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Abstract
As the finite Hall planes are Non-Desarguesian, the Pappus Theorem does not hold in them.
In this paper we state and prove some weaker versions of Pappus’s Theorem in Hall planes.
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1 Introduction

Let P be a set whose elements we will call points, and £ be a collection of subsets of P
which we call lines. If a point is an element of a line, we say that it is on the line, or that the
line passes through the point. In this situation, we may also say that the line is on the point,
that the line contains the point, or that the point and line are incident. A set of points is called
collinear if all points from the set are on the same line. A set of lines is called concurrent if
all lines from the set are on the same point. We say that the pair (P, £) is a partial plane or a
configuration, if every two distinct points are on at most one line, and every line contains at
least two points. We say that configuration (P, £) is isomorphic to a configuration (P’, £') if
there exists a bijection P — P’ such that the induced map £ — L is also a bijection. We say
that a configuration (P, £) is embedded in a configuration (P’, £') if there exists an injective
map ¢ : P — P’ such that the image of every line £ € L, defined as {¢(P) : P € £},is a
subset of some line of £’. When (P, £) is embedded in (P’, L), we will also say that (P, £)
isin (P, L').

We find the question whether or not a given configuration is embedded in a finite affine or
a finite projective plane of great interest. Often the question is asked in the case when a partial
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Fig.1 Diagram of the Pappus
configuration in a projective
plane

plane is an affine or a projective plane itself. Some related results can be found in Moorhouse
and Williford [15], Lazebnik, Mellinger, and Vega [11], Metsch [13], Galiskan and Petrak
[3], Petrak [18, 19], Caliskan and Moorhouse [2], Tait [21], and numerous references therein.

A celebrated result of Ostrom [16] establishes the existence of the Desargues configuration
in every finite projective plane. The short proof in [16] is a beautiful pigeonhole argument
that actually demonstrates the existence of many Desargues configurations in the following
strong form:

In a finite projective plane, let £1, £, and £3 be three distinct lines through a point P.
Let R and S be any two points not on L1, L2, or £3. Consider the set of triangles with
one vertex each on £1, £5, and €3, one side going through R and the other side going
through S. At least one pair of triangles of this set satisfies Desargues’s Theorem.

Finiteness of the plane is important: Hall’s “free plane” construction in [5] provides examples
of infinite projective planes that do not contain the Desargues configuration.

As far as the authors know, the existence of a Pappus configuration (see Fig. 1) in every
finite projective plane remains unknown. We believe that it does exist, and this paper grew
from our failed attempt to prove this.

When a ternary ring that coordinatizes the projective plane “contains” a finite field, the
Pappus configuration exists. Indeed, restricting coordinates of points A;, B;, Ci, i = 1, 2,
to a finite field, leads to a Pappus configuration. The authors are not aware of any example
of a finite projective plane for which every coordinatization with a ternary ring “does not
contain” a finite field. Even if such a plane exits, it still may contain Pappus configurations.

Moreover, in all planes we considered, the number of Pappus configurations was actually
large. This was not too surprising, since the collineation group of the plane acts on the set
of its Pappus configurations. Therefore, when the existence of Pappus configurations in a
plane was clear, we tried to find a statement as close as possible to Pappus’s Theorem in the
plane. Here is the motivation for the main result of this paper. It would imply the existence
of Pappus configurations in finite projective planes in a strong way.

Question 1.1 (3 + 2 Question) Is it true that in a finite projective plane the following holds:
For every pair of lines £1, £, and every three points on £1, and every two points on £, one

more point on € can be found so that the six points define a Pappus configuration?

A question with a weaker condition is the following.
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Question 1.2 (3 + 1 Question) Is it true that in a finite projective plane the following holds:
For every pair of lines £1, £y and every three points on {1, and every one point on {3, two
more points on £y can be found so that the six points define a Pappus configuration?

The 3+ 1 Question was answered affirmatively for all planes of order less than 25, and for
some of order 25 using the data available on Moorhouse’s database of projective planes [14],
or using built-in Magma commands and our own code. In particular, it is answered affirma-
tively for Hall planes of orders 9, 16, 25; for the Hughes plane of order 25; for Czerwinski
& Oakden planes of order 25: al, a6, b3, b6; and for Rao planes of order 25 : a5, a7. As of
yet, we have been unable to answer the 3 + 1 Question completely even for Hall planes of
orders greater than 25.

It is easy to argue that the 3 + 1 Question is affirmed in all affine planes of order » if and
only if it is affirmed in all projective planes of order n.

The 3 +2 Question was answered negatively for all planes of order 25 and for some planes
of order 49: Hall plane, Hughes plane, and Dickson Near-field plane. Moreover, we have not
found finite nonclassical planes (i.e., the ones that cannot be coordinatized by a field) where
the 3 + 2 Question is answered affirmatively. Clearly, it takes longer (for the same plane
order) to verify numerically that the 3 4 1 Question has the affirmative answer than to obtain
a negative answer to the 3 + 2 Question. That is why the latter could be tested for larger
planes.

If one strengthens the condition of the 3 + 2 Question requiring that three arbitrary points
on line ¢; are chosen, a similar “3 + 3 Question” is equivalent to Pappus’s Theorem, and
hence, the answer is affirmative only in classical planes. One can weaken the condition of
the 3 4 1 Question further by not requiring that any arbitrary points on line ¢, are chosen
and call it a “3 4 0 Question”.

In order to state our results, we need additional definitions and some preliminary results.
They are collected in Sect.2. In Sect.3, we describe our results for Hall planes, and their
proofs appear in Sect. 4. In Sect. 5, we make concluding remarks and mention several open
problems.

2 Definitions, notations, and preliminary results

Our exposition is based on Hall [5, 6], and Leshock [12]. In [12], many proofs that were not
explicit in [5, 6] were checked analytically.

2.1 Hall system

LetF = F, represent the finite field of prime power order g and H = {(a1, a2) : ai, a2 € F}.
We call F the basefield of H. Clearly, |H| = ¢. It is convenient to have multiple notations for
elements of H. Let the bold letter a denote the ordered pair, (a1, a2) € H. We will identify
an element b = (b, 0) of H with the element b of IF and write, for simplicity, b € F, and
we will write b = (by, by) ¢ F when by # 0.

