
Combining Spectral and Self-Supervised Features for Low Resource Speech
Recognition and Translation

Dan Berrebbi1, Jiatong Shi1, Brian Yan1, Osbel López-Francisco2, Jonathan Amith3,
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Abstract
Self-Supervised Learning (SSL) models have been successfully
applied in various deep learning-based speech tasks, particu-
larly those with a limited amount of data. However, the qual-
ity of SSL representations depends highly on the relatedness
between the SSL training domain(s) and the target data do-
main. On the contrary, spectral feature (SF) extractors such as
logMel-filterbanks are hand-crafted non-learnable components,
and could be more robust to domain shifts. The present work
examines the assumption that combining non-learnable SF ex-
tractors to SSL models is an effective approach to low resource
speech tasks. We propose a learnable and interpretable frame-
work to combine SF and SSL representations. The proposed
framework outperforms significantly both baseline and SSL
models on Automatic Speech Recognition (ASR) and Speech
Translation (ST) tasks on three low resource datasets. We addi-
tionally design a mixture of experts based combination model.
This last model reveals that the relative contribution of SSL
models over conventional SF extractors is very small in case
of domain mismatch between SSL training set and the target
language data.
Index Terms: Low Resource, Self-Supervised Learning, Spec-
tral Features, co-Attention, Mixture of Experts.

1. Introduction
End-to-end models based on deep learning have demonstrated
their superiority over conventional hidden Markov-based mod-
els on speech tasks for some corpora [1–4]. End-to-end models
could be beneficial to low resource speech tasks because these
models: (1) alleviate the need of language specific resources
such as lexicons [5–7]. (2) can be trained multilingually to fa-
cilitate cross-lingual transfers between high resource and low
resource languages through shared architecture and weights [8].
On the other hand, end-to-end models can perform poorly when
the training data is limited [9] and low resource scenarios of-
ten introduce a language-mismatch with the data used to train
powerful self-supervised learning (SSL) representations [10].

One direction towards mitigating these low-resource issues
is to incorporate knowledge from several languages into multi-
lingual end-to-end models [11–13]. When there is no training
data available for the target languages, these systems can be
even applied in a zero-shot manner [14–16]. Fortunately, many
languages have small amounts of data which can be used to fine-
tune large-scale multilingual models towards target languages,
resulting in further improvements [17–20].

Another direction is to use self-supervised learning mod-
els trained on large untranscribed corpora as front-end feature

extractors, replacing conventional spectral features (SF) such
as log Mel-filterbanks coefficients (FBANK) [21–26]. During
their unsupervised training, SSL models [27–30] learn their
own feature extraction modules and are totally free of SF at
fine-tuning time. As these models achieve state of the art on nu-
merous speech tasks and significantly outperform models with
more supervision, the effectiveness of SF on low resource tasks
is increasingly questioned.

The majority of SSL models are trained exclusively using
English speech. Although these approaches have shown im-
provements, even when domain mismatches occur (such as lan-
guage or audio conditions [31]), performance depends on the
relatedness between the SSL training domain and the target lan-
guage one [32]. SSL first layers output representations tend to
be quite similar to SF according to a canonical correlation anal-
ysis [33] of Wav2vec2 [29] from Pasad et al. [34]. In contrast,
the last layers are likely to be more corpus or domain-specific,
which should be randomly initialized at fine-tuning time [34].
Therefore, we assume that SSL representations are potentially
more hurted by domain shifts than SF-based systems are. SF
are domain and language agnostic and their use in multilingual
models has demonstrated that they enable strong cross-lingual
transfers [8]. It is then legitimate to assume that a model lever-
aging both SF and SSL representations would lead to strong
performances on low resource speech scenarios.

In the present work, we examine this assumption by build-
ing a framework that enables combining SF and SSL represen-
tations through learnable fusions. We propose linear, convolu-
tional and co-attention based combinations. Those methods ob-
tain a relative diminution of 19.3% Character Error Rate (CER),
averaged on two ASR datasets, and a gain of 1.0 BLEU, on an
ST dataset, over the SSL baseline model, while having less than
0.01% additional parameters. We further propose a mixture of
experts [35] based technique in order to better interpret the roles
and complementarities of SF and SSL components.1 Finally the
proposed framework is evaluated on Totonac, a Mexican endan-
gered language, and we release the first publicly available an-
notated speech corpus of this language.2

2. Speech Representations
Spectral Features: Machine learning based speech analytics
require the extraction of feature vectors from raw analog wave-
forms. Log Mel-filterbanks features (FBANK), conventionally
used for supervised speech processing tasks, are perceptually
inspired by human hearing. These features sample and quan-

