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Abstract

Tropical highland environments present substantial challenges for climate pro-

jections due to sparse observations, significant local heterogeneity and inconsis-

tent performance of global climate models (GCMs). Moreover, these areas are

often densely populated, with agriculture-based livelihoods sensitive to transient

climate extremes not always included in available climate projections. In this

context, we present an analysis of observed and projected trends in temperature

and precipitation extremes across agroecosystems (AESs) in the northwest

Ethiopian Highlands, to provide more relevant information for adaptation. Lim-

ited observational networks are supplemented with a satellite-station hybrid

product, and trends are calculated locally and summarized at the adaptation-

relevant unit of the AES. Projections are then presented from GCM realizations

with divergent climate projections, and results are interpreted in the context of

agricultural climate sensitivities. Trends in temperature extremes (1981–2016) are

typically consistent across sites and AES, but with different implications for agri-

cultural activities in the other AES. Trends in temperature extremes from GCM

projected data also generally have the same sign as the observed trends. For pre-

cipitation extremes, there is greater site-to-site variability. Summarized by AES,

however, there is a clear tendency towards reduced precipitation, associated with

decreases in wet extremes and a tendency towards temporally clustered wet and

dry days. Over the retrospective analysis period, neither of the two analysed

GCMs captures these trends. Future projections from both GCMs include signifi-

cant wetting and an increase in precipitation extremes across AES. However,

given the lack of agreement between GCMs and observations with respect to

trends in recent decades, the reliability of these projections is questionable. The

present study is consistent with the “East Africa Paradox” that observations show

drying in summer season rainfall while GCMs project wetting. This has an

expression in summertime Ethiopian rain that has not received significant atten-

tion in previous studies.
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1 | INTRODUCTION

The Ethiopian highlands are topographically and climati-

cally diverse. Mixed subsistence agriculture with limited

external input use is the dominant means of livelihood,

where both crops and livestock production are integrated in

traditional farming systems. Moreover, these areas are

highly affected and challenged by climate extremes.

Ethiopia, where the study area is located, has a long history

of extreme weather events that lead to crop failure, food

shortages and reduced or negative economic growth rates

(Block et al., 2008; World Bank, 2011; Mekasha et al., 2014).

Although the area receives high rainfall, the rain in these

regions is highly variable, and the events tend to be highly

erratic and typically come in the form of intense, erosive

convective storms (Nyssen et al., 2005; Zaitchik et al., 2012).

Over the past three decades, Ethiopia has experienced

numerous localized drought events and seven major

droughts, five of which resulted in famines (Philip et al.,

2018). For instance, the 2015/16 drought affected the

southeastern and eastern part of our study region and

caused significant and widespread acute food insecurity

(Philip et al., 2018). There is evidence that climate

extreme events, particularly droughts and floods, are on

the rise (Mann and Warner, 2017), and the warming cli-

mate may cause further increase (Teshome and

Zhang, 2019). The anticipated future climate variability

and change in extremes could accelerate already high

levels of land degradation, soil erosion, deforestation

(Fetene et al., 2014; Gessesse and Melesse, 2018), loss of

biodiversity and recurrent floods, which affect people and

infrastructure (World Bank, 2011; Wold Bank, 2019).

Given the exposure of highland agriculture to climatic

extremes, there is considerable interest in improving

understanding of current and projected trends in climate

extremes in this region. At the same time, the highly

localized nature of tropical highland climate variability

would result in high variability in trends and the agricul-

tural implications of these trends over short distances.

This poses a challenge for adaptation-relevant climate

projections. It is important not only to characterize trends

at a scale that is specific enough to highland agricultural

systems but also at a scale that is generally enough to

allow for a regional risk assessment and adaptation plan-

ning. Moreover, patterns and trends in climate extremes

should be interpreted in the context of local agricultural

systems to understand how changes in different climate

extreme indices (CEI) impact crops and production sys-

tems in a given agroecosystem (AES).

The relevance of climate extremes for agriculture, and

of CEI used for their characterization, is generally recog-

nized (Vogel et al., 2019). Many studies have applied one or

a combination of pre-defined CEI to examine trends in

extreme events in different regions of the world, including

Africa and Ethiopia. Global level studies revealed that

temperature-based indices showed a significant increase,

and maximum five-day precipitation and 95th percentile of

precipitation are projected to increase significantly in most

parts of the world (Sillmann and Roeckner, 2008). De los

Milagros Skansi et al. (2013) reported a significant warming

and wetting across the whole of South America since the

mid-20th century onwards. A study conducted in Georgia

also showed an overall increase in precipitation and tem-

perature extreme indices (Keggenhoff et al., 2014).