The Hall system is a two dimensional (right and left) vector space H over F equipped
with a certain multiplication of vectors. The addition in the Hall system {H, +, -} is the usual
addition in F2. To define multiplication in {H, +, -}, we use the operations from the basefield
and a quadratic polynomial f(x) = x> — rx — s with r, s € F which is irreducible over F,
and we refer to it as the defining polynomial of the system. More specifically, fora, b € H,
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1206 F. Lazebnik, L. Leshock

A. a+b=(ar,ar)+ (b1, b2) = (a1 +by,a2 + by)
M1. ab = (a1, a2) - (b1, b2) = (a1b1, azby),if b e F
M2. ab = (a1, a) - (b1, b2) = (a1b1 — azby ' f(b1), arby — azby + axr), if b ¢ F

For Hall systems over basefields with ¢ > 3, multiplication is neither commutative nor
associative; it is right distributive but not left distributive over addition. Clearly, H is a group
under addition with identity element 0 = (0, 0). It’s also easy to see that the identity element
for multiplication in H (both left and right) is 1 = (1, 0).

2.2 Hall affine plane

Having a Hall system H, we can construct a Hall affine plane A as follows. The point set of
AnisP = {(X,y) : X,y € H}.Forarbitrary fixedm, k € H, the sets {(x, xm+k) : x € H},
represent “non-vertical” lines with equations of the form y = xm + k. For arbitrary fixed
k € H, the sets {(x,Kk) : x € H]}, represent “horizontal” lines with equations of the form
y = k. For arbitrary fixed ¢ € H, the sets {(c,y) : y € H]}, represent “vertical” lines with
equations of the form x = ¢. All these ¢* 4 ¢ lines form the set £ of lines Az It is easy to
verify that Ay = (P, £) is an affine plane of order ¢2. The non-vertical lines y = xm + k
will be referred to as type I lines or type 2 lines depending on the “slope” m; type 1 lines
have m € IF, and type 2 lines have m ¢ F.

2.3 Collineation of Hall affine plane

Our exposition here is based on Hughes [9]. Understanding the action of the collineation
group of A4 on points, lines, and pairs of lines of .43; was crucial for our work on the 3 + 1
Question, and some facts presented in this section are original. Those proofs which we omit
(many are straightforward) can be found in [9] and [12]. All notions and facts related to
groups and group actions, used in this section, can be found in [7].

Let A = (P, £) be an affine plane. A bijection ¢ : P — P which preserves collinearity
of points in A is called a collineation. A collineation ¢ acts on the set of lines £ in an obvious
way: for £ € L, p(£) = {¢p(P) : P € £}. A point P (line ¢) is fixed under ¢ if ¢p(P) = P
(¢ (£) = £). We say that a line ¢ is fixed pointwise when every point on £ is fixed. The parallel
class of lines is fixed under a collineation if the collineation permutes all lines in the class.

A translation of an affine plane A is a collineation of .4 such that the parallel classes are
fixed and there is a parallel class such that every line from the class is fixed. It is easy to see
that for fixed @, b € H, the map 7, : P — P givenby 7, ((X,y)) = (X +a,y +b)isa
translation.

Let TR = {14 : a,b € H} be the set of all translations 7, of Ay = (P, L£). For
arbitrary fixed ¢, m, k € H, following [9] and Kallaher [10], we will denote the vertical line
{(c,y) : y € H} as [c], and the non-vertical line {(x, xm + k) : x € H} as [m, k]. Then it’s
easy to check that T = 7, ), acts on £ in the following way:

7 ([e]) =[c+al; 7 ([m,k]) = [m,k — am + b].

We summarize the properties of 7R below.

Proposition 2.1 TR is a subgroup of the collineation group of Ay and it is isomorphic to
the additive group of the vector space H* over F. It is sharply transitive on P, preserves the
classes of parallel lines and acts transitively on the set of lines in every parallel class.
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On Pappus configurations in Hall planes 1207

If the group of translations of an affine plane A is transitive on the points of .4, the plane A
is called a translation plane, see [17]. Thus, the Hall affine plane .44 is a translation plane.
It is known that translation planes are exactly the planes which can be coordinatized by
quasifields (which we don’t need to define), of which the Hall system is a particular example.

In 1959, Hughes gave an analytic description of the entire collineation group of Hall
planes, see [9] and his related work [8].

Remark 2.2 Hughes used different conventions than Hall did in his construction of Hall
planes, e.g., multiplication is left not right distributive over addition and the equation of a
non-vertical line is of the form mx + y = Kk rather than y = xm + k. We express Hughes’
collineation subgroups using Hall’s conventions.

Hughes presents the collineation group of Hall planes as generated by six subgroups. Three
of those subgroups are relevant to this paper. One of them, 7 R has been already presented,
and the other two, ATP and LNR, are presented below.

Let S be a2 x 2 nonsingular matrix over F. For x € H, let S act on H as xS = (x1, x2)S.
Define @ = 15~!, where 1 = (1, 0) is the multiplicative identity of H. Hence, a§ = 1.

Let og be amap o5 : P — P, os((X,y)) = (x5,¥S). Such a map oy is called an
autotopism of Az, and it is easy to check that it is a collineation of Az. Let AT P = {05 :
S € GL(2,F)} be the set of all autotopisms of Ay = (P, £). Then it’s easy to check that
o = og acts on L in the following way,

o ([e]) =[eS]; o ([m, K]) = [(am)S, kS].

We summarize the properties of autotopisms as follows.

Proposition 2.3 AT P is a subgroup of the collineation group of A, and it is isomorphic to
G L2, ). Itfixes the parallel classes of type 1 lines, acts transitively on the parallel classes of
type 2 lines, and it has two orbits on the set of vertical lines (one orbit consists of the line [0]).

Finally, we present the third group of collineations of Az that we use. Let a, b € F not
—ar +b as

b
defining polynomial f(x) = x> — rx — s of H. Clearly, L € GL(2,F).

both zero, and define the matrix L = ( ), where r, s are the coefficients of the

Remark 2.4 Our matrix L is the transpose and has a different sign in position (1, 1) than the
corresponding matrix in [8]. This is due to the adjustment of Hughes’ conventions to Hall’s
conventions, see Remark 2.2.

