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1 | INTRODUCTION

Waste plastic has become a significant threat to the environment as
more than 37 million tons of plastic wastes are produced annually in
the United States." Polyurethane (PU, recycle class # 07) is one of the
main contributors to these waste plastics along with polyethylene,
polystyrene, polyamide, polyester, and others. Polyurethane, a ther-
moset, contains heteroatoms like nitrogen, and oxygen, and also con-
tains aromatic rings, which result in a difficult and energy-intensive
recycle of PU.2 As a result, waste PU in the form of used mattresses,
couches, car seats, and so on are destined to be landfilled. Depolymer-
ization of waste PU can potentially redirect these wastes from landfills
to manufacturing sectors.®

One of the rising thermochemical methods for combating the
growing volume of plastic waste is hydrothermal liquefaction (HTL)
that uses water as a solvent. Water is the most common green solvent

in nature, and it has extremely distinct favorable characteristics in
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Solvothermal liquefaction (STL) is a thermochemical conversion method that uses
sub-or supercritical solvents to convert waste plastics like waste polyurethane
(PU) into value-added chemicals. This study aimed to evaluate catalytic STL utilizing
toluene as a solvent for depolymerization of waste PU into valuable products. The
effect of catalyst type (Pt/C, Pd/C, and Ru/C), catalyst loading (0-10 wt%), STL reac-
tion temperature (330°C, 350°C, and 370°C), STL residence time (1, 3, and 5 h), and
hydrogen loading (25, 50, and 75 bar) on STL conversion were studied. Results
showed that Ru/C outperformed Pt/C and Pd/C and the STL conversion reached to
as high as 87.2%. The concentrations of nitrogen-containing components like aniline

and p-aminotoluene were increased with the increase of Ru/C loading and STL reac-

depolymerization, noble metal catalysts, reaction mechanism, supercritical fluids, waste plastics

sub- and supercritical conditions.* During HTL, water acts as a reac-
tion medium to help break down complex polymers into smaller mole-
cules that repolymerize into biocrude that can be upgraded into liquid
fuels.> Temperature is a critical factor in the HTL process. While tem-
peratures between 250°C and 400°C are regarded ideal for HTL, gas
formation reactions are prominent at temperatures above 400°C,
whereas carbonization reactions are dominating and solid product for-
mation is strong at temperatures between 180°C and 250°C.>” While
HTL has been predominantly performed for wet biowastes like sew-

89 animal manure,01! 1243 44

age sludge, and municipal solid waste,
has also been reported for plastics.***° In fact, the literature suggests
that HTL could depolymerize PU and generate a liquid product rich in
polyols and amines free from urethane bonds.*® While HTL provides a
more sustainable alternative for chemical production than other ther-
mochemical processes like pyrolysis, the process still results in high
heteroatom contents that prevent the direct use of the product.'”:*8
HTL also introduces an expensive phase separation process, where
nonpolar hydrocarbons are separated from the polar phase. Moreover,

a significant portion of carbon from the feedstock is lost in the
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aqueous phase, which results in lowering the carbon recovery. Addi-
tionally, water has a relatively higher critical temperature and higher
critical pressure than many other polar and nonpolar solvents like eth-
anol, methanol, toluene, hexane, and so on.

On the other hand, solvothermal liquefaction (STL) offers higher
quality products with less likelihood of heteroatom contents. STL has a
similar working principle as HTL, except the solvent used for STL is not
water. STL uses lower reaction temperatures than HTL that may lower
the operating costs. It also does not lose carbon in the aqueous phase.
Thus far, different solvents have been used in the STL process including
toluene, propanol, acetone, ethanol, and methanol to generate fuels from
wastes.'” While recent studies have illustrated that the oxygenated sol-
vents may be inappropriate for a broad range of fuel-based