Mouhamed et al. (2013) did a climate extreme study in

West African Sahel and reported a general tendency of

decreased annual total rainfall and maximum number of

consecutive wet days. Gebrechorkos et al. (2019) did a cli-

mate extreme analysis over East Aftrica using the grided

data and reported an overall increasing trend in tempera-

ture indices and a mix of decreasing and increasing trends

in precipitation indices. Studies conducted on CEI trends in

Ethiopia have reported diverse results. Most studies indicate

significant increasing trends for temperature indices in

recent decades (Mekasha et al., 2014; Kiros et al., 2017;

Esayas et al., 2018a). For precipitation, some studies show a

decrease in CEI (Gebrechorkos et al., 2019), while some

studies show a mix of increasing and decreasing trends

(Degefu and Bewket, 2014), and some other studies showed

increasing trends (Shang et al., 2011). These differences

could be associated with the differences in spatial and tem-

poral coverage of the studies, particularly considering the

local character of climate in the highlands. Thus, localized

studies on climate extremes will benefit local farmers whose

livelihood is entirely dependent on agricultural activities

that necessitate the present study. Appropriate scale and

resolution of data are also critical. Several studies, to date,

in the region have concentrated on the analysis of indices

for climate extremes based on observational data from a

very limited set of weather stations. While others covered

very large areas, averaging over local heterogeneities, others

focused primarily on the changes of extremes in future cli-

mate projections (Sillmann and Roeckner, 2008). The limi-

tations of climate extreme studies in the area are well

documented in Gebrechorkos et al. (2019).

Unlike many other studies, our analysis considers the

unique differences between AES, and results are inter-

preted in terms of their implications for agricultural

activities in each AES. We also focus on climate extreme

indices deemed most relevant for local agriculture, and

adjust CEI thresholds where necessary to match relevant

indicators for local crops. Applying this perspective, our

analysis aimed to (i) analyse recent (1981–2016) observed

trends in precipitation and temperature extremes over a

tropical highland region based on AES, (ii) assess the per-

formance of selected global climate models (GCMs) to

2494 BIRHAN ET AL.
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generate precipitation and temperature extremes, and

(iii) examine projections of AES-level changes in precipi-

tation and temperature extremes over the 21st century.

2 | MATERIALS AND METHODS

2.1 | Description of the study site

This study focuses in Choke Mountain and its constituent

peaks, located in the Blue Nile Highlands of northwest

Ethiopia. The watersheds of Choke Mountain cover an

elevation range from 800 to 4,200 masl and are located

within geographic coordinates of 9.75�–11.5�N and 37.8�–

38.33�E (Figure 1). The study area covers 19,915 km2, in

which 3.1 million people reside, with a population den-

sity of 161 people per km2. Ninety percent of the

population lives in rural areas (http://www.csa.gov.et/

census-report/complete-report/census-2007). The region

is characterized by significant interannual climate vari-

ability, complex topography and associated local climate

contrasts, erosive rains and erodible soils.

The area also experiences intense land pressure due

to an increasing population and agriculture-based econ-

omy, which is entirely dependent on smallholder low-

input–output agriculture. Farming is predominantly a

crop-livestock mixed system that is operated by indepen-

dent farmers on small plots (Simane et al., 2012, 2013;

Zaitchik et al., 2012). Nitisols, Vertisols, Andosols and

Acrisols are dominant soil types of the area (Zaitchik

et al., 2012). Dry valleys, gently rolling, deep soil midland

plains and cool, wet alpine zones are found within a

short distance from the mountain, and complex topogra-

phy leads to strong local contrasts in precipitation and

temperature (Zaitchik et al., 2012). The topographic cli-

mate gradient ranging from warm to cool allows for the

production of diverse crops of both tropical and temper-

ate origins, which are highly relevant when considering

climate variability. Temperate origin crops at higher ele-

vations benefit from or are entirely dependent on season-

ally cold temperatures. Here, we apply the AES as an

agriculturally relevant unit of aggregation (Conway,

1985). The AES represents the intersection of a common

set of climate conditions, soil properties and farming sys-

tems and, thus, offers a unit that is relevant for analysing

and communicating impacts of climate on agriculture

(Simane et al., 2013). A brief description of the AES in

the mountain watersheds is presented in Table 1.

