Journal of Combinatorial Theory, Series A 175 (2020) 105279

Contents lists available at ScienceDirect

Journal of Combinatorial Theory,
Series A

www.elsevier.com/locate/jcta

On m-ovoids of symplectic polar spaces

L))

Check for
Updates

Tao Feng®, Ye Wang?, Qing Xiang "

® School of Mathematical Sciences, Zhejiang University, 38 Zheda Road, Hangzhou
310027, Zhejiang PR China

b Department of Mathematical Sciences, University of Delaware, Newark, DE
19716, USA

ARTICLE INFO ABSTRACT
Article history: In this paper, we develop a new method for constructing m-
Received 16 September 2019 ovoids in the symplectic polar space W(2r — 1, p¢) from some

Received in revised form 24 May
2020

Accepted 25 May 2020

Available online 4 June 2020

strongly regular Cayley graphs constructed in [6]. Using this
method, we obtain many new m-ovoids which can not be
derived by field reduction.

© 2020 Elsevier Inc. All rights reserved.

Keywords:

Cyclotomic class
Intriguing set

m-ovoid

Strongly regular graph
Symplectic polar space

1. Introduction

Let e > 1,7 > 2 be integers, p be a prime, and F,. be the finite field of size p®. Let V'
be a 2r-dimensional vector space over F,. and f be a non-degenerate alternating form
defined on V. The symplectic polar space W(2r — 1, p¢) associated with the form f is the
geometry consisting of subspaces of PG(V) induced by the totally isotropic subspaces
with respect to f. The symplectic polar space W(2r — 1,p¢) contains totally isotropic
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points, lines, planes, etc. Note that since f is alternating, every point of PG(V) is totally
isotropic. Therefore the set of points of W(2r — 1,p°) coincides with the set of points
of PG(V). The (totally isotropic) subspaces of maximum dimension are called mazimals
(or generators) of W(2r — 1, p®). The rank of W(2r — 1, p°) is the vector space dimension
of its maximals, namely r.

In this paper, we are concerned with m-ovoids in W(2r—1, p®). An m-ovoid in W(2r —
1,p°) is a set M of points such that every maximal of W(2r — 1, p®) meets M in exactly
m points. A 1-ovoid in W(2r — 1, p®) is simply called an ovoid. Ovoids in W(2r — 1, p®)
(and more generally in any classical polar space) were first defined by Thas [20] in 1981.
The existence problem for ovoids in W(2r — 1, p®) is completely solved: W (3, p¢) has an
ovoid if and only if p = 2; and W(2r — 1,p°), r > 2, has no ovoids. The concept of an
m-ovoid was first defined by Thas [21] for generalized quadrangles, and then generalized
to that in classical polar spaces by Shult and Thas [19]. There are some closely related
objects, called i-tight sets, in W(2r — 1,p°). We will not study i-tight sets in this paper,
but simply mention that m-ovoids and i-tight sets of W(2r — 1, p°) can be unified under
the umbrella of intriguing sets [2] of W(2r — 1, p®).

Intriguing sets (in particular, m-ovoids) in classical polar spaces have close connections
with other geometric and combinatorial structures such as strongly regular graphs and
projective two-weight codes, cf. [2—4,8]. For example, m-ovoids in W(2r—1, p®) turn out to
be projective two-intersection sets in PG(2r — 1, p®) and thus give rise to strongly regular
graphs, cf. [2]. There is also a significant relation between projective two-intersection sets
and two-weight codes, cf. [8]. A construction of m-ovoids in Q™ (5, p°) via strongly regular
Cayley graphs was given in [3].

The main problem concerning m-ovoids in W(2r—1, p®) is: For which m > 1 does there
exist an m-ovoid in W(2r — 1,p¢)? As we mentioned above, when m = 1, this problem is
completely solved. In sharp contrast, the existence problem for m-ovoids with m > 2 is
wide open. We give a brief summary of known results here. We start with W(3, p¢): When
p is odd, there are no ovoids in W(3, p®), cf. [17]; but there is a partition of W(3, p®) into
2-ovoids, so there exists an m-ovoid in W(3, p¢) for each even positive integer m, cf. [4];

