=1)*(k® + 3k* + 2k)

=V (n) 4+ 3T(n) +25(n)

n(n+2)(2n + 5).

Working in Fy, we now find

Il
00
3
-
—
|
—
S—
o
N
w
N———

k=3
=S -3)
_8(=3)(p-1(2p—-1)
6 4
_8(=3)(-1(-1)
6 4

I
I
=

Thus we have a non-zero coefficient for the 29! term, and Exponent #7 is never planar
over Fps. We conclude the consideration of this case by noting that for all the effort
needed to deal with this exponent, the whole case is remarkably well behaved.
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7.8. Exponent #8

We set n =2+ p+ (p—2)p? and t = 1 + 2p + 3p?. Then we have

24pH0p” _ gy, 143p+6p° o 1+ (p=2)p+2p” | 3 5p+3p” 2+ (p—4)p+5p°

(y" —a") =y y
— (P D) F6py 3+ (p=C)p+8p” _ o A+ (p=2)p+Tp" 1 (p=2)+2p+p”
+ 6y HOP (P FTAP® _ gy 2420+ 20" p(p=1)p+6p” | 9y dpt(p—1)p” ;1+(p=3)p+0p”
+ y6+(p—5)p+6p2x(p—4)+5p+2p2 _ 3y5-|r(17—3)13-5-317235(19—3)+3p+5p2
+ 3y4+(p—1)px(p—2)+p+8p2 _ y2-5-p-~-(p—2)102gj(p—1)+(p—1)p-|r10p2
_ y(p—1)-|r(p—1)1)-&-101923624—17-|r(p—2)p2 + 3y(p—2)+p+8p2x4+(p—1)p
— 3y

4 oy (=3P HOp” At (p=1)p* _ gy 5+(p=3)p+3p” 1 24 2p+2p

(p=3)+3p+5p” 5+ (p=3)p+3p° o (P—4)+5p+2p" 6+ (p—5)+6p”

+ 6y (P DFAP® 34507 _ o) (p=2)+2p4p” A+ (p=2)p T
_ y3+(19—6)p+8p2x(p—1)+6p + 3y2+(p—4)p+5p2x5p+3p2

— 3yt (P=2pt2p% 143p+6p” Ly 24p+9p*

It is clear that, for p > 7, the only blocks that can admit a monomial of maximal degree

are
Ay = —y2 TP p=2p" p(p= D)+ (p—1)p+10p°
=— Z 2 LY (P =2\ L o-11a0)+(o-14an)p+(10+as)p?
g (651 (65
Ay = —yP=DHE=1p+10p° 1 24+p+(p=2)p*

=S (P (P (1) sttt tranptp-zrany®
o o )\ ’

hence the two coefficients for the monomial of maximal degree are
2\ /1 p—2
o =-
! 0/)\o)\p-11
_ (P2
- \p-1

2x3x---x10
9!

= 10.
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e
= —(=1)*7°10
= 10.

C2

Hence the coefficient of the maximal degree term is 20 # 0. This eliminates this exponent.
7.9. Exponent #9

We consider n =2 + (p — 1)p? and t = 1 + 2p + 3p>. Then we have

2 2 _ 2 2 _ 2
(Y — &™)t = 3P ASPT gy 1 Apt5pT (0= 1p 4207 | 3y 1450427 5 (p=2)p+5p

_ yf"p-l-(p—l)pzac(17—3)p+8p2 _ 2y2+8p2m(p—1)+2p
+ Gyt HoR” p (=1 ApE3p® gy 242p+20% (= 1)+6p?