2.2 | Study approach

2.2.1 | Data type and source

Records of daily precipitation and minimum and maxi-

mum temperature were extracted from the Enhancing

National Climate Services (ENACTS) dataset. ENACTS is

a 4 × 4 km gridded dataset reconstructed from weather

stations and meteorological satellite records from 1981 to

2016 (Dinku et al., 2014, 2016). ENACTS has been evalu-

ated extensively and has demonstrated strong perfor-

mance when evaluated at station locations across the

country (Dinku et al., 2014, 2016; Alemayehu and

Bewket, 2017). For this study, the Ethiopian National

(a) Map of Ethiopia

(b) Map of Amhara Regional State

(c) Map of study sites
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Meteorological Agency provided ENACTS data for

36 locations in Choke Mountain. In using a gold standard

hybrid gridded product (ENACTS) but doing so for

selected locations at which stations are available for

direct evaluation of the product, we are able to assemble

temporally complete records of confirmed reliability.

All GCM outputs used in this study are drawn from

the NEX-GDDP archive, which is a collection of down-

scaled CMIP5 simulations with a resolution of

0.25� × 0.25�. The producers used to prepare the dataset

are detailed in (Thrasher et al., 2012). Model output used

for projecting future trends was obtained from two GCMs

that have demonstrated the ability to capture climate

teleconnections relevant to the Ethiopian Highlands:

MIROC5 and IPSL CM5A LR (Bhattacharjee and

Zaitchik, 2015). GCM-derived estimates of daily precipi-

tation and minimum and maximum temperatures were

obtained from the NASA Earth Exchange Global Daily

Downscaled Projections (NEX-GDDP) dataset (van

Vuuren et al., 2011; Thrasher et al., 2012).

We note that these two GCMs do not perform particu-

larly well on conventional metrics of bias with respect to

historical observations, but the fact that they are able to

capture some elements of large-scale climate influence on

the region suggests that they are reasonable choices for

generating future projections (Siam and Eltahir, 2017). In

addition, the models were selected, because the available

realizations of the two models diverge significantly from

one to another. In this sense, the two capture the uncer-

tainty present in climate projections for the region. The

NEX-GDDP data have been corrected for biases using bias-

correction and spatial disaggregation (BCSD), including

empirical quantile mapping (Piani et al., 2010; Thrasher

et al., 2012; Maraun, 2016; Cannon, 2018; Navarro-racines

et al., 2020). The NEX-GDDP bias correction is limited by

its reliance on a global reference dataset that is not

optimized for Ethiopia. Thus, we perform a second bias

correction to adjust NEX-GDDP to ENACT using an addi-

tive (delta) method for temperature and multiplication ratio

for precipitation data (Berg et al., 2012). This makes GCM

results statistically consistent with observations and allows

us to quantify their projected changes. The bias-corrected

GCM data were divided into two parts: near-term projection

(2017–2050) and late-21st century projection (2051–2095).

For evaluation, we construct a retrospective GCM dataset

using the “historical” simulation—i.e., the CMIP5 20th cen-

tury experiments, which run through 2005—merged with

RCP4.5 for 2006–2016 to get records representative of the

1981–2016 period of ENACTS availability.

2.2.2 | Data preparation and quality control

Homogeneity and change points for ENACTS dataset

were checked using the penalized maximal F (PMF) test

(Wang, 2008a, 2008b). The PMF test is used as the stan-

dard homogeneity and change point tests (like standard

normal homogeneity [SNH] test) did not detect changes

at any location in the data series, and a reference series

for the test is not available. RHtestsV3 and

RHtests_dlyPrcp software packages were used for tem-

perature and rainfall, respectively. Details of these tools

are documented in the literature (Wang et al., 2010;

Wang and Feng, 2013).

2.2.3 | Climate extreme indices studied

Using the AES as the lens for analysis, we examine a

suite of standard CEI in observations and in selected

downscaled GCMs, considering both the recent past and

projections for the mid- and late-21st century. As

TABLE 1 Characteristics of agroecosystems of the Choke Mountain watersheds (adapted from Simane et al., 2013)

Agroecosystem Farming system

Traditional

climatic zone

Dominant

soils Major crops

AES1: Lowlands and Abay

valley

Fragmented sorghum-

based extensive

Upper Kola Leptosols

Cambisols

Sorghum, teff, maize, haricot

bean

AES2: Midland plains with

black soil

Intensive teff-based Lower Weyna Dega Vertisols Teff, durum wheat, barley,

chickpea, grass pea

AES3: Midland plains with

brown soil

Intensive maize–wheat-

based

Lower Weyna Dega Nitosols

Alisols

Wheat, maize, teff

AES4: Midland sloping lands Semi-intensive wheat/

barley based

Upper Weyna

Dega—lower Dega

Leptosols

Nitosols

Alisols

Wheat, teff, barley, Engido

(Avena spp.)

