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Abstract 14 

Small-scale, residential solar systems have been increasingly recognized as a key sector for 15 

future carbon emission reduction in cities. This study investigated customer preferences of solar 16 

thermal and photovoltaic systems through a crowdsourced discrete choice experiment and 17 

latent class choice modeling targeting Boston, Massachusetts and Atlanta, Georgia. Key 18 

motivating factors for adoption in both testbeds are installation cost, environmental benefits, and 19 

annual savings. Despite the latent classes’ similarity in their preferences of different system 20 

features, all classes present different socioeconomic characteristics across the two testbeds, 21 

indicating preference heterogeneity across cities. We also found that both cities have significant 22 

early adopters residing in lower-property-value regions, revealing a potential to achieve both 23 

carbon emission reduction and community renaissance objectives when combining 24 

infrastructure renovation projects with decentralized energy systems installation. This study 25 
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presents a framework for assessing and understanding the social demand of decentralized 26 

energy systems to facilitate their future promotions. 27 
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1. Introduction 33 

Solar energy is one of the fastest-growing renewable energy sources around the world (IEA, 34 

2020; Weiss and Spörk-Dür, 2020). It is currently harnessed through two dominant 35 

technologies: solar photovoltaic (PV) and solar thermal systems. By the end of 2019, the global 36 

installed solar PV and thermal capacities were 627 GWel and 479 GWth, respectively, with 37 

China, Europe, and the United States leading the chart (Weiss and Spörk-Dür, 2020). Despite 38 

the industry’s unprecedented growth, solar systems currently meet only around 2.8% of the 39 

global electricity demand and 0.7% of the global heat demand (Adib et al., 2020; IEA, 2020), 40 

while the majority of the global solar potential is still untapped (Davidson, 2005). Small-scale, 41 

residential solar systems are perceived as a dominant force to further the growth of the global 42 

solar industry (Lee et al., 2018). A recent study reported that small buildings (<465 m2) 43 

represent about 65% of the total rooftop solar potential in US cities (Gagnon, 2019). An 44 

enhanced understanding of households’ preferences of solar PV and thermal systems is hence 45 

imperative to support effective policy and incentive designs for their broader penetration in the 46 

residential sector. 47 

 48 

Traditional economic and behavioral studies typically examine the influence of prescribed 49 

individual factors, such as economic cost or incentives (Haas et al., 1999; Jager, 2006; Matisoff 50 

and Johnson, 2017; Schelly, 2014; Sun et al., 2020), environmental attitudes (Haas et al., 1999; 51 

Jager, 2006; Schelly, 2014; Sun et al., 2020), peer effects (Bollinger and Gillingham, 2012; 52 

Jager, 2006; Palm, 2016; Rai et al., 2016; Reeves et al., 2017), information channels (Haas et 53 

al., 1999; Palm, 2016; Rai et al., 2016; Reeves et al., 2017; Wolske et al., 2017), technology 54 

innovation (Haas et al., 1999; Sun et al., 2020; Wolske et al., 2017), system reliability and 55 

independency (Haas et al., 1999; Jager, 2006), business model (Rai et al., 2016), and beliefs 56 

(Wolske et al., 2017) on consumer adoption of decentralized solar PV systems. While the 57 

knowledge about whether and to what degree these individual factors influence consumer 58 
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behaviors is important in guiding policy design and evaluating policy effectiveness, it does not 59 

enable a holistic understanding about the demand of decentralized, residential energy systems 60 

to facilitate the prediction of their adoption trajectories at a regional scale. Furthermore, solar 61 

thermal systems are hugely underrepresented in the consumer behavior literature.  62 

 63 

Only a few studies have attempted to predict consumer adoption of decentralized energy 64 

systems based on the combined effect of multiple factors in an integrated modeling framework. 65 

Best et al. (2019) developed a logit model to examine the combined effect of demographics, 66 

housing characteristics, environmental attitudes, and geographical location on both solar PV 67 

installation and intention to install using Australian survey data. They found household economic 68 

status, electricity expenses, environmental attitudes, property tenure, and space constraints 69 

were predictors of either the installation or the intention to install solar PV systems. Rai and 70 

Robinson (2013) developed a multivariate regression model to predict solar PV adoption rates 71 

(i.e., decision time) based on information certainty, peer effects, neighborhood contact, business 72 

model, and income using a household-level PV adopter dataset from Texas, US. Korcaj et al. 73 

(2015) applied path analysis to predict the intention to purchase solar PV systems based on 74 

perceived collective environmental and economic benefits as well as perceived individual social 75 

status, autarky, financial benefits and overall cost, using a sample of 200 households in 76 

