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The specific activity of enzymes can be altered over long timescalesin cells

by synonymous mutations that alter amessenger RNA molecule’s sequence
but not the encoded protein’s primary structure. How this happens at the
molecular level isunknown. Here, we use multiscale modelling of three
Escherichia colienzymes (type Ill chloramphenicol acetyltransferase,
D-alanine-D-alanine ligase B and dihydrofolate reductase) to understand
experimentally measured changes in specific activity due to synonymous
mutations. The modelling involves coarse-grained simulations of protein
synthesis and post-translational behaviour, all-atom simulations to test
robustness and quantum mechanics/molecular mechanics calculations to
characterize enzymatic function. We show that changes in codon translation
rates induced by synonymous mutations cause shifts in co-translational

and post-translational folding pathways that kinetically partition molecules
into subpopulations that very slowly interconvert to the native, functional
state. Structurally, these states resemble the native state, with localized
misfolding near the active sites of the enzymes. These long-lived states
exhibit reduced catalytic activity, as shown by their increased activation
energies for the reactions they catalyse.

Aproteinenzyme’s specific activity (thatis, the catalytic turnover per
unit of time per unit of mass of soluble protein) can change depending
onthe codons used to encode the protein'°bothinvitroandinvivo. The
specificactivity of the Escherichia colienzyme typelll chloramphenicol
acetyltransferase (CAT-III), for example, decreases by approximately
20% for more than 20 min when fast-translating synonymous muta-
tionsareintroducedintoits transcript'. This change in activity is long
lived asitis comparable to the E. coli cell doubling time (-20 min). Syn-
onymous mutations change the sequence of nucleotides composing
amessenger RNA (mRNA) molecule, which in turn changes the speed
atwhich translation elongation occurs’ but not the protein’s primary
structure. Specific activity measurements control for differences in

protein expression and the formation of insoluble aggregates through
centrifugation or gel separation' %, For enzymes that do not require
post-translational modifications, these observed changes in specific
activity indicate that, inside cells, newly expressed proteins can popu-
late long-lived conformational states that are not native, have reduced
functionality, somehow bypass the chaperone and degradation machin-
ery and do not aggregate. Furthermore, these observations indicate
that the distribution of these kinetically trapped states is sensitive to
changes in the translation elongation speed.

This alternative state of soluble proteinsis distinct fromthe three
typical states’ of a protein, being either (1) folded and functional, (2)
misfolded and aggregated or (3) degraded. The structural, kineticand
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energetic properties of this alternative state of proteins is a funda-
mental, unanswered question in biochemistry and molecular biology.
Soluble, nonfunctional states do not just occur for enzymes; other
protein functions can also be altered. The hormone-transporting
protein transthyretin, for example, can have 20% of its soluble frac-
tioninanonfunctional state'. There are hintsin the literature of some
of the structural properties of this state. NMR-derived structures of
B/y-crystallin produced from two synonymous mRNA variants showed
that it populates two soluble conformations differing in the forma-
tion of a disulfide bond". Disulfide bonds represent an energetically
strong constraint on folding topologies and are uncommon: only 5and
20%, respectively, of E. coli and human cytoplasmic proteins contain
disulfide bonds'. Furthermore, many enzymes that exhibit specific
activity changes due to synonymous mutations do not contain disulfide
bonds'>*. Thus, the nature of these structurally altered subpopulations
has not yet beenresolved, although experimental data rule out misfold-
ing involving quaternary structures. For example, gel separation and
chromatography experiments rule out the formation of off-pathway
dimers and higher-order oligomers for many enzymes that normally
functionin a monomeric state**%,

Here, we use a novel multiscale approach across the dimensions
oftime, space and energy to simulate the synthesis, post-translational
behaviour and function of enzymes under different translation rate
schedules that arise from synonymous codons. We establish that our
modelling approach can predict the experimentally measured changes
inspecificactivity for CAT-Il, D-alanine-D-alanine ligase B (DDLB) and
dihydrofolate reductase (DHFR). Dissecting the structures and kinetics
of co-and post-translational folding that occur in our simulations, we
show that synonymous mutations shift the folding pathways and popu-
lations of near-native non-covalent lasso entanglements, each of which
hasitsownintrinsicactivity (as measured by the reaction rate constant
k.,.) and leads to long-term changesin the enzymatic specific activity.

Results

Recapitulating experimental trends of CAT-III

First, we applied our modelling protocol to the E. coli enzyme CAT-III
to test whether the method correctly predicts the influence of syn-
onymous mutations on specific activity. CAT-IIl has been shown to
have a20% decrease in specific activity when faster-translating codons
are introduced through synonymous mutations'. We created both
fast- and slow-translating synonymous mRNA sequences (denoted,
respectively, CAT-Ill;,, and CAT-lll,,) by replacing each wild-type
codon with its fastest or slowest synonymous variant (Fig. 1b; mRNA
sequences are reported in Supplementary Methods Section 22). The
resulting slow mRNA variant takes twice as long to translate than the
fast variant (Fig. 1f). We simulated the synthesis and post-translational
behaviour of CAT-lll resulting from the fast and slow mRNA variants
and calculated their respective specific activities (equation (4)) at
the end of the post-translational simulations. In our model, CAT-lll;,,
exhibited 83.6% (95% confidence interval (Cl) = 72.0-96.5% from boot-
strapping; P=0.0067 (random permutation test); 10° permutations) of
the specific activity of CAT-Ill,,, (Fig.1g). This comparison, known as
therelative specific activity (equation (5)), iscommonin biochemical
studies'’. Thus, our modelling approach qualitatively recapitulates
experimentally observed changes in CAT-1II's enzyme activity due to
synonymous mutations.

Other enzymes that are sensitive to translation speed changes

Using avirtual screening strategy (see Supplementary Results), weiden-
tified a protein that was likely to be sensitive to changesin translation
speed (thatis, DDLB) and aninsensitive protein (thatis, DHFR). We simu-
lated the synthesis and post-translational dynamics of DDLB and DHFR
from their fast- and slow-translating mRNA variants (the sequences
are presented in Supplementary Methods Section 22) using the same
simulation protocol as that applied to CAT-IIl. The slow variants of

DDLB and DHFR translated, respectively, three and two times slower
than their fast variants (Fig. 1f). We found that the specific activity of
DDLB,,, was 92.7% (95% C1 = 87.3-98.3%) that of DDLB,,, (P= 0.0052)
60 s after synthesis was completed. DHFR, exhibited a specific activ-
ity that was 100% (95% CI =100-100%) that of DHFRy,,, (P=1; that s,
notstatistically significant). Therefore, our model describes enzymes
whose specificactivity is either sensitive (DDLB) or insensitive (DHFR)
to changes in translation speed over long timescales.

Accurate prediction of trends in specific activity

Toexperimentally test whether DDLB,,, has areduced enzymatic activ-
ity compared with DDLBy, we recombinantly expressed the fast and
slow DDLB variantsin E. coli using the same mRNA sequences asinthe
simulations. We then purified the enzyme and assayed the reaction
kinetics (see Supplementary Methods Section 19). We observed that
thefastvariant had a higher level of protein expression 5 h afterinduc-
tion than the slow variant, consistent with the fast mRNA variant trans-
lating faster (Supplementary Fig. 11). The reaction rate constant k.,
was measured across five biological replicates of the fast and slow
variants (Supplementary Table 11). We found that the specific activity
of DDLB,,,, was, on average, 88% (k%1 /kfast; 95% Cl = 81.3-94.8%) that

cat cat”’

of DDLB;, (P=0.0186; one-tailed t-test for k89"/kf5t < 1). In contrast,
we performed the same experiments to measure the k, of fast and
slow DHFR variants (see Supplementary Methods Section 20). Consist-
ent with our model prediction, the specific activity of DHFR,, was
indistinguishable from that of DHFRy, (K™St/kS9% = 91%; 95%
ClI=68-115%; P=0.5323; two-tailed t-test for k't /kSlow £ 1; see Sup-
plementary Table 12). Thus, our modelling approach also successfully
predicts the trendsin changesinactivity for DDLB and DHFR, indicat-

ing that the model is realistic.