For (x,y) € H2, let L act on H? as (x, Y)L = ((—ar + b)x + ay, asx + by). Let
A=AL =Agpbeamap A : P — P given by A ((X,y)) = (X, y)L. Then it’s easy to check
that A acts on £ in the following way:

[be], ifa=0
A(leh = [(g, 0). —7”—“’;’—“2%]  ifa#£0
Ifmel,
[m, bK], ifa=0
A ([m, k]) = { [aK], ifa #0andm| =r —

b
a
[( as+m1b 0) b*—abr—da’s :I’ ifa # 0and m #r_s

amy—ar-+b’ > amj—ar+b

@ Springer



1208 F. Lazebnik, L. Leshock

Ifm¢F,
A ([m, k]) = [m, —akm + bK]

Such a map X is called a linear map of Ay. Let LNR = {ka,b a,bel,(a,b) #(, 0)}
be the set of all linear maps of Ay = (P, L).

We will denote the set of lines that are of type 1 or vertical as BF (slope is from basefield
or 00), and the set of lines that are of type 2 as NBF (slope is not from the basefield). There
are fewer BF lines than N BF lines: ¢ + g2 of the former and ¢* — ¢ of the latter.

Proposition 2.5 LN R is a subgroup of the collineation group of Ay, and it is isomorphic to
the multiplicative group of the quadratic extension field Fla] = Fy[o] where o = —ra+s,
and so to quz. LNR fixes the parallel classes of lines in N BF and is transitive on the set of
all parallel classes of lines in BF.

We conclude this subsection with several statements describing the action of the groups
TR, AT P and LNR on lines of Ayy.

Proposition 2.6 (i) The group generated by TR and AT P acts transitively on all type 2
lines and on all vertical lines.
(ii) The group generated by T R and LN R acts transitively on all BF lines.

Proof (i) By Proposition 2.3, AT P acts transitively on the parallel classes of type 2 lines
and has two orbits on the set of vertical lines, one of which is [0]. By Proposition 2.1,
T R acts transitively on the lines in every parallel class.
(i) By Proposition 2.5, LN R acts transitively on the parallel classes of lines in BF. By
Proposition 2.1, T R acts transitively on the lines in every parallel class.
O

Based on the above propositions, it is clear that there are at most two orbits of lines in
Az¢. The sets BF and N B F partition £ and are precisely these orbits. This was implicitly
shown in [9].

The next proposition describes the action of certain collineations in the stabilizer of the
origin on lines through the origin.

Proposition 2.7 [12] For any line through the origin, there exists a group of collineations that
fixes the line, fixes the origin, and acts transitively on the other points of the line.

Proof We consider the following three cases: (i) x = 0, (ii) y = xm with m € F, and (iii)
y = xm withm ¢ F.

(i) Take € : x = 0. The line £ is on the origin. Every point of ¢ is of the form (0, y) for some
y € H.If y # (0, 0), then for every nonzero z € H, there exists S € GL(2, ) such that
yS = z. Hence, AT P acts transitively on points of the £ : x = 0 distinct from the origin.

(ii) Take £ : y = xm, with m € FF. The line £ is on the origin. Every point of the line ¢ is of
the form (x, xm) for x € H. If (x, xm) and (z, zm) are two nonzero points of £, then the
same S as we used in the proof of part (i), will fix £ and map (x, xm) to (z, zm). Hence,
AT P acts transitively on points of the ¢ distinct from the origin.

(iii) Take ¢ : y = xm, with m ¢ F. The line € is on the origin. By Proposition 2.5, the action
of LN R fixes the parallel class of line ¢. Clearly, LN R fixes the origin. Hence, it fixes
the line .
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Let (v, vim) and (w, wm) be two distinct nonzero points of £. Let us show that there exists
a, b € F with (a, b) # (0, 0) such that A = A, , € LN R maps (v, vim) to (w, wm). This is
equivalent to solving the equation (—ar + b)v + avm = w for a, b.

Since H is a two dimensional vector space over I, and v and vm are linearly independent
over [ becausem ¢ I, there existcy, co € Fsuchthatciv+covm = w. Setting —ar+b = ¢
and a = ¢, we get b = c| + cor. Clearly, (a, b) # (0, 0) as otherwise, w = 0. Hence, the
transitivity statement is proven. O

Corollary 2.8 [12]

(i) Any pair of intersecting lines can be mapped by a translation of .43 to a pair of lines
{€}, €}} meeting at the origin. Furthermore, if £} is in BF, then there exists a collineation
which maps it to £1 : x = 0. Otherwise, E’l is in N BF, and there exists a collineation
which maps it to £ : y = x(0, 1). Let £, be the image of the second line under either
of these two maps. There exists a subgroup of the collineation group of the plane which
fixes the origin, fixes lines £; and ¢, and acts transitively on the points distinct from the
origin of £, or acts transitively on the points distinct from the origin of £;.

(i) Any pair of parallel lines can be mapped by a translation of A3 to a pair of lines {£/, £5}
with E/l on the origin. Furthermore, if Z/l is in B F, then there exists a collineation which
maps it to £1 : y = 0. Otherwise, Z’l is in NBF, and there exists a collineation which
maps itto £; : y = x(0, 1). Let £> be the image of the second line under either of these
two maps. There exists a subgroup of the collineation group of the plane which fixes the
origin, fixes line £, fixes the parallel class of line ¢», and acts transitively on the points
distinct from the origin of £, or acts transitively on the points of £5.

Proof (i) The first statement follows directly from Proposition 2.1. Since £} and ¢/, intersect
at the origin, any collineation that fixes the origin and the parallel class of each line, fixes
both lines.

