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Abstract

Small-scale, residential solar systems have been increasingly recognized as a key sector for
future carbon emission reduction in cities. This study investigated customer preferences of solar
thermal and photovoltaic systems through a crowdsourced discrete choice experiment and
latent class choice modeling targeting Boston, Massachusetts and Atlanta, Georgia. Key
motivating factors for adoption in both testbeds are installation cost, environmental benefits, and
annual savings. Despite the latent classes’ similarity in their preferences of different system
features, all classes present different socioeconomic characteristics across the two testbeds,
indicating preference heterogeneity across cities. We also found that both cities have significant
early adopters residing in lower-property-value regions, revealing a potential to achieve both
carbon emission reduction and community renaissance objectives when combining

infrastructure renovation projects with decentralized energy systems installation. This study
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presents a framework for assessing and understanding the social demand of decentralized

energy systems to facilitate their future promotions.
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choice experiment; Latent class choice modeling; User preference heterogeneity
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1. Introduction

Solar energy is one of the fastest-growing renewable energy sources around the world (IEA,
2020; Weiss and Spdork-Dar, 2020). It is currently harnessed through two dominant
technologies: solar photovoltaic (PV) and solar thermal systems. By the end of 2019, the global
installed solar PV and thermal capacities were 627 GWel and 479 GWth, respectively, with
China, Europe, and the United States leading the chart (Weiss and Spérk-Dar, 2020). Despite
the industry’s unprecedented growth, solar systems currently meet only around 2.8% of the
global electricity demand and 0.7% of the global heat demand (Adib et al., 2020; IEA, 2020),
while the majority of the global solar potential is still untapped (Davidson, 2005). Small-scale,
residential solar systems are perceived as a dominant force to further the growth of the global
solar industry (Lee et al., 2018). A recent study reported that small buildings (<465 m?)
represent about 65% of the total rooftop solar potential in US cities (Gagnon, 2019). An
enhanced understanding of households’ preferences of solar PV and thermal systems is hence
imperative to support effective policy and incentive designs for their broader penetration in the

residential sector.

Traditional economic and behavioral studies typically examine the influence of prescribed
individual factors, such as economic cost or incentives (Haas et al., 1999; Jager, 2006; Matisoff
and Johnson, 2017; Schelly, 2014; Sun et al., 2020), environmental attitudes (Haas et al., 1999;
Jager, 2006; Schelly, 2014; Sun et al., 2020), peer effects (Bollinger and Gillingham, 2012;
Jager, 2006; Palm, 2016; Rai et al., 2016; Reeves et al., 2017), information channels (Haas et
al., 1999; Palm, 2016; Rai et al., 2016; Reeves et al., 2017; Wolske et al., 2017), technology
innovation (Haas et al., 1999; Sun et al., 2020; Wolske et al., 2017), system reliability and
independency (Haas et al., 1999; Jager, 2006), business model (Rai et al., 2016), and beliefs
(Wolske et al., 2017) on consumer adoption of decentralized solar PV systems. While the

knowledge about whether and to what degree these individual factors influence consumer
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behaviors is important in guiding policy design and evaluating policy effectiveness, it does not
enable a holistic understanding about the demand of decentralized, residential energy systems
to facilitate the prediction of their adoption trajectories at a regional scale. Furthermore, solar

thermal systems are hugely underrepresented in the consumer behavior literature.

Only a few studies have attempted to predict consumer adoption of decentralized energy
systems based on the combined effect of multiple factors in an integrated modeling framework.
Best et al. (2019) developed a logit model to examine the combined effect of demographics,
housing characteristics, environmental attitudes, and geographical location on both solar PV
installation and intention to install using Australian survey data. They found household economic
status, electricity expenses, environmental attitudes, property tenure, and space constraints
were predictors of either the installation or the intention to install solar PV systems. Rai and
Robinson (2013) developed a multivariate regression model to predict solar PV adoption rates
(i.e., decision time) based on information certainty, peer effects, neighborhood contact, business
model, and income using a household-level PV adopter dataset from Texas, US. Korcaj et al.
(2015) applied path analysis to predict the intention to purchase solar PV systems based on
perceived collective environmental and economic benefits as well as perceived individual social
status, autarky, financial benefits and overall cost, using a sample of 200 households in
Germany. They found the subjective norm (i.e. peer behavior and expectations) and the attitude
towards PV were strong predictors of purchase intention. Several other studies have developed
such predictive models for solar thermal systems. Schelly (2010) conducted logistic regression
modeling to predict US counties with five or more households using solar thermal systems
based on demographics, environmental attitudes, and local climate characteristics. Woersdorfer
and Kaus (2011) developed probit models to predict solar thermal system adoptions in
northwestern Germany, and found environmental attitude, knowledge, household income are

important determinants of prospective adoption of nonowners. None of these studies, however,



85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

included both solar PV and thermal systems to investigate the future growth of decentralized
energy systems as a whole. Given the different study location, factors, and methods applied, the
critical factors identified through these modeling efforts often diverge, which indicates a potential
preference heterogeneity across different cities, regions, or countries. For instance, an
individual in Region A and an individual in Region B sharing similar preferences of decentralized
energy systems may have different socioeconomic characters. However, the existence of such
preference heterogeneity has not be tested through a scientific framework. To the authors’
knowledge, no study has further applied these integrated prediction models to investigate the
spatial distribution of consumer preferences of decentralized energy systems to inform spatial-

explicit policy designs.