AES5: Hilly and

mountainous highlands

Potato/barley-based Upper Dega Leptosols

Luvisols

Potato, barley, faba bean,

Engido

2496 BIRHAN ET AL.
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temperature and precipitation are among the major bio-

physical factors that affect crop production (Hatfield and

Prueger, 2015), we focus on extremes related to these two

variables. Accordingly, we calculate a suite of indices

defined by the Expert Team on Climate Change Detec-

tion and Indices (ETCCDI) (Table 2).

These include two agronomically important indices of

temporal rainfall variability, consecutive dry days (CDD)

and consecutive wet days (CWD), threshold indices for

high (“summertime” = SU) temperature (SU25) and for

two levels of daily rainfall extreme (days with more than

10 mm precipitation (R10mm) and 20 mm precipitation

(R20mm), nine indices of absolute temperature or rainfall

amount (TXx, TNx, TXn, TNn, DTR, Rx1day and Rx5day,

prcptot and sdii) and four indices of percentile tempera-

ture (TX10p, TX90p, TN10p and TN90p) (Abatan

et al., 2018). In addition, one regionally specific tempera-

ture extreme (threshold index) was defined, which we

call “chill days” (FD10). This index was used to examine

the number of days when minimum temperature is less

than 10�C. This threshold is selected, because it is the

base temperature for most tropical crops below which

chilling injury may occur, and the upper threshold for

the chilling temperature requirement of temperate crops.

Many temperate fruits and vegetables require prolonged

exposure to a cold (a chilling temperature) to trigger

flower bud induction in a process called vernalization

(Atkinson et al., 2013; Li et al., 2013).

2.2.4 | Data analysis

Extremes trend analysis over the retrospective analysis

period (1981–2016) was conducted using the Mann-

Kendall trend test. Where autocorrelation was not signifi-

cant, a standard Mann-Kendall trend tests were applied.

When serial autocorrelation was found to be significant,

a trend test was performed following the modified Mann-

Kendall Test. The magnitude of the trend change was

estimated using Sens's slope estimator (Mann, 1945;

Sen, 1968) as implemented in R-package Rclimdex 1.0

(Karl et al., 1999).

TABLE 2 Definitions of indices used in the study (adapted from Karl et al., 1999)

Indices Type Name Definition Unit

Temperature indices

SU25 Threshold Summer days Annual count of days when TX >25�C Days

FD10a Threshold Chill days Annual count of days when TN <10�C Days

TXx Absolute Max. Tmax/warmest day Maximum of daily maximum temperature �C

TXn Absolute Max. Tmin/coldest day Minimum of daily maximum temperature �C

TNx Absolute Min. Tmax/warmest night Maximum of daily minimum temperature �C

TNn Absolute Min. Tmin/coldest night Minimum of daily minimum temperature �C

TX10p Percentile Cold days Percentage of time when daily TX <10th percentile %

TX90p Percentile Warm days Percentage of time when daily TX >90th percentile %

TN10p Percentile Cold nights Percentage of time when daily TN <10th percentile %

TN90p Percentile Warm nights Percentage of time when daily TN >90th percentile %

DTR Absolute Diurnal temperature range Monthly mean difference between daily max and min �C

Precipitation indices

CDD Duration Consecutive dry days Maximum number of consecutive days with RR < 1 mm Days

CWD Duration Consecutive wet days Maximum number of consecutive days with RR > 1 mm Days

R10mm Threshold Heavy rainfall days Annual count of days when PRCP ≥ 10 mm Days

R20mm Threshold Very heavy rainfall days Annual count of days when PRCP ≥ 20 mm Days

Rx1day Absolute Maximum one-day rainfall Maximum amount of one-day rainfall in a year Mm

Rx5day Absolute Maximum five-day rainfall Maximum amount of five-day cumulative rainfall in a

year

Mm

SDII Absolute Simple daily intensity index Daily precipitation amount on wet days mm/day