Germany. They found the subjective norm (i.e. peer behavior and expectations) and the attitude 77 

towards PV were strong predictors of purchase intention. Several other studies have developed 78 

such predictive models for solar thermal systems. Schelly (2010) conducted logistic regression 79 

modeling to predict US counties with five or more households using solar thermal systems 80 

based on demographics, environmental attitudes, and local climate characteristics. Woersdorfer 81 

and Kaus (2011) developed probit models to predict solar thermal system adoptions in 82 

northwestern Germany, and found environmental attitude, knowledge, household income are 83 

important determinants of prospective adoption of nonowners. None of these studies, however, 84 
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included both solar PV and thermal systems to investigate the future growth of decentralized 85 

energy systems as a whole. Given the different study location, factors, and methods applied, the 86 

critical factors identified through these modeling efforts often diverge, which indicates a potential 87 

preference heterogeneity across different cities, regions, or countries. For instance, an 88 

individual in Region A and an individual in Region B sharing similar preferences of decentralized 89 

energy systems may have different socioeconomic characters. However, the existence of such 90 

preference heterogeneity has not be tested through a scientific framework. To the authors’ 91 

knowledge, no study has further applied these integrated prediction models to investigate the 92 

spatial distribution of consumer preferences of decentralized energy systems to inform spatial-93 

explicit policy designs.     94 

 95 

Accordingly, this study developed an integrated modeling framework to predict decentralized 96 

energy system adoption based on a discrete choice experiment and investigated the spatial 97 

distributions of consumer preferences of the decentralized, residential solar PV and thermal 98 

systems, using Boston, Massachusetts, and Atlanta, Georgia as two testbeds. These two areas 99 

were selected given their comparable population size and a strong trend in solar growth (SEIA, 100 

2020). Boston currently has significantly more residential solar installations as compared to 101 

Atlanta (849 and 64 homes out of 100,000 for Boston and Atlanta, respectively) (CAPE, 2019) 102 

which could be attributed to its higher quantity and quality of residential solar incentives (DSIRE, 103 

2021a, DSIRE, 2021b). User preference, socioeconomic, and housing condition data were first 104 

collected through a discrete choice experiment survey administered in the two testbeds. The 105 

collected and treated data were then analyzed using latent class choice modeling to identify the 106 

hidden classification of households with distinct preferences of solar PV and thermal systems. 107 

Last but not least, the identified latent classes were spatially configured to highlight their 108 

distributions across the two testbeds. By applying the same modeling framework to two different 109 

testbeds, this study allows the testing of the preference heterogeneity across different cities.  110 



6 

 111 

2. Methods & materials 112 

The following sections introduce the survey design and administration (Section 2.1), the discrete 113 

choice experiment (Section 2.2), the latent-class choice model (Section 2.3), and the spatial 114 

visualization (Section 2.4). 115 

 116 

2.1 Survey design and administration 117 

We designed, tested, and administered a choice experiment survey to investigate user 118 

preferences/choices of residential solar PV and solar thermal systems. The survey was 119 

developed in Qualtrics®. Solar PV system hereby refers to one or more rooftop solar panels 120 

installed to produce electricity for household uses. The solar thermal system refers to systems 121 

that utilize sunlight for water heating. A solar thermal system is supplemented by a gas or 122 

electric booster when there is insufficient solar heat gain. The survey includes questions related 123 

to a discrete choice experiment, the respondents’ socioeconomic and personal characteristics 124 

(Table S1 of the supporting information (SI)), and their location and housing information. The 125 

initial survey draft was developed based on our literature review, and was tested with around 70 126 

undergraduate and graduate students in an introductory sustainability class at the University of 127 

New Hampshire. While the survey was considered generally easy to understand, an outstanding 128 

recommendation was to reduce the number of options and choice sets to ease cognitive stress. 129 

Accordingly, the survey was revised to include only two options in each choice set. The semi-130 

finalized survey was further tested through Amazon Mechanical Turk, a widely used 131 

crowdsourcing platform (Crump et al., 2013), to elicit feedback. Data collected from this step 132 

were used to check the statistical significance of different system design features’ impact on 133 

consumer choices, and six features that were found to be the most influential were included in 134 

the final survey. The finalized survey was launched in April 2017 targeting the Greater Boston 135 

and the Metro Atlanta areas as two testbeds. Respondents were limited to the residents of 136 
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these two areas through self-identification. The locations of the respondents were further 137 

verified based on their IP addresses upon completing the survey. The finalized survey used in 138 

this project can be found in the SI. Data were collected over a four-month period and the project 139 

paid $1 USD for each survey submission. 140 

 141 

A data treatment process was conducted to exclude any incomplete responses. The numbers of 142 

complete responses used for data analyses were 602 and 697 for Boston and Atlanta, 143 

respectively. The sample sizes meet the minimum thresholds with an acceptable range of 144 

random error, which was calculated to be 536 (==0.05 and =10%) based on the reference 145 

limit method (Bellera and Hanley, 2007). Finalized responses were further weighted based on 146 

census data to remove random error of the sample. The processed data were analyzed through 147 

latent class choice modeling to assess the preference heterogeneity in the two testbeds. 148 

 149 

2.2 Discrete choice experiment 150 

The discrete choice experiment is a survey-based method to discover an individual’s preference 151 

using hypothetical yet realistic system attributes for pairwise selections (Watson et al., 2017). It 152 

has wide applications in economics and engineering (Mangham et al., 2009). The finalized 153 

survey contains 12 pairwise choice sets. Each choice set describes two potential home upgrade 154 

choice options with solar PV or thermal systems. Each choice option is further illustrated by six 155 

upgrading features including system type, ownership, installation cost, environmental benefits, 156 

neighbor’s choices, and annual saving (Table 1). These upgrading features come with different 157 

levels, and each choice option represents a unique combination of the upgrading feature levels. 158 

