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We revisit the problem of constructing Menon-Hadamard
difference sets. In 1997, Wilson and Xiang gave a general
framework for constructing Menon-Hadamard difference sets
by using a combination of a spread and four projective sets
of type Q in PG(3,¢). They also found examples of suitable
spreads and projective sets of type Q for ¢ = 5,13,17.
Subsequently, Chen (1997) succeeded in finding a spread
and four projective sets of type Q in PG(3,q) satisfying
the conditions in the Wilson-Xiang construction for all odd
prime powers g. Thus, he showed that there exists a Menon-
Hadamard difference set in groups of order 4¢* for all odd
prime powers gq. However, the projective sets of type Q found
by Chen have automorphisms different from those of the
examples constructed by Wilson and Xiang. In this paper,
we first generalize Chen’s construction of projective sets of
type Q by using “semi-primitive” cyclotomic classes. This
demonstrates that the construction of projective sets of type
Q satisfying the conditions in the Wilson-Xiang construction
is much more flexible than originally thought. Secondly, we
give a new construction of spreads and projective sets of type
Q in PG(3, q) for all odd prime powers ¢, which generalizes the
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examples found by Wilson and Xiang. This solves a problem
left open in Section 5 of the Wilson-Xiang paper from 1997.
© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Let G be an additively written abelian group of order v. A k-subset D of G is called
a (v, k,\) difference set if the list of differences “x —y, x,y € D,z # y”, represents each
nonidentity element of G exactly A times. In this paper, we revisit the problem of con-
structing Menon-Hadamard difference sets, namely those difference sets with parameters
(v, k,\) = (4m?,2m? — m, m? — m), where m is a positive integer. It is well known that
a Menon-Hadamard difference set generates a regular Hadamard matrix of order 4m?.
So by constructing Menon-Hadamard difference sets in groups of order 4m?, we obtain
regular Hadamard matrices of order 4m?.

The main problem in the study of Menon-Hadamard difference sets is: For each pos-

2 contain a Menon-Hadamard difference set.

itive integer m, which groups of order 4m
We give a brief survey of results on this problem in the case where the group under
consideration is abelian. First we mention a product theorem of Turyn [11]: If there are
Menon-Hadamard difference sets in abelian groups H x G; and H X Gs, respectively,
where |H| =4 and |G|, i = 1,2, are squares, then there also exists a Menon-Hadamard
difference set in H x G1 x G2. With Turyn’s product theorem in hand, in order to con-
struct Menon-Hadamard difference sets, one should start with the case where the order
of the abelian group is 4¢ with ¢ an even power of a prime. In the case where ¢ is an
even power of 2, that is, G is an abelian 2-group of order 22!*2, the existence problem
was completely solved in [8] after much work was done in [5]; it was shown that there
exists a Menon-Hadamard difference set in an abelian group G of order 222 if and only
if the exponent of G is less than or equal to 2¢72.

In the case where ¢ is an even power of an odd prime, Turyn [11] observed that there
exists a Menon-Hadamard difference set in H x (Z3)?; hence by the product theorem,
there is a Menon-Hadamard difference set in H x (Z3)?! for any positive integer . On
the other hand, McFarland [10] proved that if an abelian group of order 4p?, where p is
a prime, contains a Menon-Hadamard difference set, then p = 2 or 3. After McFarland’s
paper [10] was published, it was conjectured [7, p. 287] that if an abelian group of order

4m?

contains a Menon-Hadamard difference set, then m = 273° for some nonnegative
integers r and s. So it was a great surprise when Xia [13] constructed a Menon-Hadamard
difference set in H x Zﬁ for any odd prime p congruent to 3 modulo 4. Xia’s method of
construction depends on very complicated computations involving cyclotomic classes of
finite fields; it was later simplified by Xiang and Chen [14] by using a character theoretic
approach. Moreover, in [14], the authors also asked whether a certain family of 3-weight

projective linear code exists or not, since such projective linear codes are needed for the
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construction of Menon-Hadamard difference set in the group H X (Zp)4, where p is a
prime congruent to 1 modulo 4.

Van Eupen and Tonchev [6] found the required 3-weight projective linear codes when
p = 5, hence constructed Menon-Hadamard difference sets in Z2 x Z2, which are the
first examples of abelian Menon-Hadamard difference sets in groups of order 4p*, where
p is a prime congruent to 1 modulo 4. Inspired by these examples, Wilson and Xiang [12]
gave a general framework for constructing Menon-Hadamard difference sets in the groups
H x G, where H is either group of order 4 and G is an elementary abelian group of order
¢*, ¢ an odd prime power, using a combination of a spread and four projective sets of type
Q in PG(3,q). (See Section 2.2 for the definition of projective sets of type Q.) Wilson
and Xiang [12] also found examples of suitable spreads and the required projective sets of
type Q when ¢ = 5,13,17. They used Fj» X Fj2 as a model of the four-dimensional vector
space V (4, q) over F,, and considered projective sets of type Q with the automorphism

2
P ) 0
=5 L)

where w is a primitive element of 2. However, the existence of the required projective
sets of type Q with this prescribed automorphism remained unsolved for g > 17.
Immediately after [12] appeared, Chen [4] succeeded in showing the existence of a
combination of a spread and four projective sets of type Q in PG(3,q) satisfying the
conditions in the Wilson-Xiang construction for all odd prime powers ¢. As a conse-
quence, Chen [4] obtained the following theorem by applying Turyn’s product theorem
in [11].
Theorem 1.1. Let p;, ¢ = 1,2,...,s, be odd primes and t;, i = 1,2,...,s, be positive
integers. Furthermore, let H be either group of order 4 and G;, i = 1,2,...,s, be an
elementary abelian group of order pfti. Then, there exists a Menon-Hadamard difference

set in H x G1 X Go x --- x Gg.

Here, Chen [4] found projective sets of type Q in PG(3,¢q) with the following auto-

_[(w? 0
r=(5 &)

which is obviously different from that of the projective sets of type @Q found by Wilson

morphism

and Xiang [12]. Thus, the existence problem of projective sets of type Q in PG(3, ¢) with
the prescribed automorphism 7" remained open.

The objectives of this paper are two-fold. First, we give a generalization of Chen’s
construction of projective sets of type Q by using “semi-primitive” cyclotomic classes.
This demonstrates that the construction of projective sets of type Q satisfying the con-
ditions in the Wilson-Xiang construction is much more flexible than originally thought.
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In particular, the proof of the candidate sets are projective sets of type Q is much sim-
pler than that in [4]. Second, we show the existence of a combination of a spread and
four projective sets of type Q with automorphism T for all odd prime powers q. Our
construction generalizes the examples found by Wilson and Xiang in [12]; this solves the
problem left open in Section 5 of [12].

2. Preliminaries
2.1. Characters of finite fields

In this subsection, we collect some auxiliary results on characters of finite fields. We
assume that the reader is familiar with basic theory of characters of finite fields as in [9,
Chapter 5).

Let p be a prime and s, f be positive integers. We set ¢ = p®, and denote the finite
field of order ¢ by Fy. Let Trys/, be the trace map from F,s to Fy, which is defined by

Trys/q() :x+xq+...+xqf717 Vo € Fyr.

Let w be a fixed primitive element of Fy, {, a fixed (complex) primitive pth root of

unity, and (;—1 a (complex) ¢ — 1th root of unity. The character Y, of the additive

group of F, defined by v, (z) = C;Y"/”(m), Vz € g4, is called the canonical additive

character of IF,. Then, each additive character is given by . (x) = ¢r,(az), Vo € F,,
where a € F,. On the other hand, each multiplicative character is given by x7 (wh) = Cgfl,
£=0,1,...,9— 2, where j =0,1,...,q— 2.

