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method, we obtain many new m-ovoids which can not be 
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1. Introduction

Let e ≥ 1, r ≥ 2 be integers, p be a prime, and Fpe be the finite field of size pe. Let V
be a 2r-dimensional vector space over Fpe and f be a non-degenerate alternating form 
defined on V . The symplectic polar space W(2r −1, pe) associated with the form f is the 
geometry consisting of subspaces of PG(V ) induced by the totally isotropic subspaces 
with respect to f . The symplectic polar space W(2r − 1, pe) contains totally isotropic 
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points, lines, planes, etc. Note that since f is alternating, every point of PG(V ) is totally 
isotropic. Therefore the set of points of W(2r − 1, pe) coincides with the set of points 
of PG(V ). The (totally isotropic) subspaces of maximum dimension are called maximals
(or generators) of W(2r − 1, pe). The rank of W(2r − 1, pe) is the vector space dimension 
of its maximals, namely r.

In this paper, we are concerned with m-ovoids in W(2r−1, pe). An m-ovoid in W(2r−
1, pe) is a set M of points such that every maximal of W(2r − 1, pe) meets M in exactly 
m points. A 1-ovoid in W(2r − 1, pe) is simply called an ovoid. Ovoids in W(2r − 1, pe)
(and more generally in any classical polar space) were first defined by Thas [20] in 1981. 
The existence problem for ovoids in W(2r − 1, pe) is completely solved: W(3, pe) has an 
ovoid if and only if p = 2; and W(2r − 1, pe), r > 2, has no ovoids. The concept of an 
m-ovoid was first defined by Thas [21] for generalized quadrangles, and then generalized 
to that in classical polar spaces by Shult and Thas [19]. There are some closely related 
objects, called i-tight sets, in W(2r − 1, pe). We will not study i-tight sets in this paper, 
but simply mention that m-ovoids and i-tight sets of W(2r − 1, pe) can be unified under 
the umbrella of intriguing sets [2] of W(2r − 1, pe).

Intriguing sets (in particular, m-ovoids) in classical polar spaces have close connections 
with other geometric and combinatorial structures such as strongly regular graphs and 
projective two-weight codes, cf. [2–4,8]. For example, m-ovoids in W(2r−1, pe) turn out to 
be projective two-intersection sets in PG(2r−1, pe) and thus give rise to strongly regular 
graphs, cf. [2]. There is also a significant relation between projective two-intersection sets 
and two-weight codes, cf. [8]. A construction of m-ovoids in Q−(5, pe) via strongly regular 
Cayley graphs was given in [3].

The main problem concerning m-ovoids in W(2r−1, pe) is: For which m ≥ 1 does there 
exist an m-ovoid in W(2r − 1, pe)? As we mentioned above, when m = 1, this problem is 
completely solved. In sharp contrast, the existence problem for m-ovoids with m ≥ 2 is 
wide open. We give a brief summary of known results here. We start with W(3, pe): When 
p is odd, there are no ovoids in W(3, pe), cf. [17]; but there is a partition of W(3, pe) into 
2-ovoids, so there exists an m-ovoid in W(3, pe) for each even positive integer m, cf. [4]; 
moreover Cossidente et al. gave a construction of (pe+1)

2 -ovoids in W(3, pe) when p is odd 
in [7]. When p = 2, Cossidente et al. gave a construction of m-ovoids for all possible m
in W(3, pe) in [7]. Next we consider the case of W(5, pe): First there are some sporadic 
examples of m-ovoids in W(5, pe), cf. [2]; when p = 2, Cossidente and Pavese [9] gave two 
constructions of nonclassical (pe +1)-ovoids in W(5, pe) by utilizing relative hemisystems 
and embedded Suzuki-Tits ovoids of a Hermitian surface. For general W(2r − 1, pe), 
in terms of necessary conditions, it is proved in [2] that if there exists an m-ovoid in 
W(2r − 1, pe) with r > 2, then m ≥ (−3+

√
9+4per)

2pe−2 ; as for constructions, Cossidente 

and Pavese [10] gave a partition of W(4n − 1, pe) into a (pe(2n−2)−1)
pe−1 -ovoid, a pe(2n−2)-

ovoid and some 2pe(2n−2)-ovoids for pe even. Shult and Thas [19] introduced the notion 
of m-systems in finite classical polar spaces, and showed that the points underlying the 

subspaces of an m-system of W (2r−1, pe) yield a (pe(m+1)−1)
e -ovoid. In [19, Theorem 14], 
p −1
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they further showed that if H(r − 1, p2e), r odd, contains an m-system, then a (2m + 1)-
system of W (2r − 1, pe) can be obtained by field reduction. Hence, when r = 3, there is 
a 1-system of W (5, pe) arising from a 0-system in H(2, p2e), and so we obtain a (pe + 1)-
ovoid in W (5, pe). Also we should mention an important construction method: by using 
field reduction, an m′-ovoid in low rank classical polar spaces gives rise to an m-ovoid in 
higher rank classical polar space. Specifically with the method of field reduction, an m′-
ovoid in W (2r′ −1, pe′) gives rise to an m-ovoid in W (2r−1, pe) if r′ | r and re = r′e′, cf. 
[14]. In the end of Section 3 of this paper, we will construct m-ovoids in W (2r − 1, pe), 
with r being a prime, say p0; since p0 has only two factors 1 and p0, an m-ovoid in 
W (2p0 −1, pe) can not be constructed from an m′-ovoid in a symplectic polar space with 
rank lower than p0.