Prcptot Absolute Total precipitation Annual total rainfall in wet days Mm

Note: TX, TN, and RR are daily maximum temperature, minimum temperature, and rainfall, respectively.
aUser-defined temperature index.
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The Mann-Kendal test was applied using the formula:

S=
X

n−1

k=1

X

n

j=k+1

sgn xj−xk
� �

ð1Þ

where n = number of data points, xk and xj = data values

in time series k and j ( j > k), and sgn(xj − xk) = sign func-

tion as:

sgn xj−xk
� �

=

1 if xj−xk>0

0 if xj−xk=0

−1 if xj−xk<0

8

>

<

>

:

9

>

=

>

;

ð2Þ

The variance of S is computed as:

VAR Sð Þ=

n n−1ð Þ 2n+5ð Þ−
P

q

p=1

tp tp−1
� �

2tp+5
� �

" #

18
ð3Þ

where q = number of tied groups, and tp = the number of

data points in the pth group.

The values of S and VAR(S) were used to compute

the test statistic Zs as follows:

Zs=

S−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VAR Sð Þ
p if S>0

0 if S=0
S+1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VAR Sð Þ
p if S<0

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

ð4Þ

Positive/negative Zs indicates an upward/downward

trend for the period.

Sen's slope estimator (Sen, 1968) was used to estimate

the slope of the trend. Sen's method can be used in cases

where the trend can be assumed to be linear and is equal to:

f tð Þ=Qt+B ð5Þ

where f(t) is a continuous monotonic increasing or

decreasing function of time, Qt is the slope, and B is a

constant. The slopes of all data value pairs were calcu-

lated to get the slope estimate Q in Equation (3) as:

Qi=
xj−xk

j−k
for i=1,…,N ð6Þ

where Xj and Xk are the data values at times j and

k ( j > k). Hence, we only have one datum in each period,

and N is computed as:

N=
n n−1ð Þ

2
ð7Þ

where n is the number of time periods. The N values of

Qi were ranked from smallest to largest, and the median

of slope or Sen's estimator was computed as (Gocic and

Trajkovic, 2013):

Qmed=

Q N+1
2½ � if N is odd

Q N
2½ �
+Q N+2

2½ �

2
if N is even

8

>

<

>

:

: ð8Þ

Positive/negative values of Qi indicate an increasing/

decreasing trend, respectively (Salmi et al., 2002). Confi-

dence intervals (Cα) about the time slopes were used to

test significance of the trend and were computed as fol-

lows (Gilbert, 1987):

Cα=z1−α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Sð Þ
p

ð9Þ

where Var(S) is defined in Equation (3), and z1−α=2 is

obtained from the standard normal distribution table.

The Wilmot index was used to evaluate the perfor-

mance of GCMs to reproduce extreme indices

compared with indices generated from ENACT data. The

Wilmot index of agreement (d) was calculated as

(Willmott, 1982):

d=1−

P

n

i=1

Pi−Oið Þ2

P

n

i=1

jP0
ij+ jO0ij

� �2

2

6

6

6

6

6

3

7

7

7

7

7

ð10Þ

where Oi is the index computed from ENACT data value

for the ith observation, Pi is the index value computed

from GCMs data for the ith observation, �O is the mean of

the index computed from ENACT data, and n is the num-

ber of observations, P
0

i = Pi − �O and O
0

i = Oi −
�O.

Changes in climate extremes in the mid and end

terms of the century relative to the baseline period were

computed as (Feyissa et al., 2018):

∆I=
Ip−Ib

Ib
×100 ð11Þ

for precipitation indices and

∆I=Ip−Ib ð12Þ

for temperature indices, where ∆I = change in index,

Ip = index in each period, and Ib = index in the baseline.
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The generalized extreme value (GEV) distribution

was used to understand the change in the distribution of

variance of some extreme indices using the following for-

mula (Omey et al., 2009):

G zð Þ=exp − 1+ξ
Z−μ

δ

� �� �−1=ξ
( )

ð13Þ

For 1 + ξ(z − μ)/σ > 0, μ = location parameter, σ = scale

parameter and ξ = shape parameter.