For a multiplicative character x of Fy, the character sum defined by

Ge(x) = Y x(@)vr, ()

zely

is called a Gauss sum of F,. Gauss sums satisfy the following basic properties:
(1) G,(x)G4(x) = q if x is nontrivial; (2) G,(x™!) = x(-1)G4(x); (3) Gy4(x) = —1
if x is trivial.

In general, explicit evaluations of Gauss sums are difficult. There are only a few cases
where the Gauss sums have been completely evaluated. The most well-known case is the
quadratic case, i.e., the order of the multiplicative character involved is 2.

Theorem 2.1. ([9, Theorem 5.15]) Let n be the quadratic character of Fy = Fps. Then,

Gyln) = (-1 (-1)"='p) .

The next simple case is the so-called semi-primitive case, where there exists an integer
¢ such that p = —1(mod N). Here, N is the order of the multiplicative character
involved. In particular, we give the following for later use.
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Theorem 2.2. ([9, Theorem 5.16]) Let x be a nontrivial multiplicative character of Fp2 of
order N dividing q + 1. Then,

q if N odd or ﬂ even,
qu (X) = . (1+1
q, if N even and %5+ odd.

We will also need the Davenport-Hasse product formula, which is stated below.

Theorem 2.3. ([2, Theorem 11.3.5]) Let x’ be a multiplicative character of order £ > 1 of
F,. For every nontrivial multiplicative character x of Fy,

Gq oy £-1 Gq /"
e =Gy g

Let N be a positive integer dividing g — 1. We set C’i(N’q) =w{wN),0<i< N -1,
which are called the Nth cyclotomic classes of Fy. In this paper, we need to evaluate
the (additive) character values of a union of some cyclotomic classes. In particular, the
character sums defined by

v, (CN) = 3" yp (2), i=0,1,... N -1,

IGCi(N D)

are called the Nth Gauss periods of F,. By the orthogonality of characters, the Gauss
period can be expressed as a linear combination of Gauss sums:

N-1
1 PR .

vr, (M) = = 3 G (W), =01, N -1, (2.1)
j=0

where x is any fixed multiplicative character of order IV of F,. For example, if NV = 2,
we have the following from Theorem 2.1:

_ _1Ve . _ qVits—14 =D s
vg, (0 0) = ZEEDGD) AR CEVTT T C R gy oy

where 7 is the quadratic character of IF;. On the other hand, the Gauss sum with respect
to a multiplicative character y of order N can be expressed as a linear combination of
Gauss periods:

Ga(x) = 3 ur, (O )x (). (2:3)
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2.2. Known results on projective sets of type Q

Let PG(k — 1,q) denote the (k — 1)-dimensional projective space over F,. A set S
of n points of PG(k — 1, q) is called a projective (n, k, hi,hs) set if every hyperplane of
PG(k — 1,q) meets S in h; or hg points. In particular, a subset S of the point set of
PG(3,q) is called type Q if

¢ -1  (¢g—1)? (q+1)2).

(n7kah1’h2):(4(q_1)7 ’ 4 ) 4

In this paper, we will use the following model of PG(3,q): We view Fp2 x Fy2 as a
4-dimensional vector space over [F,. For a nonzero vector (z,y) € (Fg2 x IF 2) \ {(O 0)},
we use ((z,y)) to denote the projective point in PG(3,q) correspondmg to the one-
dimensional subspace over F, spanned by (z,y). Let P be the set of points of PG(3, ¢).
Then, all (hyper)planes in PG(3, q) are given by

Hap ={((z,9)) | Trgzq(ax +by) = 0}, ((a,b)) € P.
Let S be a set of points of PG(3, ¢), and define
E={XMz,y) | A €Ty, ((z,y)) € S}
Noting that each nontrivial additive character of Fp> x Fg2 is given by
Yap((2,y)) = VF o (ax +by), (2,y) € Fe2 x Fee,

where (0,0) # (a,b) € Fp2 x Fy2, we have
¢a,b(E) = Z Z ’(/)]F /\TI‘ 2/q(ax + by)) - |S|
AeF, ((z,y))eS

=q|Hyp NS —|S].
Hence, we have the following proposition.

Proposition 2.4. The set S is a projective set of type @ m PG(3 q) if and only if |E| =
4
qu and Y p(E) take exactly two values ¢ L and = L for all (0,0) # (a,b) €

Fq2 X Fq2.

The set &/ C Fy2 xIF 2 is also called type @ if it satisfies the condition of Proposition 2.4.

A spread in PG(3, q) is a collection £ of g2 + 1 pairwise skew lines; equivalently, £ can
be regarded as a collection K of 2-dimensional subspaces of the underlying 4-dimensional
vector space V (4, q) over F,, any two of which intersect at zero only. We also call such
a set K of 2-dimensional subspaces as a spread of V (4, q).

The following important theorem was given by Wilson and Xiang [12].
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Theorem 2.5. Let £ = {L;|0 < i < ¢?} be a spread of PG(3,q), and assume the ez-
istence of four pairwise disjoint projective sets S;, i = 1,2,3,4, of type @ in PG(3,q)
such that Sy U Sy = qu:(;l)m L; and S; U S; = Ugi(qQ_H)/Q L;. Then there exists a
Menon-Hadamard difference set in H x G, where H is either group of order 4 and G is
an elementary abelian group of order ¢*.

Remark 2.6. From Proposition 2.4 and Theorem 2.5, in order to construct a Menon-
Hadamard difference set in a group of order 4¢*, we need to find four disjoint sets
C; C (Fp2 xFp2)\ {(0,0)},7=0,1,2,3, of type Q and a suitable spread K = {K; |0 <
i < ¢?} consisting of 2-dimensional subspaces of V(4,q) such that Co U Cy U {(0,0)} =
UL 72 K and €1 U C3 U{(0,0)} = UL oy 2 K

We now review the construction of projective sets of type Q given by Chen [4]. Let w
be a primitive element of F .. Furthermore, let

X ={z €Fp|Trps(z) € CFVY, X' = {aw € Fpo | Trge g(z) € CPVY.
Define

X1=X\(XﬂX/), XQZX/\(XQX,),
X3:X0X/, X4:Fq2\(X1UX2UX3),

and

2 2
Co ={(z,zy) |z € Cé“ )7y eX1tU{(z,zy) |z € Cl(Q’q ),y € Xy}
U{(0,2) |z € CI},
(2,4%) (2,4%)
Cy ={(z,zy) |z € C;"" ",y € Xz} U{(z,2y) |z € C;7" 7,y € X4},
(2,4%) (2,4%)
Cy ={(z,zy) |z € C; W E XU {(z,zy) |z € Cy ,y € Xo}
2
U{(0,2) |z e c1Y,

Cs ={(z,zy) |z € sz’qz),y € XstU{(z,zy) |z € C(SQ’qg),y € X4},

where 7 = 0 or 1 according as ¢ = 1 or 3 (mod 4). It is clear that these type Q sets admit
the automorphism 7T

Theorem 2.7. The sets C;, i = 0,1,2,3, are type Q sets. Furthermore, these sets satisfy
the conditions mentioned in Remark 2.6 with respect to the spread K consisting of the
following 2-dimensional subspaces:

Ky={(z,zy) |z €Fp},yeFp, and Ko ={(0,2)|zecFp}
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On the other hand, Wilson and Xiang [12] constructed Menon-Hadamard difference
sets in groups of order 4¢* for ¢ = 5,13, 17 using the following four type Q sets:

Ci ={(0,9) |y € CCT} U {(ay, 2y~ o) |z € F),y € CPT)j € A}
U{(zy,zy 'w’) |z € ITRS C{Q’qz),j € B}, i=0,2,