1Our code is released on ESPnet [36]
2http://www.openslr.org/107/
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tize the analog waveform, apply pre-emphasis to boost high fre-
quency energies, undergo a discrete Fourier transform (DFT),
and finally passed through Mel filter banks. It is worth noting
that the DFT operation is linear and could be learned during
model training but the system may fail to learn it due to its high
complexity, especially if only small amounts of data are avail-
able.
Self-Supervised Learning features : While FBANK are hand-
crafted features inspired by the human perception of speech,
SSL features learn latent representations derived from large
amounts of unlabeled data. After training the SSL model, of-
ten referred to as pre-training, a fine-tuning phase is conducted
with a task-specific labeled data set. The key idea is that unla-
beled data contains valuable information and is far more abun-
dant than labeled data in any domain. This paradigm leads to
general-purpose speech representation, suitable for speech pro-
cessing tasks [10].

3. Proposed Approaches
3.1. Feature extraction

Let S be a sampled and quantized raw waveform of one utter-
ance. We note fSF(S) and fSSL(S) the features extracted from
S by spectral feature extractors and SSL models (respectively
SF and SSL in formulas). We note TSF and TSSL the number of
frames of the utterance, whileDSF andDSSL denote dimensions
of the features extracted by fSF and fSSL. We obtain,

fi(S) = (f t
i (S) ∈ RDi |t = 1, · · · , Ti), i ∈ {SF, SSL} (1)

Additional linear projection and reshaping is applied over SF
and SSL features to allow a same feature dimension D = DSF

and number of frames T = TSSL. For the dimension, we choose
to project SSL features into SF space and not the inverse in or-
der to decrease the number of parameters (as DSF < DSSL) for
efficiency purposes. For the number of frames, as we use a
frame-shift two times longer for SSL than for SF, we downsam-
ple (through linear projection and reshaping) the SF features
to get a common number of frames T = TSSL. We now have
fSF(S) ∈ RT×D and fSSL(S) ∈ RT×D . Our goal is to com-
bine fSF(S) and fSSL(S) in order to get the best model for low
resource tasks.

3.2. Learnable combinations
We first propose a general framework of using learnable
transformations (concatenation, convolutional, and co-attention
[37] mechanisms) for combining those features. Such learn-
able fusions have previously been employed in various multi-
source/multimodal applications [38, 39]. The framework is for-
mulated as follows, where fFUSE(S) is the resultant features:

fFUSE(S) = LINEAR(TRANSFORM(fSF(S), fSSL(S)) (2)

With TRANSFORM being a concatenation, a convolution or a
co-attention based fusion. We will dive into more details about
Eq. (2) for the proposed co-attention fusion method, which is
illustrated in Fig. 1.
Let WQ

SF, W
K
SF, W

V
SF, W

Q
SSL, W

K
SSL and WV

SSL be six learnable
matrices of RD×D . We use classical attention notation [40] in
Eq. (3). For i∈{SF, SSL}, we note,

Qi = fi(S)W
Q
i , Ki = fi(S)W

K
i , Vi = fi(S)W

V
i (3)

Then, we apply two cross-attention blocks in parallel, each
made of a one head scaled dot-product attention operation, with

Figure 1: Architecture of our proposed co-attention based fu-
sion. Raw signal S is passed through SF and SSL feature ex-
tractors. The extracted features, fSF(S) and fSSL(S), attend
to each other through two distinct attention mechanisms. Out-
put features are then concatenated, projected and passed to the
speech model.

residual connection. We obtain the SF context vector hSF by us-
ing the SF feature vector as a query and the SSL feature vector
as key and value, and vice versa to obatain hSSL, the SSL con-
text vector. Eq. (4) and Eq. (5) describe those symetric attention
mechanisms, where · is the dot-product operator.

hSF = SOFTMAX(
QSF ·KSSL√

D
)VSSL + fSF(S) (4)

hSSL = SOFTMAX(
QSSL ·KSF√

D
)VSF + fSSL(S) (5)

Our final feature is a projection on RD of the concatenation of
hSF and hSSL, as descibed in Eq. (6), where ∥ design the vector
concatenation operation.

fFUSE(S) = LINEAR(hSF ∥ hSSL) (6)

We also designed an attention-based fusion, however perfor-
mance on preliminary experiments were weak compared to the
co-attention model. We assume that the parallel computations
on SF and SSL enable more sophisticated combinations of the
two feature extractors than only one attention block would do.