Particularly, the selected numerical cost and saving values were derived from data collected 159 

from different decentralized energy system vendors (SolarWorld Grid-Tie, 2021). We used the 160 

most generic levels in operationalizing environmental benefits and neighbors’ choice to avoid 161 

confusion as well as to reduce potential cognitive stress associated with more detailed level 162 
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definitions. We also used the D-optimal algorithm embedded in JMP software (SAS, 2012) to 163 

design the 12 choice sets to ensure the lowest possible covariance between the upgrading 164 

features of each choice option. Accordingly, each choice option can be considered as 165 

independent. Respondents can select either one of the two choice options or neither of them.  166 

 167 

Table 1 – Decentralized energy system design features and the levels associated with each feature. 168 

Upgrading Features Levels 
Variable coding for latent-class 
choice modeling 

System Type 
Solar PV 

Categorical variable 
Solar Thermal 

Ownership 

The system will be sized for and owned by your 
own household 

Categorical variable The system will be owned communally; you will 
own a share of it, pay for that share and 
accumulate the benefits shown 

Upfront installation cost  

 $3,000.00  Numerical variable, scaled to 
0.25 ($3000/$12,000) 

 $6,000.00  Numerical variable, scaled to 
0.50 ($6,000/$12,000) 

 $9,000.00  Numerical variable, scaled to 
0.75 ($9,000/$12,000) 

 $12,000.00  Numerical variable, scaled to 
1.00 ($12,000/$12,000) 

Environmental benefits (e.g., improve 
air quality; reduce carbon emission; 
reduce water consumption to produce 
energy) 

No benefit 
 

Categorical variable 

Insignificant 
 

Moderate 
 

Significant 

Neighbors’ choice 

No installation yet 
Some of your neighbors already installed one 
Most of your neighbors already installed one 

Categorical variable 

Saving per year (e.g., electricity and 
gas billing saving) 

Avg. $480 Numerical variable, scaled to 
0.33 ($480/$1440) 

Avg. $960 Numerical variable, scaled to 
0.67 ($960/$1440) 

Avg. $1440 Numerical variable, scaled to 
1.00 ($1440/$1440) 

 169 

2.3 Latent-class choice modeling 170 

The latent-class model is based on mixture modeling, which is widely used to identify hidden 171 

preference heterogeneity in a studied population (Nylund et al., 2007). The model includes 172 

socioeconomic/personal variables of the respondents as well as the different upgrading features 173 



9 

of the system design as independent variables to predict an individual’s choice of decentralized 174 

energy systems (Eq. (1)). The operationalization of the socioeconomic/personal variables and 175 

the six system design features in the latent-class model was provided in Table S1 of the SI and 176 

Table 1, respectively. The Latent GOLD 5.0 software was used to develop the latent-class 177 

choice model using the expectation-maximization (EM) theory. EM algorithm provides an 178 

iterative approach to predict the maximum likelihood estimators in presence of latent variables 179 

(Bishop, 2006). This algorithm runs through two modes: estimation (E-Step) and maximization 180 

(M-Step). During the E-Step, the algorithm attempts to estimate the latent variables and during 181 

the M-Step, it optimizes the model coefficients to explain the data more efficiently (Bishop, 182 

2006). In order to determine an optimal latent class number, we tested the model for a range of 183 

class numbers, each with 150 runs to minimize the possibility of converging at a local optimum. 184 

Bayesian Information Criterion (BIC) was chosen as the model performance indicator as 185 

previous studies have indicated its better performance than other information criteria for class 186 

number selection (Lu et al., 2019; Nylund et al., 2007). Models with the lowest BIC were 187 

selected for the subsequent analyses.  188 

 189 

𝑃(𝑦𝑖𝑡 = 𝑚|𝑍𝑖) = ∑ 𝑃(𝑋 = 𝑐|𝑍𝑖)𝑃(𝑦𝑖𝑡 = 𝑚|𝑋 = 𝑐)𝐶
𝑐=1       (1) 190 

 191 

where 𝑃(𝑦𝑖𝑡 = 𝑚|𝑍𝑖) is the conditional probability of observing response m to choice set t from 192 

individual i, given the individual having socioeconomic/personal characteristics of 𝑍𝑖. 193 

𝑃(𝑋 = 𝑐|𝑍𝑖) is the conditional probability that an individual belongs to latent class c while holding 194 

the socioeconomic/personal characteristics of 𝑍𝑖. C is the number of latent classes. 𝑃(𝑦𝑖𝑡 =195 

𝑚|𝑋 = 𝑐) is the conditional probability of observing a certain response m in latent class c. It is 196 

calculated based on the ratio between the utility associated with response m and the overall 197 

utility of all possible responses in choice set t using Eq. (2). 198 
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 199 

𝑃(𝑦𝑖𝑡 = 𝑚|𝑋 = 𝑐) =
exp (𝑈𝑚|𝑐

𝑡 )