C; ={(y.0) |y € L} U {(zy, 2y~ o) |x € FL,y € O j € Aj)
U{(zy,zy tw?) |z € Fr.ye€ 6’52’q2),j € B}, i=1,3,

for some subsets A;, B;, ¢ =0,1,2,3, of {0,1,...,2¢ + 1} and some suitable 7; € {0, 1},
1=20,1,2,3, and the spread K consisting of the following 2-dimensional subspaces:

Ky={(z,y2?) |z € Fe},y € Fpe, and Ko ={(0,2)|x € Fp}.
It is clear that these type Q sets admit the automorphism 7".
3. A generalization of Chen’s construction

We first fix notation used in this section. Let ¢ = p° be an odd prime power with p
a prime, and m be a fixed positive integer satisfying 2m | (g + 1). Then, there exists a
minimal ¢ such that 2m | (p’ + 1). Write s = ¢t for some ¢ > 1. Let w be a primitive
element of Fy2. Let T, ¢ = 0,1, be two arbitrary subsets of F,, and

So = {.’L’ S Fq2 |’IYqz/q(x) S To}, S| = {J) S Fq2 \Trqz/q(acwm) S Tl}. (3.1)

Furthermore, let K be any m-subset of {0,1,...,2m — 1} such that K N {z +
m (mod 2m) |z € K} = (). Define

Ay =So\S1, Ai=S\So, Do=|JCc®™, D, =[]clm™ (32

1+m
1€EK €K
and

{ 1, if (p* 4+ 1)/2m is even and t is odd,
€:=

0, otherwise.

Remark 3.1.

(i) The indicator function of S;, i = 0, 1, is given by

Fs.) == 30 3 v (cy™ s, (—cu), i =0,L.

ceF, ueT;
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(ii) The size of each S; is q|T;| since Tr,2/, is a linear mapping over F,.
(iii) The size of SoN Sy is |Tp||T1]; it is clear that

1SonSil= " fso(®)fs ()

y€F 2

:ql_z D3> vr, (yle+ dw™)p, (—cu—dv).  (3.3)

c,d€F, ueTo veT) yeF 2

Since w™ ¢ Fy, ¢+ dw™ =0 if and only if ¢ = d = 0. Hence, the right-hand side of
(3.3) is equal to |Tp]||T1]-

(iv) Since 2m/|(q + 1), the character values of D; C Fg2, i = 0,1, can be evaluated by
using (2.1) and the Gauss sums in semi-primitive case (see, e.g., [3, Theorem 2]):
for b e ]F;},

Z w]qu (bl‘) =

{ =4, if b= € Dy,
€D,

=t if b=t e Dy.
The following is our main result in this section.
Theorem 3.2.
(1) Assume that |Ty| = |T1| = (¢ — 1)/2, and define
Eo={(z,zy) |z € Do,y € Ao} U{(z,2y)|x € D1,y € A1} U{(0,2) |z € D.}.

Then Eq is a set of type @ in Fgo X Fa.
(2) Assume that |To| = (¢ — 1)/2 and |T1| = (¢ + 1)/2, and define

E, ={(x,zy)|x € Do,y € Ag} U{(z,2y) |x € D1,y € A1}.
Then Ey is a set of type @ in Fgpo X Fa.

This theorem obviously generalizes the construction of type Q sets given by Chen [4].
Indeed, we used D;, i = 0,1, instead of C’Z-(Q’qQ), 1 = 0,1, in the definition of X and X’
(see Subsection 2.2). This new construction is much more flexible than that in [4].

To prove this theorem, we will evaluate the character values 1,,(E;), (a,b) € (Fgp2 x
Fq2) \ {(0,0)}, by a series of the following lemmas. We first treat the case where b = 0.

Lemma 3.3. For b =0 and a # 0, it holds that

-1

Yap(Eo) = 1
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Proof. Since |Ty| = |T1| = (¢ — 1)/2, by Remark 3.1 (ii),(iii), we have [4o| = |A;| =
(¢> — 1)/4. Then, we have

2 _
'L/]aOEO Z Z%Fgal“ Z Zw]qu(a’x)—i_%

€Dy yEAp x€D yeA,
2 2 2
¢ -1 -1 ¢ -1
= Z U, (ax) + 5 =1
zelF*,
q
This completes the proof. 0O
Lemma 3.4. For b =0 and a # 0, we have
<1 falenD,
Yan(B) =4 1
—L—, otherwise.

Proof. Since |Ty| = (¢ — 1)/2 and |T1| = (¢ + 1)/2, by Remark 3.1 (ii),(iii), we have
| 40| = (¢ — 1)?/4 and |A;| = (¢ + 1)?/4. Then, we have

waO El Z Z w]F a2 ax Z Z wquQ (am)

r€Dg yEAp r€Dy yeA,
_(¢—1)°
S0 S )+ Y ) (3.4
wE]F;Z, z€D,

Finally, by Remark 3.1 (iv), (3.4) is reformulated as

(g—1)2 —_12+q, ifa=! € D,
4 ta —12—q

'l/’a,O(El) =

otherwise.

This completes the proof. O

We next treat the case where b # 0. Let fg,, i = 0, 1, be defined as in Remark 3.1 (i).
Define

=337 v (alat by)) fs, (v),

z€Do y€F 2

=3 > ur, (xla+by) s, (),

z€D1 y€F 2

= > > tru(@(a+by)fs W) fs ()

xG]F y€EF 2
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Then, the character values of F;, i = 0,1, are given by

Yap(Eo) =Ur+Us = Us+ Y v, (bx)
xeD,

and
Yap(E1) = U + Uy — Us.
Lemma 3.5. If b # 0, it holds that

—q|Tol + ¢, if —ab=t € Sy and b~ € Dy,
Ui =1 —q|Tl, if —ab=t ¢ So and b= € Dy,
0, ifb=' € Dy.

Proof. If b # 0, we have

v, =g S S Y e (wa)s, (b + ey, (—cu).

z€Do y€F 2 c€F, ueTh

11

(3.5)

(3.6)

(3.7)

If b1 € Dy, there are no z € Dy such that zb + ¢ = 0; we have U; = 0. If b= € D,

continuing from (3.7), we have

Ur=¢ 3 Y v (—ach " )ux, (~cu)

celFr ueToy
= —q|To| +¢ Z Z YF, (Trgzq(—ab™")e — cu)
ceFy ueTy
1, if Trpe,,(—ab™t) € Ty,
= —dTo| +¢* e
0, otherwise.

This completes the proof. 0O
Lemma 3.6. If b # 0, we have

—q|Ty| + ¢, if —ab=t € Sy and b~1 € Dy,
Uy =< —q|T1|, if —ab=t ¢ Sy and b= € Dy,
0’ Zf bil S Dl.

Proof. If b # 0, we have

Us = é D030 vr, (wa)ie, (wb+ aw™ )y, (—cu).

z€D1 y€F 2 c€F, ueT

(3.8)



12 K. Momihara, Q. Xiang / Finite Fields and Their Applications 61 (2020) 101601

If b=! € Dy, there are no z € D; such that b + cw™ = 0; hence Uy = 0. If b~! € Dy,
continuing from (3.8), we have

Up=q Y > tr,(—ach” w™)ug, (—cu)

CG]F:; u€eTy
= —q|T1|+¢ Z Z (o (Trqz/q(fabflwm)c — cu)
CE]Fq ueTy
1, if Trpe,,(—ab~'w™) € T1,
= —qT1| + ¢ ’ /_q( Jeh
0, otherwise.

This completes the proof. 0O

Lemma 3.7. If b # 0, we have

{|T0||T1|+q27 if —ab~' € SN S,
3 p—

—|To||T1, otherwise.