Finally, changes in extreme values for selected indices

at landscape level are interpolated from site values. Inverse

distance weighting (IDW), a commonly used approach for

estimation of missing data in hydrology and geographical

sciences (Teegavarapu and Chandramouli, 2005), was

applied using ArcMap 10.6.1. The IDW interpolated values

were computed as:

θm=

P

n

i=1

θid
−k
mi

P

n

i=1

d−k
mi

ð14Þ

where θm is the observation at the location m, n is the

number of stations, θi is the observation at station i, dmi

is the distance from the location of station i to location

m, and k is referred to as friction distance, which can

range from 1.0 to 6.0 and is fixed at 2.0 in this study.

3 | RESULTS AND DISCUSSION

3.1 | Historical extreme analysis

3.1.1 | Precipitation indices

Total precipitation and all precipitation-related

extremes exhibit a significant topographic dependence

across Choke Mountain. From the ENACTS data, total

rainfall, rainfall intensity and number of CWD showed

an increasing trend as one moves from low elevation

AES (AES1) to high elevation AES (AES5). Meanwhile,

CDD declined with increase in elevation (Figure 2).

These patterns are unsurprising, and they capture the

fact that AES1 is a relatively dry, drought prone area, in

which prolonged CDD are common and pose signifi-

cant risks to agricultural production, while high eleva-

tion AES are wetter and more vulnerable to destructive

rainfall events, snows, storms and associated erosion.

Analysis of downscaled data from both MIROC5 and

IPSL generally captures the spatial pattern observed

with the ENACTS data at AES scale (Supplementary

Table 8), as NEX-GDDP downscaling resolves the gen-

eral topography of Choke Mountain.

Trends in total precipitation and precipitation

extremes derived from ENACTS data indicate that rain-

fall amount and rainfall extremes generally decreased in

Choke Mountain over the study period, with some het-

erogeneity across sites (Figure 2; Supplementary Table 1).

At landscape level, most studied sites in western and

northern parts of Choke Mountain showed statistically

significant trends in prcptot unlike those located in the

southern slope of the mountain (Figure 2a).

Statistically significant decreasing trends in prcptot

were more prevalent in high and low elevation AES than

in the middle elevations. About 40%, 22%, 25% and 46%

of the sites in AES1, AES2, AES3 and AES5, respectively,

showed a significant decreasing trend. Only three sites

(one in AES2 and two in AES5) showed a significant

increasing trend in prcptot (Figure 2a).

Trends in other rainfall extreme indices generally follow

the pattern of total precipitation. Statistically significant

trends were most prevalent for sdii, which showed a signifi-

cant decreasing trend in all AES and sites except for a few in

the west, southwest, east and northeast part of watersheds

(Figure 2d and Supplementary Table 1). In 80%, 89%, 29%

100% and 82% of the sites, there was a significant decreasing

trend of sdii in AES1–AES5, respectively (Supplementary

Table 8). Statistically significant declines of rx5day were

most prevalent for low and high elevation AES (Figure 2c),

which were consistent with the pattern observed for prcptot.

Results for other intensity indices (rx1day, r10mm and

r20mm) generally agree with this pattern, with the greatest

prevalence of statistically significant declines in low and

high elevation AES. But these metrics show some heteroge-

neity in the sign of statistically significant trends (Figure 2b,

e,f), with a few stations showing statistically significant posi-

tive trends (Supplementary Tables 1 and 8).

Collectively, the results of prcptot and rainfall inten-

sity indices showed a picture of general drying across all

of Choke Mountain with some localized heterogeneity.

The results also indicate that change in rainfall extremes

is most prevalent at sites located in low and high AES,

which also happen to be the most climate vulnerable

parts of the mountain (Simane et al., 2016). Agronomi-

cally, the decline in prcptot in the lower elevation AES

poses a significant risk to crop production, as the area

already receives relatively low rainfall, and any further

reduction will bring moisture stress. This is particularly

true for the beginning and end of the growing season

(Frahm et al., 2004; Eggen et al., 2019). In the higher

AES, the reduction in prcptot can affect agricultural

water management, particularly through reducing the

volume of rivers and streams that are used for small-scale

irrigation during the dry season. The reduction in rainfall

BIRHAN ET AL. 2499

 1
0
9
7
0
0
8
8
, 2

0
2
2
, 4

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://rm
ets.o

n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/jo

c.7
3
7
8
 b

y
 Jo

h
n
s H

o
p
k
in

s U
n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

8
/1

2
/2

0
2
2
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o

m
m

o
n
s L

icen
se



intensity (rx1day and rx5day) may have some positive

impacts on soil fertility via reducing soil erosion and

landslide risk. However, the reduction in prcptot in

higher AES also associated with rainfall reductions at the

beginning and end of the growing season poses a produc-

tion risk for long season crops.