Accordingly, this study developed an integrated modeling framework to predict decentralized
energy system adoption based on a discrete choice experiment and investigated the spatial
distributions of consumer preferences of the decentralized, residential solar PV and thermal
systems, using Boston, Massachusetts, and Atlanta, Georgia as two testbeds. These two areas
were selected given their comparable population size and a strong trend in solar growth (SEIA,
2020). Boston currently has significantly more residential solar installations as compared to
Atlanta (849 and 64 homes out of 100,000 for Boston and Atlanta, respectively) (CAPE, 2019)
which could be attributed to its higher quantity and quality of residential solar incentives (DSIRE,
2021a, DSIRE, 2021b). User preference, socioeconomic, and housing condition data were first
collected through a discrete choice experiment survey administered in the two testbeds. The
collected and treated data were then analyzed using latent class choice modeling to identify the
hidden classification of households with distinct preferences of solar PV and thermal systems.
Last but not least, the identified latent classes were spatially configured to highlight their
distributions across the two testbeds. By applying the same modeling framework to two different

testbeds, this study allows the testing of the preference heterogeneity across different cities.
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2. Methods & materials

The following sections introduce the survey design and administration (Section 2.1), the discrete
choice experiment (Section 2.2), the latent-class choice model (Section 2.3), and the spatial

visualization (Section 2.4).

2.1 Survey design and administration

We designed, tested, and administered a choice experiment survey to investigate user
preferences/choices of residential solar PV and solar thermal systems. The survey was
developed in Qualtrics®. Solar PV system hereby refers to one or more rooftop solar panels
installed to produce electricity for household uses. The solar thermal system refers to systems
that utilize sunlight for water heating. A solar thermal system is supplemented by a gas or
electric booster when there is insufficient solar heat gain. The survey includes questions related
to a discrete choice experiment, the respondents’ socioeconomic and personal characteristics
(Table S1 of the supporting information (Sl)), and their location and housing information. The
initial survey draft was developed based on our literature review, and was tested with around 70
undergraduate and graduate students in an introductory sustainability class at the University of
New Hampshire. While the survey was considered generally easy to understand, an outstanding
recommendation was to reduce the number of options and choice sets to ease cognitive stress.
Accordingly, the survey was revised to include only two options in each choice set. The semi-
finalized survey was further tested through Amazon Mechanical Turk, a widely used
crowdsourcing platform (Crump et al., 2013), to elicit feedback. Data collected from this step
were used to check the statistical significance of different system design features’ impact on
consumer choices, and six features that were found to be the most influential were included in
the final survey. The finalized survey was launched in April 2017 targeting the Greater Boston

and the Metro Atlanta areas as two testbeds. Respondents were limited to the residents of
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these two areas through self-identification. The locations of the respondents were further
verified based on their IP addresses upon completing the survey. The finalized survey used in
this project can be found in the Sl. Data were collected over a four-month period and the project

paid $1 USD for each survey submission.

A data treatment process was conducted to exclude any incomplete responses. The numbers of
complete responses used for data analyses were 602 and 697 for Boston and Atlanta,
respectively. The sample sizes meet the minimum thresholds with an acceptable range of
random error, which was calculated to be 536 («=p=0.05 and A=10%) based on the reference
limit method (Bellera and Hanley, 2007). Finalized responses were further weighted based on
census data to remove random error of the sample. The processed data were analyzed through

latent class choice modeling to assess the preference heterogeneity in the two testbeds.

2.2 Discrete choice experiment

The discrete choice experiment is a survey-based method to discover an individual’s preference
using hypothetical yet realistic system attributes for pairwise selections (Watson et al., 2017). It
has wide applications in economics and engineering (Mangham et al., 2009). The finalized
survey contains 12 pairwise choice sets. Each choice set describes two potential home upgrade
choice options with solar PV or thermal systems. Each choice option is further illustrated by six
upgrading features including system type, ownership, installation cost, environmental benefits,
neighbor’s choices, and annual saving (Table 1). These upgrading features come with different
levels, and each choice option represents a unique combination of the upgrading feature levels.
Particularly, the selected numerical cost and saving values were derived from data collected
from different decentralized energy system vendors (SolarWorld Grid-Tie, 2021). We used the
most generic levels in operationalizing environmental benefits and neighbors’ choice to avoid

confusion as well as to reduce potential cognitive stress associated with more detailed level
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definitions. We also used the D-optimal algorithm embedded in JMP software (SAS, 2012) to

design the 12 choice sets to ensure the lowest possible covariance between the upgrading

features of each choice option. Accordingly, each choice option can be considered as

independent. Respondents can select either one of the two choice options or neither of them.