Proof. Note that Do U Dy = Fy, and |So N 51| = |To[|T1]. Since b # 0, we have

Us= Y > tra(ela+by)fsy)fs (y) =150 N S|

wG]qu yE]qu

¢’ fso(—ab™") fs, (=ab™") — | To||Tx].

This completes the proof. O

Proof of Theorem 3.2. In the case where b = 0, the statement follows from Lemmas 3.3
and 3.4. We now treat the case where b # 0. By the evaluations for Uy, Us, Us in Lem-
mas 3.5-3.7, we have

U+ U —Us

—q(|To| + | Ty — q) + |To||Ty|, if b=t € Dy, —ab~t € Sy, —ab~! € Sy;
or b=t € Dy, —ab=! ¢ Sy, —ab~! € Sy;
or b= € Dy, —ab~! € Sy, —ab™! ¢ S,

B —q(|T0| + |T1|) + ‘T()||T1|, ifb~te Dy, —ab™! ¢ So, —ab~! ¢ S1,
—q? + |To|| T, if b=1 € Dy, —ab=t € Sy, —ab~! € 9y,
‘T0HT1|, ifo-1l e Dy, —ab™! ¢ So, —ab™ 1 € St;

or b=t € Dy, —ab~! € Sy, —ab™! ¢ Sy;
or b=t € Dy, —ab=! ¢ Sy, —ab™! ¢ 5.
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(1) Since |Tp| = |T1| = (¢ — 1)/2, by Remark 3.1 (iv), we have

VYap(Eo) =Ur + Uz — Us + Z U, (bx)
z€D,
=8¢=1 it bl e Dy, —ab~ ¢ So, and —ab~ ¢ Si;
= orif b=t € Dy, —ab~! € Sy, and —ab~! € Sy,

-1

ot otherwise.

(2) Since |Tp| = (¢ — 1)/2 and |T1| = (¢ + 1)/2, we have

VYap(Er) =U1 + Uz — Us
=8¢=1 it bl e Dy, —ab~! ¢ Sp, and —ab~" & Si;

= orif b=! € Dy, —ab™! € Sy, and —ab~! € 5,

°—1

T otherwise.

This completes the proof of the theorem. O

Corollary 3.8. Let T;, i = 0,1, be arbitrary (¢ — 1)/2-subsets of Fq and So, S1, Ao, A1 be
the sets defined as in (3.1) and (3.2). Furthermore, define

Sl ={x € Fp|Trpz/g(aw™) e F,\Th}, Aj=5S0\Si, Al =51\S0.
Then, the sets

Co —{(xvffy)\x € Do,y € Ao} U{(z,zy) [z € D1,y € A1} U{(0,2) |2 € Dc},
={(z,zy) |z € Do,y € Ag} U{(w,xy) |z € D1,y € A1},
={(z,zy) [z € D1,y € Ao} U{(z,2y) |z € Do,y € A1} U{(0,2) |z € Dejr },
Cs —{(ac,xy)\ajeDl,yeA YU {(z,zy) |z € Do,y € A}

are of type Q, where the subscript of Dey1 is reduced modulo 2. Furthermore, these sets
satisfy the conditions mentioned in Remark 2.6 with respect to the spread consisting of
the following 2-dimensional subspaces:

Ky={(z,zy) |z € Fp}l,y€Fpe, and Ko ={(0,2)|z € Fp}.

Proof. By Theorem 3.2, Cy and C; are type Q sets. Furthermore, since Co = w™Cy
and C3 = w™Cq, the sets Co and C5 are also of type Q. Finally, C;, i = 0,1,2,3,
satisfy the assumption of Remark 2.6 as Co U C2 U {(0,0)} = (UyeruA1 K,) UKy and
C,UCsU{(0,0)} = UyeA{)UA’l Ky. O
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4. A generalization of Wilson-Xiang’s examples
4.1. The setting

We fix notation used in this section. Let ¢ be a prime power and w be a primitive
element of Fy2. Let ¢ be any fixed odd integer in {0,1,...,2¢ + 1} = Zyg4o.
Define the following subsets of {0,1,...,2¢+ 1}:
I ={i(mod 2(q + 1)) | Tryz /4 (w') = 0} = {%, w ,
I = {i (mod 2(q + 1)) | Trgz (") € CSV},
Is = {i (mod 2(g + 1)) | Tryz s (w') € C*P},
Ji=1I; —c(mod 2(¢ + 1)), i=1,2,3.

Then |I,| =2, |Is| = |I3] = ¢, and Iy U Iy U I3 = Z442. Furthermore, define

Xie=1iNJ2) U2 NJh),
Xoe=(T1NJ3)U(I3N Jy),
Xse=DLNJy, Xyo=13NJ3,
Xse=2NJ3) U (3N Ja).

It is clear that the X, .’s partition Za, 2. In the appendix, we will show that the X, .’s
have the following properties:

(P1) X1.=Xo,c+(g+1)(mod 2(¢+1)), X3c =Xy + (¢+1) (mod 2(qg+1));

(P2) X1 = [Xael =2, | Xsel = [ Xuel = 5, [Xso| =g —1;

(P3) X3.c4q+1 U Xscpgr1 = X503

(P4) Xi,c+c=—X1,.+(g+1) (mod 2(q + 1)) or Xo .4+¢c = =X .+(g+1) (mod 2(q + 1))

according as ¢ = 3 or 1 (mod 4);

(P5) | X1, N X cpgqe1] =1,

(P6) By the properties (P2) and (P5), we can assume that X7 . = {«, 8} and X1 c1q41 =
{a,7}. Then, 8 = v+ (¢ + 1) (mod 2(q + 1)). Furthermore, o« = 0 (mod 2) and
B =1(mod 2)or & =1 (mod 2) and 5 = 0 (mod 2) according as ¢ = 3 or 1 (mod 4);

(P7) Define R, = UjGXi,c C](Q(q+1),q2)’ 1 = 1,2,3,4,5. Then, R; takes the character

values listed in Table 1. In the language of association schemes, the Cayley graphs

on (Fs2,+) with connection sets R;’s, together with the diagonal relation arising
from the connection set Ry = {0}, form a 5-class translation association scheme.
Here, Y; .’s are subsets of {0,1,...,2¢ + 1} defined as the index sets of the dual
association scheme;

(P8) =Y, +c=Y;.(mod 2(¢+1)),i=1,2;

(P9) —(Y3,,UYy.) =Y5,.—c(mod 2(¢g+1));
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Table 1
The values of Y , (W R;)’s.
R R R Ry Rs
€ Yis 72+qch(,,) 72+q;c;q<7,> <q—1)(fi+c,,(n)) (q71)<fiqu<71)> *q;rl
evs. “240-Gy () ~2+a+Gy(n) (a=1)(=1=Gy(n) (a=1)(-14Gy () a1
GEYae  —14G,m)  —1-Ggly) UG S S
a €Y. —1—Gq(n) —1+ Gq(n) (4G (o) e 17(7?%&1
a€Ys, -1 —1 10" e ———
Table 2
The values of v , (W R})’s.
R, Ry Ry iy Bs
wex.. ~2541G,(0) ~2+aGy(n) (a=1)(=1+Gy(m) (g=1)(=1=GCq(n)) —atl
0e Xo ~2ta_0,(n) —2+q;c: () (a=1)(=1-Gy(n)) (a=1)(=1+Gy(n)) =g
@€ Xse 4Gyl —1-Gylm)  GEGE eyl ey
QEXae  —l1=Gyn)  —14+Gum  GEGOE . ep
a€Xs. -1 -1 G o ——

(P10) Define R] =
values listed in Table 2.

4.2. The construction

Let X, ., Yie, Ri, R, i =1,2,.
B be subsets of {0,1,...