—(pe; L _ovoids in W(3,p¢) when p is odd

moreover Cossidente et al. gave a construction of
in [7]. When p = 2, Cossidente et al. gave a construction of m-ovoids for all possible m
in W(3,p°) in [7]. Next we consider the case of W(5,p®): First there are some sporadic
examples of m-ovoids in W(5, p¢), cf. [2]; when p = 2, Cossidente and Pavese [9] gave two
constructions of nonclassical (p®+1)-ovoids in W(5, p®) by utilizing relative hemisystems
and embedded Suzuki-Tits ovoids of a Hermitian surface. For general W(2r — 1,p°),
in terms of necessary conditions, it is proved in [2] that if there exists an m-ovoid in

W(2r — 1,p°) with r > 2, then m > (_3+2p4 ij;‘pw); as for constructions, Cossidente
(pe(2n72)_1)

pe—1

-ovoids for p® even. Shult and Thas [19] introduced the notion

and Pavese [10] gave a partition of W(4n — 1,p°) into a -ovoid, a p¢?"—2).
ovoid and some 2p¢(?"=2)

of m-systems in finite classical polar spaces, and showed that the points underlying the

D ovoid. In [19, Theorem 14],

11he . e e\ vi (
subspaces of an m-system of W (2r —1, p¢) yield a -2 T
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they further showed that if H(r — 1,p?¢), r odd, contains an m-system, then a (2m + 1)-
system of W (2r — 1,p¢) can be obtained by field reduction. Hence, when r = 3, there is
a 1-system of W (5, p®) arising from a 0-system in H (2, p?¢), and so we obtain a (p©+ 1)-
ovoid in W(5,p®). Also we should mention an important construction method: by using
field reduction, an m’-ovoid in low rank classical polar spaces gives rise to an m-ovoid in
higher rank classical polar space. Specifically with the method of field reduction, an m/-
ovoid in W (21 —1,p¢") gives rise to an m-ovoid in W (2r—1,p¢) if # | 7 and re = r'¢’, cf.
[14]. In the end of Section 3 of this paper, we will construct m-ovoids in W(2r — 1, p®),
with r being a prime, say pg; since pyp has only two factors 1 and pgp, an m-ovoid in
W (2po — 1, p®) can not be constructed from an m’-ovoid in a symplectic polar space with
rank lower than pg.

As can be seen from the above summary there has been very little work on m-ovoids
in high rank symplectic polar spaces. In terms of constructions, when ¢ is odd, the only
known construction method for m-ovoids in high rank symplectic polar spaces is the
field reduction method, cf. [14]. In this paper, we develop a new construction method
which allows us to construct many new m-ovoids in high rank symplectic polar spaces.
Specifically we show that there are many m-ovoids in W (2r — 1, p®) with new parameters
arising from the partial difference sets in Theorem 3.5. To facilitate the description of
our method, we give the following equivalent definition of m-ovoids in W(2r — 1, p®).

Lemma 1.1. Let M be a set of points of W(2r — 1,p%). Then M is an m-ovoid if and
only if

m(pY + 1) —pr Y, if PeM,
m(pe Y + 1), otherwise.

|P+ N M| :{ (1.1)

For a proof of the lemma, we refer the reader to [2]. The basic idea of our construction
of m-ovoids is to use a partial converse to Theorem 11 in [2]. Concerning W(2r — 1, p®),
Theorem 11 in [2] says that an m-ovoid gives rise to a strongly regular Cayley graph
over (]Fgl ,+) of negative Latin square type. A partial converse to this statement is true;
that is, a strongly regular Cayley graph over (]Fgl ,+) of negative Latin square type with
some special property can give rise to an m-ovoid in W(2r — 1, p¢) (the special property
is the “self-dual” property; this will be made precise in Theorem 3.2). To implement
this strategy, we start with some strongly regular Cayley graphs Cay(F,, D) in [6], and
equip the ambient finite field F,, now viewed as a vector space over a subfield Fp., with
an appropriate non-degenerate alternating form f, and show that with respect to f, D
is “self-dual”, hence the set M of projective points obtained from D will satisfy (1.1),
giving rise to an m-ovoid in the symplectic polar space W(2r — 1,p¢) of rank r. The
organization of this paper is as follows. In Section 2, we give some preliminaries on
strongly regular graphs and describe the construction using cyclotomic classes of finite
fields in [6]. In Section 3, we first describe our construction strategy, and then give the
details of our construction of m-ovoids. We conclude the paper with Section 4.
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2. Preliminaries

A strongly regular graph srg(v, k, \, p) is a simple and undirected graph, neither com-
plete nor edgeless, that has the following properties:

(1) It is a regular graph of order v and valency k.