Near-native, lasso-like entangled structures

Next, we identified in our simulations the structures, catalytic prop-
erties and folding pathways that cause these activity changes. First,
we examined the structural distributions of CAT-11I, DDLB and DHFR
in the post-translational simulations using a clustering algorithm
that employs both structural information and temporal intercon-
version rates between metastable states. Specifically, after numer-
ous tests of different metrics, we performed structural clustering on
the basis of the fraction of native contacts formed in the enzyme’s
substrate-binding regions (denoted as Q,.; equation (3)) and the frac-
tion of native contacts that exhibited non-native topological entan-
glements (denoted as G; equation (2); see Methods). The resulting
metastable states are shownin Fig. 2a,b for CAT-II, Fig. 3a,b for DDLB
and Fig. 4a,b for DHFR.

Across the metastable states, we observed diverse misfolded
structures for CAT-IIl and DDLB (Supplementary Figs. 5 and 6). Most
of the misfolded structures exhibited topological entanglements, and
many of these entangled structures were near native, having >60% of
native contacts formed (Q,., > 0.6 and G > 0.02; interactive visualization
isprovided at https://obrien-lab.github.io/visualize_entanglements/).
Misfolded, metastable states P9, P10, P11, P12 and P13 of CAT-1ll exhib-
ited Q,..and Gvalues, respectively, of 0.66 and 0.18,0.72 and 0.04, 0.80
and 0.02,0.84 and 0.09 and 0.86 and 0.15, while the native state (P14)
had values of 0.89 and O (Fig. 2g and Supplementary Fig.5). The DDLB
misfolded states P4, P6,P7,P8 and P9 exhibited values of 0.64 and 0.06,
0.83 and 0.19, 0.85 and 0.09, 0.91 and 0.05 and 0.92 and 0.15, respec-
tively, while the native state (P10) had values of 0.97 and O (Fig. 3g and
Supplementary Fig. 6). In contrast, DHFR exhibited fewer misfolded
states and only one entangled, misfolded state, with Q,..and G values
of 0.73and 0.05 compared with the values 0.93 and O for its native state
(Fig.4gand Supplementary Fig. 7). All of the topological entanglements
that we observed had a non-covalent lasso topology™ ™, where native
contacts withinacertain folded region established aclosed loop along
the protein backbone and another segment in the same chainthreaded
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Fig.1| A multiscale approach for understanding the influence of synonymous
codons on the structure and function of enzymes. a, Crystal structures of the
three enzymesinvestigated in this study, with secondary structure elements
highlighted and substrates presented. b, Codon translation rates of CAT-III fast
and slow synonymous mRNA variants, with the mutation sites presented on the
bottom bars. ¢, Schematic of the multiscale approach, including the coarse-
grained protein synthesis and post-translational dynamics, and the all-atom
characterization of enzymatic functionality. d, Enzymatic reaction rate k.,
estimated from the activation free energy AG". e, Enzyme specific activity (SA)
estimated as the ensemble average of reaction rates, k., (see equation (4)).

f, Comparison of the translation times for the fast and slow synonymous mRNA

variants. g, Relative specific activities for CAT-111, DDLB and DHFR. The specific
activity values are normalized to the higher specific activity value found in fast
and slow mRNA variants. The error barsin fand g represent 95% Cls about the
mean, as estimated using bootstrapping over all simulation trajectories (sample
sizes, n =100 trajectories for CAT-Illand DDLB and n = 50 trajectories for DHFR
infand n=1,000 trajectories for CAT-Illand DDLB and n = 500 trajectories for
DHFRin g). P values characterize the statistical significance of the difference in
specific activities between the proteins produced from the fast and slow variants.
They were calculated using a one-tailed permutation test. The specific activities
of CAT-1lland DDLB are sensitive to translation speed changes, whereas that of
DHFRis not.

through this loop to become entangled (Fig. 5). None of them were
topologically knotted, as identified by a knot detection algorithm'®,
meaning that pulling on their termini would resultin a fully extended
conformation. Thus, all three enzymes sampled near-native, entangled
structures during folding.

Some entangled structures are long-lived kinetic traps

To disentangle a misfolded structure, it is often necessary to unfold
some portion of the properly folded segments to attain the native state.
This canbe energetically costly. Therefore, we hypothesized that these
near-native, entangled structures are long-lived kinetic traps. To test
this hypothesis, we calculated the post-translational probability of
beingin each metastable state as a function of time. These results are
reportedin Figs. 2c, 3c and 4c. For CAT-llland DDLB, entangled states
(P13 for CAT-Ill and P4 and P8 for DDLB) persisted with appreciable
populations (>10%) until 60 s after nascent protein release from the
ribosome. For DHFR, the single entangled state (P2) populated only
0.2% of the trajectories and disentangled by 10 s. As a further test, we
examined whether any post-translational trajectory of CAT-1ll or DDLB
thatreached anentangled state ever converted to anunentangled state.
For CAT-llland DDLB, we found that 92.7 and 100% of trajectories sam-
pled anentangled state and, of these, 78.6 and 10.4% did not convert to
astate that was not entangled by the end of the simulations. Thus, we

conclude that many of these entangled structures represent long-lived
kinetic traps that convert to the native state slowly.

Entangled structures have altered catalytic properties

The non-covalent lasso entanglement intermediates we observed are
aformof misfolding, asthey represent ordered structures thatare not
native. Therefore, we hypothesized that some of these entangled
structures have catalytic properties different from those of the native
ensemble. To test this hypothesis, we calculated the transition state
barrier height of the enzyme reaction of each metastable state that
formed a native or near-native active site (Q,., > 0.6) using a
back-mapping procedure to anall-atom representation and subsequent
quantum mechanics/molecular mechanics (QM/MM) umbrella sam-
pling simulations of the catalytic reaction (see the potential of mean
force plots in Supplementary Figs. 8-10). Thus, for each metastable
state, we obtained the medianactivation free energy barrier AG*going
fromreactantsto products. For all three proteins, the native state had
the lowest activation energy (Figs. 2f, 3f and 4f) and the other meta-
stable states had higher barriers. Thus, these misfolded and entangled
intermediates contribute to changesin specificactivity. Coupled with
the observation that entangled structures tend to be long-lived kinetic
traps, we also conclude that these specific metastable states lead to
reduced specific activity over long timescales.
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Fig.2|Fast translation partitions more CAT-Ill into post-translational
kinetically trapped entangled states. a,b, Log probability surfaces (-In[P],
where Pis the probability of sampling particular Q,..and G values) for the
post-translational folding of fast-translating (a) and slow-translating (b) mRNA
variants as a function of the order parameters Q,..and G (left) and the regions
corresponding to different metastable states (right). The native state is located in
the bottom right-hand corner of these plots. ¢, Time courses of gross state
probabilities (soluble + insoluble; same colours as the metastable states ina and
b) witherror bars shown as transparent stripes for fast (left) and slow (right)
variants. d, Aggregation, degradation and Hsp70 binding propensities of each
metastable state, calculated using Supplementary Equation (19). e, Percentage of
soluble proteinin each metastable state, calculated using Supplementary
Equation (17). f, Median transition state barrier heights (AG*) for the native and
near-native metastable states calculated from the QM/MM simulations. g, From

left to right: representative structures of the near-native kinetically trapped state
P13 (the closed loop and threading segment of the entangled region are coloured
inred and blue, respectively), the native state P14 and the trimer crystal structure
(3CLA), with the substrate shown in magenta and three monomers shownin
green, orange and cyan. The Q,..and G values of the most probable cluster
(microstate) for each state are reported below the structure in the format (Q,,
value, Gvalue). Ina-g, kinetically trapped entangled states are labelled in red, the
native state (thatis, state P14) is labelled in green and the others are labelled in
black. All error bars represent 95% Cls of the statistics calculated by
bootstrapping over all simulation trajectories/representative structures (sample
sizes,n=1,000 trajectoriesinc, n =5 representative structuresind and eand
n=1,000 framesinf). Each of the bar charts ind and eis overlaid with the data
points of the five representative structures. The structure of P13 can be explored
interactively at https://obrien-lab.github.io/visualize_entanglements/.