As can be seen from the above summary there has been very little work on m-ovoids 
in high rank symplectic polar spaces. In terms of constructions, when q is odd, the only 
known construction method for m-ovoids in high rank symplectic polar spaces is the 
field reduction method, cf. [14]. In this paper, we develop a new construction method 
which allows us to construct many new m-ovoids in high rank symplectic polar spaces. 
Specifically we show that there are many m-ovoids in W (2r −1, pe) with new parameters 
arising from the partial difference sets in Theorem 3.5. To facilitate the description of 
our method, we give the following equivalent definition of m-ovoids in W(2r − 1, pe).

Lemma 1.1. Let M be a set of points of W(2r − 1, pe). Then M is an m-ovoid if and 
only if

|P ⊥ ∩ M| =
{

m(pe(r−1) + 1) − pe(r−1), if P ∈ M,

m(pe(r−1) + 1), otherwise.
(1.1)

For a proof of the lemma, we refer the reader to [2]. The basic idea of our construction 
of m-ovoids is to use a partial converse to Theorem 11 in [2]. Concerning W(2r − 1, pe), 
Theorem 11 in [2] says that an m-ovoid gives rise to a strongly regular Cayley graph 
over (F2r

pe , +) of negative Latin square type. A partial converse to this statement is true; 
that is, a strongly regular Cayley graph over (F2r

pe , +) of negative Latin square type with 
some special property can give rise to an m-ovoid in W(2r − 1, pe) (the special property 
is the “self-dual” property; this will be made precise in Theorem 3.2). To implement 
this strategy, we start with some strongly regular Cayley graphs Cay(Fq, D) in [6], and 
equip the ambient finite field Fq, now viewed as a vector space over a subfield Fpe , with 
an appropriate non-degenerate alternating form f , and show that with respect to f , D
is “self-dual”, hence the set M of projective points obtained from D will satisfy (1.1), 
giving rise to an m-ovoid in the symplectic polar space W(2r − 1, pe) of rank r. The 
organization of this paper is as follows. In Section 2, we give some preliminaries on 
strongly regular graphs and describe the construction using cyclotomic classes of finite 
fields in [6]. In Section 3, we first describe our construction strategy, and then give the 
details of our construction of m-ovoids. We conclude the paper with Section 4.



4 T. Feng et al. / Journal of Combinatorial Theory, Series A 175 (2020) 105279
2. Preliminaries

A strongly regular graph srg(v, k, λ, μ) is a simple and undirected graph, neither com-
plete nor edgeless, that has the following properties:

(1) It is a regular graph of order v and valency k.
(2) For each pair of adjacent vertices x, y, there are exactly λ vertices adjacent to 

both x and y.
(3) For each pair of nonadjacent vertices x, y, there are exactly μ vertices adjacent to 

both x and y.
For example, the pentagon is an srg(5, 2, 0, 1) and the Petersen graph is an 

srg(10, 3, 0, 1). The parameters of an srg(v, k, λ, μ) satisfy the following basic relation.

Lemma 2.1. [13, Section 10.1] Let Γ be an srg(v, k, λ, μ). Then

k(k − λ − 1) = μ(v − k − 1).

Let Γ be a (simple, undirected) graph. The adjacency matrix of Γ is the (0, 1)-matrix 
A with both rows and columns indexed by the vertices of Γ, where Axy = 1 when there is 
an edge between x and y in Γ and Axy = 0 otherwise. The eigenvalues of Γ are defined to 
be those of its adjacency matrix A. For convenience we call an eigenvalue of Γ restricted
if it has an eigenvector which is not a multiple of the all-ones vector 1. (For a k-regular 
connected graph, the restricted eigenvalues are simply the eigenvalues different from k.)

Theorem 2.2. For a simple graph Γ of order v, neither complete nor edgeless, with adja-
cency matrix A, the following are equivalent:

1. Γ is strongly regular with parameters (v, k, λ, μ) for certain integers k, λ, μ,
2. A2 = (λ − μ)A + (k − μ)I + μJ for certain real numbers k, λ, μ, where I, J are the 

identity matrix and the all-ones matrix, respectively,
3. A has precisely two distinct restricted eigenvalues α1, α2.