(2) For each pair of adjacent vertices x,y, there are exactly A vertices adjacent to
both = and y.

(3) For each pair of nonadjacent vertices x,y, there are exactly u vertices adjacent to
both z and y.

For example, the pentagon is an srg(5,2,0,1) and the Petersen graph is an
srg(10,3,0,1). The parameters of an srg(v, k, A, u) satisfy the following basic relation.

Lemma 2.1. [13, Section 10.1] Let T be an srg(v, k, \, ). Then
E(k—A—1)=plv—k—-1).

Let T be a (simple, undirected) graph. The adjacency matrix of ' is the (0, 1)-matrix
A with both rows and columns indexed by the vertices of I', where A,, = 1 when there is
an edge between z and y in I'' and A,y = 0 otherwise. The eigenvalues of I' are defined to
be those of its adjacency matrix A. For convenience we call an eigenvalue of ' restricted
if it has an eigenvector which is not a multiple of the all-ones vector 1. (For a k-regular
connected graph, the restricted eigenvalues are simply the eigenvalues different from k.)

Theorem 2.2. For a simple graph U of order v, neither complete nor edgeless, with adja-
cency matriz A, the following are equivalent:

1. T is strongly regular with parameters (v, k, \, u) for certain integers k, \, p,
2. A2 = (A= p)A+ (k—p)I + pJ for certain real numbers k, \, 1, where I, J are the
identity matrix and the all-ones matriz, respectively,
3. A has precisely two distinct restricted eigenvalues oy, as.
For a proof of Theorem 2.2, we refer the reader to [5]. For later use, we write down
the explicit relations between the parameters of an srg(v, k, A, 1) and its restricted eigen-

values aq, as.

Lemma 2.3. [13, Section 10.2] Let T’ be an srg(v, k, A\, u) with restricted eigenvalues aq,
a9, where ay > ay. Then

N —p) + /(A= p)? +4(k — p)
5 ,

oy = A=) = VO =) + 4k — p)
2 — 2 )

a1 =
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with multiplicities

(o 2 e-D0-w )
"“_2<( ! JQ—MV+Mk—M> !
(L kD)

: 2<( 1)%¢u—uv+ak—m>’

respectively.

An effective method to construct strongly regular graphs is by the Cayley graph
construction. Let G be an additively written abelian group of order v, and let D be a
subset of G such that 0 ¢ D and —D = D, where —D = {—d | d € D}. The Cayley graph
on G with connection set D, denoted by Cay(G, D), is the graph with the elements of
G as vertices; two vertices are adjacent if and only if their difference belongs to D. Let
G be the (complex) character group of G. All the eigenvalues of Cay(G, D) are given by
Y(D) =3 4ep(d), ¢ € G. Note that 1ho(D) = | D|, where 1y is the principal character
of G. By Theorem 2.2, the graph Cay(G, D) is strongly regular if and only if D generates
G and {¢(D) : ¥ € G\ {o}} = {a1, a2} with a5 # ay. If this is the case, then the
connection set D is called a partial difference set, and the Delsarte dual of D is defined
to be either of {¢y € G : ¥(D) = oy}, i =1, 2.

An srg(v, k, A, 1) is said to be of Latin square type (resp. negative Latin square type)
if (v,k, A\, 1) = (n% a(n —¢€),en + a® — 3ea,a® — ea) and € = 1 (resp. € = —1).