Table 1 — Decentralized energy system design features and the levels associated with each feature.

Upgrading Features

Levels

Variable coding for latent-class
choice modeling

System Type

Solar PV

Solar Thermal

Categorical variable

Ownership

The system will be sized for and owned by your

own household

The system will be owned communally; you will
own a share of it, pay for that share and

accumulate the benefits shown

Categorical variable

$3,000.00

Numerical variable, scaled to
0.25 ($3000/$12,000)

$6,000.00 Numerical variable, scaled to
. . 0.50 ($6,000/$12,000)
Upfront installation cost
$9,000.00 Numerical variable, scaled to
0.75 ($9,000/$12,000)
$12,000.00 Numerical variable, scaled to
1.00 ($12,000/$12,000)
No benefit
Environmental benefits (e.g., improve  Insignificant
air quality; reduce carbon emission; . .
reduce water consumption to produce  Moderate Categorical variable
energy)
Significant

Neighbors’ choice

No installation yet

Some of your neighbors already installed one
Most of your neighbors already installed one

Categorical variable

Saving per year (e.g., electricity and
gas billing saving)

Avg. $480 Numerical variable, scaled to
0.33 ($480/$1440)

Avg. $960 Numerical variable, scaled to
0.67 ($960/$1440)

Avg. $1440 Numerical variable, scaled to

1.00 ($1440/$1440)

2.3 Latent-class choice modeling

The latent-class model is based on mixture modeling, which is widely used to identify hidden

preference heterogeneity in a studied population (Nylund et al., 2007). The model includes

socioeconomic/personal variables of the respondents as well as the different upgrading features
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of the system design as independent variables to predict an individual's choice of decentralized
energy systems (Eq. (1)). The operationalization of the socioeconomic/personal variables and
the six system design features in the latent-class model was provided in Table S1 of the Sl and
Table 1, respectively. The Latent GOLD 5.0 software was used to develop the latent-class
choice model using the expectation-maximization (EM) theory. EM algorithm provides an
iterative approach to predict the maximum likelihood estimators in presence of latent variables
(Bishop, 2006). This algorithm runs through two modes: estimation (E-Step) and maximization
(M-Step). During the E-Step, the algorithm attempts to estimate the latent variables and during
the M-Step, it optimizes the model coefficients to explain the data more efficiently (Bishop,
2006). In order to determine an optimal latent class number, we tested the model for a range of
class numbers, each with 150 runs to minimize the possibility of converging at a local optimum.
Bayesian Information Criterion (BIC) was chosen as the model performance indicator as
previous studies have indicated its better performance than other information criteria for class
number selection (Lu et al., 2019; Nylund et al., 2007). Models with the lowest BIC were

selected for the subsequent analyses.

Py =ml|Z;) = g=1 P(X = c|Z))P(yi =m|X =) (1)

where P(y;; = m|Z;) is the conditional probability of observing response m to choice set f from
individual /, given the individual having socioeconomic/personal characteristics of Z;.

P(X = c|Z;) is the conditional probability that an individual belongs to latent class ¢ while holding
the socioeconomic/personal characteristics of Z;. C is the number of latent classes. P(y;; =

m|X = ¢) is the conditional probability of observing a certain response m in latent class c. It is
calculated based on the ratio between the utility associated with response m and the overall

utility of all possible responses in choice set t using Eq. (2).
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P(yie =m|X =c) = (2)

where Uﬁqc indicates the system’s upgrading features of response m in choice set t. It is

calculated using Eq. (3).

EXP(Uﬁllc) = Bro adoptlcdno adoptym t Z?:l ﬁjlcdj,m (3)

where d; ,, denotes the value of the ™ design feature in response m (Table 1 Column 3) and Bjic

is the class-dependent coefficient associated with the /" design feature. In the model, each
design feature has a coefficient associated with it. The sum of the coefficients for all levels of
categorical variables equals zero (James et al., 2013). The class-dependent coefficients were
calculated using the Expectation Maximization algorithm (Bishop, 2006; Vermunt, 2002).

dno adopt,m 1S @ dummy variable associated with the choice of neither of the options in our survey
and will be equal to 1 when neither of the options is chosen. B, aaopt|c IS the coefficient
associated with the dummy variable, showing the impact of choosing neither of the options

under the conditional probability of observing each survey response.