For a proof of Theorem 2.2, we refer the reader to [5]. For later use, we write down 
the explicit relations between the parameters of an srg(v, k, λ, μ) and its restricted eigen-
values α1, α2.

Lemma 2.3. [13, Section 10.2] Let Γ be an srg(v, k, λ, μ) with restricted eigenvalues α1, 
α2, where α1 > α2. Then

α1 =
(λ − μ) +

√
(λ − μ)2 + 4(k − μ)

2 ,

α2 =
(λ − μ) −

√
(λ − μ)2 + 4(k − μ)

,

(2.1)
2
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with multiplicities

m1 = 1
2

(
(v − 1) − 2k + (v − 1)(λ − μ)√

(λ − μ)2 + 4(k − μ)

)
and

m2 = 1
2

(
(v − 1) + 2k + (v − 1)(λ − μ)√

(λ − μ)2 + 4(k − μ)

)
,

respectively.

An effective method to construct strongly regular graphs is by the Cayley graph 
construction. Let G be an additively written abelian group of order v, and let D be a 
subset of G such that 0 /∈ D and −D = D, where −D = {−d | d ∈ D}. The Cayley graph 
on G with connection set D, denoted by Cay(G, D), is the graph with the elements of 
G as vertices; two vertices are adjacent if and only if their difference belongs to D. Let 
Ĝ be the (complex) character group of G. All the eigenvalues of Cay(G, D) are given by 
ψ(D) :=

∑
d∈D ψ(d), ψ ∈ Ĝ. Note that ψ0(D) = |D|, where ψ0 is the principal character 

of G. By Theorem 2.2, the graph Cay(G, D) is strongly regular if and only if D generates 
G and {ψ(D) : ψ ∈ Ĝ \ {ψ0}} = {α1, α2} with α1 �= α2. If this is the case, then the 
connection set D is called a partial difference set, and the Delsarte dual of D is defined 
to be either of {ψ ∈ Ĝ : ψ(D) = αi}, i = 1, 2.

An srg(v, k, λ, μ) is said to be of Latin square type (resp. negative Latin square type) 
if (v, k, λ, μ) = (n2, a(n − ε), εn + a2 − 3εa, a2 − εa) and ε = 1 (resp. ε = −1).

Let G and D be the same as above. Suppose that Cay(G, D) is an srg(v, k, λ, μ). Then, 
by Lemma 2.3, one of the duals of D has the same size as that of D if and only if

k = 1
2

(
(v − 1) − 2k + (v − 1)(λ − μ)√

(λ − μ)2 + 4(k − μ)

)
or

k = 1
2

(
(v − 1) + 2k + (v − 1)(λ − μ)√

(λ − μ)2 + 4(k − μ)

)
,

which in turn is equivalent to

(2k + (v − 1)(λ − μ))2

(λ − μ)2 + 4(k − μ) = (v − 1 − 2k)2. (2.2)

After some tedious computations, we see that when (2.2) is satisfied, v must be a square, 
and μ = ( k√

v−1 )2 − k√
v−1 or μ = ( k√

v+1 )2 + k√
v+1 . Note that by Lemma 2.1, λ =

k − 1 + (1 − v−1
k )μ. Consequently if one of the duals of D has the same size as that of 

D, then the strongly regular graph Cay(G, D) must be of Latin square or negative Latin 
square type.

Conversely, when (v, k, λ, μ) = (n2, a(n − 1), n + a2 − 3a, a2 − a), by Lemma 2.3, 
α1 = n − a with multiplicity f = a(n − 1), and α2 = −a with multiplicity g = (n + 1 −
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a)(n − 1). Thus the dual {ψ ∈ Ĝ : ψ(D) = α1} has the same size as that of D. When 
(v, k, λ, μ) = (n2, a(n + 1), −n + a2 + 3a, a2 + a), by Lemma 2.3, α1 = a with multiplicity 
f = (n − 1 − a)(n + 1), and α2 = a − n with multiplicity g = a(n + 1). Thus the dual 
{ψ ∈ Ĝ : ψ(D) = α2} has the same size as that of D.

We will use Cayley graphs Cay(Fq, D), where the connection sets are unions of cyclo-
tomic classes, for the purpose of constructing m-ovoids in symplectic polar spaces. To 
this end, we define cyclotomic classes of finite fields. Let q = ps be a prime power, and 
let γ be a fixed primitive element of Fq. Let N > 1 be a divisor of q − 1. We define the 
N th cyclotomic classes C

(N,q)
i of Fq by

C
(N,q)
i = {γjN+i | 0 ≤ j ≤ q − 1

N
− 1},

where 0 ≤ i ≤ N − 1. That is, C(N,q)
0 is the subgroup of F∗

q consisting of all nonzero N th

powers in Fq, and C(N,q)
i = γiC

(N,q)
0 , for 1 ≤ i ≤ N − 1. In the sequel, if N, q are clear 

from the context, we will simply write C(N,q)
i as Ci.