∑ exp (𝑈
𝑚′|𝑐
𝑡 )𝑀

𝑚′=1

        (2) 200 

 201 

where 𝑈𝑚|𝑐
𝑡  indicates the system’s upgrading features of response m in choice set t. It is 202 

calculated using Eq. (3).  203 

 204 

exp(𝑈𝑚|𝑐
𝑡 ) = 𝛽𝑛𝑜 𝑎𝑑𝑜𝑝𝑡|𝑐𝑑𝑛𝑜 𝑎𝑑𝑜𝑝𝑡,𝑚 + ∑ 𝛽𝑗|𝑐𝑑𝑗,𝑚

𝐷
𝑗=1       (3) 205 

 206 

where 𝑑𝑗,𝑚 denotes the value of the jth design feature in response m (Table 1 Column 3) and 𝛽𝑗|𝑐 207 

is the class-dependent coefficient associated with the jth design feature. In the model, each 208 

design feature has a coefficient associated with it. The sum of the coefficients for all levels of 209 

categorical variables equals zero (James et al., 2013). The class-dependent coefficients were 210 

calculated using the Expectation Maximization algorithm (Bishop, 2006; Vermunt, 2002). 211 

𝑑𝑛𝑜 𝑎𝑑𝑜𝑝𝑡,𝑚 is a dummy variable associated with the choice of neither of the options in our survey 212 

and will be equal to 1 when neither of the options is chosen. 𝛽𝑛𝑜 𝑎𝑑𝑜𝑝𝑡|𝑐 is the coefficient 213 

associated with the dummy variable, showing the impact of choosing neither of the options 214 

under the conditional probability of observing each survey response. 215 

 216 

Similarly, 𝑃(𝑋 = 𝑐|𝑍𝑖) was calculated based on the utility of individual i belonging to latent class 217 

c over the summed utility of all C types of latent classes. A set of class-dependent coefficients 218 

were then estimated for all considered socioeconomic and personal characteristics. Details of 219 

the probability functions and the expectation-maximization method can be found in the Latent 220 

GOLD Choice manual (Vermunt and Magidson, 2005). 221 

 222 
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2.4 Spatial visualization 223 

We applied the population synthesizer method developed by Arizona State University to predict 224 

and visualize the spatial distributions of the latent classes in the two testbeds (Choupani and 225 

Mamdoohi, 2016). We first created representative synthetic samples of individual households in 226 

each census block of the two testbeds using Public Use Microdata Sample (PMUS) and the 227 

census summary statistics of socioeconomic variables (Choupani and Mamdoohi, 2016). The 228 

mean values of the PMUS variables for each census block, including age, education, gender, 229 

housing type, household size, household income, ownership, and race, were matched with the 230 

summary statistics of the census data. For additional personal variables that were not available 231 

from the PMUS (e.g., satisfaction level of the current electricity supply, knowledge of 232 

decentralized energy systems, installation by neighbors), we assigned the mean values 233 

obtained from our surveys to the synthetic households. These values were assumed constant 234 

within each city based on city averages. These synthetic households were then used to 235 

generate the presence probabilities of different latent classes within each census block. We 236 

further visualized these probabilities across Boston and Atlanta using QGIS V3.14 and analyzed 237 

the spatial distributions of the latent classes in these two cities.  238 

 239 

3. Results and discussion: 240 

3.1 Summary of respondents from Mechanical Turk 241 

Table 2 presents the socioeconomic characteristics of the survey respondents as well as the 242 

average socioeconomic characteristics for both cities based on the U.S. census data. Most of 243 

the socioeconomic variables in our results had a similar distribution as the census data except 244 

age, education, and household head. Population that are older than 60 years old and population 245 

that are high school graduate or less are underrepresented, while population that are household 246 

heads are overrepresented. These sampling biases were corrected by post-stratification 247 

weighting of the survey data and corrected the weights of individual responses before 248 
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conducting latent-class modeling (Kolenikov, 2016; Lu et al., 2019). This is to improve our 249 

model representativeness of the general population in each of the two testbeds.  250 

 251 

Table 2. Summary and comparison of sample and census results in Metro Atlanta and Great Boson. 252 

Socioeconomic Variables Levels Atlanta, 
Survey 

Atlanta, 
Census 

Boston, 
Survey 

Boston, 
Census 

Do you own or rent a property for 
you and your family? 

Own 50.82% 63.00% 45.60% 59.60% 

Rent 47.25% 37.00% 52.83% 40.40% 

What is the type of your dwelling? Single-family detached 
house 

59.89% 66.90% 44.34% 45.30% 

Multifamily units 38.87% 29.90% 53.46% 53.90% 

What is your current age? 20 to 24 19.97% 9.18% 22.64% 9.55% 

25 to 29 24.68% 9.60% 25.95% 10.34% 

30 to 34 18.83% 9.87% 23.47% 9.42% 

35 to 39 13.27% 9.87% 9.75% 8.12% 

40 to 44 8.42% 10.43% 7.27% 8.64% 

45 to 49 6.13% 10.29% 3.97% 9.29% 

50 to 54 3.71% 9.87% 3.97% 9.69% 

55 to 60 3.14% 8.62% 1.82% 8.77% 

> 60 1.85% 22.25% 1.16% 26.18% 

Which statement best describes 
your current employment status? 

Working 83.03% 75.03% 87.60% 64.50% 

Not Working 16.97% 24.97% 12.41% 35.50% 

What is your gender? Male 41.65% 48.44% 50.91% 48.44% 

Female 57.92% 51.56% 48.76% 51.56% 

Are you now married, widowed, 
divorced, separated, or never 
married? 

Married 44.37% 47.40% 40.17% 46.10% 

Single (including 
widowed, divorced, 

separated, and never 
married) 

55.63% 52.50% 59.83% 53.90% 

Are you the head of the household 
(who is running the household)? 