20-22 our group has recently revealed that toluene, a non-

utilization,
oxygenated solvent, is an appropriate STL solvent to produce liquid fuels
from waste plastics.?® Toluene is a hydrogen donor solvent with lower
critical temperature and lower critical pressure compared with water.2*
Using a hydrogen-donor solvent can help to stabilize the free radicals
produced, and reduce the repolymerization reaction significantly.?> Tet-
ralin, for example, is another example of hydrogen donor solvent, and
one fuel study showed that hydrogen transferred from tetralin has a con-

d.2¢ Moreover, supercritical toluene turns out

siderable impact on oil yiel
to be effective in depolymerizing waste plastics.* However, the STL
conversion was relatively lower as many of the chemical bonds in plastics
are strong enough to withstand the supercritical toluene atmosphere.
Noble metal catalysts, such as platinum, palladium, and ruthenium could
enhance depolymerization in the form of hydrodeoxygenation and ring-
opening mechanisms.2”?® These noble metal catalysts have previously
been used with chemical plastic recycling, such as using ruthenium in the
STL process for polyethylene.?? Ruthenium in carbon (Ru/C) in presence
of hydrogen has been shown to break hydrocarbons into shorter chains
and cleave the C-C bond to create high-value chemicals.>*3! Hydrogen
is often employed with noble metal catalyst to enhance the depolymeri-
zation of plastics, as it could promote deoxygenation reaction.*? More-
over, the production of saturated C-C bonds from the interaction of
oxygen and hydrogen boosts the liquid product stability and decreases
its acidity level, and viscosity.>®

The main goal of this study was to evaluate the STL of waste PU
using supercritical toluene in presence of various noble metal catalysts.
STL experiments were performed to determine the effect of catalyst type,
catalyst loading, reaction temperature, residence time, and hydrogen load-
ing on depolymerization of waste PU. STL products were characterized to
determine the chemical changes during STL reactions, and valuable che-
micals were shortlisted from the depolymerization of waste PU. Finally, a

reaction mechanism was proposed for catalytic STL of waste PU.

2 | MATERIALS AND METHODS
21 | Materials

A commercial mattress was used as the source of waste PU. Reagent
grade toluene was purchased from Fisher Scientific (Waltham,

Massachusetts). Two of the catalysts, type 490 palladium 5 wt% on
carbon powder (Pd/C) and platinum 5 wt% on carbon (Pt/C) were pur-
chased from Alfa Aesar (Ward Hill, Massachusetts). The third catalyst,
ruthenium 5 wt% on activated carbon powder (Ru/C) was purchased
from Fisher Scientific (Waltham, Massachusetts). Finally, nitrogen and
hydrogen gases were purchased from NexAir (Melbourne, Florida).

2.2 | Solvothermal liquefaction

A 25 ml stainless steel (SS-316) Parr batch reactor (Moline, lllinois)
was used to perform the catalytic STL experiments. The experiments
were performed with varying catalyst types, catalyst loading, STL tem-
perature, residence time, and hydrogen loading. In a typical STL exper-
iment, waste PU, catalyst, and toluene were fed into the reactor to
maintain a ratio of 1:10 (solid weight:toluene weight).?® The reactor
was purged with nitrogen gas for three times to remove air from the
reactor headspace. Hydrogen was then loaded into the reactor after
purging the reactor with hydrogen three times. The sealed reactor
was heated using a preheated Techne SBL 1 sand bath (Long Branch,
New Jersey) at the set STL temperature. As soon as the residence
time was finished, the reactor was taken out from the sand bath and
cooled by natural convection. Once cooled, the gaseous products
were vented in a fume hood. Afterwards, the contents of the reactor
were filtered through a 1 um glass fiber syringe filter purchased from
Tisch Scientific (North Bend, Ohio). After filtration, the syringe filter
was first dried at the fume hood and then in an oven at approximately

105°C overnight to determine the STL conversion.

weight of dried solid after STL
weight of waste PU

STL conversion = (1 - ) x 100% (1)