4 2yt 1p? p (= DH(p=Dp+8p° | 3+ (p=3)p+7p° 1 (P=2)+5p
— 3yt (P=Dpap® p(p=2)+4pt3p” gy 3H(p—Dp+p” 1 (p—2)+3p+6p°
— 2 E=DP® p(p=2) 420+ (p=2)+2p+9p" 24 (p—1)p”

+ 3yP=DH3pH6p” 3 (p—p+p” _ g0, (p=2)+4p+3p° 1 3+ (p—2)p+4p”
4 yP=DH5p 3+ P=3)p T | 9 (P=1)+(p—1)p+8p”  143p+(p—1)p’
— GyP=DF6p% 24294207 4 g (p—1)+p+3p° 24 p+5p

— 9y(P=D+2p 248" ) (p=3)p+8p” y 6p+(p—1)p”

+ 3y(p*2)p+5p2x1+5p+2p2 _ 3y(p*1)p+2p2x1+4p+5p2 + pt3pt8p®

Clearly, for p > 7, the only blocks that admit a monomial of maximal degree are

A = 2y1+3p+(p71)p2x(p*1)+(1)*1)p+8p2

=2 Z 1 3\ (p—1 2 (P—1+a0)+(p—1+a1)p+(8+az)p?
(7)) a1 a9

Ay = Qy(p—1)+(p—1)p+8p2m1+3p+(p—1)p2

=2)" P=1\(P=1\ (8 (rao)+@+anptp-1+az)?
(67} aq (6%) ’

hence the two coefficients for the monomial of maximal degree are

o =2o) () G o)
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Thus the coefficient of the 277! term is 4, and we have eliminated this exponent.

7.10. Ezponent #10
Let n=2p+ (p—1)p? and t =2+ (p — 1)p. Then

np—1-i)=2p—2-2i)p+(—-1)(p—1-i)p°
(2p—2-2i)p+(p—1)—(i+1)+(i+1)p?
(p—i—2)+(2p—2i —2)p+ (i + 1)p?,

2ip +i(p — 1)p°

=(i—1)+2ip+ (p —i)p*.

ni =

Now

(yn o xn)2 _ an o 2xnyn + x2n

L+dp+(p=2)p° _ 9,.2p+(p—1)p°, 2p+(p—1)p + 2L+ (p—2)p°

=Y Y

Hence we have

p—1

(yn _ xn)(l)—l)p — Zyinpxn(p—l—i)p
=0

p—1
= Z y PO+ (= Dp+2ip® (i 1)+ (p—i=2)p+(2p—-2i-2)p”
i=0
Then
(yn - (,En)t = A; —2A5+ As,

where we set

49
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p—1
Ay =y Hart -2 Zy(p—i)+(i—1)p+2ip2x(i+1)+(p—i—2)p+(2p—2i—2)p2

1=0

p—1
= Zy(p7i+2)+(i+3)p+(2if2)p2x(i+1)+(p7i72)p+(2p72i72>p2

=0

p—1
Ay = 2P HP=Dp% 20 +(p=1)p Z y(P=)+(i=D)p+2ip® (1) +(p—i=2)p+(2p—2i-2)p

=0

|
—

p
= Y

i

(p—i+1)+(i+1)p+(2i=1)p? 1. (i+2)+(p—i)p+(2p—2i—3)p?

Il
=]

p—1
Ag = gltir+(p-2)p’ Z yP=DF(E=Dp+2ip* § (i+1)+(p—i=2)p+(2p—2i-2)p

=0

p—1
_ Z y(pfi)+(ifl)p+2ip2x(i+3)+(p7i+2)p+(2p72i74)p2.

=0

We start analysing A; for which we have the following exponents:

3<p—i+2<p+2, 3<i+3<p+2, —2<21-2<2p—4,
1<i+1<p, —1<p—-1—-2<p-—-2, 0<2p—20—-2<2p—2.