Similarly, P(X = c|Z;) was calculated based on the utility of individual i belonging to latent class
¢ over the summed utility of all C types of latent classes. A set of class-dependent coefficients
were then estimated for all considered socioeconomic and personal characteristics. Details of
the probability functions and the expectation-maximization method can be found in the Latent

GOLD Choice manual (Vermunt and Magidson, 2005).

10
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2.4 Spatial visualization

We applied the population synthesizer method developed by Arizona State University to predict
and visualize the spatial distributions of the latent classes in the two testbeds (Choupani and
Mamdoohi, 2016). We first created representative synthetic samples of individual households in
each census block of the two testbeds using Public Use Microdata Sample (PMUS) and the
census summary statistics of socioeconomic variables (Choupani and Mamdoohi, 2016). The
mean values of the PMUS variables for each census block, including age, education, gender,
housing type, household size, household income, ownership, and race, were matched with the
summary statistics of the census data. For additional personal variables that were not available
from the PMUS (e.g., satisfaction level of the current electricity supply, knowledge of
decentralized energy systems, installation by neighbors), we assigned the mean values
obtained from our surveys to the synthetic households. These values were assumed constant
within each city based on city averages. These synthetic households were then used to
generate the presence probabilities of different latent classes within each census block. We
further visualized these probabilities across Boston and Atlanta using QGIS V3.14 and analyzed

the spatial distributions of the latent classes in these two cities.

3. Results and discussion:

3.1 Summary of respondents from Mechanical Turk

Table 2 presents the socioeconomic characteristics of the survey respondents as well as the
average socioeconomic characteristics for both cities based on the U.S. census data. Most of
the socioeconomic variables in our results had a similar distribution as the census data except
age, education, and household head. Population that are older than 60 years old and population
that are high school graduate or less are underrepresented, while population that are household
heads are overrepresented. These sampling biases were corrected by post-stratification

weighting of the survey data and corrected the weights of individual responses before

11
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conducting latent-class modeling (Kolenikov, 2016; Lu et al., 2019). This is to improve our

model representativeness of the general population in each of the two testbeds.

Table 2. Summary and comparison of sample and census results in Metro Atlanta and Great Boson.

Socioeconomic Variables Levels Atlanta, Atlanta, Boston, Boston,
Survey Census Survey Census
Do you own or rent a property for Own 50.82% 63.00% 45.60% 59.60%
you and your family? Rent 47.25% 37.00% 52.83% 40.40%
What is the type of your dwelling? Single-family detached 59.89% 66.90% 44.34% 45.30%
house
Multifamily units 38.87% 29.90% 53.46% 53.90%
What is your current age? 20to 24 19.97% 9.18% 22.64% 9.55%
2510 29 24.68% 9.60% 25.95% 10.34%
30to 34 18.83% 9.87% 23.47% 9.42%
3510 39 13.27% 9.87% 9.75% 8.12%
40 to 44 8.42% 10.43% 7.27% 8.64%
45 to 49 6.13% 10.29% 3.97% 9.29%
50 to 54 3.71% 9.87% 3.97% 9.69%
55 to 60 3.14% 8.62% 1.82% 8.77%
> 60 1.85% 22.25% 1.16% 26.18%
Which statement best describes Working 83.03% 75.03% 87.60% 64.50%
your current employment status? Not Working 16.97% 24.97% 12.41% 35.50%
What is your gender? Male 41.65% 48.44% 50.91% 48.44%
Female 57.92% 51.56% 48.76% 51.56%
Are you now married, widowed, Married 44.37% 47.40% 40.17% 46.10%
divorced, separated, or never Single (including 55.63% 52.50% 59.83% 53.90%
married? widowed, divorced,
separated, and never
married)
Are you the head of the household Yes 71.61% 38.07% 76.20% 39.34%
(who is running the household)? No 28.39% 61.93% 23.80% 60.66%
How many people live in your 1 14.55% 26.05% 19.17% 28.80%
household? 2 30.67% 31.54% 30.74% 31.80%
3 24.25% 17.35% 23.31% 16.50%
4+ 30.52% 25.07% 26.78% 22.80%
What level of education you have Less than high school or 0.14% 10.40% 0.00% 8.80%
completed? some high school
High school graduate 8.84% 24.60% 6.12% 22.30%
Some college or 31.24% 27.10% 24.79% 21.10%
vocational training
Bachelor's degree 41.65% 23.60% 43.80% 25.70%
Graduate or professional 17.55% 14.30% 25.29% 22.20%
degree
Choose one or more races that you White 64.51% 55.15% 77.07% 75.58%
consider yourself to be Black or African 24.56% 33.46% 9.36% 8.72%
American
Others 10.93% 11.39% 13.57% 15.70%
Do you have kids under 18? Yes 41.08% 35% 34.38% 30.40%
No 58.92% 65% 65.62% 69.60%
What is your approximate average $0 to $24,999 11.55% 19.60% 10.74% 17.80%
household income? $25,000 to $49,000 26.68% 22.80% 20.83% 16.20%
$50,000 to $74,999 25.39% 18.40% 23.97% 14.80%
$75,000 to $99,999 15.69% 12.60% 17.19% 12.20%
$100,000 to $149,999 13.70% 14.20% 18.35% 17.80%
$150,000 to $199,999 3.99% 6.00% 6.11% 9.60%
$200,000 and up 3.00% 6.40% 2.81% 11.60%