Case 1 If £}, ¢, € BF, since LNR fixes the origin, £| can be mapped to £; : x = 0 by
Proposition 2.5. Then the image of £} is £, : y = xm for some m € F under this
mapping. Following part (i) of the proof of Proposition 2.7, we conclude that there
exists amap in AT P that acts transitively on the points of ¢; different from the origin.
By Proposition 2.3, and the fact that elements of AT P fix the origin and the pair of
lines intersect at the origin, it maps ¢; to itself. Alternatively, following part (ii) of
the proof of Proposition 2.7, we conclude that there exists a map in AT P that acts
transitively on the points of ¢, different from the origin. By Proposition 2.3, and the
fact that elements of AT P fix the origin and the pair of lines intersect at the origin,
it maps £ to itself.

Case 2 If ¢, £, € NBF,wefirstuse acollineation from AT P to map £} to £; : y = x(0, 1).
Such exists by Proposition 2.3 . Let £}, be mapped to a line £, by this map. Then £ and
£, intersect at the origin and are in N B F. By part (iii) of the proof of Proposition 2.7,
LN R acts transitively on points of £ distinct from the origin, fixes the origin and the
slope of any line in N BF. Hence, it fixes ¢,. Alternatively, we can show that there
exists a collineation in LN R that acts transitively on points of £, distinct from the
origin, fixes the origin and the slope of any line in N B F. Hence, it fixes £;.

Case 3 If £) € BF and ¢, € NBF, then we can use a collineation of LN R to map £ to
£1 : x = 0, by Proposition 2.5. Next, by Proposition 2.3, we can use a collineation
of AT P to map Z’Z to £> : y = x(0, 1). Note that this collineation necessarily fixes
ly.

Now, we show that for every two nonzero points on ¢1, (0,y) and (0, z), where
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1210 F. Lazebnik, L. Leshock

y = (y1, y2) and z = (z1, z2), there exists a nonsingular 2 x 2 matrix S over F such
that yS = z and ((1S_1) O, 1)) S = (0, 1). This will ensure that there is a subgroup
of AT P that fixes both lines, fixes the origin, and acts transitively on the points of ¢;
distinct from the origin. Searching for $ with four undetermined entries, we obtain

that
V1Z1+ry221—Sy222 —y2z1+y122
g = yi+ryiya—sy;  yitryiya—sy3
- s(=y2z1+y122 Y1zi+ry1z22—sy222
Yitryiv—sy;  yitryiva-sy;

The denominators of fractions of entries of S are nonzero, due to points y, z being
nonzero, and the irreducibility of the defining polynomial f(x) = x> —rx —s of H
over F.

Similarly, we can show that there exists a subgroup of AT P which fixes both lines,
fixes the origin, and acts transitively on the points of £, distinct from the origin.

(i1) As lines are parallel, then both are either in BF or in N B F. The proof follows the same
ideas as the one of part (i) and is shorter. Because of this, we omit it.
[}

Now, we consider the action of the collineation group of .47, on the set of all ordered
pairs of distinct lines which we refer to as just pairs of lines. As the collineation group
acts on Pappus configurations, our proofs of the main results can be restricted to Pappus
configurations on special pairs of lines. Since we have two orbits of lines, BF and NBF, we
consider three cases corresponding to choosing two lines from BF, or from NBF, or one
line from each orbit. Propositions 2.9,2.10, and 2.11 below follow easily from Corollary 2.8
and will be instrumental for the proofs of the main results in Sect. 4.

Proposition2.9 (BF/BF)

(i) Any pair of intersecting lines from the B F orbit can be mapped by a collineation of Ax
to a pair of lines (€1, €2) where €1 : y = X for some p € F and € : x = 0. Moreover,
for any point on £1 : A1((«, B), (L1, (1 B)), such a map can be found so that Ay is
mapped t0 (0, 1), (0, 111)).

(ii) Any pair of parallel lines from the B F orbit can be mapped by a collineation of A to
a pair of horizontal lines (£1,£y) where £1 'y = k and £, : 'y = 0 for some k € H.
Moreover, for any pointon £1 : A1((«, B), (k1, k2)), such a map can be found so that A
is mapped to ((0, 1), (k1, k2)).

Proposition 2.10 (NBF/NBF)

(1) Any pair of intersecting lines from the N B F orbit can be mapped by a collineation of Ay
to apair of lines (£1, €2) where £y : y = xX(u, ¥) for some u, ¥ € Fand > : y = x(0, 1).

2
Moreover; for any point on £] : Aj ((oz, B), (oz,u - w, rB— B+ aw)),

such a map can be found so that Ay is mapped to ((0, 1, (%‘H‘“z, r— M))

(i1) Any pair of parallel lines from the N B F orbit can be mapped by a collineation of A to
a pair of lines (£1, €2) where £1 : y = x(0, 1) + k and £, : y = x(0, 1) for some k € H.
Moreover, for any point on £1 : A1((«, B), (k1 + 5B, k2 + a + 1)), such a map can be
found so that Ay is mapped to ((0, 1), (k1 + s, k2 +1)).

Due to the asymmetry in the versions of Pappus’s theorem that we will establish, the role
of lines ¢, £5 in the ordered pair (€1, £3) is not symmetric either. Therefore, we need to
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On Pappus configurations in Hall planes 121

consider two cases: line £ from N BF and line ¢, from B F, and line ¢; from B F and line
£, from N BF. Also, note that if one line in a pair comes from B F and another from NBF,
they cannot be parallel.

Proposition 2.11 (NBF/BF & BF/NBF)

(i) Any pair of intersecting lines with the first from N BF and the second from BF can be
mapped by a collineation of Ay to £1 1y = x(0, 1), €2 : x = 0. Moreover, for any
point on £y : A1((a, B), (sB, o +rp)), such a map can be found so that A1 is mapped
to ((0, 1), (s, r)).

(ii) Any pair of intersecting lines with the first from BF and the second from NBF can
be mapped by a collineation of Ay to £; : x = 0,4, : 'y = x(0, 1). Moreover, for
any point on £1 : A1((0,0), (a, B)), such a map can be found so that Ay is mapped to
((0,0), (0, 1)).

3 Results

In Sect. 1 we mentioned the 3 4+ 0 Question which motivates our results. We also presented
the 3 + 1 Question together with some comments. Here we wish to mention several partial
results concerning the 3 4+ 1 Question.