Suppose that q = ps with p a prime, and let e be any positive divisor of s. Let 
Trq/pe : Fq → Fpe be the trace function from Fq to Fpe , i.e.,

Trq/pe(x) = x + xpe

+ · · · + xpe(s/e−1)
, ∀x ∈ Fq.

Set ωp := exp
(

2π
√

−1
p

)
. Define ψFq

: Fq → C∗ by

ψFq
(x) = ω

Trq/p(x)
p , ∀x ∈ Fq.

The map ψFq
is a character of the additive group of Fq, and it is called the canonical

additive character of Fq. For any y ∈ Fq, we define ψFq,y: Fq → C∗ by

ψFq,y(x) = ψFq
(xy), ∀x ∈ Fq.

It is well known that {ψFq,y | y ∈ Fq} = ̂(Fq, +).
Next we recall the following construction of strongly regular Cayley graphs given in 

[6], see also [5, Section 9.8.5]. Suppose that q = ps with p prime, and let N be a proper 
divisor of q−1 such that p� ≡ −1 (mod N) for some positive integer �. Choose � minimal 
and write s = 2�t. Take a proper subset J ⊂ ZN of size u. If q is even, then the choice of 
J is arbitrary; if q is odd, then we require that N | q−1

2 and J + q−1
2 = J . Set DJ = ∪i∈JCi. 

Then the graph Cay(Fq, DJ) is strongly regular with eigenvalues

k = q − 1
N

u, with multiplicity 1,

α1 = u

N
(−1 + (−1)t√q), with multiplicitiy q − 1 − k,

α2 = u (−1 + (−1)t√q) + (−1)t+1√
q, with multiplicity k.

(2.3)
N
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To be specific, for i = 0, 1, . . . , N − 1, we have

ψFq
(γiD) =

⎧⎪⎪⎨
⎪⎪⎩

α2, if εs = 1 and i ∈ −J (mod N)
or εs = −1 and i ∈ −J + N/2 (mod N),

α1, otherwise,
(2.4)

where ε =
{

−1, if N is even and p�+1
N is odd;

1, otherwise.
The graph Cay(Fq, DJ) is of Latin square type (resp. negative Latin square type) if 

t is odd (resp. even).

3. Constructions of m-ovoids in W(2r − 1, pe) via strongly regular Cayley graphs

Throughout the rest of this paper, we fix the following notation. Let q = ps, where 
p is an odd prime and s = 2er for some positive integers e and r ≥ 2. We view Fq as 
a 2r-dimensional vector space over Fpe (a subfield of Fq), and denote this Fpe-vector 
space by V . As usual, for a nonzero v ∈ V , we write 〈v〉 for the projective point in the 
projective space PG(V ) corresponding to the 1-dimensional Fpe-subspace spanned by v. 
We will equip a bilinear form on V as follows. Let L(X) =

∑2r−1
i=0 ciX

pie ∈ Fq[X] be a 
linearized polynomial. Define f : V × V → Fpe by

f(x, y) = Trq/pe(xL(y)), ∀(x, y) ∈ V × V.

Then f is an Fpe-bilinear form on V .

Lemma 3.1. With notation as above, the Fpe-bilinear form f on V is alternating if and 

only if c0 = 0 and cpie

2r−i = −ci for 1 ≤ i ≤ 2r−1. Moreover, the form f is non-degenerate 
if and only if x �→ L(x) is a bijection from Fq to itself.

Proof. The form f is alternating if and only if f(x, x) = 0 for all x ∈ V . We have

f(x, x) =
2r−1∑
i=0

Trq/pe

(
cix

1+pie
)

=
2r−1∑
i,j=0

cpje

i xpje+p(i+j)e

=
∑

0≤i<k≤2r−1

(cpie

k−i + cpke

2r−k+i)x
pie+pke

+
2r−1∑
j=0

cpje

0 x2pje

.

We view f(x, x) as a polynomial in x with coefficients in Fq. As can be seen from the 
above expression, f(x, x) has degree less than or equal to q − 1. The polynomial f(x, x)
vanishes at every element of Fq if and only if it is the zero polynomial. The first claim 
of the lemma now follows by comparing the coefficients.
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Assume that f is non-degenerate. Suppose that f(x, y) = Trq/pe(xL(y)) = 0 for all 
x ∈ Fq. We must have L(y) = 0 since Trq/pe is a nontrivial linear form on V . By the 
assumption that f is non-degenerate, we have y = 0. It follows that x �→ L(x) is a 
bijection since L is linearized. The proof of the converse is straightforward. This proves 
the second claim of the lemma. �

Let L(X) =
∑2r−1

i=1 ciX
pie ∈ Fq[X] be a linearized permutation polynomial such 

that f(x, y) = Trq/pe(xL(y)) is a non-degenerate alternating form. Equip V = (Fq, +)
with the alternating form f , and this will be our model for the symplectic polar space 
W(2r − 1, pe) of rank r. For any nonzero y ∈ V , we define

〈y〉⊥ = {〈x〉 | f(x, y) = 0, x ∈ V \ {0}}.