12
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3.2 Selection of an optimal class number and summary of the model statistics

The optimal latent class models for both Atlanta and Boston resulted in eight latent classes, with
the lowest BICs of 10,883 and 9,290, respectively (Fig. 1). All studied independent variables
have a p-value of lower than 0.07 (Tables S3 and S4 of the Sl) (Lanza et al., 2007). These
models explain 49.97% and 51.08% of the responses for Boston and Atlanta participants,
respectively. The detailed latent class modeling results as well as the significance and relative

importance of the upgrading features can be found in Tables S3 and S4 of the SI.

BICs through different iterations of BICs through different iterations of
Boston models Atlanta models
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Fig. 1. Selecting the optimal class number in Atlanta and Boston using Bayesian Information Criteria

(BIC)

3.3 Latent classes in Metro Atlanta and Greater Boston

The preferences of the eight latent classes in the Metro Atlanta and the Greater Boston areas
for all system features (including acceptability) are shown in Figs. 2 and 3, respectively. We
labeled the classes based on their preferences inferred from their responses to the system
features. The eight latent classes are rational adopters, rational late adopters, undiscerning late
adopters, cost-effective later adopters, laggards, early adopters, undiscerning decision-makers,
and pioneers. The detailed latent class models and class information can be found in Tables

S2-4 of the SI.
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Rational adopters represent the largest population in Metro Atlanta (33.23%). This class is
sensitive to economic savings and costs, and prefers a high environmental benefit. Members in
this class may wait until the decentralized systems’ economic benefits are proven before they
adopt. Overall, the class shows a high acceptance of decentralized energy systems. Rational
late adopters (13.82% of the population) show similar preferences but are highly insensitive to
system type and neighbor’s choice. They also have a slightly lower acceptance of decentralized
energy systems as compared to rational adopters. Undiscerning late adopters (13.30% of the
population) are a lot more sensitive to the initial installation cost than the annual savings, as
compared the two previous classes. They demand a high environmental benefit and can be
easily influenced by neighbor’s choices. Cost-effective later adopters (10.04% of the population)
place the highest importance on environmental benefits out of all classes. They care more about
annual savings than the installation cost. System ownership also has a relatively high influence
on the class’ decision in decentralized energy system adoption. Laggards (9.21% of the
population) are highly unlikely to adopt decentralized energy systems no matter what. Although
they care about annual savings and initial costs, system ownership, and neighbor’s choices and
have a strong preference on solar thermal systems over solar PV systems, changes in these
attributes may not effectively increase their intention to adopt decentralized energy systems.
Early adopters (9.01% of the population) care the most about environmental benefits, followed
by installation cost, ownership, and annual savings. They have a high acceptance of
decentralized energy systems, but they mostly prefer to share than to own a decentralized
energy system. Undiscerning decision-makers (7.26% of the population) place a high
importance on environmental benefits, neighbor’s choices, and system type. Pioneers are the
smallest class in Metro Atlanta (4.13%). They show the highest acceptance of the decentralized
systems. They are sensitive to environmental benefits, installation cost, and ownership. Overall,

installation cost and annual savings, and environmental benefits are important determinants of

14



299

300

301

302

303

304

305

306

307

308

309

310

311

312

households’ adoption of decentralized energy systems in Metro Atlanta. This aligns with
previous findings in Best et al. (2019) and Korcaj et al. (2015) about the significance of these
factors in influencing consumer behaviors. The general Metro Atlanta population have a high

acceptance of decentralized energy systems with a slight preference on owning a solar PV

system.

a) ACCEPTABILITY SYSTEM TYPE OWNERSHIP INSTALLATION COST
Chosen(0) = Not Chosen(1) Solar Thermal (0) = Solar PV (1) To Share (0) = To Own (1) $3000 (0.25) '~ $6000 (0.5)
$9000 (0.75) =$12000 (1)
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Fig. 2a). The conditional probability of a latent class choosing a certain level of a system feature while
holding other features constant in Metro Atlanta. Percentages in parentheses indicate the percentages of
Metro Atlanta population that belong to each latent class. b). The relative importance of the six system
design features to each latent class (IC: installation cost; AS: annual saving; EB: environmental benefits;

NC: neighbor’s choice; ST: system type; OS: ownership).