2.3 | Characterization of STL liquid products
The Flash 1112 Organic Elemental Analyzer from Thermo Scientific
(Waltham, Massachusetts) was utilized to complete the ultimate anal-
ysis in triplicate. Because the STL products were dissolved in toluene,
toluene was first removed from a portion of the mixture (about 20 pl)
using natural convection on an aluminum sample pan, and then the
leftover was prepared with other standards. 2,5-Bis(5-tert-butyl-ben-
zoxazol-2-yl) thiophene (BBOT) was utilized as a calibration standard,
and vanadium oxide (V,0Os) was utilized as a conditioner for the sam-
ples. The samples were oxidized at 950°C in ultra-high purity oxygen
with a helium carrier gas and passed over copper oxide pellets and
then electrolytic copper. The gases were then tested using a thermal
conductivity detector (TCD), and the detection peak regions for CHNS
were compared with BBOT parameters. The oxygen content was
determined by calculating the difference.

FTIR analysis was carried out in a Nicolet iS5 Thermo Scientific
FTIR (Madison, Wisconsin) to identify functional groups in the STL
products. Because the product was dissolved in toluene, one droplet

of the mixture was poured on an IR card and waited until the toluene
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was evaporated naturally. The operating conditions were set as fol-
lows: data accumulation: 64, resolution (4), and wavenumber range
(500-4000 cm™Y).

Gas chromatography-mass spectrometry (GCMS) was used to
chromatograph the STL products using an Agilent 7890 GC combined
with a 5975 Mass Spectrometer. A Supelco Equity 1701 column
(60 m x 0.25 mm x 0.25 m) was used for GCMS. The column was
first held at 250°C with a split ratio of 1:1 and inert helium flow of
5 ml/min. The oven was preheated to 45°C for 4 min, then increased
to 280°C at a rate of 3°C/min for 20 min. All samples were doped
(0.1 wt%) with an internal standard (n-decane, 99% MilliporeSigma)

with no overlapping chromatogram peaks before injection.

3 | RESULTS AND DISCUSSION

3.1 | STL conversion of waste polyurethane
Initial catalyst screening was performed by conducting STL experi-
ments using Pd/C, Pt/C, and Ru/C catalysts at 3 h residence time at
350°C and a loading catalyst percentage of 5 wt%. The initial opera-
tion temperature and residence time were considered based on our
recent study.?® This method enabled the selection of catalyst for fur-
ther STL reactions. The results are presented in Figure 1. It can be
seen that the inclusion of all three catalysts promotes STL conversion
in an inert environment. Similar findings were reported in the
literature,®* but with water as the solvent. In this STL study with tolu-
ene, a 5 wt% Ru/C produces the highest STL conversion (66.65%),
which is 8.39% higher than 5 wt% Pt/C and 11.59% higher than 5 wt
% Pd/C. Changing Ru/C catalyst loading from O to 10 wt% has also
shown an increasing STL conversion of waste PU.

To evaluate the effect of STL reaction temperature on STL conver-

sion of waste PU, STL reaction temperature was varied from 330°C to

370°C with 10% Ru/C loading. The results shown in Figure 1 indicate
that STL reaction at 350°C had the highest conversion (70.0%) com-
pared with the STL at 330°C (44.6%) and 370°C (57.0%). This is most
likely due to the 330°C being too close to the toluene's supercritical
temperature to effectively break the polyurethane into smaller polymer
chains and having slower reaction kinetics, while 370°C could be too
high and either result in a reversible exothermic reaction or repolymer-
ize the large number of reaction intermediates into a solid.?® In fact, Jia

1,2? observed a similar trend for high-density polyethylene (HDPE)

eta
in an STL process, which used n-hexane as solvent. They found no
depolymerization at 150°C. The maximum depolymerization was carried
out at 200°C, and after this temperature, the yield of depolymerization
significantly decreased due to a possible repolymerization. A similar
trend on STL conversion was observed in this study at various STL reac-
tion times at constant STL temperatures of 350°C and 10% Ru/C load-
ing, where the highest STL conversion was observed for 3 h compared
with that of 1 and 5 h of STL residence time when the other STL reac-
tion parameters remained the same. This could be due to 1 h residence
time not being long enough to fully depolymerize the waste PU, and
that the 5 h residence time provides enough time for the liquid phase
to repolymerize the depolymerized chains into the solid phase.?’ Litera-
ture also reported a similar observation where HDPE was rapidly
degraded to liquid hydrocarbons in hexane in only 0.5 h at 220°C.%°
The maximum yield in the literature was achieved in 1 h, and almost no
high-molecular-weight products were observed after 1 h.