Deep entanglements are usually long lived

Not all entangled structures are long-lived kinetic traps; otherwise,
the entangled structure of DHFR (state P2 in Fig. 4g and Supplemen-
tary Fig. 7) would persist. Sliding a small number of residues out of
the closed loop (Fig. 5; see also Supplementary Methods Section 11)
tends to be easier thansliding alarge number of residues. Inaddition,
unfolding a small number of residues during disentanglement also
tendstobe easier than unfolding alarge number of residues. Therefore,
we hypothesized that the minimum number of residues involved in

the threading segment, whose reptation can cause disentanglement,
and the minimum number of residues needed to unfold during the
disentanglement process should correlate with the ability of entan-
gled metastable states to interconvert to unentangled states. To test
this hypothesis, we analysed the representative structures from each
metastable state. The entanglement of DHFR involved only, on average,
five residues in the threading segment, and sliding these segments
through theloop should not cause any portion of the protein to unfold.
For CAT-1ll and DDLB, entangled states that never disentangled in the
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Fig.3|Slow translation partitions more DDLB into post-translational
kinetically trapped entangled states. a,b, Log probability surfaces (-In[P],
where Pis the probability of sampling particular Q,.and G values) for the
post-translational folding of fast-translating (a) and slow-translating (b) mRNA
variants as a function of the order parameters Q,..and G (left) and the regions
corresponding to different metastable states (right). The native state is located in
the bottom right-hand corner of these plots. ¢, Time courses of gross state
probabilities (soluble + insoluble; same colours as the metastable states ina and
b) witherror bars shown as transparent stripes for fast (left) and slow (right)
variants. d, Aggregation, degradation and Hsp70 binding propensities of each
metastable state, calculated using Supplementary Equation (19). e, Percentage of
soluble proteinin each metastable state, calculated using Supplementary
Equation (17). f, Median transition state barrier heights (AG*) for the near-native
metastable states calculated from the QM/MM simulations. g, From left to right:
representative structures of the near-native kinetically trapped states P4 and P8
(the closed loops and threading segments of the entangled regions are coloured
inred and blue, respectively), the native state P10 and the crystal structure
(4C5C), with the substrate shown in magenta. The Q,.,and G values of the most

o
Misfolded 192

Becomes entanged (exposed)

probable cluster (microstate) for each state are reported below the structure
inthe format (Q,. value, G value). h, Left, LiP-MS results for refolded DDLB.
Only the peptides showing significantly different abundance (the abundance
must have at least a twofold difference and the P value must be <0.01) from the
refolded protein through all three time points are presented. Right,
representative structures of the native state and the entangled state P4. The
entanglementin state P4 isrepresented in the same way asing. The native
conformation corresponding to the entanglement is highlighted in the native
state structure. The proteinase K site residue 192 is shown as agreen ball. It is
significantly more exposed to solvent in the entangled state P4.In a-h, kinetically
trapped entangled states are labelled in red, the native state (that is, state P10)
islabelled ingreen and the others are labelled in black. All error bars represent
95% Cls of the statistics calculated by bootstrapping over all simulation
trajectories/representative structures (sample sizes, n=1,000 trajectoriesinc,
n=>5representative structuresind and eand n=1,000 frames in f). Each

ofthe bar chartsindand eis overlaid with the data points of the five
representative structures. The structures of P4 and P8 can be explored
interactively at https://obrien-lab.github.io/visualize_entanglements/.
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Fig. 4 |Nokinetically trapped states arise in synonymous variants of DHFR.
a,b, Log probability surfaces (-In[P], where Pis the probability of sampling
particular Q,..and G values) for the post-translational folding of fast (a) and slow
(b) mRNA variants as a function of the order parameters Q,.,and G (left) and the
regions corresponding to different metastable states (right). The native state is
located in the bottom right-hand corner of these plots. ¢, Time courses of gross
state probabilities (soluble + insoluble; same colours as the metastable statesina
and b) with error bars shown as transparent stripes for fast (left) and slow (right)
variants. d, Aggregation, degradation and Hsp70 binding propensities of each
metastable state, calculated using Supplementary Equation (19). e, Percentage of
soluble proteinin each metastable state, calculated using Supplementary
Equation (17). f, Median transition state barrier heights (AG*) for the near-native
metastable states calculated from the QM/MM simulations. g, From left to right:

Metastable states

representative structures of the shallow-entangled state P2 (the closed loop and
threading segment of the entangled region are coloured inred and blue,
respectively), the native state P3 and the crystal structure (4KJK), with the
substrate shown in magenta. The Q,..and G values of the most probable cluster
(microstate) for each state are reported below the structure in the format (Q,,
value, Gvalue). Ina-g, the native state (that is, state P3) is labelled in green and
the others are labelled in black. All error bars represent 95% Cls of the statistics
calculated by bootstrapping over all simulation trajectories/representative
structures (sample sizes, n =500 trajectories inc, n = 5 representative structures
indandeand n=1,000 framesinf). Each of the bar chartsind and eis overlaid
with the data points of the five representative structures. The structure of P2 can
be explored interactively at https://obrien-lab.github.io/visualize_
entanglements/.

simulations involved, on average, 35 and eight residues, respectively,
in the threading segment and had 31 and 53 residues that needed to
unfold during disentanglement (see https://obrien-lab.github.io/visual-
ize_entanglements/). These results are consistent with our hypothesis
and suggest that because DHFR’s entanglement is shallow (that is, it
involves a few residues and does not need to unfold to disentangle),
thermal fluctuations can easily disentangle this structure, while thermal
energy is not sufficient to quickly disentangle the CAT-1ll and DDLB
deep entanglements.