Let G and D be the same as above. Suppose that Cay(G, D) is an srg(v, k, A, pt). Then,
by Lemma 2.3, one of the duals of D has the same size as that of D if and only if

k:1<(v_1)_ 2% + (v — 1)(\ — p) ) o

VO = )2 +4(k —p)

| % + (v — 1)(A— p)
k=—-|(v- ,
<( 1%%¢@—uﬁ+ak—m>

which in turn is equivalent to

(2k + (v = (A = p))?
(A= p)? +4(k — p)

After some tedious computations, we see that when (2 2) is satisfied, v must be a square,
and p = (%)2 — % or p = (\/_+1) + \/_+1 Note that by Lemma 2.1, A =
k—1+ (1 - %2)u. Consequently if one of the duals of D has the same size as that of

D, then the strongly regular graph Cay(G, D) must be of Latin square or negative Latin

= (v—1—2k)>2 (2.2)

square type.
Conversely, when (v,k,\, 1) = (n%,a(n — 1),n + a® — 3a,a® — a), by Lemma 2.3,
a1 = n — a with multiplicity f = a(n — 1), and s = —a with multiplicity g = (n + 1 —
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a)(n —1). Thus the dual {¢) € G : (D) = a;} has the same size as that of D. When
(v, k, A\, 1) = (n?,a(n+1),—n+a®+3a,a® +a), by Lemma 2.3, a3 = a with multiplicity
f=Mm-1-=a)(n+1), and az = a — n with multiplicity ¢ = a(n + 1). Thus the dual
{¢ € G : (D) = oz} has the same size as that of D.

We will use Cayley graphs Cay(FF,, D), where the connection sets are unions of cyclo-
tomic classes, for the purpose of constructing m-ovoids in symplectic polar spaces. To
this end, we define cyclotomic classes of finite fields. Let ¢ = p® be a prime power, and
let v be a fixed primitive element of F,. Let N > 1 be a divisor of ¢ — 1. We define the
N cyclotomic classes C’i(N’q) of F, by

N -1
e = {0 << = -1,

where 0 < i < N — 1. That is, CéN’q) is the subgroup of ]F(;k consisting of all nonzero N th
powers in Fy, and CZ-(N’q) = fin’éN’q), for 1 < ¢ < N — 1. In the sequel, if N,q are clear
from the context, we will simply write Ci(N’q) as C;.

Suppose that ¢ = p® with p a prime, and let e be any positive divisor of s. Let
Try/pe : Fg — Fpe be the trace function from [, to Fpe, i.e.,

pels/e=1)

Trq/pe(a:):x—kxpe—l----—kx , Yz € Fy.

Set wy, := exp (%) Define ¢p,: F; — C* by

UF, (x) = w;ﬁ“/”(x), Vo € IF,.

The map ¢y, is a character of the additive group of Iy, and it is called the canonical
additive character of F,. For any y € IF;, we define ¢, ,: F; — C* by

mey(w) = U, (xy), Yo € F,.

It is well known that {¢g, , | y € F,} = (Fy, +)-

Next we recall the following construction of strongly regular Cayley graphs given in
[6], see also [5, Section 9.8.5]. Suppose that ¢ = p® with p prime, and let N be a proper
divisor of ¢— 1 such that p* = —1 (mod N) for some positive integer £. Choose ¢ minimal
and write s = 2¢t. Take a proper subset J C Z y of size u. If ¢ is even, then the choice of
J is arbitrary; if ¢ is odd, then we require that N|’IT_1 and JJrq%l =J.Set Dy = U;eyC;.
Then the graph Cay(F,, D) is strongly regular with eigenvalues

———u, with multiplicity 1,
ar = %(—1 +(~1)'/g), with multiplicitiy ¢ —1 — &, (2.3)

ap = %(_1 + (1)) + (1) /g, with multiplicity k.
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To be specific, for i =0,1,..., N — 1, we have

ag, ife*=1andie€ —J (mod N)
Yr, (v'D) = ore?=—landie —J+ N/2 (mod N), (2.4)

oy, otherwise,

—1, if N is even and LIF is odd;
where € =
1, otherwise.
The graph Cay(F,, D) is of Latin square type (resp. negative Latin square type) if
t is odd (resp. even).

3. Constructions of m-ovoids in W(2r — 1, p®) via strongly regular Cayley graphs

Throughout the rest of this paper, we fix the following notation. Let ¢ = p®, where
p is an odd prime and s = 2er for some positive integers e and r > 2. We view F; as
a 2r-dimensional vector space over F,. (a subfield of F,), and denote this Fpe-vector
space by V. As usual, for a nonzero v € V, we write (v) for the projective point in the
projective space PG(V) corresponding to the 1-dimensional Fp-subspace spanned by v.
We will equip a bilinear form on V as follows. Let L(X) = Zflgl G XP € F,[X] be a
linearized polynomial. Define f : V x V — Fp,e by

f(@,y) =Trg/pe (@L(y)),V(z,y) €V X V.