The effect of hydrogen loading was then investigated by perform-
ing a set of STL experiments at 350°C, 3 h, and in presence of 10 wt%
Ru/C catalysts with an initial hydrogen loading of 25, 50, and 75 bar.
Figure 1 illustrates that adding high-pressure hydrogen to the reactor
increases the STL conversion significantly. The STL conversion is
found to be as high as 87.2% when 75 bar of hydrogen was added.
The hydrogen most likely assists in the deoxygenation, which could

break the molecules down and depolymerizes the PU.%® A similar
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TABLE 1 Ultimate analysis of STL products prepared at various STL conditions
Catalyst Hydrogen

Catalyst loading (%) Temperature (°C) Time (h) loading (bar)>  Carbon (%) Hydrogen (%)  Nitrogen (%)  Oxygen (%)

None (Control) 0 350 3 0 52.21+0.18 7.25 +0.00 5.95 +0.05 34.59 + 0.22
Pd/C 5 350 3 0 56.92 + 0.00 8.23 £ 0.00 2.92 £ 0.00 31.93 + 0.00
Pt/C 5 350 3 0 56.76 +1.26 8.03+0.19 299 +0.11 3222 +1.55
Ru/C 5 350 3 0 55.44 +0.35 7.63 £ 0.05 3.75+0.03 33.19 + 0.43
Ru/C 10 350 3 0 65.41 +0.95 9.64 £0.17 2.29 £0.03 22.66 +0.75
Ru/C 10 330 3 0 50.27 £ 0.13 11.33 £ 0.03 1.22 +0.03 37.18 £ 0.19
Ru/C 10 370 3 0 54.14 + 0.85 10.68 £ 0.13 2.61 £ 0.06 32.56 + 1.04
Ru/C 10 350 1 0 51.18 + 0.66 11.09 +0.21 1.52 + 0.01 36.21 + 0.87
Ru/C 10 350 5 0 67.21 + 0.64 5.82+0.15 599+0.1 21.01+0.87
Ru/C 10 350 3 25 50.85+0.91 10.32 £ 0.18 2.50 £0.17 36.33 £ 0.92
Ru/C 10 350 3 50 51.55+0.13 10.83 + 0.02 1.99 + 0.07 35.63+0.22
Ru/C 10 350 S 75 53.77 £ 1.02 11.09 +0.33 2.22+0.30 32,92 +1.04

20 bar means only no hydrogen.

effect was observed in the literature, where hydrogen loading had a
significant effect on the HDPE depolymerization in presence of
Ru/C.#

3.2 | Elemental compositional analysis of STL
liquid products

Ultimate analysis was performed to determine elemental carbon,
hydrogen, nitrogen, sulfur, and oxygen in the STL liquid products, and
the results are presented in Table 1. Regardless of catalyst type, cata-
lytic STL showed to have a higher carbon content than the control
STL (by at least 3% higher). However, the increase in STL temperature
(from 350°C to 370°C) reveals a significant decrease in carbon con-
tent (11.3%) and increase in oxygen content (9.9%). The decrease in
STL temperature (from 350°C to 330°C) shows a significant decrease
in carbon content (15.1%) and increase in oxygen content (14.5%).
Hydrogen content was also decreased, and nitrogen content was
increased significantly with the addition of catalysts. A similar trend
was reported in a catalytic HTL study when Ru/C and Pt/C were
used.®” Possible reasons for this observation could be the reaction
kinetics are slower at 330°C, and it seems that a reversible exothermic
reaction or reaction intermediates repolymerizing into a solid phase
occurs for the 370°C.3® Moreover, 1 h STL reaction time yields a
lower STL conversion than the 3 and 5 h reaction time, as well as
14.2% and 15.1% decrease in carbon, and 13.5% and 14.2% increase
in oxygen content than the 3 and 5 h, respectively, which could possi-
bly indicate that 1 h STL at 350°C is inadequate to complete the reac-
tion.3? Also, by increasing the reaction time, the nitrogen content
increases, and hydrogen content decreases significantly.