To examine how long it will take to disentangle deep and shallow
entanglements in a higher-resolution model, we back-mapped two
deep-entangled conformations (one from CAT-Ill state P13 and the
other from DDLB state P4) and one shallow-entangled conformation
(fromDHFR state P2) to an all-atom representation (see Supplementary
Methods Section 13). We then carried out temperature jump

simulations to estimate the disentangling times (Supplementary Figs.
12a,13aand 14a,b). To account for force field biases affecting the kinet-
ics, wealsosimulated and calculated the unfolding time of native DHFR
at these temperatures and compared it with its experimentally meas-
ured unfolding rate (k';"=2.24 x10°s™, extrapolated to O M urea at
298 K)"**°, (Among these three enzymes, only DHFR has experimentally
reportedrefolding kinetics.) From these simulations, the disentangling
rates (kfjiem) and unfolding rates (kflifm) were extrapolated to 298 K. We
found that the all-atom force field accelerated the unfolding of DHFR
by 144-fold at 298 K. By correcting kq.for this force field bias using this
acceleration factor (that s, T{fem'e = 144/kf1‘;“), we estimated that for
the deep entanglements in CAT-1ll and DDLB, the values of T:f:ca'e are
6.2x10%s(95% Cl1=29s-1x10°s)and 1.3 x 10* s (95% Cl =28 s-4 x 10°s),
respectively. The shallow entanglement of DHFR becomes disentan-
gled with a timescale of 71's (95% Cl =4 x1073-2 x 10®s), which is two
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Fig. 5| Illustration of the G metric and non-covalent lasso topology. Bottom
left, contact map of native contacts, where the top and bottom triangular regions
represent the native contacts within the native crystal structure of CAT-11I (top
left) and one of the misfolded structuresin state P13 (bottom right), respectively.
The native contacts in the misfolded structure are coloured based on the linking
number g, calculated using Supplementary Equation (16). Top right, topology
diagram of the non-covalent lasso entanglement formed by the native contact

of residues 167 and 183, as an instance, where the closed loop is shownin red and
the threading segment is shown in blue. As described in equation (2), the G metric
ofthis misfolded structure, G = 0.12, was calculated by counting the number of
native contacts within the misfolded structure, whose g value is different from
that of the same native contact within the crystal structure (that is, the number

of native contacts covered by the black circles in the lower triangular region of
the contact map, which is 55), and normalizing them to the total number of native
contacts in the crystal structure (thatis, G = 55/442 = 0.12).

orders of magnitude faster than the deep entanglements. These results
suggest that the deep-entangled metastable states we have identified
are likely to be long-lived kinetic traps, persisting for hours.

Native-like entangled states are likely to remain soluble

The proteostasis machinery in cells has the potential to catalyse the
folding (repair) or degradation (clearance) of these entangled struc-
tures. Theentangled structures could also potentially aggregate and be
removed fromthe pool of soluble enzymes. We accounted for the effects
of these processes by estimating the aggregation, degradation and
Hsp70 binding propensities of the different metastable states (see Sup-
plementary Methods Section14.2 and Supplementary Equation (19)).
We observed, as expected, that the less structured metastable states
have a higher propensity to aggregate, be degraded or interact with
chaperones. For example, relative to the native state, states P1-P8 of
CAT-Ill (see structures in Supplementary Fig. 5) are much more likely
to experience one of these processes, asindicated by the larger magni-
tude of the bar plots in Fig. 2d. However, states P9-P13 exhibit similar
propensities to the native state (P14) to aggregate, be degraded or
become chaperone substrates. Similar results were observed for DDLB
(Fig. 3d) and DHFR (Fig. 4d). Thus, our model indicates that some
of these entangled structures do not interact with the proteostasis
machinery any more than the native state does. Therefore, the altered
specific activity we observe s likely to persistinside cells over long time-
scales. This prediction was confirmed by our enzyme kinetics assays
(see the section ‘Accurate prediction of trends in specific activity’),

since the fast and slow variants of DDLB were expressed in E. coli cells
possessing the full complement of the proteostasis machinery (see
Supplementary Methods Section 19).

We estimated the percentage of proteinsin each metastable state
that are likely to remain soluble by accounting for the aggregation,
degradation and Hsp70 binding propensities within each metastable
state (see Supplementary Methods Section 14.2 and Supplementary
Equation (17)). We found that for both CAT-IIl and DDLB, many of the
near-native entangled structuresremained soluble. At least 97% of the
proteinsin entangled states P10, P11, P12 and P13 for CAT-Ill were esti-
mated to remain soluble (Fig. 2e), while at least 89% of the proteinsin
entangled states P4, P6, P7, P8 and P9 of DDLB were expected to remain
soluble (Fig. 3e). Thus, many of the long-lived, near-native entangled
states are likely to remain soluble and free from aggregation, degrada-
tion and catalysed folding by chaperones.

Thereason for thisis that these near-native structures sequester
the residues and sequence motifs® that promote these processes to
an extent similar to that in the native state. For example, state P13 of
CAT-lll exposes a similar amount of hydrophobic surface area as the
native state ensemble (36.2 versus 34.7 nm?), so too with the exposed
surface areas of residues that promote aggregation (21.6 versus 18.9
nm?) and interactions with the chaperone Hsp70 (40.0 versus 38.6 nm?).

Consistency with limited proteolysis mass spectrometry
experiments

To experimentally test whether these entangled states exist, we car-
ried out limited proteolysis mass spectrometry? (LiP-MS) in which E.
colilysates were globally unfolded through incubation in 6 M guani-
diniumchloride, thenrefolded by dilution, and the conformations of
the resulting refolded proteins were assessed by their susceptibility
to proteolysis with proteinase K. With liquid chromatography tandem
mass spectrometry, tens of thousands of fragments were identified and
quantified”, of which anumber were from DDLB and DHFR, enabling an
assessment of whether or not their refolded conformations were simi-
lar to their native forms. In these experiments, proteins were allowed
to refold for 1 min, 5 min or 2 h following dilution from denaturant,
then pulse proteolysis was conducted, providing a snapshot of their
structural ensemble at distinct timescales. Peptide fragments that
contained a cleavage site arising from proteinase K were interpreted
as demarcating sites within a protein that were solvent exposed or
unstructured; hence, if such a fragment was present in greater abun-
danceintherefolded samples (relative to untreated, native samples),
itimplied thata population of the protein failed to form the native-like
structure at thatsite. Additional details can be found in Supplementary
Methods Section 21. For DDLB, we found one statistically significant
peptide fragment (abundance ratio greater than twofold; P < 0.01 by
Welch’s t-test), with a proteinase K cleavage site at residue 192, whose
abundancewas atleast 2.6 times greater in the refolded samples at all
three time points (Fig. 3h; the full dataset s provided in Supplementary
Table 13), indicating that residue 192 is more exposed to solvent than
in the native state. Cross-referencing this site against the long-lived
metastable states in our simulations (Fig. 3g), we found that state P4
contains an entanglement in which residue 192 is part of the thread-
ing segment and more exposed to solvent (Fig. 3h). This misfolding
results in a12-fold increase in the solvent-accessible surface area for
residue 192 compared with the native state, in whichitis partofa
sheet.Inaddition, states P4 and P8 were sampled by DDLB when refold-
ing was commenced from a thermally denatured state in our model
(Supplementary Fig. 15), indicating that many of the same misfolded
states populated during synthesis are also populated through refold-
ing in the absence of the ribosome. Thus, comparison of the LiP-MS
data to co- and post-translational folding is reasonable. Therefore,
our simulations provide amolecular interpretation of LiP-MS refold-
ability experiments and are consistent with the existence of protein
entangled states.
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In contrast, we predicted that DHFR does not exhibit long-lived
misfolded states. Indeed, in the LiP-MS data there was a peptide that
exhibited a significant abundance difference in the refolded samples
after 5 min of refolding time; however, it was not present at the 1 min
and 2 h time points (Supplementary Table 14), indicating that the
refolded proteinisindistinguishable fromits native conformation on
long timescales. Thus, any structural distortions in DHFR during refold-
ing were short lived. The single significant peptide indicates that a
regionspanned by residues 77-98 is more exposed to solvent in the mis-
folded state thanin the native state.Indeed, inthe short-lived entangled
state, P2, we found that this region had a 5% larger solvent-accessible
surface areathaninthe native state (a1.05-fold increase witha99% Cl of
1.02-1.07; two-tailed t-test, P= 6 x 10"°). Therefore, this negative control
provides further evidence of the accuracy of our model’s predictions.