Do ={

,2q + 1} satisfying ANB =
Xl,c ] Xg,c U X37C. It follows that (A \ B)
Let 7 =0 or 1 according as ¢ = 3 or 1 (mod 4). Define

U(B\4)

y) |y € CE,

Dy ={(y,0) |y € C7Y,

—1 * (2,(]2) y
Dy ={(zy, zy w)|x€]Fq,y€C’0 i€ A},

0,
(
(
(

2
Ds ={(zy, zy 1w)|x€]F;,y€C§2’q ),iEB}.

We denote the set of even (resp. odd) elements in any subset S of {0,1,...

by S. (resp. S,). The following is our main result in this section.

Theorem 4.1.

(1) If[A] = |B| = 5F and |Ac|+|Bo| = |Ao|+|Be| —2(~1)"="

is a type @ set in Fp X Fgpo

UgeYH 0(2 a+1).q ), i = 1,2,3,4,5. Then, R, takes the character

.., 5, be sets defined as in Subsection 4.1. Let A and
X3, and as multisets, AU B =

(4.1)

,2q + 1}

, then Eqg = DogUDsU D3
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(2) If|A| = 22, |B| = %5* and |Ae| + |Bo| = |Ao| + |Be|, then By = DyUDsU D3 is a
type @ set in Fgo X [Fga.

This theorem generalizes the examples of type Q sets found by Wilson-Xiang [12].
Indeed, these sets admit the automorphism 7”. See Subsection 2.2.

To prove the theorem above, we will evaluate the character values of E;, i = 0, 1.
Define

Z ¢Fq2 (by)v Vi= Z ¢]Fq2 (ay)a

2,q2 2,q2
yeciHa? yecs>®

:% Z Z Z 7vZ’]qu (a$y)1/11gq2 (bxy_loﬂ'),

€A cofa®) z€Fg

_%Z Z Zquz(axy)wquz(bxy_lwi).

; 2 -
i€B yEC’P’q ) zeF;

Noting that each element in Dy (resp. D3) appears exactly twice when x runs through

F; and y runs through C’éz’qz) (resp. C§2’q2)), we have ¢,(Eo) = Vo + Vo + V3 and

Yap(E1) = Vi + Vo + V. We will evaluate these character sums by considering two cases:
(i) exactly one of a,b is zero; and (ii) a # 0 and b # 0. We first treat Case (i).

Lemma 4.2. If exactly one of a,b is zero, then

Sl fa=0and be O,
Vos(Bo) =4, *
=, otherwise.

Proof. If a # 0 and b = 0, it is clear that V{ = q22_1. Furthermore, since |A| = |B| = %,
we have

+1 21
Vot Vi= 10 S S g (aay) = -

yE]F;‘2 :CE]F:;
Hence, t4.4(Fo) = an_l. If a =0 and b # 0, we have
Vot+Va+ Vs
= bC ) L A, B, 0(27’12) A B bC(2’q2)
UF,, (bCT7) + (([Ael + IBol)or o (6C; " 7) + (| Ao| + [Be| )¢, (bC177 7).

(4.2)

Since [Ae|+[Ao|+ | Be|+|Bo| = |A| +|B| = q+1 and [Ac|+|Bo| = [Ao| +|Be| -2 2(-1)%",
q—1
we have [Ae| + |Bo| = 4+ — (=1)"= and [Ao| + [Be| = &+ + (—1)"= . Hence, (4.2) is

reformulated as
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2 —1\2
Vo+ Vo + Vs =qyr , (bCT)) — (%) :

Finally, by (2.2), the statement follows. O

Lemma 4.3. If exactly one of a,b is zero, then

=801 b =0 andac C2Y),

-1
4 )

Yap(Er) =

otherwise.

Proof. If a = 0and b # 0, it is clear that V; = q ~L. Since |Aq|+|B,| = |Ao|+|Be| = o
we have

Vo + 5 = Lo (1Al +1Bol)on,, O T) + (14o] +1Bel),, (602)

Hence, 9q4(E1) = ‘124—_1. Ifa#0and b=0

Vi+ Va4 V= (0O 4+ T2 (1Al , (C) + | Bl (aC)). (4.3
Since |A| = 2£2 and |B| = 45+, (4.3) is reformulated as
(247 _ (2= 1)?
VitV + Vo= giip, (aCF ) — (L)

Finally, by (2.2), the statement follows. O
We next consider Case (ii), i.e., a # 0 and b # 0.

Lemma 4.4. If a # 0 and b # 0, then

2q+1
Vo+ V3= i+ 1 Z Z G Xg(q+1 p*)G g2 (X;(Z+1))Xg(q+1)(ab)f’u(a)
u=0,1 h=0

% (30 i @)+ X0 i @), (44)

€A i€B

where Xo(g4+1) s a multiplicative character of order 2(q+1) of Fg2 and p is the quadratic
character of IFy2
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Proof. Let x be a multiplicative character of order ¢> — 1 of F,2. By (2.1), we have

q72

Va = QZ DD D G ) (ary) G (x M) (bay )

IEA ec(2 ,q2) ;cE]F* 7,k=0

T S GG G D) (3 304
i€A j,k=0 wE]F;

(4.5)

. 2
Since Xj_k(C(Zq )) = % or 0 according as j — k = 0 (mod qZT_l) or not, continuing
from (4.5), we have

q72

S D S

i€A u=0,1 k=0

(3 X2k+"251u(x)). (4.6)

z€Fy

2

T Gor (XTI 4 (a)x P ()

2_
Let X2(g+1) = X “ and p= X "% . Since ZmeF* E 1"(ar:) = g —1 or 0 according as
2k =0 (mod g — 1) or not, continuing from (4. 6) we have

2q+1
Z > Gor(Gqun ") Ge (g 1)) X341 (30)0" (@) D Xaqn) (@
u=0,1 h=0 i€A
Similarly, we have
+
— —h h U
Vi = 4 q+ 1) 4 Xg(q+1)p )Gq2(Xz(q+1))X2(q+1)(ab)p (a)

X Z Xg(qﬂ)(wi)f)u(w)-

i€B
This completes the proof of the lemma. O

Let Wy (resp. W1) be the contribution for « = 0 (resp. u = 1) in the summations of
(4.4); then Vo 4+ V3 = Wy + Wy
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Lemma 4.5. Let r = ab # 0. Then,

metl fr€wR ‘R
) ifr e wRy or r € wRo,
Vo 2
—3q°+1

2
1 .
% or —L=,  otherwise,

depending on whether ¢ =3 or 1 (mod 4).
Proof. By the definition of Wy, we have
1 2q+1

o= gy 22 OO e 3 i)

i€AUB

Since AUB = X; .U X3 .U X3 as a multiset, by the property (P7), we have

%(:; 61)7 ifa€§/1,c(:: Zl)’
. %(: 62)7 lf a € 5/2,0(:: Zz)’
2
v, (@ ) = “14(-1% g
i€AUB f(: cs), ifa €Y, UYyc(= Zs),
a=1
SeCED 2 a9y, ifa€ Vao(=: Z).
Then, by (2.3), we have
2g+1
— 2okt ‘

() D e @) = D depet |J oo i oy )
i€AUB a=0 i€AUB

4
=26 2 X (@
i=1  a€Z;
Then, by (2.1), we have

2q+1

72 (X2_(2+1))Xg(q+1) (rw™)

4
=i
i O

a€Z; h=0

_ Z C; Z w]F TC (2(g+1),q ))

a€E—7Z;

19

Since —Y; . =Y; . — c(mod 2(q + 1)), i = 1,2, from the property (P8), we have by the

property (P10) that for i = 1,2
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—2+(I+(_1)i71Gq(n) ifr e WCRI
—2+q—(—;)i71Gq(77) if r € WCRy
2
Y YR, (rCPETT) =8y (Cyicig, (), ifr € wCRs,
—Z; )
"€ —1—(=1)""1Gy(n), ifr € w Ry,
-1, if r € WRs.