3.3. Mixture of Experts
To get a broader understanding of the potential complementar-
ity of SF and SSL features, we propose an adaptation of the
mixture of experts [35] gating paradigm, illustrated in Fig. 2.
We consider the two feature extractors, fSF and fSSL, as our ex-
perts. This model requires a same number of frames for the two
experts (see the processing step in Sec. 3.1). We use fSF(S)
as input feature to the gate.3 Weights are calculated following
Eq. (7), where w(S) ∈ RT×2 is the obtained weight matrix.

w(S) = Θ(fSF(S)WMoE), (7)
with WMoE ∈ RD×2 a learnable matrix, and Θ(·) a gating-
type function such as SOFTMAX. For clarity, we introduce
wSF(S), wSSL(S) ∈ RT , the column vectors of w(S).
The final combined feature is computed following Eq. (8),
where [x]tr denotes the transpose vector of x.

fFUSE(S) =
∑

i∈{SF,SSL}
[wi(S)]

trfi(S) (8)

3Both fSF(S) or fSSL(S) could be used as input for the gate layer.
We discuss this designing choice in Sec 4.2.
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Figure 2: Architecture of the model combining SF and SSL
through a gating mechanism. For a given utterance, the fea-
tures are extracted by the two models (ai for SF and bi for SSL,
i ∈ {1, ..., T}). Each model gets confidence scores and fea-
tures are then summed. The ci variables indicates the weighted
sum. Colors of ci frames are used to show how each frame gets
a specific combination of SF (green) and SSL (red) features.

The mixture of experts model outputs a weighted sum of feature
extractors for each frame of the utterance. The weights can be
interpreted as confidence scores of SF and SSL for each frame.
This model makes the fusion process more interpretable by en-
abling to compare relative usage of SF and SSL.

4. Experiments
4.1. Datasets
Totonac is an endangered language spoken in the northern sier-
ras of the state of Puebla and adjacent areas of Veracruz, Mex-
ico. To increase the coverage over endangered languages, we
evaluate our proposed methods on Totonac and release a pub-
licly available version of Totonac ASR data.4 The corpus com-
prises 10 hours of speech (86 long recordings) with fine-grained
transcriptions. We randomly selected 70 recordings for the
training set, 8 for validation, and 8 for testing.5 In addition
to Totonac, we perform experiments on Arabic corpora of 20
hours from Commonvoice 5.1 [41], still in the low-resource sce-
nario. Finally, we extend our study to low resource ST using the
Mboshi-French dataset [42], consisting of 4 hours of speech, to
show that our framework is effective in other speech tasks as
well. We chose Arabic (Semitic language) and Mboshi (Bantu
language) as they belong to different language groups than En-
glish (Germanic). Thus, we will compare the robustness of the
SSL representations to the ones of our proposed models over a
set of diverse language families, all different from the one of the
SSL self-training data.

4.2. Experimental setup

Baseline : Our ASR baseline (Base in the experiments)
adopts a transformer-based encoder-decoder architecture with
CTC/Attention hybrid training [43]. The front-end extracts
FBANK spectral features with a frame length of 25ms and
a frame-shift of 10ms. The extracted FBANK features are

4http://www.openslr.org/107/
5Those splits are officially released at https://github.com/

ftshijt/Totonac_Split.git

subsampled with a convolutional block and then fed into the
encoder-decoder. The encoder consists of 12 self-attention
blocks with 4-head attention and 256-dimensional hidden sizes
while the decoder has 6 cross-attention transformer blocks. For
ST, we add 2 extra decoders of 2 layers each to this architec-
ture. SpecAugment [44] and speed perturbation are employed
for data augmentation. Hyperparameters used for training can
be found on ESPnet. The ASR model is trained to recognize
250 byte-pair-encoding (BPE) units. The same architecture and
training configuration are used for the following experiments.
Self-supervised representations : In our experiments, we em-
ploy HuBERT [27] , which shows promising results over the
SUPERB benchmark [10].6 To fully explore the potential of
HuBERT, we select the HuBERT-large model pre-trained over
60k hours of LibriLight [46, 47]. The SSL wrapper provided
in Yang et al. [48] is applied to extract high-dimensional fea-
tures with a 20ms frame-shift. In experiment SSL, the FBANK
feature extractor (used in Base) is replaced by the pretained Hu-
BERT model, which is fine-tuned during training.7