Recall that in the Hall affine plane of order ¢2, the point set consists of ordered pairs of
elements of a Hall system, and that each element of the Hall system may be represented as an
ordered pair of elements of the basefield F;;, where g is a prime power. We call each basefield
element of a point a component. If a line is fixed, and we want to choose a point on it, it
is sufficient to choose either the x-coordinate or the y-coordinate (in the case of a vertical
line) of the point. It is clear that for fixed lines € and ¢,, the number of ways of choosing an
ordered triple of points on £1 and one point on £ is ~ (qz)3 g% = ¢8, g — 0o. When we
can answer the 3 + 1 Question affirmatively for all but O(g”) choices of the four points, we
say the 3 + 1 Question is affirmed asymptotically.

We succeeded affirming the 3 4+ 1 Question asymptotically in some cases, but not in all.

Theorem 3.1 The 3 + 1 Question is affirmed asymptotically in Ay when two lines €1, > are
both from BF or are both from NBF.

We succeeded affirming the 3 + 0 Question in more cases.

Theorem 3.2 The 3 4 0 Question is affirmed in Ay when two lines £, £ are both from BF
or are both from N BF and when line {1 is from N BF and line €5 is from BF.

How can one compare an asymptotic 3 + 1 result to a complete 3 + O result on a given
pair of lines? We don’t see an obvious way to compare them, and we think that is a matter of
taste of a reader.

Our most general result is an understatement of what we believe to be true. Here is our
main result.

Theorem 3.3 (2 + 0 Theorem) In a Hall plane the following holds: For every pair of lines
L1, £y and every two points on £1, a third point on £ and three points on £y can be found so
that the six points define a Pappus configuration.
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o [, pl

As((g,h), (g, h)Y + p)

Ai((e, B), (0, A+ ) Bi((7,8), () Cil(e ) (1)) N

Fig.2 Diagram of Pappus configuration with labels for the 2 4+ 0 Question, no line is vertical

4 Proofs of Theorems

Let us describe the ideas used in the proofs of our results. As we study Hall planes analytically,
our technique is “just” analytic geometry over Hall systems. The proofs of existence of
Pappus configurations follow from showing that certain systems of equations have solutions.
In general, finding all solutions is not feasible. Therefore, we try to find at least one particular
solution that will correspond to finding a Pappus configuration. Let us call the components
of given points and the coefficients in the equations of lines £ and £, parameters, and the
components of points whose existence we wish to establish unknowns. In all those cases,
our approach is to specialize some unknowns and determine others. In all cases, we try to
minimize the number of parameters by using the properties of the collineation group of
A7. The details are stated in Propositions 2.9, 2.10, and 2.11. For example, to prove the
2 + 0 Question is affirmative, we would assume that points A and Bj are given and points
C1, A2, By, and C3 are to be found. See Fig. 2. To make it easier to distinguish between
parameters and unknowns, we denote parameters by Greek letters and unknowns by Latin
letters, except for r and s, which will always denote the coefficients of the defining polynomial
fx) =x%—rx —sof H.

In Fig. 2, the components of the given points A; and Bj on line ¢ correspond to the
sequence of parameters (&, 8, ¥, ). The elements of the Hall system representing the coeffi-
cients of the lines are (k, , p, ¥). The components of point C; on line £; and points A, B,
and C» on line £, the existence of which we are trying to prove, correspond to the sequence
of unknowns (e, j, g, h, t, v, w, z) as illustrated in Fig. 2.

We use the coordinates of the points on lines ¢; and ¢ to find equations of lines
A1B>, AoB1, A1Co, A2Cy, B1C», and B>C|. This created the first difficulties, as the coef-
ficients in the equations of these lines depended heavily on whether the corresponding
parameters or unknowns were assumed to be in the basefield of the Hall system or not.
Therefore we had to keep track of several possible equations for each of the six lines together
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with the assumptions on the nature of parameters and unknowns that were involved in finding
each particular equation.

Then, using our choice of particular equations for each of the six lines, we found the
coordinates of points A3z, B3 and C3 (if the corresponding pairs of lines intersected) or we
showed that lines A; B, A>2Bj, and A1C3, A,Cq, and B1C3, BoC| occur in parallel pairs.
While doing this, we again had to make assumptions on the coefficients of equations of lines
being in or out of the basefield of the Hall system. When the points A3, B3 and C3 exist, to
check that there is indeed a Pappus configuration, we equated slopes of lines A3z B3 and A3C3
or required that both slopes did not exist. This led to a system of equations with respect to the
unknowns, and our goal was to prove that a solution exists. The number of various equations
to solve grew extremely fast (it was in tens of thousands). As each line came with conditions
on the parameters and unknowns that led to it, we tried to determined for each pair of lines
whether these conditions were contradictory, and this allowed us to reduce the number of
cases substantially (to about five thousand).

All this was done by using symbolic features of the software Mathematica [23] since the
expressions for the coordinates of points A3, Bz and C3 were unmanageable otherwise. As
the symbolic power of Mathematica over finite fields is much weaker than it is over Q (the
default in Mathematica [23]), we attempted to solve the systems of equations symbolically
assuming that all constants in our systems come from Q. In those cases, where Mathematica
produced results over Q, it was generally easy to interpret them as outputs from symbolic
computations over afinite field F = F,, for some prime power g. Some of the basic subroutines
are listed in [12]. Often Mathematica could not find results over Q, and we had to specialize
some unknowns in a certain way to enable the program to find the remaining unknowns.
Sometimes we could find this needed specialization of some unknowns and sometimes we
could not. In the latter, we tried to argue that a solution existed.

In what follows, we present proof of the 2 + 0 Theorem. For proof of Theorem 3.1 that is
largely similar to the one of the 2+ 0 Theorem, we refer the reader to [12]. Due to a limitation
of space, we provide proof only for the cases for which the 2 + 0 Theorem is not established
in [12]. Specifically, the proofs of the cases that use Propositions 2.10, and 2.11 (ii) are new.
We present them below with the first case in greater detail.

4.1 Case: NBF /N BF (i): intersecting lines

For this case, we consider any pair of intersecting lines from NBF.