Furthermore, since —(Y3,.UYs o) = Y5 . —c(mod 2(¢g + 1)) by the property (P9), we have

St GOEED) = Y g (O D)

a€E—2Zs a€Ys .—c
1— . g
Tq, 1fr6w”(R1 URQ),
g-1
= HED T 9 iy g weRs,
a1
SCEU 240 if € wo(Ry U Ry).

Similarly, we have

2 s, (rOPH) =

a€E—Zy

>

aE(Y3UY4)7c

U, (rCET )

— if r € w*(Ry1 U Ry),
g—1
= 71’(’12) 24 ifr e w°Rs,
LD 2 0 f e wo(Ry U Ry).

Summing up, we have

2
=l ifr € wRy or v € WeRy,
2
Wo = q4—+1, if r € w(RyURyUR5) or r € w’(Ry UR3U R3),
2
=B ifr € wCRy or 7 € WeRy,

according as ¢ = 3 or 1 (mod 4). This completes the proof. O
We next evaluate Wy below.

Lemma 4.6. Let r = ab # 0. Then,

- W(Im 1Bl 4+ p(r) ([ Ac] + |Bol = 4] - |B.)))
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L, ifr € Uze (A\B)+q+1 0(2(q+1) / )

2(g+1
Zf’l" c Uze (B\A) 41 C( (q )q )

0, otherwise.

Proof. By the definition of W7, we have

2q+1
pla) —h —h h
Wy = G G
P A+ hzz;) 2 (Xa(g41)P) G2 (Xa(g41)) X201 (7)

(ZX2<q+1> ZXz(w) ) (4.7)

i€A i€EB

By applying the Davenport-Hasse product formula (Theorem 2.3) with x = X2—(Z 1y
X' = p, and £ = 2 we have

Gq2 (X§(2+1) )Gq2 (X;(Z+1)P) = qu (P)Gq2 (X;JZ);

where xq41 = Xg(tﬁ-l) has order ¢ 4+ 1. Then, (4.7) is rewritten as

2q+1
p(a)
W= g 500 2 G ()X ) (D Mg @) = 3 Wy (@)
(q+ ) h=0 1€A i€B

(4.8)
We will compute W; by dividing it into three parts. Let W 1, W; 2, Wi 3 denote the
contributions in the sum on the right hand side of (4.8) when h = 0, ¢ + 1; other even h;
and odd h, respectively. Then Wy = Wy 1 + Wy 2 + Wi 3. For Wy 1, we have

Wis = 120G ) (141 = 1Bl + ) (4] + Bul = |4~ |B.)-

Next, by Theorem 2.2, we have

q

Wiz = A9 Ge ) 3 Mo (Dxbeale) = ). (49)

£=0;0£0,9E1 €A i€EB

By the property (P2),
{z(mod g+ 1) |z € A\ B}N{z(mod g+ 1)|z € B\ A} =0.

Hence, continuing from (4.9), we have

Wiz = = 200G (o) (141 - 1B+ o) (4] +1Bol - 14,] - |Be))
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1, ifre U _(a\B) C(Q“rl,q )
a)q
o) Gaz(p) -

T

. +1,
-1, ifre Uie_(B\A) CZ-(q 1 ),
0, otherwise.

Finally, by Theorem 2.2 again, we have

Wiz = — 4(p Z X2 q+1) (ZX2(q+1 ZX2(q+1)

h: odd €A i€EB
2g+1
- 4(q + 1 Z X2(q+1) (ZXQ(QH) ZX2(Q+1)
€A 1€EB
0 i
+ 4((] + 1 ZXqul (ZXqul - ZXqul(W ))
€A i€B
. L, ifr €U am OO0,
pla)q
) Gaz(p) - -1, ifrelU,_ (B\A) C’Z(Q(QH) 4 ),
0, otherwise,
L ifr €U am O,

pla)q
- <)Gf@% ~1, ifrelU, mmc““q>

0, otherwise.

Summing up, we have

Wi =Wig+Wia+Wis

=~ D60 (141 - 181 + plr)(|Acl + 1B.] ~ |Ad] ~ Be))

1, ifre Uie (A\B)4+qi1 0(2((14'1)7‘1 )

a
+p<MGf@% -1, ifreUpe_

0, otherwise.

(B\A)+q+1 0(2 o )

q—1

The statement now follows from G2(p) = —(—=1)"z ¢. O
Remark 4.7. By Lemmas 4.5 and 4.6, we have
Vo+ V3 =Wy + Wy

_ (=D = pla)g (141 = 1Bl + p(r)(| 4| + [Bo| — 14| — |B.]))

)
)
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: (2(g+1),¢*)
1 , | b EreUiccime@en G e
_ (=D 7= pla)g” . (2(at1).%)
2 =1, ifr €Uic-\ay+an) G ;
0, otherwise,
_qu, if r € w’Ry or r € WRy,
(4.10)

2 2
_ 1 1 .
# or % , otherwise,

according as ¢ = 3 or 1(mod 4). By the property (P4), X1.+c= —((A\ B)U (B\
A))+(g+1) (mod 2(g + 1)) or X +c=—((A\B)U(B\ A))+(¢+1) (mod 2(q + 1))
depending on whether ¢ = 3 or 1 (mod 4). Hence, continuing from (4.10), we have

Vot Vs — SV PO (1) 1) 4 p(r) (4] + |Bol ~ |40l - [Be])

_Hl 3P+
T4 4

(4.11)

We are now ready to prove our main theorem.

Proof of Theorem 4.1. In the case where exactly one of a, b is zero, the statement follows
from Lemmas 4.2 and 4.3. We treat the case where a # 0 and b # 0.
(1) By (2.2), Vo = =209 Furthermore, by |A| = [B] = &2 and |A.| + |B,| =

|Ao| + | Be| — 2(—1)%, we have

(—=1)"z pla)g p(b)g
?(IAI = [Bl+ p(r)(|Ae| + [Bo| — |Ao| — \Be\)) =-=r
2 a0, 2
Hence, by (4.11), it follows thatqzbla,b(EO) = % or %_
(2) By (2.2), Vi = == 2 p@d pyrthermore, by |A| = T2, [B| = 51, and
|Ae| + | Bol = |Ao| + | Be|, we have
(-1)"z p(a)g (1) p(a)q
S PO (A4] — Bl + p(r) (| Acl + [Bo| = | 4o] — |Bel)) =
4 2
-1 —3¢%—1
o = 0

Hence, by (4.11), it follows that ¢, ,(E1) =
Corollary 4.8. Let A = {f} U X3,., B = {a} U X3., A = X1 c1g+1 U X341, and
B' = X3 cyg+1, where o, 5 are defined as in the property (P6). Then, the sets

Co ={(0,9) |y € CE} U {(ay, zy™'') |z € B,y € CP1 i € A}

. 2
U{(zy,zy~'w’) |z € Fyy € C’f2’q )ie B},
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Cr ={(y,0)|y € C(()Q’q2)} U{(zy,zy 'w) |z € Fr,ye C(2 %) i€ A}
U{(zy, 2y ') |z € Fyy € sz’q i€ B'},

Gz ={(0.) |y € CH1} U {(ayw,ay ') |2 € By € OGP i € 4)
U{(zyw, 2y 'w'™t) |z e FyLy € 052"12),1' € B},

Cs ={(5,0) |y € O} U{(oyw,ay~ ') o € By y € O i € '}

U {(zyw, 2y~ tw'™) |2 eF;,y¢€ C’{Q’q ) i€ B’}

are of type Q). Furthermore, these sets satisfy the assumptions of Remark 2.6 with respect
to the spread IKC consisting of the following 2-dimensional subspaces:

Ky, ={(z,y2?) |z € Fpe},y € Fp2, and Ko ={(0,z)|x € Fp}.