Then f is an Fpe-bilinear form on V.

Lemma 3.1. With notation as above, the Fye-bilinear form f on V is alternating if and
only if co = 0 and cg;e_i = —¢; for1 <i < 2r—1. Moreover, the form f is non-degenerate

if and only if x — L(x) is a bijection from Fy to itself.

Proof. The form f is alternating if and only if f(x,z) = 0 for all x € V. We have

2r—1 ) 2r—1 . ) o
flz,z) = Z Try/pe (cixlﬂ’w) — Z cf;)‘]exp76+p(l+])8
=0 ij=0
ie ke e ke 2r—1 B .
= D (GG ) TR Y e
j=0

0<i<k<2r—1

We view f(z,x) as a polynomial in & with coefficients in F,. As can be seen from the
above expression, f(x,z) has degree less than or equal to ¢ — 1. The polynomial f(z,x)
vanishes at every element of I, if and only if it is the zero polynomial. The first claim
of the lemma now follows by comparing the coefficients.
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Assume that f is non-degenerate. Suppose that f(z,y) = Try/pe(zL(y)) = 0 for all
r € Fy. We must have L(y) = 0 since Try/,
assumption that f is non-degenerate, we have y = 0. It follows that x — L(x) is a

. is a nontrivial linear form on V. By the

bijection since L is linearized. The proof of the converse is straightforward. This proves
the second claim of the lemma. O

Let L(X) = Zf;;l 5 A= F,[X] be a linearized permutation polynomial such
that f(x,y) = Try/pe (zL(y)) is a non-degenerate alternating form. Equip V' = (Fg, +)
with the alternating form f, and this will be our model for the symplectic polar space

W(2r — 1,p°) of rank r. For any nonzero y € V, we define

()= ={(2) | fz,y) =0, z € V\ {0}}.

Also for any y € V we define ¥, € (F/q,\—i—) as follows:
Vy(z) = v, (xL(y)) = Yr,. (f(2,9))-

It is well known that {¥, |y € V} = (]F/q-,:) We now give the definition of self-dual
partial difference sets in (Fy,+). (Note that such a self-dual partial difference set is
necessarily of Latin square type or negative Latin square type by the discussion in the
last section.) Let D be an F . -invariant subset of F;. That is, D is a union of some cosets
of Fj. in Fy. Assume that Cay(F,, D) is a strongly regular graph of negative Latin square
type, and with parameters

D] o, 3Dl D]\, |D|
\/a+1) +\/q+1’(\/a+1) +\/§+1>'

(q, D]~y + (

Let D* C F, \ {0} be such that {¥, € (]F/q—,:) | y € D*} is one of the Delsarte duals.
We say that D is self-dual if D* = D. Now we state the connection between m-ovoids
in W(2r — 1, p°) and self-dual partial difference sets in (Fq, +) explicitly.

Theorem 3.2. With notation as above, let D be an F.-invariant subset of ¥y such that
|D| = 0 (mod (y/q + 1)(p°® — 1)). Then the set M = {(v) : v € D} is a %—
ovoid in W(2r—1,p°) if and only if D is a self-dual partial difference set with parameters
(0:1D], = + (J2)* + S (J2h)* + 7

NS NESRRAWES Va+1
Proof. Assume that D is a self-dual partial difference set with the above parameters.
Then by Lemma 2.3, the graph Cay(F,, D) has two eigenvalues ay = \/IqD.L (with mul-
tiplicity m1 = ¢ — 1 — |DJ), and ag = \/‘6D—i1 — /¢ (with multiplicity mo = |D]); and

furthermore since D is self-dual, we have ¥, (D) = ay if y € D* = D and ¥ (D) = s
if y e Fy\ D.