For i < 2 we cannot obtain a term of maximal degree since p —i+2 > p and (p — i +
2 —p)+ (i+1) = 3. The same holds for i = p—1, since (p—i+2)+ (i+1—p) = 3, and
for i =p— 2, since (i +3 —p) + (p—i—2) = 1. (It is easy to check these terms.) Hence
we just need to consider the following:

p—3

Zy<p7i+2>+(i+3>p+<2i72>p2x(z‘+1)+<p7172)p+<2p72i72)p2_

=3

Apart from the coefficients related to the p? part, all the rest are positive and less than
p. Now if i < 223 we have 20 —2 < p-5and 2p—2i —2>2p—p+3—2=p+ L.
Therefore the maximal degree cannot be reached since (2i —2)+ (2p—2i—2—p) =p—4.
Ifi > % we have 2i —2 > p+ 1 and 2p — 2i — 2 < p — 5. Therefore the maximal degree
cannot be reached since (2i — 2 — p) + (2p — 2i — 2) = p — 4. Hence we remain with
ie {2t %} = {m, m + 1}. Hence the coeflicient related to the maximal degree is

o= G G ) = G G ()
_ (m+3)(m+2)(m+1)m

214!

m+3)(m+2)(m+1)m
_ et A

[(m+3)(m+2)+ (m+4)(m—1)]
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—(m+3)(m +2)%(m + 1)m.

2 x 4!
Analysing A, we have
p—1
Ay = Z y P D DpH(2i=1)p o (i42) +(p—i)p+(2p—2i=3)p"
=0

We have the following exponents:

2<p—i+1<p+1, 1<i+1<p, -1<2i-1<2p-3,
2<i+1<p+1, 1<p—-i<p, —1<2p—2i—3<2p—3.
If one of the exponents is greater than or equal to p, then similarly to the previous case,
we cannot obtain a monomial of maximal degree. Hence analysing the restriction on the

exponents it is possible to derive that the only value for ¢ which produces a maximal
degree term is ¢ = m. Therefore the coefficient is

L))

Coy =
 —(m+2)(m+1)*m*(m — 1)
B 4! ‘
For As,
p—1
As = Z y == D)p+2ip” 1 (i43)+(p—i+2)p+(2p—2i—4)p*
i=0
We have the following exponents:
I<p—i<p, -1<i-1<p-2 0<20<2p—2
3<i+3<p+2, 3<(p—i+2)<p-2, —2<2p—2i—4<2p—4.

With the same argument as before we have the only possible monomial of maximal
degree for i € {253, 21} = {m — 1,m}. Hence we have coefficient

m+2\/m—-2\[(p—3 " m+1\/m-1\/p—-1
c3 = .
T Am-2)\m-4)\ 0 m—3)\m-3)\ 2
It is not difficult to prove that ¢; = c¢3. In total we have a maximal degree term with
coefficient ¢ = 2¢7 — 2¢o. Now
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o — ¢y = (Mt 3)(m + 2°(m+ Dm | (m+2)(m + 1)*m?(m — 1)

2 x 4! 1
= P DOED) o — 1) m) -+ 1) — (i + 3)(m +2)
~ R e =)

a s (ot 11

which is clearly non-zero for p > 11. Thus Exponent #10 is eliminated.
7.11. FExponent #11
Letn=1+p+ (p—1)p* and t = p — 1. Then

np—1—i)=p-1-i)+(p—-1—-ip+(p—1-1i)(p—1)p°
=(p—-3—-2)+(p—i)p+(i+1)p
ni=i+ip+i(p—1)p?

= (2 — 1) +ip+ (p —i)p*.

In this case we have

i
L

(yn _ mn)pfl ynixn(pflfi)

™

LS
[
~ o

2i—1+ip+(p—i)p? 1, (p—3—2i)+(p—i)p+(i+1)p?

Y

-
I

For i =0 or i = p—1 it is easy to verify that we cannot obtain a monomial of maximal

degree. For i < ”2;3 and for ¢ > ’%"17 by analysing the coefficients related to the p°

exponent, it can be observed that no term of maximal degree can be obtained. Hence we

are left with the case i = p_;l = m, which is

ypf2+mp+(m+1)p2I(p*2)+mp+(m+1)p2

Hence the coefficient corresponding to the term of degree p3 — 1 is

‘ _<p - 1p—_<; - 2)) (p - m) (p - ﬁtﬂi * ”)

()G
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(m+1)(m)

Il
I
|
DN | —
+
—
N~
|
N | —
N

This eliminates Exponent #11, the last remaining explicit case.
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