Rational adopters are also the biggest class in Greater Boston, representing 28.65% of the total

population. Both rational adopters and rational late adopters (11.55% of the population) in
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Boston share similar preferences as in those in Atlanta, placing a high importance on installation
cost and annual savings and relatively sensitive to environmental benefits. Rational adopters
have a higher acceptance of decentralized energy systems than rational late adopters. Unlike
those in Atlanta, undiscerning late adopters (17.19% of the population) in Boston place a
relatively equal importance on annual savings, system type, environmental benefits, and
installation cost. They are also relatively sensitive to neighbor’s choices. Similar as those in
Atlanta, cost-effective later adopters (7.02% of the population) have the strongest preference on
environmental benefits out of all classes in Boston, and laggards (8.55% of the population) are
highly unlikely to adopt decentralized energy systems. Although they care about annual savings
and initial costs, system ownership, and neighbor’s choices and have a strong preference on
solar thermal systems over solar PV systems, changes in these attributes may not effectively
increase their intention to adopt decentralized energy systems. Laggards in Boston, however,
prefer to share rather than to own a system. Early adopters (12.03% of the population) care the
most about environmental benefits, followed by installation cost and neighbor’s choices.
Undiscerning decision-makers (6.38% of the population) are the smallest class in Greater
Boston. They place a high importance on environmental benefits, neighbor’s choices, and
annual savings. Pioneers (8.63% of the population) place the highest importance on
environmental benefits, followed by installation cost, and annual savings. They mostly prefer to
share rather than to own a system. Early adopters, undiscerning decision-makers, and pioneers
all have a very high acceptance of decentralized energy systems. Overall, acceptance of
decentralized energy systems in Greater Boston is also generally high. Installation cost,
environmental benefits, and annual savings are the top three factors that influence people’s
adoption of decentralized systems in the region. There is no class in Greater Boson that has an
outstanding preference on solar thermal systems, indicating a potential barrier to promoting
solar thermal systems in the region. The Greater Boston population also has a slightly higher

preference on sharing a system than Metro Atlanta.
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Fig. 3a). The conditional probability of a latent class choosing a certain level of a system feature while
holding other features constant in Greater Boston. Percentages in parentheses indicate the percentages
of the Greater Boston population that belong to each latent class. b). The relative importance of the six
system design features to each latent class (IC: installation cost; AS: annual saving; EB: environmental

benefits; NC: neighbor’s choice; ST: system type; OS: ownership).

3.4 The impact of socioeconomic status on preferences

Tables S5 and S6 in the Sl illustrate the impact of personal and socioeconomic variables in
class membership. The “Time to complete the survey” variable has been included in our model
to show how fast the respondents can make their decision (Table S1). This variable reflects the
level of certainty of the respondents in making their decisions, which resulted in an improvement

in our model performance (Uggeldahl et al., 2016).
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In Atlanta, the early adopters class responded faster than the other classes on average. The
average age of this class is younger than all other classes. Around 63% of the people in this
class are married but most of them do not have kids. This class also has the lowest average
income compared to other classes while they have the highest proportion of college-educated
people (more than 80% of bachelor’s degree or above). Early adopters can be pictured as
young married college graduates who are more likely to embrace technology innovations. On
the other hand, the undiscerning decision-makers class in Atlanta has the longest average
response time. This class are mostly married people with kids at home. Most people in this
class live in rental houses, yet the class, on average, has the highest satisfaction level with the
centralized energy supply and the lowest desire to upgrade their properties, which might hinder
the class’s willingness to adopt decentralized systems. This class also has the most knowledge
about the decentralized systems, despite having the lowest education level among all classes.
The highest number of their neighbors have at least one type of decentralized systems already
installed. Rational late adopters in Atlanta have the highest average income among other
classes, mostly living in single-family households with relatively large housing size and family
size. The class of laggards is primarily comprised of older population. The least number of their
neighbors have already adopted decentralized energy systems and most people in this class do
not have a desire to upgrade their properties. Cost-effective later adopters, on average, live in
the smallest houses and have the smallest family sizes. Most of them live in rented properties.
They have the strongest desire to upgrade their properties. Similarly, undiscerning late adopters
are mostly unmarried people that live in multi-family houses (70.34%) with relatively low
education level. The average income of this class is the second lowest. This class also does not
have much willingness to upgrade their properties. Rational adopters do not have any
overwhelming socioeconomic features, except that they have the least knowledge about the
decentralized systems. Similarly, pioneers do not show any overwhelming socioeconomic