FIGURE 2 Trends of rainfall

indices on Choke Mountain (1981–

2016): (a) total precipitation,

(b) maximum one-day precipitation,

(c) maximum five-day precipitation,

(d) simple daily intensity index,

(e) heavy precipitation days, (f) very

heavy precipitation days,

(g) consecutive dry days, and (h)

consecutive wet days. Downward/

upward arrows represent decreasing/

increasing trends, and * indicates a

significant trend [Colour figure can

be viewed at wileyonlinelibrary.com]
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Trends in CWDs and CDDs reveal another aspect of

precipitation change. The observed increase in CDD at

most sites across AES (Figure 2g; Supplementary Table 8)

is roughly consistent with the observed decreases in pre-

cipitation indices. Interestingly, however, the prevalence

of statistically significant increase in CDD is greatest in

AES3, located at mid-elevation, which is the opposite of

the spatial pattern of trend prevalence seen for other met-

rics (Figure 2g). Even more surprisingly, CWD trends,

though quite mixed site-by-site (Figure 2h; Supplemen-

tary Table 1), show a tendency towards statistically signif-

icant increases, which are seen most frequently in middle

elevation AES (AES2–4). This increase in CWD in the

context of declining prcptot indicates that rainy season

precipitation is becoming more clustered in time, with

fewer heavy rainfall days but increased number of wet

days (Supplementary Figure 5).

Agronomically, these changes in CDD and CWD have

several implications. The CWD result implies a shift

towards more days with light rain, which is also confirmed

by the analysis of the number of rainy days (Supplemen-

tary Figure 5). This has potential benefits, particularly for

shallow rooted crops that are sensitive to water stress.

Farmers describe such low intensity episodes as “a rain nei-

ther damages the leaf nor erodes the soil”. From a manage-

ment perspective, these conditions are also favourable for

top dressing of additional fertilizer, but consistently muddy

conditions can also interfere with other field management

operations. An increase in CWD in July and August may

specifically benefit Teff cultivation in AES2, as a more fre-

quent wet condition is required for land preparation and

planting on Vertisols (heavy clay soils). Impacts of an

increase in CDD depend very much on crop type and

timing. An increase in CDD during the planting season

can affect germination and emergence, and lead to crop

failure and thereby either a need to replant or to a signifi-

cant decrease in plant population and subsequent yield.

However, most CDD occur in the dry season.

Considering the agricultural implications of seasonal

CDD and CWD, AES level seasonal analysis was per-

formed for these metrics. The analysis revealed that CDD

in the main rain season showed a significant decreasing

trend in AES3–5, and a non-significant decreasing trend

was observed in AES1 and 2 (Table 3 and Supplementary

Figure 6a). AES2–3 and all AES showed a significant

increasing trend for dry and small rain seasons, respec-

tively. An increase in CDD in dry season can facilitate

harvest operations. A drastic increase in the dry season

and small rain season CDD can impact base flow in

streams and can also harm perennial crops, as the soil

moisture falls below the permanent wilting point for long

period. Moreover, the small rain season is important for

planting of potato in AES4 and 5 and the long season crops

like Maize and Sorghum in AES1 and 3, and the increasing

trend in CDD will bring drought, which significantly

affect growth and yield. An increase in CDD in

December–February, however, can facilitate harvest

operations. Seasonal analysis for CWD showed that only

AES2 for the main season and AES1 and 2 for the small

rain season showed a significant increasing trend, and

the rest seasons and AES showed insignificant positive

trend (Table 3).

Results of the present study are consistent with the pre-

vious findings regardless of the spatial and temporal varia-

tions. For instance Gebrechorkos et al. (2019) reported the

increasing and decreasing trends precipitation indices over

Ethiopia, Kenya and Tanzania without any general pattern.

Contrary to this, a study conducted in southwest Ethiopia

reported a significant increase in R20mm (Degefu and

Bewket, 2014). Another study in the central rift valley of

Ethiopia showed insignificant trend change in most of the

sites studied (Mekasha et al., 2014). A study conducted in a

similar region reported insignificant trend change in pre-

cipitation extremes (Shang et al., 2011).