The carbon content was also decreased by an average of 13%
when hydrogen loading was increased. Not surprisingly, the hydrogen
percentage was also increased from 5.6% (control) to 11.1% for
75 bar of hydrogen loading. Furthermore, the oxygen content was

increased and nitrogen content was decreased with the increase of

hydrogen loading prior to STL. A set of Van Krevelen diagram®® was
drawn for STL liquid products and shown in Figure 2. It illustrates how
the atomic O/C and atomic H/C or N/C ratios of the STL liquid prod-
uct samples change with reaction conditions and how they vary from
waste PU. STL of waste PU produced a liquid product that has a
higher O/C ratio than the waste PU because of the amount of oxygen
and carbon in the liquid product samples are increased and decreased,
respectively. Figure 2A shows that the H/C ratio increases in STL lig-
uid products since their hydrogen amount increases with STL. In addi-
tion to reaction conditions, previous research proved that H/C and
O/C ratios changing are strongly related to the type of plastics. For
instance, Seshasayee and Savage®® found HTL of polypropylene pro-
duces a liquid product that has the higher O/C and lower H/C than
the feedstock while HTL of polyethylene terephthalate produces a lig-
uid product that has lower O/C and higher H/C than the feedstock.
The N/C ratio decreases in STL liquid products in compared with the
raw PU. Liu et al** found the similar trend where they used STL
method to depolymerize polyethylene. It can be seen on Figure 2B
that the catalysts have a significant effect to decrease the nitrogen
through STL. Bai et al.#? reported that Pt/C, Pd/C, and Ru/C are able
to reduce the N/C ratio considerably through HTL process.

3.3 | FTIR analysis of STL liquid products

The FTIR spectra of STL liquid products enable molecular structure
and predominant bonds.*® Therefore, the FTIR analysis of all STL lig-
uid samples were performed at wavenumbers of 400-4000 cm™2. As
shown in Figure 3, all STL liquid samples have identical peaks apart
from a few minor changes in peaks. The peaks in the range of
640-700 cm~! demonstrate the existence of C=C bending, and the
peaks in the range of 795-1170 cm™! demonstrate stretching of C-O
(aliphatic ether), and ~-OHC groups in the STL liquids.** The sharp
peak at ~710 cm~! demonstrates the existence of benzene deriva-

tives in liquid samples that is in line with GC-MS results (discussed

95UdDIT suowWo)) dA1eaI) d]qedijdde ayy £q pauIdA0S aie sa[ore Y (asn Jo sa[ni 10§ AIeIqIT dUIUQ AJ[IA\ UO (SUONIPUOI-PUBR-SULID) WO A3[ 1M KIRIqI[aul[uo//:sdny) suonipuo)) pue swd I, Yy 39S ‘[7z0z/21/8¢] uo A1eiqry auljuQ A3[IA ‘€98L1°918/Z001 0 1/10p/wod K3[im* AIeiqiauluo-ayore//:sdiy woiy papeojumo( ‘z1 ‘7z0T ‘SO06SLYST



GHALANDARI ET AL

MAI?B% RNAL

FIGURE 2 Van Krevelen diagram of (A) ;5 @ None-350°C-3 h-0 bar
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FIGURE 3 FTIR analysis of STL products produced at various STL
reaction conditions.

later). The strong peak at ~1250 cm™? represents that a C-O stretch-
ing (aromatic ester) is existing in STL liquids. There are some peaks in
the range of 1380-1470 cm~ ! and 1750-1850 cm™? that are related
to the existence of alkane and aromatic components (C-H bending) in
the STL liquids. The existence of a peak at 1540 cm™?, and some
peaks in the range of 1650-1700 cm™! can be related to N-O
stretching, and C=C bonding, respectively. Some peaks can be

GCMS was used to identify molecular components in STL liquid prod-
ucts from catalytic STL in a hydrogen atmosphere. Figure 4 compares
the effect of different catalysts on the total area percentage of the
different compound with catalyst type. The detailed results of GCMS
analysis are presented in Appendix S1. All of the catalysts have a posi-
tive effect on decreasing the oxygen content that has been supported
by previous studies.*” ° In a comparison of various catalyst types, it
can be found that Pd/C, Ru/C, and Pt/C catalysts produce aliphatic
and aromatic compounds of about 71%, 67%, and 59%, respectively.