Yes 71.61% 38.07% 76.20% 39.34% 

No 28.39% 61.93% 23.80% 60.66% 

How many people live in your 
household? 

1 14.55% 26.05% 19.17% 28.80% 

2 30.67% 31.54% 30.74% 31.80% 

3 24.25% 17.35% 23.31% 16.50% 

4+ 30.52% 25.07% 26.78% 22.80% 

What level of education you have 
completed? 

Less than high school or 
some high school 

0.14% 10.40% 0.00% 8.80% 

High school graduate 8.84% 24.60% 6.12% 22.30% 

Some college or 
vocational training 

31.24% 27.10% 24.79% 21.10% 

Bachelor's degree 41.65% 23.60% 43.80% 25.70% 

Graduate or professional 
degree 

17.55% 14.30% 25.29% 22.20% 

Choose one or more races that you 
consider yourself to be 

White 64.51% 55.15% 77.07% 75.58% 

Black or African 
American 

24.56% 33.46% 9.36% 8.72% 

Others 10.93% 11.39% 13.57% 15.70% 

Do you have kids under 18? Yes 41.08% 35% 34.38% 30.40% 

No 58.92% 65% 65.62% 69.60% 

What is your approximate average 
household income? 

$0 to $24,999 11.55% 19.60% 10.74% 17.80% 

$25,000 to $49,000 26.68% 22.80% 20.83% 16.20% 

$50,000 to $74,999 25.39% 18.40% 23.97% 14.80% 

$75,000 to $99,999 15.69% 12.60% 17.19% 12.20% 

$100,000 to $149,999 13.70% 14.20% 18.35% 17.80% 

$150,000 to $199,999 3.99% 6.00% 6.11% 9.60% 

$200,000 and up 3.00% 6.40% 2.81% 11.60% 
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 253 

3.2 Selection of an optimal class number and summary of the model statistics 254 

The optimal latent class models for both Atlanta and Boston resulted in eight latent classes, with 255 

the lowest BICs of 10,883 and 9,290, respectively (Fig. 1). All studied independent variables 256 

have a p-value of lower than 0.07 (Tables S3 and S4 of the SI) (Lanza et al., 2007). These 257 

models explain 49.97% and 51.08% of the responses for Boston and Atlanta participants, 258 

respectively. The detailed latent class modeling results as well as the significance and relative 259 

importance of the upgrading features can be found in Tables S3 and S4 of the SI.  260 

261 

Fig. 1. Selecting the optimal class number in Atlanta and Boston using Bayesian Information Criteria 262 

(BIC) 263 

 264 

3.3 Latent classes in Metro Atlanta and Greater Boston 265 

The preferences of the eight latent classes in the Metro Atlanta and the Greater Boston areas 266 

for all system features (including acceptability) are shown in Figs. 2 and 3, respectively. We 267 

labeled the classes based on their preferences inferred from their responses to the system 268 

features. The eight latent classes are rational adopters, rational late adopters, undiscerning late 269 

adopters, cost-effective later adopters, laggards, early adopters, undiscerning decision-makers, 270 

and pioneers. The detailed latent class models and class information can be found in Tables 271 

S2-4 of the SI.    272 
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 273 

Rational adopters represent the largest population in Metro Atlanta (33.23%). This class is 274 

sensitive to economic savings and costs, and prefers a high environmental benefit. Members in 275 

this class may wait until the decentralized systems’ economic benefits are proven before they 276 

adopt. Overall, the class shows a high acceptance of decentralized energy systems. Rational 277 

late adopters (13.82% of the population) show similar preferences but are highly insensitive to 278 

system type and neighbor’s choice. They also have a slightly lower acceptance of decentralized 279 

energy systems as compared to rational adopters. Undiscerning late adopters (13.30% of the 280 

population) are a lot more sensitive to the initial installation cost than the annual savings, as 281 

compared the two previous classes. They demand a high environmental benefit and can be 282 

easily influenced by neighbor’s choices. Cost-effective later adopters (10.04% of the population) 283 

place the highest importance on environmental benefits out of all classes. They care more about 284 

annual savings than the installation cost. System ownership also has a relatively high influence 285 

on the class’ decision in decentralized energy system adoption. Laggards (9.21% of the 286 

population) are highly unlikely to adopt decentralized energy systems no matter what. Although 287 

they care about annual savings and initial costs, system ownership, and neighbor’s choices and 288 

have a strong preference on solar thermal systems over solar PV systems, changes in these 289 

attributes may not effectively increase their intention to adopt decentralized energy systems. 290 

Early adopters (9.01% of the population) care the most about environmental benefits, followed 291 

by installation cost, ownership, and annual savings. They have a high acceptance of 292 

decentralized energy systems, but they mostly prefer to share than to own a decentralized 293 

energy system. Undiscerning decision-makers (7.26% of the population) place a high 294 

importance on environmental benefits, neighbor’s choices, and system type. Pioneers are the 295 

smallest class in Metro Atlanta (4.13%). They show the highest acceptance of the decentralized 296 

systems. They are sensitive to environmental benefits, installation cost, and ownership. Overall, 297 

installation cost and annual savings, and environmental benefits are important determinants of 298 
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households’ adoption of decentralized energy systems in Metro Atlanta. This aligns with 299 

previous findings in Best et al. (2019) and Korcaj et al. (2015) about the significance of these 300 

factors in influencing consumer behaviors. The general Metro Atlanta population have a high 301 

acceptance of decentralized energy systems with a slight preference on owning a solar PV 302 

system. 303 

 304 

Fig. 2a). The conditional probability of a latent class choosing a certain level of a system feature while 305 

holding other features constant in Metro Atlanta. Percentages in parentheses indicate the percentages of 306 