characteristics.
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In Boston, laggards were the fastest respondents of the survey. This class has a relatively older
average age, a higher education-level, and a relatively higher percentage of households with
kids. Very few of their neighbors have decentralized systems already installed (0.52%). On
contrary, rational late adopters in Boston have the longest response time. They have the highest
income, and the population age is relatively old. This class has a relatively high education level
but not many of them know or have installed the decentralized systems, neither do their
neighbors. Pioneers have the highest property ownership across all classes in Boston. They are
mostly highly educated, high income, young and single population, who share multi-family
housing with others. They are extremely dissatisfied with the current energy supply yet have the
least prior knowledge of the decentralized systems and the least number of installations in their
neighborhoods. Given their high acceptability of decentralized energy systems, pioneers might
elect to install decentralized systems once they become acquainted with these systems.
Rational adopters are mostly well-educated married people. Other than that, they do not have
outstanding socioeconomic features. Early adopters in Boston are mostly young, unmarried
population with the lowest income on average across all classes. Their housing and family sizes
are the smallest, and they mostly live in rented properties. Undiscerning late adopters appear to
have the most knowledge about the decentralized systems with more than 20% already have at
least one decentralized system installed. The neighborhoods they live in have the highest
decentralized installations across all classes. They also have the strongest desire to upgrade
their properties across all classes. Cost-effective later adopters in Boston are relatively older
population. Compared with other classes, their satisfaction level of the centralized system is
relatively high. Undiscerning decision-makers in Boston do not have any outstanding

socioeconomic features as compared to other classes.
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3.5 Diffusion of decentralized energy systems in Atlanta and Boston

We developed an innovation diffusion curve that estimates how fast decentralized energy
systems will be adopted in both testbeds (Fig. 4). We constructed the diffusion curve based on
the relative adoption timing of the eight latent classes in each city by considering their stated
preferences. Pioneers and early adopters have been recognized as our first classes to adopt
the systems, because of their high acceptability of the decentralized systems and the short
response time. Pioneers will adopt earlier than early adopters as their response time suggested
a more determined decision-making process. Following these classes, undiscerning decision-
makers will adopt regardless of the initial installation costs and rational adopters will follow them
as the fourth class since they are less dependent on their neighbors' choices. These two
classes can add around 35-40% of increments to the adopted population. Rational late adopters
follow this adoption trend as they need to realize annual savings of the systems to support their
decision-making. Similarly, undiscerning late adopters need to realize the environmental
benefits of the systems to support their decisions. Cost-effective later adopters have been
recognized as an inactive group since they will consider decentralized energy systems after
seeing a drop in system installation costs. Finally, the class of laggards will adopt the latest
given their low acceptability of the decentralized systems, high demand of environmental and

cost benefits, and their desire to sharing the system rather than owning the systems.

The innovation diffusion curves show that the two cities have distinct characteristics in terms of
decentralized energy system adoption, which has implications in policy design. Given the larger
pioneer and early adopter populations in Boston, adoption initiation might be easier as well as
faster in Boston with appropriate policy incentives. Atlanta has larger undiscerning decision-
maker, rational adopter, and rational late adopter populations, which indicates further
technology diffusion might be easier in Atlanta once a certain threshold adoption rate has been

reached. Atlanta also has a larger cost-effective later adopter and laggard populations,

20



430 indicating its highest achievable adoption rate might be lower than Boston. As each class has a
431  probability of choosing or not choosing the decentralized solar technologies, the diffusion

432  pattern should be further examined with market-based simulation models.

Boston and Atlanta Class Diffusion Curve
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433
434 Fig. 4. Diffusion curve of decentralized energy facilities in Metro Atlanta and Greater Boston
435

436 3.6 Spatial distribution of classes in the Cities of Atlanta and Boston

437  Figs. 5 and 6 present the predicted distributions of different latent classes in Atlanta and Boston,
438  respectively. In City of Atlanta, undiscerning late adopters, laggards, early adopters, and

439  undiscerning decision makers dominate the population residing in southern Atlanta, indicating
440 mixed interests in this region. Adoption of decentralized energy systems are most likely to

441  initiate in this region, but there is also a significant barrier to broader penetration. Given that

442  early adopters often reside in lower-property-value communities with poor infrastructure

443  services and have a high demand for property upgrade or purchases, proper policy incentives

444  targeting these communities could create an opportunity for community renaissance through the
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improvement of community energy service and management quality. This finding aligns with
what has been found about the spatial distribution of decentralized water systems in the same
city by Lu et al. (2019), indicating a potential co-benefit when the decentralized water and
energy systems are planed together. Population in northern and northeastern Atlanta are
primarily comprised of rational adopters, rational late adopters, cost-effective later adopters, and
undiscerning decision makers. A significant portion of this population has a relatively high
income and show a rational consideration of decentralized energy systems. This population may
not adopt decentralized energy systems until their economic and environmental benefits
become clear. As such, policies that help increase the return of investment of the decentralized
energy systems and the awareness of their environmental benefits might help motivate adoption
in this region. Pioneers’ presence is extremely small in Atlanta, and hence may not significantly

influence policy outcomes.
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Fig. 5. Spatial distribution of latent classes in Atlanta. Percent values represent the proportion of a census

block’s population belonging to a certain class.