However, when compared among the catalysts used in this study, the
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different chemical compounds present in the STL liquid products (STL
performed at 350°C for 3 h with 5% catalyst loading and no hydrogen
loading).

Pd/C catalyst produced a lesser percentage of oxygen-containing
compounds (only around 3%). As a result, it may be stated that the
Pd/C catalyst is more effective for reducing oxygen compounds. Tri-
decane was the only aliphatic compound in all catalyzed samples, and
it was higher than the others with the Ru/C catalyst which is about
28%. The major aromatic compounds in these trials were ethylben-
zene, xylene, and 1,3-dimethyl-benzene.

Figure 5 depicts the influence of STL temperature on various
compounds. Higher STL temperature causes to decrease in the aro-
matic and aliphatic compounds, which includes 60% of the products
STL performed at 330°C. However, more nitrogen- and oxygen-
containing compounds were produced with the increase of STL tem-
perature. This could be due to a higher percentage of depolymeriza-
tion, breaking down compounds into their aromatic components
and breaking down aliphatic compounds. The generation of lighter
oxygen compounds like cyclopentanone, 2-ethyl-and 2-methyl cyclo-
pentanone, and valuable nitrogen compounds like aniline and
p-aminotoluene could also be a cause. However, a higher temperature
(e.g., 370°C) also breaks down the generated molecules at lower STL
temperatures, and hydrocarbons are increased again. This positive
effect of STL temperature has also been observed in the litera-
ture.>%°1 It indicates that a higher STL temperature might be favor-
able for hydrocarbon formation.

The impact of hydrogen loading on various compounds is
depicted in Figure 6. It is prominent that with the addition of hydro-
gen (only 25 bar), the percentage of nitrogen compound is increased
as the aniline and p-aminotoluene are increased roughly about 27%
and 43% as well as production of new compounds like n-ethyl-benze-
neamine, 3,4-dimethyl-benzeneamine, and n-ethyl-p-toluidine. How-
ever, higher hydrogen loading (e.g., 75 bar) yields a higher percentage
of hydrocarbons than that of 25 and 50 bar of hydrogen loading. At
50 bar of hydrogen loading, the percentage of aniline decreased from
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FIGURE 5 Effect of STL temperature on total identified area of
different chemical compounds present in the STL liquid products (STL
reaction condition: varied STL reaction temperature, 3 h reaction
time, 10 wt% Ru/C, and no hydrogen loading).
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FIGURE 6 Effect of hydrogen loading on total identified area of
different chemical compounds present in the STL liquid products (STL
reaction condition: STL reaction temperature of 350°C, reaction time
of 3 h, 10 wt% Ru/C, and varied hydrogen loading).

25 bar of hydrogen loading, however, the percentage of other compo-
nents like n-ethyl-p-toluidine increased by about 56%. In addition,
introducing hydrogen reduced the number of aliphatic molecules like
tridecane. It is also worth noting that the percentage of p-xylene is
nearly eliminated at 75bar of hydrogen loading, whereas
1,3-dimethyl-benzene is not identified at 25 and 50 bar of hydrogen
loading.