Metro Atlanta population that belong to each latent class. b). The relative importance of the six system 307 

design features to each latent class (IC: installation cost; AS: annual saving; EB: environmental benefits; 308 

NC: neighbor’s choice; ST: system type; OS: ownership).    309 

 310 

Rational adopters are also the biggest class in Greater Boston, representing 28.65% of the total 311 
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Boston share similar preferences as in those in Atlanta, placing a high importance on installation 313 

cost and annual savings and relatively sensitive to environmental benefits. Rational adopters 314 

have a higher acceptance of decentralized energy systems than rational late adopters. Unlike 315 

those in Atlanta, undiscerning late adopters (17.19% of the population) in Boston place a 316 

relatively equal importance on annual savings, system type, environmental benefits, and 317 

installation cost. They are also relatively sensitive to neighbor’s choices. Similar as those in 318 

Atlanta, cost-effective later adopters (7.02% of the population) have the strongest preference on 319 

environmental benefits out of all classes in Boston, and laggards (8.55% of the population) are 320 

highly unlikely to adopt decentralized energy systems. Although they care about annual savings 321 

and initial costs, system ownership, and neighbor’s choices and have a strong preference on 322 

solar thermal systems over solar PV systems, changes in these attributes may not effectively 323 

increase their intention to adopt decentralized energy systems. Laggards in Boston, however, 324 

prefer to share rather than to own a system. Early adopters (12.03% of the population) care the 325 

most about environmental benefits, followed by installation cost and neighbor’s choices. 326 

Undiscerning decision-makers (6.38% of the population) are the smallest class in Greater 327 

Boston. They place a high importance on environmental benefits, neighbor’s choices, and 328 

annual savings. Pioneers (8.63% of the population) place the highest importance on 329 

environmental benefits, followed by installation cost, and annual savings. They mostly prefer to 330 

share rather than to own a system. Early adopters, undiscerning decision-makers, and pioneers 331 

all have a very high acceptance of decentralized energy systems. Overall, acceptance of 332 

decentralized energy systems in Greater Boston is also generally high. Installation cost, 333 

environmental benefits, and annual savings are the top three factors that influence people’s 334 

adoption of decentralized systems in the region. There is no class in Greater Boson that has an 335 

outstanding preference on solar thermal systems, indicating a potential barrier to promoting 336 

solar thermal systems in the region. The Greater Boston population also has a slightly higher 337 

preference on sharing a system than Metro Atlanta.  338 
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 339 

Fig. 3a). The conditional probability of a latent class choosing a certain level of a system feature while 340 

holding other features constant in Greater Boston. Percentages in parentheses indicate the percentages 341 

of the Greater Boston population that belong to each latent class. b). The relative importance of the six 342 

system design features to each latent class (IC: installation cost; AS: annual saving; EB: environmental 343 

benefits; NC: neighbor’s choice; ST: system type; OS: ownership). 344 
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In Atlanta, the early adopters class responded faster than the other classes on average. The 353 

average age of this class is younger than all other classes. Around 63% of the people in this 354 

class are married but most of them do not have kids. This class also has the lowest average 355 

income compared to other classes while they have the highest proportion of college-educated 356 

people (more than 80% of bachelor’s degree or above). Early adopters can be pictured as 357 

young married college graduates who are more likely to embrace technology innovations. On 358 

the other hand, the undiscerning decision-makers class in Atlanta has the longest average 359 

response time. This class are mostly married people with kids at home. Most people in this 360 

class live in rental houses, yet the class, on average, has the highest satisfaction level with the 361 

centralized energy supply and the lowest desire to upgrade their properties, which might hinder 362 

the class’s willingness to adopt decentralized systems. This class also has the most knowledge 363 

about the decentralized systems, despite having the lowest education level among all classes. 364 

The highest number of their neighbors have at least one type of decentralized systems already 365 

installed. Rational late adopters in Atlanta have the highest average income among other 366 

classes, mostly living in single-family households with relatively large housing size and family 367 

size. The class of laggards is primarily comprised of older population. The least number of their 368 

neighbors have already adopted decentralized energy systems and most people in this class do 369 

not have a desire to upgrade their properties. Cost-effective later adopters, on average, live in 370 

the smallest houses and have the smallest family sizes. Most of them live in rented properties. 371 