Learnable combinations : Experiments Linear, Conv. and
co-Att. are the TRANSFORM operations introduced in Eq. (2)
of Sec 3.2 respectively for concatenation, convolutional, and
co-attention based fusions. For Linear experiment, we con-
catenate fSF(S) and fSSL(S) and then project the concatenation
into a 80-dimensional space. In Conv. experiment, we apply a
1-dimensionnal convolutional layer with kernel size 5 and stride
of 1 over fSF(S) and fSSL(S) before concatenating and project-
ing them. The co-attention model is described through Eq. (3)
to Eq. (6), and the model is illustrated in Fig. 1.
Mixture of experts : Our mixture of experts model (MoE in the
experiments) follows Eq. (7) and Eq. (8) described in Sec. 3.3.
For the main experiments, we use SF (here FBANK) as input
features and Θ(·) = LOG-SOFTMAX(·) for the gating func-
tion. We performed a comparative study of inputs to the gating
function. Using both SF or SSL features led to better scores
than the baselines but SF as input performed best. Our interpre-
tation is that it is easier for the model to learn gating weights
when computed over non-learnable features (SF, here FBANK)
than over complex features which are continuously fine-tuned.
We also compared results with Θ(·) = LOG-SOFTMAX(·)
and Θ(·) = SOFTMAX(·). Performances are similar, Θ(·) =
LOG-SOFTMAX(·) being slightly better. A more detailed anal-
ysis of the gating weights intra-utterance revealed a more peaky
behavior for Θ(·) = SOFTMAX(·), which in our opinion led to
the small performance degradation.
Evaluation metrics : We use Character Error Rate (CER) for
evaluation of our ASR models and BLEU score to measure per-
formances of our ST systems.

5. Results and Analysis
5.1. Main results

Table 1 provides results for the experiments listed in Sec. 4.2.

5.1.1. Speech Recognition results

First we remark that using HuBERT as a feature extractor (SSL
experiment) instead of FBANK (Base experiment) is very ef-

6We also performed preliminary experiments over Wav2vec2 XLSR
model [45], but it did not improve the results over HuBERT model so
we continued the study only for HuBERT model.

7SSL based front-ends could be freezed, but the best performances
were obtained when fine-tuning the models.
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Table 1: ASR and ST results over models described in Sec. 4.2.
The two first experiments are our FBANK and SSL baselines.
The following lines are the proposed Linear, Convolutional, co-
Attention, and Mixture of Experts models.

CER ↓ BLEU ↑
Exp Totonac Arabic Mboshi-French

Base 17.2 15.4 10.9
SSL 14.2 8.1 10.6

Linear 14.0 6.6 11.6
Conv. 13.9 7.2 11.3
co-Att. 13.4 5.4 10.9
MoE 13.7 6.2 11.2

fective on the Totonac and Arabic ASR corpora, leading to re-
spective diminutions of 3.0 and 7.3 of CER.
Then, we note that all of the combination methods we intro-
duced in Sec. 3.2 led to improvements on the two datasets over
the Base and SSL models. We get a diminution of 2.7 CER
(33%) on Arabic and 0.8 CER (5.6%) on Totonac when using
the co-attention model. The co-attention model performs bet-
ter than the linear and convolution based methods, in particular
for Arabic. A possible explanation is that this model: (1) has
a larger modeling capacity (leading to better results), and (2)
induces a more balanced use of the two front-ends, through the
symmetric architecture and the residual connections. This sec-
ond point could explain the greater CER reduction over Arabic
than Totonac, as an equal contribution of front-ends seems to
lead to a robust model for Arabic (see Sec. 5.2).
Finally, the mixture of experts model that we introduced for
gaining interpretability is also getting strong performances.

5.1.2. Speech Translation results

As it is straightforward to use our front-end fusion framework
for different speech tasks, we applied it to ST. Table 1 shows
that all of our proposed methods outperforms both FBANK and
SSL baselines. We note that using HuBERT representations as
front-end degraded the performance in that scenario (see ex-
periments Base and SSL). Even in that case, all the proposed
systems performed better than both baselines. The linear fusion
method reaches a BLEU score of 11.6, gaining 1.0 BLEU over
the SSL baseline and 0.7 BLEU over the FBANK one. Contrary
to the ASR scenario, here the linear and convolutional methods
outperform the co-attention one. As Mboshi is only made of
only 4 hours of speech, we assume that the co-attention model
may be too complex to be well trained contrary to the linear
model.