Proof We analytically construct a Pappus configuration to prove the 2 + 0 Theorem. (This
is also a proof that the 3 4+ 0 Question is affirmative in this case.) Using Proposition 2.10
without loss of generality, we can assume that ¢; : y = x(u, ) and £ : 'y = x(0, 1)
for some w, ¥ € F, ¢ # 0. We can determine the coordinates of points Ay, By, C; and
Az, By, C>. Next, we build a type 2 line B1C, then use it to determine the equations of the
remaining lines A1 By, Ay By, A1C;, A2Cq and B, C. Each of the six type 2 lines comes with
constraints to ensure that the denominators and the second component of slope are nonzero.
Then, we compute the the intersection point of lines B;C and B>C|, point A3 and determine
the conditions for its existence which we use to determine the conditions for the existence of
and the coordinates of points B3 and C3. (Note: Our choice of which line or point to build
first is arbitrary.)

In order for Mathematica to complete the computation that verifies that the slope of the line
A3z B3 equals the slope of the line A3C3 and therefore the Pappus line exists, we must carefully
choose specializations of some unknowns that allow for a Pappus configuration to exist. This
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also serves to simplify the computation. Besides requiring that we have confirmation that the
Pappus configuration exists, we must verify that each step in the computation is valid in the
sense that we have not violated any laws of algebra or our own assumptions in any of the
steps.

We begin with the previously created general formulas for the points A, By, C1 and
A, By, C2. Using Proposition 2.10, without loss of generality, we can fix the point A; by
setting « = 0 and 8 = 1. We provide a solution to this case by using specializations for the
unknowns: g =t = z = 0. The resulting equations of lines ¢; and ¢, and the coordinates of
the points used in the Pappus configuration are listed below. Recall that f(x) = x> —rx —s
is the defining polynomial of H.

1 (1, y2) = (er, x2) (1, ¥) £ (y1, y2) = (x1, x2)(0, 1)
A (O, D, (=fw)/ Y, r — ) Az (0, h), (sh,rh))

Bi: ((y,8), yu— f()é/¥,6(r — ) +yv¥))  Ba: ((0,v), (sv,rv))

Cr: (e, )), (e — f()j/, j(r —p) +ey)) Gt ((w, 0), (0, w))

Note that the denominator in some of the components of the points above is i which is
nonzero based on our assumption that ¢ is a type 2 line. As a sample of the output in this
case, the slope m and y-intercept k of line A B; is provided below since it has the most
compact formulas for any of the six lines A1 B, Ay By, A1Ca, A2Cq, B1C», and B,C| that
we can display in this case.
my = pu/(1 —v)
my = (s(=1+v)* = u(r(=1+v) + W)Y/ (=1 + V) ((=r + ) + s(=1 +v¥)))
ki =v(s + 0 —wu—s¥)/((=1+v)¥)
ky =vu/(1 —v)

For the denominators to be nonzero, we must not use v = 1 or a v that satisfies the
quadratic equation in v, s V2 (=s+u(—=r+pn) —sy)v+s—pu(—r+upn) =0. To justity
that this quadratic polynomial in v is not identically zero for some sequence of parameters,
consider the leading coefficient, s . It is nonzero since ¥ # 0 and —s is the constant term
in the defining polynomial of H. Hence, in a large enough basefield, there exists a v # 1 that
is not a root of the quadratic polynomial (in v) listed above. Similar reasoning works for the
denominators of the remaining five lines we build between the points on £; and 5.

Since we chose to create type 2 lines A B, A2B1, A1Ca, A2Cy, B1Ca, and BCq, we
must also consider the constraints created to ensure that the second component of slope is
nonzero for each line. We find that for line A B>, the numerator of m> equals zero when
v = (25 +ru£~r?+4su)/(2s). We must avoid such values of v. There are many reasons
why this does not invalidate our solution. First of all, if © = 0, since s # 0, we have that
v = 1 which we already determined that we would not use. If ;v # 0, then these values of v
do not exist in the basefield due the fact that the defining polynomial f(x) = x> — rx — s
is irreducible over F. Similar reasoning ensures that the components of the other five lines
listed above exist and the lines are of type 2.

The intersection point of lines A; By and A, Bj is C3. Its coordinates (X, y) are provided
below.

x1 = —(y—=mh(u(=r + 1) +s(=1 + v¥))/(—s(—vs + h)*
+Wdp — hp — vy ) (r(—vé +h) +vdu — hjp — vy y))
x2 = (s(8h% + v28(8 — h + 8h) — vh(8 + 8% — h + 8 h)) — v28%u® + vShu?
+v28hp* + v82hu? — vV282hu? — vh?u® — Sh2u® + vsh>u? + 202y sy — vy huyr
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—2vydhuy + 2v2y5h/u// — vyhz;uﬂ — v2y21//2 + vyzhtjfz — vzyzhw2
+r(—=8h+v(8 —h+8h)(véu — hp —vy))/(s(—vs + h)?
+Wdu — hpe — vy ) (rvs —rh — vépu + hp + vy ¥r))
i =@ =m0 —wpEd—du+ y¥)(wdu —hpu —vyy)
=52 (V8 — h)(=8h + v(8 — hy + 8h)) + s(W*8p — y ) + v (> > 2 + hyr)
+y ¥ (v +hp+ yhy) — 8 pr (h + 2y (1 + b))
+r(=28h% 1 + vh(28% 1 — 8¢ — huw + S + hy))
+0P (—yhy? = 8 u @+ hy) + 8y (y + hu+ yhy)))
Foh (=287 1% — S (=2y ¥ + Q2+ hy)) + ¥ (hp? — vy
+y (1 + R/ (W (—s(—v8 + h)* + (W8 — h 1t — vy ¥) (r(—v8 + h) +
vépu — hp —vyy)))
Y2 = (—r2(=8h 4+ v(8 — h + 8h)) (V8 — hu — vyyr) — (v —h)
(@ — YY) WS — hye — vy ¥r) + s(—v8%pu + Shp — y hyr + vy hyp))
+r(s(=8h> — v28(8 — h + 8h) + vh(S + 8> — h+ 8 h)) + K228 — y )
+0P G — YY) Q@+ ) p— y ¥ — h(u+ y¥)) + vh(=2821* — $p(2 + hyp — 3y )
YV —y ¥) + hp(e 4 y¥)))/(—s(—v8 + h)* + (8 — hyw — vy ) (r(—vs + h)
+vdp — hp — vy )

Note that the denominators of x| and y; are identical, and the denominator of y; is equal
to — times the denominator of x;. As stated above, the element ¢ # 0. The denominator of
each component of point C3 is a quadratic polynomial in 4 with a nonzero leading coefficient,
— f () ory f (i) (where f is the defining polynomial of the Hall system which is irreducible
over IF). Thus, in a large enough basefield, we can find values of & that are not roots of those
quadratic polynomials in /. In this way, we are certain that the components of point C3 exist.