Synonymous mutations alter the entangled state populations
Next, we examined how translation speed changes affected the
post-translational populations of entangled structures. We observed
that for CAT-llI, 60 s after translation termination, 76.3% (95% Cl = 73.6~
78.9%) of the structures were entangled when synthesis was fast, while
71.6% (95% Cl = 68.8-74.3%) were entangled when synthesis was slow.
Likewise, the entangled population of DDLB accounted for 35.7% (95%
Cl=32.7-38.7%) and 30.2% (95% Cl = 27.3-33.0%) of the total under slow
and fast translation, respectively. In contrast, the population of entan-
gled structures for DHFR remained zero regardless of the translation
speed 10 s post-termination. Thus, synonymous mutations can alter
the population distributions of entangled states over long timescales
for deep entanglements.

Synonymous mutations cause a divergence of folding
pathways

We hypothesized that the changes in translation speed alter the
co-translational folding pathways of the protein. First, we assessed
how different the nascent chain structural distributions were under
fast and slow translation by applying the Jensen-Shannon divergence
metric (Supplementary Equation (21)) to the population of microstates
identified as part of our Markov state modelling. A Jensen-Shannon
value of 0 means that there is no difference between the distributions,
while a value of [n2 means the distributions are completely different.
We found that for all three proteins, the structural divergence induced
by synonymous mutations was small at short nascent chainlengths and
tended to increase as the nascent chain length increased (Fig. 6b,e,h).
The maximum divergence occurred at or near the longest nascent chain
length before the nascent chain was released from the ribosome. For
DHFR, the structural ensembles arising from fast and slow synthesis
started to diverge at approximately 110 residues in length, while for
CAT-llland DDLB, the two distributions started to diverge at190 and 210
residues, respectively. Thus, the fast and slow translation rates altered
the co-translational distributions of conformations for all three enzymes.

The post-translational (metastable state) structural distributions
(Supplementary Equation (22)) for DHFR, which were initially different
between fast and slow synthesis, rapidly converged to the same distri-
bution (thatis, they had Jensen-Shannon values equal to zero; Fig. 6h).
For CAT-IIl and DDLB, the two distributions did not reconverge 60 s
after synthesis (0.02 for CAT-1lland 0.27 for DDLB; see Fig. 6b,e). Thus,
the changes in conformation caused by synonymous mutations are
quickly forgotten by DHFR due toits rapid equilibration, while CAT-III
and DDLB retain a memory of those co-translational differences due
tokinetic trapping.

To characterize changes in co- and post-translational folding path-
ways, we calculated the populations and pathway probabilities of transi-
tions between metastable states occurring co-and post-translationally
under the different translation schedules (see Supplementary Methods
Section17). AsshowninFig. 6, black arrows between metastable states
indicate that a transition was observed between those states in both

translation schedules in the top 80% of populated pathways, blue
arrowsindicate that the transition was seen only in the slow translation
schedule and orange arrows indicate that the transition was seen only
inthe fast translation schedule.

We identified nine co- and three post-translational metastable
states for DHFR (representative structures shown in Fig. 6g). The co-
and post-translational folding pathways were very similar, as most of
the transitions were seen in both translation schedules (black arrows
inFig. 6g). There were some differences though. Transitions from state
C7toC9 and from C9 to C8 were observed only for the slow schedule.
The pathway probabilities, however, demonstrated that even though
theinitial post-translational structural distribution differed, all states
converted to the native state by the end of the post-translational simu-
lations (Fig. 6i). For example, the pathway probabilities of C8~>P3 and
C9->P3 were 100% for both fast and slow translation. An exception
was the transition probability of C6>P3 that occurs in the fast vari-
ant but not in the slow variant, because in the slow variant state C6 is
never populated. However, because C6 quickly converts to the native
state P3, the effect on the time-dependent native state population
is negligible. Thus, the co-translational folding of DHFR was slightly
affected by differencesin translation speed; however, these differences
quickly disappeared due to rapid folding from all post-translational
metastable states.

In contrast, CAT-Ill exhibited a co- and post-translational folding
network (Fig. 6a) and pathway probabilities that were sensitive to
translation speed changes and whose resulting differences persisted
post-translationally. Nine co-translational and 14 post-translational
metastable states were identified for CAT-III (Fig. 6a). Seven of these
post-translational metastable states (P5, P6, P9, P10, P11, P12 and
P13) exhibited entangled structures, while no co-translational states
exhibited entanglement. Thus, entanglement is a post-translational
process for CAT-1lI (see Supplementary Videos 1 and 2 visualizing,
respectively, the process of entanglement versus correct folding).
Very different co-translational folding pathways were observed start-
ing atanascent chainlength of approximately 195 residues, where the
divergence metric exhibited alarge increase (Fig. 6b), and transitions
into and out of co-translational metastable state C9 started to differ
between the fast and slow translation schedules (as indicated by the
blue and orange arrows in Fig. 6a). For example, only in the slow sched-
ule could C9 transition to C6, while only in the fast schedule could C5
transition to P1. These differences in allowed transitions persisted
post-translationally as well, with state P13 being an effective sink during
the post-translational simulations (thatis, allowing no direct or indirect
transitions to the native state (P14) once it was reached). This sink had
deep-entangled structures, consistent with our earlier observation
that the deep-entangled states tend to be kinetic traps (asindicated by
the red border around metastable state P13 in Fig. 6a). Finer-grained
consideration of the folding pathways showed that post-translationally,
CAT-lllg,, partitioned 5.0% (95% Cl =1.1-8.9%) more protein into sink
P13, while CAT-lll,,, partitioned 4.7% (95% Cl = 0.8-8.6%) more protein
into native state P14. The transitions towards the native state P14 were
enhanced for CAT-lll,, whereas the transitions towards the kinetic
trap P13 were enhanced for CAT-lll,. This is also indicated by the
pathway probabilities shown in Fig. 6¢. Synonymous mutations also
led to smaller changes in other states, including the entangled states
P6, P10 and P12. Thus, the change in translation speed causes differ-
encesinthe CAT-1ll co-translational folding pathways once at least 195
residues have been synthesized, and these differences lead to changes
in the populations of post-translationally entangled states, thereby
altering the transition state barrier for the reaction this enzyme car-
ries out (Fig. 2f) and affecting the specific activity of CAT-Ill over long
timescales (Fig.1g).

Similar to CAT-1II, DDLB also exhibited co- and post-translational
folding pathways that were sensitive to changes in translation speed
acrossits11co-andten post-translational metastable states. However,
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Fig. 6 | Co- and post-translational folding pathways of CAT-11I, DDLB and
DHFR. a,d,g, The most probable folding pathways of CAT-III (a), DDLB (d)

and DHFR (g) are presented as a directed graph where the nodes represent
metastable states, with representative structures shown in the boxes. The
edges represent the transitions in the 80% most likely pathways. The nodes
corresponding to the native state and the kinetically trapped states are framed
ingreen andred, respectively. The transitions (arrows) that are observed in
only the fast or slow variants are marked in orange and blue, respectively.b,e,h,
Jensen-Shannon divergence of the co-translational microstate distributions
(left; Supplementary Equation (21)) and post-translational metastable state

distributions (right; Supplementary Equation (22)) of CAT-ll (b), DDLB (e)

and DHFR (h), comparing fast and slow variants, with ared line indicating zero
divergence. aa, amino acids. ¢,f,i, Co-translational pathway probabilities (* > end
state C*) and post-translational pathway probabilities from the co-translational
end states to the native state (C* - native state) for CAT-IIl (c), DDLB (f) and
DHEFR (i). The pathway probabilities whose changes were >5% are highlighted
inyellow. The post-translational pathway probabilities are normalized by the
corresponding co-translational pathway probabilities that involve the particular
co-translational end state.