Proof. By the property (P6), |A¢| 4+ |Bo| = |Ao| + |Be| — 2(=1)*z and |A| +
|B.| = |AL| + |B.|. Hence, by Theorem 4.1, Cy and C; are type Q sets. Since
Cy = {(wz,wiy)|(z,y) € Co} and C3 = {(wz,wly)|(z,y) € Ci}, the sets Co
and C3 are also of type Q. Furthermore, Ule C; = (Fpe x Fgp2) \ {(0,0)} since
AUAUB+q+1)U (B +¢+1) ={0,1,...,2¢ + 1} (mod 2(¢+ 1)) by the prop-
erties (P1), (P4), (P5) and (P6). Therefore, C;, i = 0,1, 2,3, satisfy the assumptions of
Remark 2.6 as CoUC,U{(0,0)} = (UyEHo K,)UK. and C;UC3U{(0,0)} = UyeH1

(2(g+1).q ) O

where Ho = Uic_(au(B1q11)) CPE T and Hy =, (B +q+1) Ci
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Appendix A

In this appendix, we prove that the sets X; . and Y; ., i = 1,2, 3,4, 5, have the prop-
erties (P1)—(P10).

By the definition of X ., we have

X1 = ({q?, 3(q+1)} N {i (mod 2(q + 1)) |T\I.q2/q(wi+C) c C(()z,q)b

U4 — ¢, 225 — e} 0 {i (mod 2(q + 1)) | Trgz/q(w’) € OV,
Hence, there are ¢,6 € {—1,1} such that X; . = {Ztte, 216 — c}. In particular, we have

’qu/q(w”%s) GC(()Q’q) and  Trge/q(w R ‘) e 052"1). (A.1)
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Lemma A.l. We have X1, = {te, 225 — ¢} for some (e,6) € {(1,1),(=1,—1)} or
{(-1,1),(1,-1)} according as ¢ = 3 (mod 4) or ¢ =1 (mod 4).

Proof. By (A.1), we have

a+1 atls

w2 f(w'—w) e Cézq) and w2 (w—w ) e CéQ’q). (A.2)
Putting w? = 1 — w®=Y the conditions in (A.2) are rewritten as

a+1 atls
Feterd _  2(q+D)k d—ctdg _ 2(q+1)0

w and w2

for some k,¢ € Z. Here, d is odd if ¢ = 3(mod 4), and d is even if ¢ = 1 (mod 4).
By multiplying these equations, we have w ™% (c+0)+da+1) = 2@+ (k+0)  Then, the

statement immediately follows. O
Remark A.2. For X; ., i =1,2,3,4,5, we observe the following facts:

(1) Since I = I3+ (g +1) (mod 2(q + 1)), we have X . = X5 .+ (¢+1) (mod 2(¢q + 1)),
X3, = X4+ (g+1) (mod 2(q + 1)), and X5 . = X5 .+ (g+1) (mod 2(¢q + 1)). Hence,
the property (P1) follows.

2) Since I» forms a (¢+1,2, ¢, 1) relative difference set (cf. [1]), we have | X3 .| = 5.
2 ; 2
Then, the property (P2) follows.

(3) Since X3,c+q+1 = IQﬂJg and X4,C+q+1 = IgﬂJg, we have X3,¢+q+1 UX47C+q+1 = X57C.
Then, the property (P3) follows.

4) The property (P4) directly follows from Lemma A.1.

( property y

(5) By Lemma A.l, Xiciqr1 = {E1e, L6 — ¢ + ¢ + 1} for some (¢,0)
{(1,1),(=1,-1)} or {(-1,1),(1,—1)} according to whether ¢ = 3 (mod 4) or ¢
1 (mod 4). Then, it is direct to see that | X1 NX1 c4qt1| =1 and (X7, \ X1 c4g41) =
(X1,c49+1 \ X1,c) + ¢+ 1 (mod 2(g+ 1)) in all cases. More precisely, Xi c4q+1 =
{%e +q+1, %6 — ¢} since %15 —c€ JiNIy. Hence, X1\ X1,c4q+1 = {%e}
and X1 N X1,cqr1 = {4550 — c}. Thus, the properties (P5) and (P6) follow.

- m

Next, we show that the X .’s have property (P7).

Proposition A.3. Let R;, © = 1,2,3,4,5, be defined as in Subsection 4.1. Then, R;,
1=1,2,3,4,5, take the character values listed in Table 1. In particular, Y; .’s in Table 1
are determined as follows:

Yl,c :{Oa C}; }/2,c = {q + 170+ q+ 1}7

Yg’c :{Z +c— %(5 ‘ TI'qz/q(wi) S CSQ’(I)} n {Z — (h;—1€ | Trqz/q(wi) S C(g2.,q)}7

Vie ={i+c— 26| Trga/(w') € OV} 0{i = Bk | Trge () € C17),
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=({i+ ¢ — T8 Try g(w') € OV} N {i = Ghe| Trge (') € CF7Y)

U{i+c— T8 Trp g(w') € PPN {i — Le| Trpe 4 (w) € CPPY).

Proof. The character values 1/)11:{12 (w?R1), a=0,1,...,2q + 1, are evaluated as follows:

atls 2 atl, ,q>
qu2 (waR1> :¢Fq2 (wa+ =y CCSQ(qul)’q )) + quz (wa+ = Cé2(q+1) q ))

a j —C E) a j& E)
=, (Trge o (W 507 OF?) + v, (Trge g (W™ 5 ) CFY)

ot ifael — 36 +c, =, ifael; — e,
_ —1+§q(71)’ ifaefz—%é‘i‘cy + _1%%7 ifaEIz—&lG
S g e gy - B, G if g e Iy — e,

4_2+q§G“(7’), ifa €Y/,
2 G it g e Yy,
=y -1+G4(n), ifaeYs,,
—1—-Gy(n), ifa€Yy,,

ifa e Y57C,

where

By (A.1), it is direct to see that

(h =55+ N (-5 ={c}, (T2~ F0+)N (L~ e = {0},
(L - s+e)n(I; - ey ={ct+q+1}, (I— DL 5+c)n (L — Lle) = {g+1}.
Hence, we have Y{ . =Y; . and Y5 . = Y5 .

The character values of Ry is determined as ¢p , (W*Rp) = ¢F , (W* T Ry).
We next evaluate w]pq2 (w?R3), a =0,1,...,2¢ + 1. By Remark 3.1 (i), the indicator

function of {z | Tre2/q(z) € C’(()2’Q)} is given by

Z > U, (s2)vr, (—sy)-

1 SeF, yec D

Then,
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U, (W'Rs) = > vp, (W) f () f (2w

z€F 2

o Z DD U (@ + s+ w))r, (—sy)vE, (—t2)

z€F 428 jtelF, v, ZGC(2 1)

= > > dr, (sy)vr, (t2).

s,t€F :wr=s+tw® yvzecézm

We treat the case where a € Y7 ,UYs . ={0,¢,qg+1,c+q+1}. If a = ¢, then s =0 and
te C’éZ’q), and hence g , (w*R3) = M. Ifa=c+q+1, then s =0 and
te 0(2 -9) ; and hence v , (w*R3) = M. If a =0, thent=0and s € CéQ’q)7
and hence g , (w*R3) = M. Ifa=¢q+1,thent=0and s € Cl(z’q), and
hence ¢ , (W R3) = L{qu)). Next, we treat the case where s,¢ # 0. Define

Gs ={a(mod 2(q+ 1)) |w® = s + tw®, s,t € >V},
G4 :{a (mOd 2(q —+ 1)) ‘wa =5+ twc,$7t c 0527(1)}7