They have the strongest desire to upgrade their properties. Similarly, undiscerning late adopters 372 

are mostly unmarried people that live in multi-family houses (70.34%) with relatively low 373 

education level. The average income of this class is the second lowest. This class also does not 374 

have much willingness to upgrade their properties. Rational adopters do not have any 375 

overwhelming socioeconomic features, except that they have the least knowledge about the 376 

decentralized systems. Similarly, pioneers do not show any overwhelming socioeconomic 377 

characteristics. 378 
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 379 

In Boston, laggards were the fastest respondents of the survey. This class has a relatively older 380 

average age, a higher education-level, and a relatively higher percentage of households with 381 

kids. Very few of their neighbors have decentralized systems already installed (0.52%). On 382 

contrary, rational late adopters in Boston have the longest response time. They have the highest 383 

income, and the population age is relatively old. This class has a relatively high education level 384 

but not many of them know or have installed the decentralized systems, neither do their 385 

neighbors. Pioneers have the highest property ownership across all classes in Boston. They are 386 

mostly highly educated, high income, young and single population, who share multi-family 387 

housing with others. They are extremely dissatisfied with the current energy supply yet have the 388 

least prior knowledge of the decentralized systems and the least number of installations in their 389 

neighborhoods. Given their high acceptability of decentralized energy systems, pioneers might 390 

elect to install decentralized systems once they become acquainted with these systems. 391 

Rational adopters are mostly well-educated married people. Other than that, they do not have 392 

outstanding socioeconomic features. Early adopters in Boston are mostly young, unmarried 393 

population with the lowest income on average across all classes. Their housing and family sizes 394 

are the smallest, and they mostly live in rented properties. Undiscerning late adopters appear to 395 

have the most knowledge about the decentralized systems with more than 20% already have at 396 

least one decentralized system installed. The neighborhoods they live in have the highest 397 

decentralized installations across all classes. They also have the strongest desire to upgrade 398 

their properties across all classes. Cost-effective later adopters in Boston are relatively older 399 

population. Compared with other classes, their satisfaction level of the centralized system is 400 

relatively high. Undiscerning decision-makers in Boston do not have any outstanding 401 

socioeconomic features as compared to other classes. 402 

 403 
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3.5 Diffusion of decentralized energy systems in Atlanta and Boston 404 

We developed an innovation diffusion curve that estimates how fast decentralized energy 405 

systems will be adopted in both testbeds (Fig. 4). We constructed the diffusion curve based on 406 

the relative adoption timing of the eight latent classes in each city by considering their stated 407 

preferences. Pioneers and early adopters have been recognized as our first classes to adopt 408 

the systems, because of their high acceptability of the decentralized systems and the short 409 

response time. Pioneers will adopt earlier than early adopters as their response time suggested 410 

a more determined decision-making process. Following these classes, undiscerning decision-411 

makers will adopt regardless of the initial installation costs and rational adopters will follow them 412 

as the fourth class since they are less dependent on their neighbors' choices. These two 413 

classes can add around 35-40% of increments to the adopted population. Rational late adopters 414 

follow this adoption trend as they need to realize annual savings of the systems to support their 415 

decision-making. Similarly, undiscerning late adopters need to realize the environmental 416 

benefits of the systems to support their decisions. Cost-effective later adopters have been 417 

recognized as an inactive group since they will consider decentralized energy systems after 418 

seeing a drop in system installation costs. Finally, the class of laggards will adopt the latest 419 

given their low acceptability of the decentralized systems, high demand of environmental and 420 

cost benefits, and their desire to sharing the system rather than owning the systems. 421 

 422 

The innovation diffusion curves show that the two cities have distinct characteristics in terms of 423 

decentralized energy system adoption, which has implications in policy design. Given the larger 424 

pioneer and early adopter populations in Boston, adoption initiation might be easier as well as 425 

faster in Boston with appropriate policy incentives. Atlanta has larger undiscerning decision-426 

maker, rational adopter, and rational late adopter populations, which indicates further 427 

technology diffusion might be easier in Atlanta once a certain threshold adoption rate has been 428 

reached. Atlanta also has a larger cost-effective later adopter and laggard populations, 429 



21 

indicating its highest achievable adoption rate might be lower than Boston. As each class has a 430 

probability of choosing or not choosing the decentralized solar technologies, the diffusion 431 

pattern should be further examined with market-based simulation models. 432 

433 

Fig. 4. Diffusion curve of decentralized energy facilities in Metro Atlanta and Greater Boston 434 

 435 

3.6 Spatial distribution of classes in the Cities of Atlanta and Boston 436 

Figs. 5 and 6 present the predicted distributions of different latent classes in Atlanta and Boston, 437 

respectively. In City of Atlanta, undiscerning late adopters, laggards, early adopters, and 438 

undiscerning decision makers dominate the population residing in southern Atlanta, indicating 439 

mixed interests in this region. Adoption of decentralized energy systems are most likely to 440 

initiate in this region, but there is also a significant barrier to broader penetration. Given that 441 

early adopters often reside in lower-property-value communities with poor infrastructure 442 

services and have a high demand for property upgrade or purchases, proper policy incentives 443 

targeting these communities could create an opportunity for community renaissance through the 444 
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improvement of community energy service and management quality. This finding aligns with 445 

what has been found about the spatial distribution of decentralized water systems in the same 446 

city by Lu et al. (2019), indicating a potential co-benefit when the decentralized water and 447 

energy systems are planed together. Population in northern and northeastern Atlanta are 448 

primarily comprised of rational adopters, rational late adopters, cost-effective later adopters, and 449 

undiscerning decision makers. A significant portion of this population has a relatively high 450 

income and show a rational consideration of decentralized energy systems. This population may 451 

not adopt decentralized energy systems until their economic and environmental benefits 452 

become clear. As such, policies that help increase the return of investment of the decentralized 453 

energy systems and the awareness of their environmental benefits might help motivate adoption 454 

in this region. Pioneers’ presence is extremely small in Atlanta, and hence may not significantly 455 

influence policy outcomes. 456 
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Fig. 5. Spatial distribution of latent classes in Atlanta. Percent values represent the proportion of a census 458 

block’s population belonging to a certain class. 459 

 460 

In City of Boston, undiscerning late adopters, early adopters, and undiscerning decision-makers 461 

dominate the relatively low-income communities in central Boston, including Roxbury, 462 