Also for any y ∈ V we define Ψy ∈ ̂(Fq, +) as follows:

Ψy(x) = ψFq
(xL(y)) = ψFpe (f(x, y)).

It is well known that {Ψy | y ∈ V } = ̂(Fq, +). We now give the definition of self-dual 
partial difference sets in (Fq, +). (Note that such a self-dual partial difference set is 
necessarily of Latin square type or negative Latin square type by the discussion in the 
last section.) Let D be an F∗

pe-invariant subset of F∗
q . That is, D is a union of some cosets 

of F∗
pe in F∗

q . Assume that Cay(Fq, D) is a strongly regular graph of negative Latin square 
type, and with parameters

(
q, |D|, −√

q + ( |D|
√

q + 1)2 + 3|D|
√

q + 1 , ( |D|
√

q + 1)2 + |D|
√

q + 1

)
.

Let D∗ ⊂ Fq \ {0} be such that {Ψy ∈ ̂(Fq, +) | y ∈ D∗} is one of the Delsarte duals. 
We say that D is self-dual if D∗ = D. Now we state the connection between m-ovoids 
in W(2r − 1, pe) and self-dual partial difference sets in (Fq, +) explicitly.

Theorem 3.2. With notation as above, let D be an F∗
pe-invariant subset of F∗

q such that 
|D| ≡ 0 (mod (√q + 1)(pe − 1)). Then the set M = {〈v〉 : v ∈ D} is a |D|

(pe−1)(√
q+1) -

ovoid in W(2r−1, pe) if and only if D is a self-dual partial difference set with parameters 
(q, |D|, −√

q + ( |D|√
q+1 )2 + 3|D|√

q+1 , ( |D|√
q+1 )2 + |D|√

q+1 ).

Proof. Assume that D is a self-dual partial difference set with the above parameters. 
Then by Lemma 2.3, the graph Cay(Fq, D) has two eigenvalues α1 = |D|√

q+1 (with mul-
tiplicity m1 = q − 1 − |D|), and α2 = |D|√

q+1 − √
q (with multiplicity m2 = |D|); and 

furthermore since D is self-dual, we have Ψy(D) = α2 if y ∈ D∗ = D and Ψy(D) = α1
if y ∈ F∗

q \ D.
Write M := {〈vi〉 : 1 ≤ i ≤ M}, where M = |D|/(pe − 1). Then D = {θvi : 1 ≤ i ≤

M, θ ∈ F∗
pe}. For any nonzero y ∈ V , we have
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Ψy(D) =
M∑

i=1

∑
θ∈F∗

pe

Ψy(θvi)

=
M∑

i=1

∑
θ∈F∗

pe

ψFpe (θf(vi, y))

= −M +
M∑

i=1

∑
θ∈Fpe

ψFpe (θf(vi, y))

= −M + pe · |{1 ≤ i ≤ M : f(vi, y) = 0}|
= pe · |〈y〉⊥ ∩ M| − |M|.

Now from Ψy(D) = α2 if y ∈ D, we obtain

|〈y〉⊥ ∩ M| = |D|
(pe − 1)(√q + 1) · (pe(r−1) + 1) − pe(r−1) if 〈y〉 ∈ M;

and from Ψy(D) = α1 if y ∈ F∗
q \ D, we obtain

|〈y〉⊥ ∩ M| = |D|
(pe − 1)(√q + 1) · (pe(r−1) + 1) if 〈y〉 /∈ M.

Therefore M is a |D|
(pe−1)(√

q+1) -ovoid in W(2r − 1, pe) by Lemma 1.1. The converse can 
be proved by simply running the above reasoning backwards. The proof is complete. �

We make some comments on self-duality. Let D be an F∗
pe -invariant subset of F∗

q . 
Assume that Cay(Fq, D) is a strongly regular graph of negative Latin square type, and 
with parameters

(
q, |D|, −√

q + ( |D|
√

q + 1)2 + 3|D|
√

q + 1 , ( |D|
√

q + 1)2 + |D|
√

q + 1

)
.