Finally, we create the lines A3 B3 and A3C3 and compare the slopes to determine if the
Pappus line exists. This solution yields a type 2 Pappus line with a formula for the first
component of slope that would fill 18 pages of this document. It is too long to list here. The
arguments for the existence of the components and that the lines are of type 2 are similar to
those used above. The subroutines to compute the components of the points and lines not
listed here are provided on the website listed in citation [12]. ]

4.2 Case: NBF /N BF (ii): parallel lines

For this case, we consider any pair of parallel lines from NBF.

Proof We analytically construct a Pappus configuration to prove the 2 + 0 Theorem.
(This is also a proof that the 3 + 0 Question is affirmative in this case.) We appeal to
Proposition 2.10 to map any pair of parallel lines from N BF to the pair ¢; : y = x(0, 1)+«
and ¢ : 'y = x(0, 1) for some k € H, and then we proceed as before to determine the
coordinates of points Ay, By, C; and A;, By, C on lines £; and £5, respectively. We build
six type 2 lines, A1 B2, A2B1, A1C2, A2Cy, B1Ca, and B>Cq, then compute the coordinates
of points A3, B3, and Cs3.

Once again, we begin with general formulas for the points A1, By, C1 and A>, B>, C3 and
apply Proposition 2.10, without loss of generality, to fix the point A; by setting « = 0 and
B = 1. We provide two solutions to this case by using specializations for the unknowns: (i)
g=h=t=0and(ii) g =t =0, h = 1. The resulting equations of lines ¢; and ¢, and the
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coordinates of the points used in the Pappus configuration are listed below.

@€ : (y1,y2) = (x1,x2)(0, 1) + («1, k2) £ 1 (y1, y2) = (x1,x2)(0, 1)

Ar: ((0,1), (k1 + 5,60 +71)) Az : ((0,0), (0,0))

By : ((y,98), (k1 + 50,20+ y +719)) By 1 ((0, v), (sv, rv))

Ci: ((e, ), (k1 +5j, 62+ e+1))) Gyt ((w,2), (52, w+r2))
(i) €y : (y1, y2) = (x1, x2)(0, 1) + (k1, k2) €0 (1, y2) = (x1, x2)(0, 1)

A (0, 1), ()1 + 5,062 +7)) Az 1 ((0,1), (s, 1))

By : ((y,98), (k1 + 58, k2 + v +rd)) By 1 ((0,v), (sv,rv))

Ci: ((e, j), (k1 +5j, k2 +e+1))) Gt ((w, 2), (s2, w+r2))

The computations required to construct and to verify that the Pappus configuration exists
proceed as before. We could not prove that the slopes of lines A3 B3z and A3C3 were equal
without specializing /. To show that we can specialize / to only take on the values of 0 or
1 without loss of generality in the parameters, consider the lines Ay B1 and A, C that both
contain the point A;. Since A, has component x; = i = 0 in solution (i) and x; = h =1
in solution (ii), when we determine the constraints required so that the denominators and
the second component of the slope of line A By are nonzero, we find that if y = «3, § is
arbitrary. If y = —«», then in solution (i), § # 0 and in solution (ii) § # 1. Since k, y, and §
are given and the constraints are mutually exclusive, § is arbitrary. Similarly, for line A;C»,
we find that if e = «, j is arbitrary. If e = —«», then in solution (i), j # 0 and in solution
(ii) j # 1. Hence, j is arbitrary. These are the only lines with constraints on parameters. All
other possible constraints are resolved as they were in the previous case in Subsection 4.1.
The verification that the polynomials in the denominators of the components of the lines
containing point A requires substituting in the constraints on the parameter sequence from
one specialization to show that they are not constraints on the parameter sequence in the
other specialization. The subroutines to compute the components of the points and lines not
listed here are provided on the website listed in citation [12]. ]

4.3 Case: BF/NBF

For this case, we consider any pair of lines with the first from B F' and the second from N BF.
Clearly, these lines are intersecting.

Proof We analytically construct a Pappus configuration to prove the 240 Theorem. We appeal
to Proposition 2.11 to map any pair of lines with the first from B F and the second from N B F
to the pair £ : x =0 and ¢; : y = x(0, 1), and then we proceed as before to determine the
coordinates of points A, By, C1 and Ay, B, C; onlines £; and £;, respectively. We build six
type 2 lines, A1 By, A2 By, A1Ca, A2Cy, B1C3, and B,Cq, then compute the coordinates of
points A3, B3, and C3 or determine thatlines A| B>, A2 Bj,and A;C2, A>2Cy,and B1Ca, B2C
occur in parallel pairs.

Once again, we begin with general formulas for the points Ay, By, C| and A3, By, C> and
apply Proposition 2.11, without loss of generality, to fix the point A; by setting « = 0 and
B = 1. We provide two solutions to this case by using specializations for the unknowns: If
y =0,then(i)e =1 = w = 0,andif y # 0, then (il) j = (y —e+8e)/y, t = (y>+ryg—
$8g —syh) /(Y2 +rys —s582), v=(y8§—yg—s8h)/(y> +ry8 —s8®),w = (y(s(—1+
Seg+vy (—e? +sg—reg+seh)))/(s(y +(—1 +8)e)r — ye(ye+r(y+(—=1+68)e))), z =
(y (ye(=1+48)+syh—(—=148)e(e—sh))) /(s (y+(—1+8)e)* —ye(ye+r(y+(—1+8)e))).
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The resulting equations of lines £ and ¢» and the coordinates of the points used in the Pappus
configuration are listed below.