unlike CAT-III, DDLB co-translationally formed entangled structures
(states C8 and C9) that persisted to form entangled post-translational
states (states P1, P3, P4 and P8). In CAT-Ill, the divergence in
co-translational folding pathways between fast and slow translation

schedules monotonically increased with increasing chain length
(Fig. 6b). However, the co-translational folding pathways of
DDLB diverged starting at a nascent chain length 110 residues but
reconverged around 190 residues, diverging again starting at 210
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residues (Fig. 6e). The first divergence involved a transition to state
C4 with the fast schedule that did not occur with the slow schedule
(orange arrowin Fig. 6d). This state ultimately interconverted to state
C3, whichisanobligatory intermediate in both schedules. The second
divergencestarted at state C7,in which 6% more nascent chains went to
entangled state C8 with the slow schedule than with the fast schedule,
and therest went tostate C10. Parallel co-and post-translational folding
pathways then arose. In one pathway, transitions were observed from
C10~>C11~>P2, while the other transitions from C8->C9-P1 involved
entangled structuresinallstates (Fig. 6d; see also Supplementary Vid-
eos3and4illustrating the processes of entanglement and folding). The
increased probability of this entangled pathway during slow translation
decreased the probability that DDLB would post-translationally reach
the native state P10 (3.9 versus 11.7% in slow versus fast translation; Fig.
6f), while DDLB,,, partitioned 5.8% (95% Cl = 3.2-8.3%) more protein
(gross amount; that is, soluble plus insoluble) into the near-native
kinetic trap P4 after post-translation. Thus, we again see that entan-
gled states act as sinks with altered transition state barriers for the
enzyme’sreaction (Fig. 3f). These population shifts among these states
and the folding pathways they take partin lead to long-lived changes
inspecific activity.

Discussion

A detailed understanding of the molecular mechanisms giving rise
to the coupling of enzyme activity to synonymous mutations would
provide biochemists, molecular biologists, evolutionary biologists
and biomedical researchers with aframework with whichtointerpret
experiments on theinfluence of codonusage on protein structure and
function, cellular phenotype, disease and some of the selection pres-
sures shaping mRNA sequence evolution. In this study, we developed
anovel multiscale model that qualitatively recapitulates the experi-
mental observations for the specific activity of CAT-1ll variants' and
correctly predicts the trends in specific activity changes of DDLB and
DHEFR variants, giving us confidence that the model is realistic. This
provided us with the opportunity to study the structures, pathways
and kinetics that give rise to this phenomenon.

Our key findings are: (1) changes in elongation kinetics induced
by synonymous mutations can alter co-translational nascent chain
structural ensembles and folding pathways; (2) for some enzymes,
such as CAT-IlIl and DDLB, these changes in the structural ensemble
can persist long after the nascent chain has been released from the
ribosome; (3) this persistence arises from conformational states that
arelong-lived kinetic traps; (4) these kinetic traps arise at the molecular
level from deep entanglements that slowly disentangle because they
require the unfolding of already folded protein segments; (5) these
entanglements are non-covalent lasso topologiesinwhich a closed loop
isformed by abackbone segment connecting two residues that forma
non-covalent native contact, and another segment threads through this
loop; (6) many of these entangled structures have decreased catalytic
efficiencies due to structural perturbation of their active sites; (7) some
entangled structures are very similar to the native state, exposing simi-
lar extents of hydrophobic surface area and chaperone binding motif's;
and (8) because of their near-native conformations, these entangled
structures canbypass the chaperone and degradation machinery of the
celland do not exhibitanincreased propensity to aggregate. This situ-
ationresults in a soluble fraction of enzymes with decreased specific
activities that can persist for long time periodsin cells.

Two concepts central to our explanation—intramolecular entan-
glement and subpopulations of kinetically trapped states—are not
without precedent. The material properties of entangled synthetic
polymers havelong beenstudied and modelled®** in the field of poly-
mer physics. Also, there has been alarge amount of research focused
on knotted proteins that often contain disulfide bonds or topolo-
gies in which when the protein’s ends are pulled in opposite direc-
tions the protein does not fully extend**?, These characteristics,

however, were not presentin our entanglements. The entanglements
we observed formed a closed loop due to a non-covalent native con-
tact, and if both ends of the protein were pulled, disentanglement
would occur. Recently, this type of entanglement has been detectedin
almost one-third of the protein structures deposited in the Protein Data
Bank®. Thus, the potential for protein segments to form non-native,
non-covalent lassos is plausible. Kinetically trapped states of proteins
have been observed in single-molecule experiments probing the func-
tioning of flavoenzymes®*?, In one study, heterogeneous populations
of the protein cholesterol oxidase were observed to stochastically
switch very slowly between active and nonactive states®. However,
inthat study, the influence of protein synthesis on the distribution of
conformational states was not probed. Thus, anovel aspect of our dis-
coveryisthatitcombines the phenomenaof entanglement and kinetic
trapping as essential to the mechanism by which synonymous muta-
tions affect co- and post-translational protein structure and function.

In contrast with CAT-1lIl and DDLB, the changes in DHFR’s
co-translational structures and folding pathways did not persist
post-translationally. This is consistent with previous studies showing
that DHFR has fast folding kinetics and an absence of off-pathway
intermediates®® and kinetic traps®. Two reasons for this are that DHFR
only negligibly populates an entangled conformation and that the
entanglement it forms is shallow; its disentanglement requires only
five residues to slide out of the closed loop and there is no require-
ment to unfold any other portions of the protein to do so. Thus, this
shallow entanglement is rapidly disentangled without large structural
rearrangements. In contrast, CAT-1lland DDLB entanglementsinvolve
many more residues, requiring large structural rearrangements to
become disentangled, leading to longer-lived entangled structures.
Thus, the presence of entanglement is not sufficient to guarantee a
kinetic trap. The nature of the entanglement and the native structure
surroundingitis critical.

Long-lived entangled states have the potential to be probed using a
variety of experimental techniques. Ensemble-level experiments, such
as NMR and X-ray crystallography, often require appreciable popula-
tionsto detect asubstrate, which might make entanglement detection
difficult. Many biophysical techniques used in protein folding (such
as fluorescence resonance energy transfer, tryptophan fluorescence
and circular dichroism) are sensitive to subpopulations, but tend to
have low structural resolution, which would limit their capacity to
distinguish near-native conformations. Therefore, hydrogen-deu-
terium exchange mass spectrometry and LiP-MS, which can localize
conformational differences within a protein, combined with molecular
modelling, seem promising in detecting signatures of entanglements.
Cryogenic electron microscopy, with its ability to build structural
classes from heterogeneous populations, might also be effective for
systems of suitable size and resolution, although the increased flex-
ibility of entangled regions may prove a challenge.

Itis reasonable to expect that the enzymatic activity of initially
misfolded proteins should increase with time as the protein relaxes
to its native state. Based on the disentangling timescale of 10*s (see
the section ‘Deep entanglements are usually long lived’), we estimate
thatit would take more than 3 h for the specific activities between fast
and slow variants to converge. This is consistent with what was found
for CAT-III, where the specific activity of synonymous mutant CAT-1II
did not converge to that of the wild type within 20 min’. For DDLB,
because the LiP-MS results confirmed that the misfolded states can
persist for longer than2 h, itisreasonable to anticipate that the specific
activities between fast and slow DDLB variants will take more than
2 hto converge, which is also consistent with our prediction. Further
experiments, such as a time-dependent activity assay coupled with
pulse-chase protein expression and production, could be applied to
measure such timescales.