Define

D′ = {y ∈ Fq | ψFq,y(D) = α2}. (3.1)

Noting that Ψy(D) = ψFq,L(y)(D), we see that D is self-dual if and only if L(D) = D′.
We will use Theorem 3.2 for the purpose of constructing m-ovoids in W(2r−1, pe). The 

first step is to equip V with a concrete non-degenerate alternating form by choosing L(X)
carefully. Let γ be a primitive element of Fq (recall that q = ps is an odd prime power, 
and s = 2er), and set δ = γ

√
q+1
2 ∈ Fq. Then we have δ

√
q = −δ. Let L(X) = δX

√
q. 

By Lemma 3.1, f(x, y) := Trq/pe(xL(y)) is a non-degenerate alternating form defined 
on V . We will take V equipped with this f as our model for the symplectic polar space 
W(2r − 1, pe) in the rest of this paper.
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We further assume that q = ps with s = 2�t and t even. Take N = p� + 1, and let 
C0, . . . , CN−1 be the N th cyclotomic classes of Fq. In this case, it is easy to verify that 
N | q−1

2 . Let J be a proper subset of ZN of size u, and set DJ = ∪i∈JCi. By [6] (see the 
discussion in the end of Section 2), the graph Cay(Fq, DJ) is a strongly regular graph 
with negative Latin square type parameters

(
q,

u(√q − 1)
N

(√q + 1), −√
q + (

u(√q − 1)
N

)2 +
3u(√q − 1)

N
,

(
u(√q − 1)

N
)2 +

u(√q − 1)
N

)
.

Moreover, its eigenvalues are

ψFq
(γiDJ) =

{
u
N (√q − 1) − √

q, if − i (mod N) ∈ J,
u
N (√q − 1), otherwise.

(3.2)

It follows that D′
J = ∪−i∈JCi, where D′

J is defined in (3.1). In order to use Theorem 3.2
to obtain m-ovoids in W(2r−1, pe), we need DJ to be self-dual. To avoid possible overlap 
with the m-ovoids obtained by the field reduction method, we further assume that r is 
odd.

Lemma 3.3. With notation as above, DJ is self-dual if and only if J is σ-invariant, where 
σ : i �→ −1 − i (mod N).

Proof. We have L(Ci) = γ
√

q+1
2 +√

qiC0, i.e., L maps Ci to Cτ(i), where τ(i) :=
√

q+1
2 +√

qi

(mod N). Note that √q ≡ 1 (mod N), and 
√

q−1
2 = (p�t−1)

(p2�−1) · (p�−1)
2 · N ≡ 0 (mod N)

since t is even by assumption. Therefore τ(i) ≡ i + 1 (mod N). The partial difference 
set DJ is self-dual if and only if L(DJ) = D′

J which in turn is equivalent to {i + 1
(mod N) : i ∈ J} = {−i (mod N) : i ∈ J}, i.e., −J − 1 = J . The proof of the lemma is 
complete. �
Lemma 3.4. With notation as above, DJ is F∗

pe-invariant if and only if J is invariant 
under the map ρ : i �→ i + 2d0 (mod N), where d0 is an odd integer defined by

d0 := gcd
(

N

2 ,

√
q − 1

pe − 1

)
. (3.3)

Proof. Note that F∗
pe = 〈γ(q−1)/(pe−1)〉. So DJ is F∗

pe -invariant if and only if J is invariant 
under the map i �→ i + q−1

pe−1 (mod N). We have 
√

q +1 ≡ 2 (mod N) by the assumption 

that t is even. It follows that gcd(N, q−1
pe−1 ) = gcd(N, 2(√

q−1)
pe−1 ) = 2d0 with d0 as defined 

in (3.3). The conclusion of the lemma follows. �
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Theorem 3.5. Let p be an odd prime, and q = ps with s = 2er = 2�t for some positive 
integers e, r, �, t, where r is odd and t is even. Set N = p� + 1, and let d0 be defined as 
in (3.3). If d0 > 1, then there exists a b(√

q−1)
d0(pe−1) -ovoid in W(2r − 1, pe) for each integer 

1 ≤ b ≤ d0 − 1.

Proof. We continue with the above notation. By Lemma 3.3 and Lemma 3.4, the set 
DJ is F∗

pe -invariant and satisfies L(DJ) = D′
J if and only if J is invariant under the 

map ρ : i �→ i + 2d0 (mod N) and σ : i �→ −1 − i (mod N). We claim that 〈ρ, σ〉 =
{1, ρ, ρ2, ..., ρ

N
2d0

−1, σ, ρσ, ρ2σ, ..., ρ
N

2d0
−1σ} by the fact that 〈ρ, σ〉 is a dihedral group D N

d0
, 

cf. [18, 2.24]. Thus each 〈ρ, σ〉-orbit O on ZN has equal length N
d0

, and the corresponding 
union DO = ∪i∈OCi of cyclotomic classes has size |C0| · N

d0
= q−1

d0
. This number is 

divisible by (√q + 1)(pe − 1), since d0 divides 
√

q−1
pe−1 by (3.3). Therefore, DO is an m-

ovoid in W(2r − 1, pe) with m =
√

q−1
d0(pe−1) . By taking a union of b many DO’s, we get 

bm-ovoids in W(2r − 1, pe) for 1 ≤ b ≤ d0 − 1. �
Remark 3.6. The m-ovoids in W (2r − 1, pe) arising from Theorem 3.5 have the following 
automorphisms: g1 : x �→ ηx, where η ∈ F∗

q has multiplicative order (√
q+1)(pe−1)