@) £1: (x1,x2) = (0,0) £2 1 (y1, y2) = (x1,x2)(0, 1)
Ay 2 ((0,0), (0, 1)) Ay ((g, h), (sh, g +rh))
B1 : ((0,0), (0, 8)) By : ((0,v), (sv, rv))
C1: ((0,0), (0, j)) C2: ((0,2), (s2,72))
(i) £1 : (x1,x2) = (0,0) €21 (y1, y2) = (x1, x2)(0, 1)
Ar: ((0,0),(0,1) Az ((g,h), (sh, g +rh))
By : ((0,0), (v, 8)) By : (Xp, Yp)
Ci: ((0,0), (e, (y —e+ée)/v)) C2: (X¢, Ye)
where
xp1 =y +ryg —s8g —syh)/(y* +rys — 56%)
xp2 = (y8 —yg —s8h)/(y* +rys — 58°)
o1 = (s(y (8 — g) — s8h)/(y* + rys — s8%)
Yoo = (y* —s8(g +rh) +y(r8 — sh) /(v + ry8 — 58%),
and

Xl = (y(s(—=1+8)eg +y (—e> +5g —reg + seh)))/(s(y + (=1 + 8)e)*
—yve(ye+r(y +(=1+8)e)))

X2 = (y(ye(=1+g) +syh — (=1 + 8)ele — sh)/(s(y + (=1 + 8)e)?
—ye(ye+r(y +(=1+8)e)))

Yei = (sy(ye(=1+g) +syh — (=1 +8)e(e — sh)/(s(y + (=1 + 8)e)?
—ye(ye+r(y +(=1+8e)))

voo = (y((—e* —egr + gs + ehs)y +egs(—1+8) +ry(e(—1 + g)y + hsy
—e(e — hs)(—1+8))/((s(y + (=1 +8)e)* — ye(ye +r(y + (=1 + 8)e))))

Both solutions have the six type 2 lines, A1 B3, A2By, A1Ca, A2Cy, B1C2, and B,Cj.
In solution (i), the Pappus line is also a type 2 line. In solution (ii), the lines A B>, Ay By,
and A1C>, A2Cq, and B1C2, BoCy occur in parallel pairs. Let us list the reasons that these
configurations together are sufficient to prove the 2 4+ 0 Theorem in this case.

Solution (i) is used when y = 0 and the free unknowns on line ¢, are g, &, v, z. To
verify that all denominators are nonzero and all type 2 lines have slopes not in the base-
field (nonzero second component) requires that the free unknowns can take on values that
are not roots of certain polynomials. Using reasoning similar to that in the first case in
Sect.4.1 to verify we have nonzero polynomials in a particular unknown, we find that in a
large enough basefield, we are assured that there exist values of the unknowns that produce
nonzero denominators and type 2 lines with nonzero second component.

Solution (ii) is used when y # 0 and the free unknowns on line ¢, are g, 4. To verify that all
denominators are nonzero and all type 2 lines have slopes not in the basefield (nonzero second
component) requires that we ignore degenerate cases (when two of the points Ay, By, C; or
A»s, By, C> coincide with each other or the point of intersection of lines £, £7) which produce
trivial Pappus configurations, that we recognize that the defining polynomial is irreducible
over the basefield, and finally that we recognize that the free unknowns can take on values

@ Springer



1218 F. Lazebnik, L. Leshock

that are not roots of certain polynomials with at least one nonzero coefficient, which in a
large enough basefield is assured. Note that in this case, the points A3z, B3, and C3 do not
exist since the lines A By, A2 By, and A1 C;, A2C1, and B C;, B>Cy occur in parallel pairs.

The subroutines to compute the components of the points and lines not listed here are
provided on the website listed in citation [12]. O

5 Concluding remarks

A fool can ask more questions in one hour than a wise man can answer in seven years.
— European proverb.

As our verification using computer supports the affirmative answer to the 3 4+ 1 Question,
it is desirable to answer it (non-asymptotically) for Hall planes. Another line of research can
be establishing the strongest form of Pappus’s Theorem for other classes of finite nonclassical
planes. We would like to repeat the question that motivated our research. We could not find
any reference to it in the literature.

Question 5.1 Is it true that every finite projective plane contains at least one Pappus config-
uration?

Let us call a pair of lines in a finite projective plane Pappian if any choice of three points
on one line and any choice of three points on the other line yields a Pappus configuration.
It was shown by Pickert [20], and later by Burn [1], that any finite projective plane with a
Pappian pair of lines is classical. We would like to ask the following question.

Question 5.2 What is the smallest number of Pappus configurations on a pair of lines in a
projective plane of order n that implies the plane is classical?

As was mentioned in the introduction, we know from [16] that every finite projective
plane contains Desargues configuration. Though this paper primarily concerns Pappus con-
figuration, we think the following question, similar to Question 5.2, is of interest. We call a
triple of concurrent lines Desarguesian if any two triangles each having one vertex on each
of these lines yields a Desargues configuration.

Question 5.3 (i) Ifafinite projective plane has a Desarguesian triple of lines, is it necessarily
a classical plane?

(i) What is the smallest number of Desargues configurations on a triple of concurrent lines
in a projective plane of order n that implies the plane is classical?

Of course similar questions can be asked (and were asked) about some other configurations.
In particular, the one that attracted the attention of many researchers, is the existence of a
Fano configuration in any finite Non-Desarguesian projective plane (see [21]).

At the end we want to mention an “inverse” question asked by Welsh [22] (see comments
in [15]), and independently by Erdds [4] that in geometric terms can be stated as follows.

Question 5.4 Is every finite partial linear space (a configuration) embedded in a finite pro-
Jective plane?

See [15] for more details. As far as we know, researchers are divided in their opinions whether
the answer to ErdSs’ question is positive or negative. In graph theoretic terms, the question
is equivalent to:

Question 5.5 Is every bipartite graph without 4-cycles a subgraph of the point-line incidence
graph of a finite projective plane?
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