={a(mod 2(q + 1)) |w® = s + tw’, (5,1) € CY x OV or ¢ x 5V}
Then, we have

U=Gy)® it g € G,

’ll)]qu (w“Rg) = 7(1+GZ(7]))2 y ifa € G4,

= e @,

We need to show that G; =Y ., 7 = 3,4,5. Let a € G3. Then, there are some s,t € C(Q’q)
such that w® = s + tw®. Taking trace of both sides of wat e = giEte +t C+M6 , we
have Tz, (w2 ey = sTrg2 q(w s )+ tTry2 /g (w” “Frete) Since Tr S CER ) =0 and
Trez/q(w witete) ¢ C’(Q’Q)7 we obtain Trgz /q(w ‘”q%le) € CéQ’q), ie,a¢€ I — %e. On
the other hand, taking trace of both sides of Wt F ¢ = gu*Fi—c 4 tw%é, we have
Try2/q(w watiFto—c)y = sTry2 /g (w™s $ho-c) + tTrg2 g (w “59) Since Tr 2/q(w “$49) = 0 and
Trq2/q(w%57“) € C(Q’Q) we obtain Trqz/q(w“+q7+15’c) € C’é2 Q), ie,a€ly+c— %5.
Thus, a € (Is — ﬂe) N(Iy+c— ﬂé), and hence G3 C Y3 .. Noting that |G3| = |Y3 |,
it follows that G3 = Y3 .. Furthermore, since Gy = G3 + (¢ + 1) (mod 2(¢ + 1)) and
={0,1,...,2¢ + 1} \ (Gs U G4 U{0,¢,qg + 1,c+ g+ 1}), we have G4 = Y. and
Gs Ys.c.
Finally, the character values of R4 and R are determined as 1/JIF , (WPRy) =
UF , (W Rs) and Y, (W' R5) = —1 — S U 2 (w*R;). This completes the proof
of the proposition. 0O
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Remark A.4. By the definition of Y., ¢ = 1,2, in Proposition A.3, it is clear that
—Yi.+c=Y,.(mod 2(q + 1)), that is, the property (P8).

Next, we show that the Y; .’s have property (P9).
Proposition A.5. We have
—(Y3,.UYy.) +c=Y5,(mod 2(q + 1)).
Proof. Since Y; . = G; for ¢ = 3,4,5 as in the proof of Proposition A.3, we have

Y3, UYs.={a(mod 2(qg + 1)) |w®* = s+ tw, (s,t) € S x S or N x N},
Ys.={a(mod 2(¢+1)) |w®* = s+ twe, (s,t) € S X N or S x N}.
Assume that a € —(Y3 . UYy ) + ¢. There are some s',t' € F,; such that w® = §' + t'w®.

On the other hand, since a € —(Y3,.UYy.) + ¢, w *T¢ = s + tw® for some s,t € S x S
or N x N. Then, we have

(sw™ ¢ +t)(s' +tw) = 1. (A.3)

By multiplying both sides of (A.3) by w5 € and taking trace, we have

q+1

58" Tr(w 7”&6) + (ts’ + st’)Trqz/q(w%f) + 1t Trgz g (W 27€)
1
= Tl"qz/q( ) (A4)

+

Since Try2 /g (w 7€) = 0 by the definition of X; ., (A.4) is reduced to

att
—ss'uw*z (79 = 'y,

where u = Trge /q(w wet ) and v = Tr 2 /q(w w=et %5 9). Here, u,v € Cz’q by (A.1).
Furthermore, st~! € C (2.0) by the definitions of s,¢, and —w (=) ¢ O (2.0) by the
definitions of €, §. Hence, either (s',t') € C’ (2.0) 0(2 @ or C(2 9 0(2 D holds by noting
that (s’,¢") = (0,0) is impossible. Therefore, a € Y5, i.e., =(Y3. UYs.) +¢ C Y5,
follows. Finally, since | — (Y3, UYa,) + ¢| = |Y3. U Yy | = |Ys5,c|, the statement of the
proposition follows. O

Finally, we show that the R}’s have property (P10).

Proposition A.6. Let R,, i = 1,2,3,4,5, be defined as in Subsection j.1. Then, R,
1=1,2,3,4,5, take the character values listed in Table 2.

Proof. Since Y; . —c+ %6 = X, c—ap1s54 041, by Lemma A1, Remark A.2 (5) and the
definitions of X; ., Y., 1 =1,2,3,4,5, the statement follows from Proposition A.3. O



K. Momihara, Q. Xiang / Finite Fields and Their Applications 61 (2020) 101601 29

References

[1] K.T. Arasu, J.F. Dillon, D. Jungnickel, A. Pott, The solution of the Waterloo problem, J. Comb.
Theory, Ser. A 71 (1995) 316-331.
[2] B. Berndt, R. Evans, K.S. Williams, Gauss and Jacobi Sums, Wiley, 1997.
[3] A.E. Brouwer, R.M. Wilson, Q. Xiang, Cyclotomy and strongly regular graphs, J. Algebraic Comb.
10 (1999) 25-28.
[4] Y.Q. Chen, On the existence of abelian Hadamard difference sets and a new family of difference
sets, Finite Fields Appl. 3 (1997) 234-256.
[5] J.A. Davis, Difference sets in abelian 2-groups, J. Comb. Theory, Ser. A 57 (1991) 262-286.
[6] M. van Eupen, V.D. Tonchev, Linear codes and the existence of a reversible Hadamard difference
set in Zs X Zao x Z2, J. Comb. Theory, Ser. A 79 (1997) 161-167.
[7] D. Jungnickel, Difference sets, in: Contemporary Design Theory, in: Wiley-Intersci. Ser. Discrete
Math. Optim., Wiley-Intersci. Publ., Wiley, New York, 1992, pp. 241-324.
[8] R.G. Kraemer, Proof of a conjecture on Hadamard 2-groups, J. Comb. Theory, Ser. A 63 (1993)
1-10.
[9] R. Lidl, H. Niederreiter, Finite Fields, Cambridge Univ. Press, 1997.
[10] R.L. McFarland, Difference sets in abelian groups of order 4p?, Mitt. Math., Semin. Giessen 192
(1989) 1-70.
[11] R.J. Turyn, A special class of Williamson matrices and difference sets, J. Comb. Theory, Ser. A 36
(1984) 111-115.
[12] R.M. Wilson, Q. Xiang, Constructions of Hadamard difference sets, J. Comb. Theory, Ser. A 77
(1997) 148-160.
[13] M.Y. Xia, Some infinite classes of special Williamson matrices and difference sets, J. Comb. Theory,
Ser. A 61 (1992) 230-242.
[14] Q. Xiang, Y.Q. Chen, On Xia’s construction of Hadamard difference sets, Finite Fields Appl. 2
(1996) 87-95.


http://refhub.elsevier.com/S1071-5797(19)30104-2/bib41444A50s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib41444A50s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib4245573937s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib627778s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib627778s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib43683937s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib43683937s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib6461766973s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib4554s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib4554s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib6A756E67s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib6A756E67s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib4B3933s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib4B3933s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib4C4E3937s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib6D636661726C616E64s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib6D636661726C616E64s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib543834s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib543834s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib57583937s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib57583937s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib58s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib58s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib5843s1
http://refhub.elsevier.com/S1071-5797(19)30104-2/bib5843s1

	Generalized constructions of Menon-Hadamard difference sets
	1 Introduction
	2 Preliminaries
	2.1 Characters of ﬁnite ﬁelds
	2.2 Known results on projective sets of type Q

	3 A generalization of Chen's construction
	4 A generalization of Wilson-Xiang's examples
	4.1 The setting
	4.2 The construction

	Acknowledgment
	References