Write M := {(v;) : 1 <i < M}, where M = |D|/(p® —1). Then D = {fv; : 1 <i <
M, 0 € . }. For any nonzero y € V, we have
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M
V(D)= D ¥, (6v)

=1 96]F;€

M
=3 ¥R, (0f(vi,y))

i=1 QE]F;E

M
= MY e (05(0n)
=1 QE]FPe
=-M+p° - {1<i<M: f(v;,y) =0}
=p° - |{y) M| M.
Now from W, (D) = ay if y € D, we obtain
D]
(e =D(Vg+1)

and from W, (D) = oy if y € F; \ D, we obtain

()t N M| = A(per T 4 1) — peU Y E (y) € M;

L |D‘ e(r—1) .
Y- NM|= “(p + 1) if (y) ¢ M.
Therefore M is a W&H)—ovoid in W(2r — 1,p°) by Lemma 1.1. The converse can

be proved by simply running the above reasoning backwards. The proof is complete. O

We make some comments on self-duality. Let D be an F.-invariant subset of F;.
Assume that Cay(IF,, D) is a strongly regular graph of negative Latin square type, and
with parameters

Dl >, 3D DI 1D )
Va+1 Vi+1 g+ 1 Vi+1l)

(q, D] v+ (
Define

D' ={y € Fy | vp, (D) = az}. (3.1)

Noting that W, (D) = ¢, 1(y)(D), we see that D is self-dual if and only if L(D) = D".
We will use Theorem 3.2 for the purpose of constructing m-ovoids in W(2r—1, p®). The
first step is to equip V with a concrete non-degenerate alternating form by choosing L(X)
carefully. Let v be a primitive element of F, (recall that ¢ = p® is an odd prime power,
and s = 2er), and set 0 = 'yﬁzﬂ € F,. Then we have 6v? = —4. Let L(X) = 6X V1.

By Lemma 3.1, f(x,y) := Trg/pe(xL(y)) is a non-degenerate alternating form defined

on V. We will take V' equipped with this f as our model for the symplectic polar space
W(2r — 1,p°) in the rest of this paper.
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We further assume that ¢ = p® with s = 2/t and t even. Take N = p’ + 1, and let
Co,...,Cn_1 be the N*® cyclotomic classes of F,. In this case, it is easy to verify that
N|"2;1. Let J be a proper subset of Zy of size u, and set Dj = U;c;C;. By [6] (see the
discussion in the end of Section 2), the graph Cay(F,, D) is a strongly regular graph
with negative Latin square type parameters

(o 2=+ 1, v+ (e 2D,

(“(\/?V_ 1))2 n u(\/?v_ 1)) .

Moreover, its eigenvalues are

~a—-1)—/4q, if —i(mod N)cJ,

3.2
v(Va—1), otherwise. (3.2)

vr,(v'Dy) = {

It follows that D’; = U_;c;C;, where D’} is defined in (3.1). In order to use Theorem 3.2
to obtain m-ovoids in W(2r—1, p®), we need D to be self-dual. To avoid possible overlap

with the m-ovoids obtained by the field reduction method, we further assume that r is
odd.

Lemma 3.3. With notation as above, D j is self-dual if and only if J is o-invariant, where
o:ir —1—14 (mod N).
Va+1

Proof. We have L(C;) =~z TV%(Cy,i.e., L maps C; to C-r(iy, where (i) := ‘/6;1 +/qi

(mod N). Note that /g = 1 (mod N), and \/6271 = gi;jg . (ngl) N =0 (mod N)
since ¢ is even by assumption. Therefore 7(¢) = 7 + 1 (mod N). The partial difference

set Dy is self-dual if and only if L(D;) = D’; which in turn is equivalent to {i + 1
(mod N):ieJ}={—i (mod N): i€ J}, ie, —J—1=J. The proof of the lemma is
complete. O

Lemma 3.4. With notation as above, D; is Fj.-invariant if and only if J is invariant
under the map p: i — i+ 2dy (mod N), where dy is an odd integer defined by

(N -1
do = ng (?, pe — 1 ) . (33)

Proof. Note that F. = (yla=D/P"=1)y 8o D is [Fje-invariant if and only if J is invariant

1;1;11 (mod N). We have \/g+1 =2 (mod N) by the assumption

that ¢ is even. It follows that ged(N, pqe;_ll) = ged(N, 2(;@_—11)) = 2dy with dy as defined
in (3.3). The conclusion of the lemma follows. O

under the map 7 — i+
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Theorem 3.5. Let p be an odd prime, and g = p°* with s = 2er = 20t for some positive
integers e, r, £, t, where r is odd and t is even. Set N = p* + 1, and let dy be defined as

n (3.3). If dg > 1, then there exists a d(z/_ Y _ovoid in W(2r — 1,p¢) for each integer
1<b<dy—1.