Dorchester, and Mattapan neighborhoods. The presence of these classes in this region 463 

indicates a mixed interest, potentially an earlier initiation of adoption but a significant barrier to 464 

higher penetration. Similar as in southern Atlanta, infrastructure improvement projects that 465 

include the installation of decentralized energy systems can help promote community 466 

renaissance in areas with a high early adopter presence. Rational adopters and rational late 467 

adopters dominate the population residing in the northern part of the city, close to downtown, in 468 

wealthier communities with a relatively high population density. Similar as in Atlanta, policies 469 

that target increasing the return of investment and the awareness of the environmental benefits 470 

of decentralized energy systems might help motivate adoption in this region. Southern Boston is 471 

primarily dominated by laggards and cost-effective later adopters, indicating a potential difficulty 472 

in promoting decentralized energy systems in this area. Pioneers do not have a strong presence 473 

in Boston and may not significantly influence policy outcomes.  474 
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Fig. 6. Spatial distribution of latent classes in Boston. Percent values represent the proportion of a census 476 

block’s population belonging to a certain class.  477 

 478 

4. Conclusion and policy implications 479 

The promotion of decentralized energy systems looks compulsory due to the lack of resources 480 

in today’s world as well as the need for low-carbon or carbon-neutral urban infrastructure. In this 481 

study, we used a research framework that combines discrete choice experiment, latent class 482 

modeling, and spatial analysis to understand the preference heterogeneity of residential solar 483 

PV and solar thermal systems in two testbeds: Boston and Atlanta. In general, respondents 484 

from both testbeds show a relatively high acceptance of decentralized energy systems, 485 

indicating promotion of distributed low-carbon energy systems might be a promising carbon 486 

mitigation strategy with proper incentive and policy designs. Key motivating factors for adoption 487 

in both testbeds are installation cost, environmental benefits, and annual savings. Eight latent 488 

classes with unique preferences and socioeconomic characteristics were identified within each 489 

of the testbeds. While there is an overall general preference of solar PV systems over solar 490 

thermal systems in both testbeds, there is an outstanding interest in solar thermal systems 491 

amongst the pioneers class in Atlanta. This presents a general barrier to the broader 492 

penetration of solar thermal systems; however, policies that target certain groups that have a 493 

special interest in solar thermal systems, such as the pioneer class in Atlanta, might be 494 

effective. The Boston population has a higher preference on sharing a system than the Atlanta 495 

population, showing the importance of developing strategies and technologies to enable and 496 

promote community-based decentralized energy systems in the Boston area. Despite the 497 

classes’ similarity in their preferences of different system features, all classes present different 498 

socioeconomic characteristics across the two testbeds. This indicates the importance of 499 

understanding preferences case-by-case and there might not be a one-size-fit-all type of 500 

approach when it comes to incentivizing decentralized energy system adoptions. Based on our 501 
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technology diffusion curves, adoption initiation might be easier as well as faster in Boston given 502 

its larger pioneer and early adopter populations. Once a certain threshold adoption rate has 503 

been reached, further technology diffusion might be easier in Atlanta given its larger 504 

undiscerning decision-maker, rational adopter, and rational late adopter populations. Given the 505 

unique class distribution of each city, the forms and the focuses of policies should be designed 506 

based upon the characteristics of local consumer preferences. In terms of class spatial 507 

distribution within the cities, we found a prominent spatial “grouping” effect in both cities, with 508 

certain classes tend to reside in one region and others in another. Nevertheless, both cities 509 

have a substantial number of early adopters residing in lower-property-value regions, revealing 510 

a potential to achieve both carbon emission reduction and community renaissance objectives 511 

when combining infrastructure renovation projects in these areas with the installation of 512 

decentralized energy systems.  513 

 514 

While this study presents an initial effort in quantifying the spatial households’ preference of 515 

decentralized solar PV and solar thermal systems, our analysis is limited by the sample size, the 516 

geographical areas that were considered, as well as the uncertainties associated our approach 517 

(e.g., post-stratification weighting for sample bias correction). While our research framework and 518 

some general findings are transferable to other areas, the specific latent class models 519 

developed in this study cannot be directly applied in cities. Rather, our study suggests that such 520 

models need to developed case-by-case for individual cities. Future studies targeting confined 521 

geographical boundaries might benefit from better participatory approaches that enable the 522 

engagement of more representative populations. Further research in this area can include the 523 

application of latent class models to predict the dynamic adoption trajectory of the household 524 

solar PV and thermal systems. This will enable future investigation of urban energy 525 

sustainability considering the interactions of the decentralized systems and the electricity grid as 526 
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well as the interactions across energy and water systems, as a potential solution to challenges 527 

related to the energy-water nexus.   528 
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