5.2. Mixture of Experts : Weights and Analysis

In this section, we examine the weights wSF(S) and wSSL(S)
(introduced in Sec. 3.3) obtained by the mixture of experts
model for the two ASR datasets. For more interpretability, we
normalized them so that wSSL(S) + wSF(S) = 1. First we can
note that our robust MoE model is indeed using both FBANK
and HuBERT components as the two weights are non negligi-
ble. Then, we remark that the weights across frames of a same
utterance are quite similar. The two front-ends are used con-
sistently over the frames, which we would expect as a utterance
content may be quite consistent. We note that the weights across
different utterances are also similar within languages. However
they are very different from one language to another.
The first column of Table 2 presents the mean wSSL(S) weight

Table 2: Two views on HuBERT representations quality over
Totonac and Arabic data. The first column presents wSSL(S),
the meanMoE weights for HuBERT front-end. The second col-
umn is the character error reduction rate reduction (CERR8)
between the FBANK baseline and the HuBERT baseline.

Language wSSL(S) CERR(Base → SSL)

Totonac 0.17 17%
Arabic 0.51 47%

for each language. Contrary to the Arabic model, which uses
HuBERT and FBANK with similar weights, the Totonac model
seems to be using HuBERT representations as an adjustment
component, relying on average at more than 80% on spectral
features. Our interpretation is that the Commonvoice Arabic
data is closer in domain (read speech) to the English Libri-
Light than Totonac data is (spontaneous speech/conversation).
For that reason, HuBERT model may extract relatively better
speech representations (compared to FBANK representations)
for Arabic than it does for Totonac. This would explain that the
mixture of experts model grants HuBERT with a larger weight
for the Arabic data. Another way of quantifying HuBERT rep-
resentations quality over the languages could be to calculate the
character error reduction rate (CERR8) between FBANK and
HuBERT baselines (experimentsBase and SSL in Table 1). The
second column in Table 2 confirms our intuition : the mixture
of experts model weights the components according to their rel-
ative strength over the language. As Arabic benefits more from
HuBERT representations than Totonac does, the mixture of ex-
perts model assigned a higher weight to the HuBERT front-end
in the Arabic model than in the Totonac one.

6. Conclusions
SSL models performance depends highly on the relatedness be-
tween the self-supervised training domain(s) and the target data
domain. As spectral features are not subject to those variations,
we proposed a framework to combine spectral features to SSL
representations. This framework can be applied to many speech
tasks with no further work. We obtained strong improvements
over ASR and ST datasets compared with the SSL baseline. We
further proposed a weight analysis showing that: (1) our models
performances are strong for both in-domain and out-of-domain
scenarios. (2) our mixture of experts framework enables quan-
tifying the domain shift between the SSL training data and the
target language resources.
Future work could involve fusions at the encoder level. As
SSL models also perform strongly when used as encoders, fus-
ing SSL features with SF passed through a pre-trained encoder
could be an even more robust technique.
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[38] J. Libovický and J. Helcl, “Attention strategies for multi-source
sequence-to-sequence learning,” in ACL, 2017.

[39] C. Hori, T. Hori, T.-Y. Lee et al., “Attention-based multimodal
fusion for video description,” in EECV, 2017.

[40] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you
need,” in NeurIPS, 2017.

[41] R. Ardila, M. Branson et al., “Common voice: A massively-
multilingual speech corpus,” in LREC, 2020.

[42] P. Godard, G. Adda, M. Adda-Decker et al., “A very low resource
language speech corpus for computational language documenta-
tion experiments,” in LREC, 2018.

[43] S. Kim, T. Hori, and S. Watanabe, “Joint ctc-attention based end-
to-end speech recognition using multi-task learning,” in ICASSP,
2017.

[44] D. S. Park, W. Chan, Y. Zhang et al., “SpecAugment: A Simple
Data Augmentation Method for Automatic Speech Recognition,”
in Interspeech, 2019.

[45] A. Conneau, A. Baevski, R. Collobert et al., “Unsupervised cross-
lingual representation learning for speech recognition,” in Inter-
speech, 2021.

[46] J. Kahn, M. Rivière et al., “Libri-light: A benchmark for asr with
limited or no supervision,” in ICASSP, 2020.

[47] M. Ott, S. Edunov, A. Baevski et al., “fairseq: A fast, extensible
toolkit for sequence modeling,” in NAACL, 2019.

[48] S. Yang, P.-H. Chi, Y.-S. Chuang et al., “SUPERB: Speech
Processing Universal PERformance Benchmark,” in Interspeech,
2021.

[49] J. Towns, T. Cockerill et al., “XSEDE: Accelerating scientific dis-
covery,” Computing in Science & Engineering, 2014.

[50] N. A. Nystrom, M. J. Levine et al., “Bridges: a uniquely flex-
ible HPC resource for new communities and data analytics,” in
XSEDE, 2015.

3537