Proof. We continue with the above notation. By Lemma 3.3 and Lemma 3.4, the set
Dy is Fe-invariant and satisfies L(D;) = D’ if and only if J is invariant under the
map p : i+ z + 2dy (mod N)and o : i = —1 — i (mod N). We claim that (p,o) =
{1,p,0%,. ,p2d0 1 o, po, p2o, pﬁfla} by the fact that (p, o) is a dihedral group D,
cf. [18, 2.24]. Thus each (p, a)—orb1t O on Zy has equal length %, and the correspondirtl)g

union Do = U;enC; of cyclotomic classes has size |Cy] - dﬂo = qd;ol. This number is

divisible by (/g + 1)(p® — 1), since dy divides 1{5_‘11 by (3.3). Therefore, Dy is an m-
ovoid in W(2r — 1,p¢) with m = %. By taking a union of b many Dp’s, we get
bm-ovoids in W(2r — 1,p°) for 1 <b<dyp—1. O

Remark 3.6. The m-ovoids in W(2r — 1, p®) arising from Theorem 3.5 have the following
automorphisms: g; :  — nx, where n € F; has multiplicative order %2@6_1)7 and
g2 1  — xV9; together they generate a metacyclic group. This metacyclic group is also
an automorphism group of the associated strongly regular Cayley graph Cay(F,, Do).
It is an interesting problem to completely determine the full automorphism group of the
m-ovoids in Theorem 3.5 and further explore the connection between the automorphism
groups of the m-ovoids we have constructed and those of the associated strongly regular

Cayley graphs.

For the following discussion, we choose r to be an odd prime pg, and give explicit
conditions that guarantee dy > 1, where dy is defined in (3.3). This excludes the possi-
bility that the resulting m-ovoids from Theorem 3.5 come from field reduction. Recall
that s = 2epy = 20t with t even. We consider two cases.

(A) First consider the case where pg | t. Write ¢ = poto. So tg is even and e = £ty, and
po—1 po—1

Z Z pto = py (mod pt+ 1).

Therefore, dy = ged(N/2,p9) = ged(N,po). In this case, dy > 1 if and only if
po | (p* + 1), which in turn is equivalent to dy = po. In Table 1, we give some

p—l_

examples of m-ovoids constructed by using Theorem 3.5 in this case.

(B) Next consider the case where py does not divide ¢. In this case, from pge = £t, we
deduce that pg | £. Write £ = £ypg. Then e = £yt. We claim that dy = ged( \/?__11)
is always greater than 1. We have /g —1=p" —1=(-1)" =1 =0 (mod N) by
the fact t is even, so N/2 divides \/g — 1. On the other hand, ged(p® — 1, N/2)
divides ged(p® — 1,p? — 1) = peed(©26) _ 1 = p2fo _ 1 by the fact po { t. Since
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Table 1
m-ovoids constructed from Theorem 3.5 in the case 7 = pg odd prime, po | t.

Po P 1 t do W (2po — 1,p°) m

3 p odd 1 6k, k€ Z% 3 W (5, p?*) L' +p? +1), be {1,2}

5 3 2 10k, k € Z+ 5 W (9, 3%) %,1gbg4

5 7 2 10k, k € Z+ 5 W (9, 7%) %,15b§4

5 13 2 10k, k € Z+ 5 W (9, 13%%) lj,f(lg—[jf; 1<b<4

5 17 2 10k, k € Z+ 5 W (9, 174%) ’;‘(11777[:11; 1<b<4

5 19 1 10k, k € Z+ 5 W (9, 192%) ’;‘j;’gifjf)) 1<b<4

7 3 3 14k, k€ Z+ 7 W (13, 36%) M=, 1<b<6

7 5 3 14k, k € Z+ 7 W (13, 55%) % 1<b<6

7 13 3 14k, k € Z+ 7 W(13,13%%) % 1<b<6

11 7 5 22k, k€ ZT 11 W(21, 740F) S, 1<b <10

11 13 5 22k, k€ ZF 11 W(21,139%) fﬁfsi‘fj; 1<b<10

11 17 5 22k, ke Z* 11 W (21,1710F) fﬁ;—[f:ll)) 1<b<10

11 19 5 2k, ke Zt 11 W (21, 1910F) %ﬁ;jé 1<b<10

13 5 2 26k, k€ ZT 13 W (25, 54%) %ﬁjﬁ 1<b<12

13 7 6 26k, k€ Z7 13 W (25, 712%) 55;57:;3 1<b<12
Table 2

m-ovoids constructed from Theorem 3.5 in the case 7 = pg odd prime, pg 1 t.