From the GCMS results, it can be noticed that several valuable
nitrogen compounds are formed during catalytic STL with hydrogen
loading. In Table 2, selective valuable nitrogen-containing, and aro-

matic compounds are listed which are produced during different
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TABLE 2 Important valuable nitrogen-containing, and aromatic components in the liquid products
Area percentage (%)
Component H, (25 bar) H, (50 bar) H, (75 bar) Applications References
Aniline 29.48 22.12 17.23 Rubbers, pesticides, and dyes [53]
p-Aminotoluene 33.76 33.73 30.56 Production of dyes and accelerators for cyanoacrylate glues [54]
3,4-Dimethyl-benzenamine  4.07 5.24 6.17 Production of vitamin B2, dyes, pesticides [55]
N-ethyl-p-toluidine 1.82 4.15 2.19 Chemical reagent [56]
Ethylbenzene 6.23 4.46 4.33 Production of styrene [57]
o-Xylene 6.75 - — To produce phthalic anhydride [58]
p-Xylene — 4.95 043 Circuit boards, sensors, LEDs [59,60]
Diphenylmethane 0.34 0.94 5.57 The synthesis of luminogens for aggregation-induced emission  [61]
(AIE) and used in the preparation of a polymerization
initiator, diphenylmethyl potassium (DPMK)
Fluorene 1.33 3.47 4.34 To make dyes, plastics, and LED [62-64]

hydrogen loading at STL. Aniline and p-aminotoluene are the main
components in the STL liquid products. Aniline is a commercial
chemical of industrial significance and a platform chemical for pre-
cision chemical synthesis.>? Its primary application is in the produc-
tion of precursors of polyurethane, dyes, and other industrial
chemicals.>® The p-toluidine is a chemical intermediate used in the
synthesis of dyes, organic molecules, and aromatic azo com-
pounds.®® It is a component of cyanoacrylate glue accelerators. It
interacts with catecholamine to generate a dye that may be used to
determine catecholamine medications.’* The applications of other
components are presented in Table 2. As discussed, by changing
the STL operation conditions, the amount of each component could
be changed. For example, when the hydrogen loading increases, the
amount of diphenylmethane, fluorene, and 3,4-dimethyl-benzenamine
increases, but the amount of aniline, p-aminotoluene, and ethylbenzene
decrease. Toluene is suspected to be the major reactant that forms
ethylbenzene, p-xylene, o-xylene, and 1,3-dimethyl benzene through
radical aromatic substitution of methyl groups. The large amount of
methyl radicals formed from thermolysis can react with the toluene
radicals in the system to form the four major aromatic products
of the reaction. The radical toluene can also form p-toluidine and
o-toluidine by radical aromatic substitution of ammonia through a

similar process.

3.5 | Proposed STL reaction mechanism

To understand the STL reaction mechanism of waste PU, the GCMS
results were studied, and a possible reaction mechanism is proposed
in Figure 7. The first stage of the STL is suspected to be caused by
thermolysis of urethane linkages followed by decarboxylation of the
carboxylic acid functional group to form CO,.%®> The use of toluene as
a solvent in this reaction serves as a hydrogen donor to the free radi-
cals formed due to homolysis.®® This splits the polymer into two major
sections, the aromatic section, and the aliphatic section. The aliphatic

group is suspected to form an alkene due to homolysis occurring at

both ends and a lack of hydrogen to saturate the hydrocarbon. The
aromatic group undergoes further thermolysis into a base product of
aniline and p-aminotoluene. The major aromatic products are formed
via aromatic substation of aniline, followed by the removal of the
amine group via homolysis.

The addition of Ru/C catalyst to STL did not result in a significant
differentiation between products compared with the control run
based on the GCMS data. However, Ru/C is suspected to increase the
rate of decomposition for polyurethane based on the IR spectroscopy
of the solid char Figure S7. With no catalyst, there is a clear IR peak at
3300 cm~! indicative of a secondary amine and another IR peak at
1740 cm™ ! indicative of an ester bond. These peaks are indicators of
a urethane linkage in the solid char, which would imply that the poly-
urethane was not fully decomposed. The peaks of the IR in the control
run are similar to that of other polyurethane IR graphs.®” The second-
ary amine peak disappears with the addition of a catalyst, which is
indicative of complete decomposition of polyurethane. The Ru/C cat-
alyst serves primarily as a hydrogenation catalyst, which can quickly
quench free radicals with hydrogen to prevent radical recombination
during the reaction. Ru/C is most effective with hydrogen loading
because the hydrogen gas can be used as a reactant during a metathe-
sis reaction to saturate a double bond with hydrogenation.®® In pres-
ence of Ru/C, dehydration of ethanol into ethene can occur, from
which radical polymerization can occur resulting in higher amounts of
aliphatic chain.®?