This study provides a plausible explanation of how synonymous
mutations can alter enzyme activity in cells. Synonymous mutations
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alter translation elongation speeds and change the population of nas-
cent chain conformations in entangled states that are near native but
have lower catalytic efficiencies than that of the native state. Hence, the
specificactivity—a quantity averaged over the populations of proteins
in different conformational states—can increase or decrease due to
synonymous mutations. The experimental search for these entangled
structures and their roles ininfluencing protein structure, functionand
phenotypesincellsis likely to be afruitful area of researchin the future.
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Methods

Coarse-grained simulation model

Tomodel transitions between the native state and the unfolded state,
we utilized a Go-based coarse-grained model* ¥ for all of the pro-
teins studied. Briefly, this coarse-grained model represents each resi-
due as a single interaction site centred on the Ca position and uses a
structure-based potential energy function (see Supplementary Equa-
tion (1)). The force field parameters were optimized by training the
parameters to reproduce the folding stability free energies of 18 small
single-domain proteins®, followed by assignment of the minimum
values that can reproduce the structural stability for a given protein.
Tomap the simulationtimescale to an experimental timescale, we used
the scaling factor a, which is the ratio of bulk experimental folding
times to simulated folding times (see Supplementary Table 4). The
high-resolution crystal structure PDB 4V9D* was used to coarse-grain
the E. coli ribosome, with the A- and P-site transfer RNA (tRNA) mol-
ecules modelled based on the PDB structure 5JTE*°. The entire 50S
subunit, including the A- and P-site tRNAs, was coarse-grained using
the three-/four-point model of ribosomal RNA* and the Ca model
for ribosomal protein® and then truncated to include only those
coarse-grained interaction sites within 30 A of the centre line of the
exit tunneland within 20 A of the peptidyl transferase centre (identified
asA2602inthe 23S ribosomal RNA of the £. coliribosome), as well as the
interaction sites at the ribosome surface near the exit tunnel opening.
Thisresultedin4,577 interaction sites for the cropped coarse-grained
E.coliribosome.

Protein synthesis on the ribosome was modelled using a continu-
ous synthesis protocol that describes A-site tRNA binding, peptidyl
transfer, tRNA translocation and ribosome trafficking* at each nas-
cent chain length using codon translation rates obtained from the
model of Fluitt at al.*’ (see Supplementary Equations (11) and (13)).
Post-translational dynamics were modelled by simulating the nascent
protein in the absence of the ribosome. Simulations for both co- and
post-translational folding were performed via Langevin dynamics
with a collision frequency of 0.05 ps™ and a time step of 15 fs using
OpenMM*, Details of the model setup can be found in Supplementary
Methods Sections1-8.

Virtual screening for enzymes that exhibit kinetic traps
Toidentify candidate enzymes that may have kinetic traps, we created
adataset of well-characterized monomeric E. coli enzymes by search-
ing therelevant databases EzCatDB***, UniProt** and RCSB PDB*. The
wild-type enzymes were then parameterized and their synthesis and
post-translational dynamics were simulated with a14-d wall time. The
candidates were selected using the scoring function

~02
Score = % X [(1 -1+ ) + Obinding] x 100, (4]

where 12°*'is the mean post-translational folding time calculated using

the double-pathway kinetics scheme of Supplementary Equation (6)
with no delay time (that is, t; = ¢, = 0) and Oynging is an indicator of
whether (equals 1) or not (equals 0) misfolding occurs at or near the
substrate-binding site and persists to the end of the simulation. We
assigned equal weights for these two terms because they are considered
equally important in identifying long-lived kinetic traps that have
perturbed enzymatic functions. A higher score indicates a higher pos-
sibility for the enzyme to have long-lived kinetic traps that have mis-
folding in the substrate-binding pocket during its post-translational
folding dynamics. Further details of the screening can be found in
Supplementary Methods Section 9.

Characterizing post-translational misfolded structures
The misfolded structures of the post-translational folding process were
characterized using the metrics Gand Q,... Gis an order parameter that

measures the extent to which there is a change of entanglement in a
given structure compared with the native structure and s calculated as

G= 3 0@ € ncng # ™ i), @
()]

where (i,j) is one of the native contactsin the native crystal structure, nc
is the set of native contacts formed in the current structure, g (i,j)and
gntive (j hare, respectively, the total linking number of the native contact
(i,j) inthe current and native structures estimated using Supplementary
Equation (16) (see Supplementary Methods Section 11 for details), Nis
the total number of native contacts within the native structure, and the
selection function @ equals1whenthe conditionistrue and Owhenitis
false. Thelarger Gis, thelarger thenumber of residues that have changed
their entanglement status relative to the native state. That s, G reports
onthe presence of non-native entanglementsin structures.

Q. isthefractionof native contacts that have formedin the enzyme
substrate-binding pocket. Residues composing the substrate-binding
pocket were identified as those residues within 8 A of any atoms of the
relevant ligands present in the crystal structure. The Q,. values were
calculated for all of the native contacts between one atom within the
substrate-binding pocket and any other atom, as shown below:

Z:iel e/ (i,j|Current)

| 3
YieiZjg (LJjINative)

Qace =

whereiandjaretheresidueindicesandsatisfy j > i + 3,/istheintersec-
tion set of residues within secondary structure elements (« helical or
B strands) and the substrate-binding pocket, /is the set of all residues
within secondary structure elements and O(ij|Current) and
O(ijINative) are step functions that equal 1 when residues i and j have
native contactand O wheniandj do not have native contactin the cur-
rent structure and native structure, respectively. Native contacts are
considered formed when the distance between the Ca atoms of resi-
duesiand,j does not exceed 1.2 times their native distance and the
native distance does not exceed 8 A. In the case of CAT-III, residue set
lalsoincludes native contacts in the trimer interface region (residues
25-33 and 150-157) to monitor the folding of the trimer interface as
well. Note that the native contacts usedin calculating Q,.. are restricted
to those within secondary structure elements, while the entire set of
native contactsis used to calculate G. Details of the assessment proce-
dure canbe found in Supplementary Methods Section12.

Specific activity estimation

For each metastable state i, identified using the Markov state modelling
procedurereported in Supplementary Methods Section12, we randomly
selected five conformations from all of the microstates (based on the
probability distribution of the microstates within the metastable state)
andback-mapped themtoall-atomstructures (see Supplementary Meth-
ods Section13). We then used QM/MM simulations (see Supplementary
Methods Section 14) to calculate the transition state barrier for each of
the five conformations, and from these, we determined the median
activation barrier height AGf. Only the metastable states that formed a
near-native active site (Q,. = 0.6), as well as the native state, were taken
toestimate AG}, whilethe others were considered to have aninfinite bar-
rier height (zero reaction rate). Assuming the rate constants of each
metastable state have similar pre-exponential factors that canbe treated
as a constant, the specific activity for a protein can be estimated using
the probability distribution of metastable states (state probability p,) and
theactivation free energy barrier height (AG?) of each state as

N .
Specific activity = % >pi % e whl, 4)
P

where misthe molecular weight of the enzyme, A is the pre-exponential
factor allowing us to convert AGf tothereactionrate constant, Nis the
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total number of metastable states, R is the gas constant and Tis the
temperature. In many codon usage studies’**, the relative specific
activity is often used to compare the enzymatic activities of a protein
produced by synonymous mRNA variants. In this study, the maximum
specificactivity among the fast and slow synonymous mRNA variants
of an enzyme was used for normalization:

SAfast

Max{SArsse:SAsion} )
SAsion ’