Do P 1 t do W (2po — 1,p°) m

3 3 3 2k, 3tk 7 W (5, 32%) M=, 1<b<6

3 5 3 2%, 31k 21 W (5, 52%) s, 1< b < 20

3 7 3 2%k, 3tk 43 W (5, 72%) %,1gb542

5 3 5 2k, 51 k 61 W (9, 32%) %,1gb§60

5 5 5 2k, 5tk 521 W (9, 52%) 5”;5(57&% 1<b<520

7 3 7 2k, Ttk 547 W (13, 32%) % 1< b< 546

7 5 7 2k, Ttk 13021 W (13,5%") Ty, 1< b < 13020
11 3 11 2k, 11tk 44287 W(21,32%) BB 1) ) < b < 44286

14287(32F—1)’

p?o —1 < N/2 = (pfoPo +1)/2, we see that N/2 does not divide p® — 1. We conclude
that dyp > 1. In Table 2, we give some examples of m-ovoids constructed by using
Theorem 3.5 in this case.

It was conjectured in [1] that if an m-ovoid exists in W(2r — 1,p¢) with r > 2, then
m > ep"2) for some positive constant ¢ > 0. From Theorem 3.5, we know that there

exist m-ovoids in W(2r — 1, p¢) with m = % if dy > 1. We compute
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mo o Mya-D e
pe(r—2) do(pe _ 1)pe(7'—2) do(pe(r—l) _ pe(r—Q))

In the following we show that the aforementioned conjecture is false.

Example 3.7.In Case (B), when p = 3,7 = py = 5t = 2, we have dy =
gcd(gﬂmrl 3 o1 L). It follows that 350041 | do; thus T S b(34£0+3320+3220+320+1)

3200 — 3% +1 elpo—2) — 360

for some fixed b, and limg, 00 ﬁ =0.

Example 3.8.In Case (B), when p = 5,r = py = 7,t = 2, we have dy =

oo 1 5ldlo_g 011 b(57t0 1
gcd(5 + ,552[0 ). It follows that 554 :—1 | do; thus pe(;’g,m < (5}0_1)510)(0, for some
=0.

fixed b, and limgoﬁOO

pe(po—Q)

Example 3.9.In Case (B), when p = 5,r = pg = 11,t = 2, we have dy =

51120+1 52200 _1 5110 11 ) b(511%0 _1)
ged ( ) BTy ) It follows that “z—% | do; thus pe(:g,z) < Gyt
=0.

fixed b, and limgo_mo

A

for some

pe(P(J*?)

4. Conclusion

In this paper, we develop a new method for constructing m-ovoids in finite symplectic
spaces. We use some “special” strongly regular Cayley graphs Cay(F,, D) from uniform
cyclotomy in [6] and equip the ambient finite field I, with a non-degenerate alternating
form f so that the connection set D gives rise to an m-ovoid in the symplectic space
(Fq, f). In this way we are able to obtain m-ovoids in high rank symplectic spaces which
do not come from field reduction. We remark that there have been extensive efforts in
the constructions of strongly regular Cayley graphs from cyclotomy in recent years, cf.
[12,15,11,16], and it will be of interest to examine whether new m-ovoids can arise from
Theorem 3.2.

We mention in passing that we only considered constructing m-ovoids in symplectic
spaces from strongly regular graphs of negative Latin square type, but did not discuss
similar constructions of i-tight sets in symplectic spaces from strongly regular graphs of
Latin square type. The reason is as follows: each component of a spread of W(2r — 1, p®)
is a 1-tight set, thus there exist i-tight sets for all ¢ in W(2r — 1, p°).

The results in this paper show that there are many more m-ovoids in finite symplectic
spaces than previously thought. Still it remains an interesting problem to determine for
which values of m there exists an m-ovoid in W(2r — 1, p®).
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