2 , and 
g2 : x �→ x

√
q; together they generate a metacyclic group. This metacyclic group is also 

an automorphism group of the associated strongly regular Cayley graph Cay(Fq, DO). 
It is an interesting problem to completely determine the full automorphism group of the 
m-ovoids in Theorem 3.5 and further explore the connection between the automorphism 
groups of the m-ovoids we have constructed and those of the associated strongly regular 
Cayley graphs.

For the following discussion, we choose r to be an odd prime p0, and give explicit 
conditions that guarantee d0 > 1, where d0 is defined in (3.3). This excludes the possi-
bility that the resulting m-ovoids from Theorem 3.5 come from field reduction. Recall 
that s = 2ep0 = 2�t with t even. We consider two cases.

(A) First consider the case where p0 | t. Write t = p0t0. So t0 is even and e = �t0, and

√
q − 1

pe − 1 =
p0−1∑
i=0

pie =
p0−1∑
i=0

pi�t0 ≡ p0 (mod p� + 1).

Therefore, d0 = gcd(N/2, p0) = gcd(N, p0). In this case, d0 > 1 if and only if 
p0 | (p� + 1), which in turn is equivalent to d0 = p0. In Table 1, we give some 
examples of m-ovoids constructed by using Theorem 3.5 in this case.

(B) Next consider the case where p0 does not divide t. In this case, from p0e = �t, we 
deduce that p0 | �. Write � = �0p0. Then e = �0t. We claim that d0 = gcd(N/2, 

√
q−1

pe−1 )
is always greater than 1. We have 

√
q − 1 = p�t − 1 ≡ (−1)t − 1 = 0 (mod N) by 

the fact t is even, so N/2 divides √
q − 1. On the other hand, gcd(pe − 1, N/2)

divides gcd(pe − 1, p2� − 1) = pgcd(e,2�) − 1 = p2�0 − 1 by the fact p0 � t. Since 
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Table 1
m-ovoids constructed from Theorem 3.5 in the case r = p0 odd prime, p0 | t.

p0 p � t d0 W (2p0 − 1, pe) m

3 p odd 1 6k, k ∈ Z+ 3 W (5, p2k) b
3 (p4k + p2k + 1), b ∈ {1, 2}

5 3 2 10k, k ∈ Z+ 5 W (9, 34k) b(320k−1)
5(34k−1) , 1 ≤ b ≤ 4

5 7 2 10k, k ∈ Z+ 5 W (9, 74k) b(720k−1)
5(74k−1) , 1 ≤ b ≤ 4

5 13 2 10k, k ∈ Z+ 5 W (9, 134k) b(1320k−1)
5(134k−1) , 1 ≤ b ≤ 4

5 17 2 10k, k ∈ Z+ 5 W (9, 174k) b(1720k−1)
5(174k−1) , 1 ≤ b ≤ 4

5 19 1 10k, k ∈ Z+ 5 W (9, 192k) b(1910k−1)
5(192k−1) , 1 ≤ b ≤ 4

7 3 3 14k, k ∈ Z+ 7 W (13, 36k) b(342k−1)
7(36k−1) , 1 ≤ b ≤ 6

7 5 3 14k, k ∈ Z+ 7 W (13, 56k) b(542k−1)
7(56k−1) , 1 ≤ b ≤ 6

7 13 3 14k, k ∈ Z+ 7 W (13, 136k) b(1342k−1)
7(136k−1) , 1 ≤ b ≤ 6

11 7 5 22k, k ∈ Z+ 11 W (21, 710k) b(7110k−1)
11(710k−1) , 1 ≤ b ≤ 10

11 13 5 22k, k ∈ Z+ 11 W (21, 1310k) b(13110k−1)
11(1310k−1) , 1 ≤ b ≤ 10

11 17 5 22k, k ∈ Z+ 11 W (21, 1710k) b(17110k−1)
11(1710k−1) , 1 ≤ b ≤ 10

11 19 5 22k, k ∈ Z+ 11 W (21, 1910k) b(19110k−1)
11(1910k−1) , 1 ≤ b ≤ 10

13 5 2 26k, k ∈ Z+ 13 W (25, 54k) b(552k−1)
13(54k−1) , 1 ≤ b ≤ 12

13 7 6 26k, k ∈ Z+ 13 W (25, 712k) b(5156k−1)
13(512k−1) , 1 ≤ b ≤ 12

Table 2
m-ovoids constructed from Theorem 3.5 in the case r = p0 odd prime, p0 � t.