Max{SAgast,SAsiow }

SA:ast =

SA:low =

where SA™is the relative specific activity under saturating conditions.
Note that the pre-exponential factor A and the molecular weight m
cancel out when the specific activity isnormalized; therefore, they do
notneed to be estimated. The details of estimating the state probability
p; (accounting for the soluble fraction only) and the activation free
energy barrier height (AGf) are presented in Supplementary Methods
Section 14. The materials and experimental methods for measuring
the specific activities of the DDLB and DHFR variants are presented in
Supplementary Methods Sections 19 and 20, respectively.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Data supporting the main findings of this study are available within
the Article and its Supplementary Information and source data files.
We cannot feasibly provide all -5.3 TB of molecular dynamics trajec-
tory data, but we provide the input data that were used to perform the
simulationsinthis study in the repository subdirectory https://github.
com/obrien-lab/cg_simtk_protein_folding/blob/master/example/
input_data.tar.xz. All of the datathat support the findings of this study,
aswell as the biological materials that were used to test the enzymatic
activity of the DDLB and DHFR variants and for the LiP-MS experi-
ments, are available from the corresponding author upon reasonable
request. The raw mass spectrometry datafor DDLB and DHFR have been
deposited to the ProteomeXchange Consortium viathe PRIDE partner
repository with the dataset identifier PXD031425. A website (https://
obrien-lab.github.io/visualize_entanglements/) was created to provide
interactive visualization of the key misfolded, entangled structures
predicted in this study. Source data are provided with this paper.

Code availability

All of the computer code developed in this work is available
in the GitHub repositories https://github.com/obrien-lab/
cg_simtk_protein_folding and https://github.com/obrien-lab/
Activation-Energy-Estimation-Workflow under the MIT License.
Detailed instructions on code usage, basic theory and examples of the
input/output are available in the wiki pages of the above repositories.
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Software and code

Policy information about availability of computer code

Data collection  Simulation and modeling: All computer code developed in this work is available in the GitHub repositories https://github.com/obrien-lab/
cg_simtk_protein_folding and https://github.com/obrien-lab/Activation-Energy-Estimation-Workflow, under the MIT license. MD simulations
were performed via OpenMM v7.4.1 and Amber 17.
Enzyme activity measurements: UV-visible spectra were recorded on a Cary 60 spectrometer from Varian (Agilent Technologies, Santa Clara,
CA) using the WinUV software package to control the instrument.
Limited Proteolysis experiments: No software was used in data collection. A Thermo Q-Exactive HF-x Orbitrap mass spectrometer was used to
analyze protein digests.

Data analysis Simulation and modeling: Computer code developed in this work for analyzing the simulation results is available in the GitHub repositories
https://github.com/obrien-lab/cg_simtk_protein_folding and https://github.com/obrien-lab/Activation-Energy-Estimation-Workflow, under
the MIT license. Visual Molecular Dynamics v1.9.1 was used for molecular/trajectory visualization and image/movie generation. Python v3.7,
PYEMMA v2.5.7, ParmEd v3.4.1, Scipy, Numpy, Stride, Mdtraj v1.9.7, KnotPull v0.4.1, WHAM v2.0.11, and ChaperISM v1.0 were also used for
analyzing simulation data.

Enzyme activity measurements: Data were analyzed by using Python v3.7.

Limited Proteolysis experiments: Proteome Discoverer (PD) Software Suite (v2.4, Thermo Fisher) and the Minora Algorithm were used to
analyze mass spectra and perform Label Free Quantification (LFQ) of detected peptides. PD output files were outputted in a three-label
hierarchy (protein > peptide group > consensus feature) and were further processed utilizing custom Python analyzer scripts that are
available on GitHub: https://github.com/FriedLabJHU/Refoldibility-Tools/.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Raw data for Figures 1 to 6 are provided. We cannot feasibly provide all ~5.3 TB of molecular dynamics trajectory data, but we provide the input data that was used
to perform the simulations in the repository subdirectory https://github.com/obrien-lab/cg_simtk_protein_folding/blob/master/example/input_data.tar.xz. All the
data that support the findings of this study, as well as the biological materials that were used for testing the enzymatic activity of DDLB and DHFR variants and for
LiP-MS experiments, are available from the corresponding author upon reasonable request. The raw mass spectrometry data of DDLB and DHFR have been
deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD031425. The PDB structures 3CLA, 4C5C, 1AQ2,
2ZCV, 1AKE, 1VHL, 3K6L, 3LBF, 2FMT, 1C2T, 1FDR, 3CW7, 20FP, 4KJK, 1PDA, 1RYK, 1LMB, 2ABD, 1CEl, 1IMQ, 2568, 1J08, 1SHF, 1C90, 1MJC, 1TEN, 1WIT, 1POH,
2QJL, 1SPR, 1E65, 3CHY, 2RN2, 5SNWY, 5JTE, 610Y, 3JBU, 4UY8, 6ENJ, 6ENU, 5JU8, 4V9D were used in this study. The databases EzCatDB (https://
ezcatdb.cbrc.pj.aist.go.jp/EzCatDB/), UniProt (https://www.uniprot.org/), RCSB PDB (https://www.rcsb.org/) and CATH (http://www.cathdb.info/) were used in this
study. A website (https://obrien-lab.github.io/visualize_entanglements/) was created to provide interactive visualization of the key misfolded entangled structures
predicted in this study.
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Sample size No sample size calculation was conducted prior.
The specific activity measurements of DDLB and DHFR were performed on five biological replicates, respectively. Each Limited Proteolysis
experiment was conducted as biological triplicates to allow for statistical analysis.
The numbers of simulation trajectories were chosen due to the limitations of our computational resources.

Data exclusions  No data were excluded.

Replication The experiments for DDLB have been done for five biological replicates and all of them have the same trend of the enzymatic activity, which
indicates the robustness and reproducibility of the our findings.
The experiments for DHFR have been done for five biological replicates as well and exhibit no statistical difference in the specific activities of
fast and slow variants.
Limited Proteolysis experiments were conducted on two separate experiments. Experimental findings were consistent in both experiments.
Simulations were replicated 50 (DHFR) and 100 (DDLB and CAT-III) times for co-translational folding, 500 (DHFR) and 1,000 (DDLB and CAT-III)
times for post-translational folding, 30 times for disentangling timescale estimation and 100 times for DDLB refolding simulations, with
different random seeds to allow for the calculation of statistics. Due to different random seeds, behavior is different between trajectories. All
trajectories ran to completion.
All attempts at replication were successful.

Randomization E. coli lysates were divided into either being either a native or a refolded sample depending on if they were unfolded and refolded or not.
Covariates are not relevant in our study as all bacteria are cultured simultaneously under identical growth conditions and simultaneously
prepared under identical methods.

Random allocation is not relevant to the other experiments/simulations because they were not grouped to get treatments.

Blinding Investigators know which E. coli lysates are native samples and which ones are refolded samples as limited proteolysis experiments are
conducted after different refolding time points. Our analysis compares the limited proteolysis peptide profile of our refolded samples to our
native samples, so blinding is not possible.

Blinding is also not possible to the other experiments/simulations for the same reason.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems

Methods

Involved in the study

Antibodies

Eukaryotic cell lines
Palaeontology and archaeology
Animals and other organisms
Human research participants

Clinical data

XXX XXX 5
OooodoX

Dual use research of concern

Antibodies

n/a | Involved in the study
|Z |:| ChIP-seq
|Z |:| Flow cytometry

|:| MRI-based neuroimaging

Antibodies used Antibodies used in the Time-course analysis of DDLB expression:
Primary antibody: Mouse anti-His6 I1gG, Clone: His.H8, Company: Invitrogen, catalog number: MA1-21315
Secondary antibody: Goat anti-mouse-AP, Company: Millipore, Catalog number: 69266-3

Validation https://assets.thermofisher.com/TFS-Assets/LSG/Flyers/commitment-antibody-performance-flyer.pdf
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