In City of Boston, undiscerning late adopters, early adopters, and undiscerning decision-makers
dominate the relatively low-income communities in central Boston, including Roxbury,
Dorchester, and Mattapan neighborhoods. The presence of these classes in this region
indicates a mixed interest, potentially an earlier initiation of adoption but a significant barrier to
higher penetration. Similar as in southern Atlanta, infrastructure improvement projects that
include the installation of decentralized energy systems can help promote community
renaissance in areas with a high early adopter presence. Rational adopters and rational late
adopters dominate the population residing in the northern part of the city, close to downtown, in
wealthier communities with a relatively high population density. Similar as in Atlanta, policies
that target increasing the return of investment and the awareness of the environmental benefits
of decentralized energy systems might help motivate adoption in this region. Southern Boston is
primarily dominated by laggards and cost-effective later adopters, indicating a potential difficulty
in promoting decentralized energy systems in this area. Pioneers do not have a strong presence

in Boston and may not significantly influence policy outcomes.
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Fig. 6. Spatial distribution of latent classes in Boston. Percent values represent the proportion of a census

block’s population belonging to a certain class.

4. Conclusion and policy implications

The promotion of decentralized energy systems looks compulsory due to the lack of resources
in today’s world as well as the need for low-carbon or carbon-neutral urban infrastructure. In this
study, we used a research framework that combines discrete choice experiment, latent class
modeling, and spatial analysis to understand the preference heterogeneity of residential solar
PV and solar thermal systems in two testbeds: Boston and Atlanta. In general, respondents
from both testbeds show a relatively high acceptance of decentralized energy systems,
indicating promotion of distributed low-carbon energy systems might be a promising carbon
mitigation strategy with proper incentive and policy designs. Key motivating factors for adoption
in both testbeds are installation cost, environmental benefits, and annual savings. Eight latent
classes with unique preferences and socioeconomic characteristics were identified within each
of the testbeds. While there is an overall general preference of solar PV systems over solar
thermal systems in both testbeds, there is an outstanding interest in solar thermal systems
amongst the pioneers class in Atlanta. This presents a general barrier to the broader
penetration of solar thermal systems; however, policies that target certain groups that have a
special interest in solar thermal systems, such as the pioneer class in Atlanta, might be
effective. The Boston population has a higher preference on sharing a system than the Atlanta
population, showing the importance of developing strategies and technologies to enable and
promote community-based decentralized energy systems in the Boston area. Despite the
classes’ similarity in their preferences of different system features, all classes present different
socioeconomic characteristics across the two testbeds. This indicates the importance of
understanding preferences case-by-case and there might not be a one-size-fit-all type of

approach when it comes to incentivizing decentralized energy system adoptions. Based on our

26



502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

technology diffusion curves, adoption initiation might be easier as well as faster in Boston given
its larger pioneer and early adopter populations. Once a certain threshold adoption rate has
been reached, further technology diffusion might be easier in Atlanta given its larger
undiscerning decision-maker, rational adopter, and rational late adopter populations. Given the
unique class distribution of each city, the forms and the focuses of policies should be designed
based upon the characteristics of local consumer preferences. In terms of class spatial
distribution within the cities, we found a prominent spatial “grouping” effect in both cities, with
certain classes tend to reside in one region and others in another. Nevertheless, both cities
have a substantial number of early adopters residing in lower-property-value regions, revealing
a potential to achieve both carbon emission reduction and community renaissance objectives
when combining infrastructure renovation projects in these areas with the installation of

decentralized energy systems.

While this study presents an initial effort in quantifying the spatial households’ preference of
decentralized solar PV and solar thermal systems, our analysis is limited by the sample size, the
geographical areas that were considered, as well as the uncertainties associated our approach
(e.g., post-stratification weighting for sample bias correction). While our research framework and
some general findings are transferable to other areas, the specific latent class models
developed in this study cannot be directly applied in cities. Rather, our study suggests that such
models need to developed case-by-case for individual cities. Future studies targeting confined
geographical boundaries might benefit from better participatory approaches that enable the
engagement of more representative populations. Further research in this area can include the
application of latent class models to predict the dynamic adoption trajectory of the household
solar PV and thermal systems. This will enable future investigation of urban energy

sustainability considering the interactions of the decentralized systems and the electricity grid as
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well as the interactions across energy and water systems, as a potential solution to challenges

related to the energy-water nexus.
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