p0 p � t d0 W (2p0 − 1, pe) m

3 3 3 2k, 3 � k 7 W (5, 32k) b(36k−1)
7(32k−1) , 1 ≤ b ≤ 6

3 5 3 2k, 3 � k 21 W (5, 52k) b(56k−1)
21(52k−1) , 1 ≤ b ≤ 20

3 7 3 2k, 3 � k 43 W (5, 72k) b(76k−1)
43(72k−1) , 1 ≤ b ≤ 42

5 3 5 2k, 5 � k 61 W (9, 32k) b(310k−1)
61(32k−1) , 1 ≤ b ≤ 60

5 5 5 2k, 5 � k 521 W (9, 52k) b(510k−1)
521(52k−1) , 1 ≤ b ≤ 520

7 3 7 2k, 7 � k 547 W (13, 32k) b(314k−1)
547(32k−1) , 1 ≤ b ≤ 546

7 5 7 2k, 7 � k 13021 W (13, 52k) b(514k−1)
13021(52k−1) , 1 ≤ b ≤ 13020

11 3 11 2k, 11 � k 44287 W (21, 32k) b(322k−1)
44287(32k−1) , 1 ≤ b ≤ 44286

p2�0 −1 < N/2 = (p�0p0 +1)/2, we see that N/2 does not divide pe −1. We conclude 
that d0 > 1. In Table 2, we give some examples of m-ovoids constructed by using 
Theorem 3.5 in this case.

It was conjectured in [1] that if an m-ovoid exists in W(2r − 1, pe) with r > 2, then 
m ≥ cpe(r−2) for some positive constant c > 0. From Theorem 3.5, we know that there 
exist m-ovoids in W(2r − 1, pe) with m = b(√

q−1)
e if d0 > 1. We compute
d0(p −1)
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m

pe(r−2) =
b(√q − 1)

d0(pe − 1)pe(r−2) = b(per − 1)
d0(pe(r−1) − pe(r−2))

In the following we show that the aforementioned conjecture is false.

Example 3.7. In Case (B), when p = 3, r = p0 = 5, t = 2, we have d0 =
gcd ( 35�0 +1

2 , 310�0 −1
32�0 −1 ). It follows that 35�0 +1

3�0 +1 | d0; thus m
pe(p0−2) ≤ b(34�0 +33�0 +32�0 +3�0 +1)

36�0 , 
for some fixed b, and lim�0→∞

m
pe(p0−2) = 0.

Example 3.8. In Case (B), when p = 5, r = p0 = 7, t = 2, we have d0 =
gcd ( 57�0 +1

2 , 514�0 −1
52�0 −1 ). It follows that 57�0 +1

5�0 +1 | d0; thus m
pe(p0−2) ≤ b(57�0 −1)

(5�0 −1)510�0 , for some 
fixed b, and lim�0→∞

m
pe(p0−2) = 0.

Example 3.9. In Case (B), when p = 5, r = p0 = 11, t = 2, we have d0 =
gcd ( 511�0 +1

2 , 522�0 −1
52�0 −1 ). It follows that 511�0 +1

5�0 +1 | d0; thus m
pe(p0−2) ≤ b(511�0 −1)

(5�0 −1)518�0 , for some 
fixed b, and lim�0→∞

m
pe(p0−2) = 0.

4. Conclusion

In this paper, we develop a new method for constructing m-ovoids in finite symplectic 
spaces. We use some “special” strongly regular Cayley graphs Cay(Fq, D) from uniform 
cyclotomy in [6] and equip the ambient finite field Fq with a non-degenerate alternating 
form f so that the connection set D gives rise to an m-ovoid in the symplectic space 
(Fq, f). In this way we are able to obtain m-ovoids in high rank symplectic spaces which 
do not come from field reduction. We remark that there have been extensive efforts in 
the constructions of strongly regular Cayley graphs from cyclotomy in recent years, cf. 
[12,15,11,16], and it will be of interest to examine whether new m-ovoids can arise from 
Theorem 3.2.

We mention in passing that we only considered constructing m-ovoids in symplectic 
spaces from strongly regular graphs of negative Latin square type, but did not discuss 
similar constructions of i-tight sets in symplectic spaces from strongly regular graphs of 
Latin square type. The reason is as follows: each component of a spread of W(2r − 1, pe)
is a 1-tight set, thus there exist i-tight sets for all i in W(2r − 1, pe).

The results in this paper show that there are many more m-ovoids in finite symplectic 
spaces than previously thought. Still it remains an interesting problem to determine for 
which values of m there exists an m-ovoid in W(2r − 1, pe).
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