Due to ethanol not being a substantial product in any of the liquid
products, it is proposed that the ethanol products react extremely
quickly when produced. The solid char mechanism implies that the
majority of the solid product are aliphatic compounds due to the clear
peak at 2900 cm™%, typically associated with C-H stretch bonds in
alkyl compounds. The amount of C=C bonds decreases significantly
with the addition of a catalyst, and the percentage of C-O decreases,
although the peak still remains in the spectrum. Because the second-
ary amine functional group disappears while the ester peaks remain, it
can be assumed that after the urea bond breaks, the carboxyl group

can react with aliphatic groups in order to become a component in
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catalyst, and C: with Ru/C catalyst and hydrogen loading).

the solid char. The suspected reaction that could occur is either termi-
nation or initiation of radical polymerization that occurs after thermo-
lysis while the carboxyl group is still a free radical. Other components
in the solid char include aliphatic chains produced from polymerization
and undegraded polyurethane in the control group.

Hydrogen loading could help limit the number of aromatic com-
pounds being formed in the products by saturating the aromatic rings.
Based on the GCMS results, the aromatic products increase signifi-
cantly, meaning that it is unlikely that the aromatic rings are saturated
with carbon during the reaction. An increase in aromatization under
Ru/C is unlikely due to Ru/C serving as a reduction catalyst, while

t.”% The proposed

aromatization would require an oxidative catalys
purpose of the hydrogen is therefore to limit the reaction rate of cer-
tain decomposition methods by saturating homolyzed bonds quickly

after homolysis. This lowers the amount of potential radical initiators

for polymerization to higher alkanes. The presence of hydrogen also
slowed down the production of ammonia in the system by making the
gas production less thermodynamically favorable. The significant
decrease in alkanes in the liquid component can be explained by the
hydrogen quickly saturating the alkanes to prevent large chain poly-
merization from occurring through radicalization. The slowing down
of the reaction allows for the formation of higher carbon aromatics
such as fluorene and diphenylmethane. According to the GCMS data,
the majority of products in presence of hydrogen contain nitrogen.
The suspected reason for this is that at higher pressure, the formation
of ammonia gas is less favorable than under the previous reaction
conditions. The addition of hydrogen in the reactor resulted in an
increase in the amount of n-alkylation. Ru/C has been shown to effec-
tively perform n-alkylation in the presence of alcohol through the
“hydrogen borrowing method.””* A possible explanation is that
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ethanol is unlikely to remain formed for very long periods without the

use of hydrogen to quickly saturate the oxygen radical product.

4 | CONCLUSIONS

In this work, the impact of catalyst type, catalyst loading, reaction
temperature, residence time, and hydrogen loading on the STL of
waste polyurethane in the presence of supercritical toluene were
observed. Pd/C, Pt/C, and Ru/C catalysts increase the STL conversion
significantly, and the Ru/C has shown the highest STL conversion. In
addition, increasing the catalyst loading (Ru/C) led to higher STL con-
version and less oxygen content in the STL liquid product. The hydro-
gen loading improves the STL conversion sharply because it most
likely assists in the deoxygenation, which broke the molecules down
and depolymerized the polyurethane, and provides a more powerful
environment that depolymerized the polyurethane. Hydrogen loading
assisted the number of aromatic compounds being formed in the
products by saturating the aromatic rings. Toluene was a hydrogen
donor in this process, which split the polymer into aromatic and ali-
phatic sections. The amount of aromatic and nitrogen-containing com-
ponents is the highest with 5 wt% Pd/C and the lowest with 5 wt%
Ru/C. The STL conversion and number of nitrogen-containing compo-
nents, especially aniline, are increased with increasing Ru/C loading.
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