The ability of bias corrected and downscaled GCMs to

capture characteristics of precipitation extremes was

TABLE 3 Trend test of CDD and CWD in the Choke Mountain Watersheds (1981–2016)

AES

Consecutive dry days (CDD) Consecutive wet days (CWD)

Main rain season Dry season Small rain season Main rain season Dry season Small rain season

Z Slope Z Slope Z Slope Z Slope Z Slope Z Slope

1 −0.98 −0.04ns 1.25 0.36ns 2.47 0.44** 0.76 0.05ns 0.93 0.030ns 2.16 0.064**

2 −1.54 −0.07ns 2.02 0.57** 3.76 0.56*** 2.02 0.33** 0.81 0.025ns 1.81 0.053*

3 −2.66 −0.09*** 2.56 0.67** 3.24 0.53*** 0.95 0.12ns 0.64 0.017ns 0.41 0.018ns

4 −2.59 −0.11*** 0.95 0.20ns 2.47 0.43** 1.06 0.17ns 0.96 0.032ns 0.52 0.019ns

5 −1.95 −0.11* 0.78 0.20ns 1.93 0.25* 0.99 0.19ns 0.07 0.024ns 0.82 0.025ns

Abbreviations: AES, agroecosystem; ns, non-significant (p > 0.1); S, slope of the line; Z, Mann-Kendal test.

*, ** and ***significant at 10%, 5%, 1% and 0.1% probability respectively.
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investigated by averaging point-wise comparison across all

sites. Table 4 shows the Wilmot index of agreement (d) and

percent bias (pbias) for indices computed from ENACTS

data and from NEX-GDDP bias-corrected realizations of

the IPSL and MIROC5 GCMs. Comparisons for prcptot

and r20mm are quite strong, as would be expected for

models that were bias corrected for total precipitation

(Table 4). Results are mixed for other indices. Although

NEX-GDDP includes quantile matching, the approach does

not necessarily capture the frequency of very extreme

events. Results of CDD are relatively good as well (d > 0.5,

and pbias on order of 10%), perhaps because of the long

dry periods that occurred in this region during the winter

season. Other indices prove to be more difficult for the

GCMs, even after bias correction and downscaling. For

example, calculated d is very low (<0.5) while the percent

bias is very large for most of the precipitation indices stud-

ied, such as CWD, r10mm, rx1day and rx5day (Table 4).

Interpretation of trends in GCMs over the historical

period must be approached with caution. The retrospec-

tive analysis period is 36 years long, which is sufficient

for many trend analyses, but calculated trends could be

the product of decadal variability in addition to long-term

change. As the GCM realizations used here are century

scale runs that are initialized from equilibrium condi-

tions, single realizations of a model may catch decadal

variability in different phases from what was observed in

the historical record. With this caveat in mind, it is still

noteworthy that downscaled GCM simulation included

in this study shows evidence of the reductions in total

precipitation and precipitation extremes that were

observed in ENACTS data (Supplementary Table 5). In

most cases, the downscaled GCMs show no significant

trend, and in some cases, MIROC5 shows significant

increases in precipitation extremes where observations

tend towards significant decreases. The only point of

agreement is in CWD, where both IPSL and ENACT have

statistically significant increases dominating over

decreases (Supplementary Tables 5 and 8). The contrast

between GCM results and ENACT observations does not

disqualify these GCMs for use in future climate projec-

tion. Both have shown some performance strengths rele-

vant to Blue Nile basin climate simulation (Bhattacharjee

and Zaitchik, 2015), and as noted, 36 years is a relatively

short period for model-observation trend comparisons. The

absence of statistically significant trends in the downscaled

GCMs, however, does point to a potential limitation in our

application of GCMs to studies of extremes on this scale.

While both downscaled models are able to capture extremes

according to the indices used in this analysis, albeit with

some substantial bias relative to observations (Supplemen-

tary Table 8), the downscaling approach is stationary in

time. Insomuch as trends in extremes might be influenced

by shifts in local dynamics in response to a large-scale cli-

mate change forcing (i.e., locally nonstationary dynamics);

the downscaled GCM outputs used in this study will miss

some dynamics of local change.

3.1.2 | Temperature indices

Compared with precipitation indices, temperature indices

and trends are more coherent in observations and consis-

tent between observations and models. The distribution

of mean values of all extreme indices follow expected ele-

vation gradients. SU25 is highest in AES1 and lowest in

AES5, with annual increasing by 1.43–2.8 and 0.99–

2.51 days/year, respectively. In contrast, FD10 is highest

in AES5 (201 days with a reduction of 2.01–3.7 days/year)

and lowest in AES1 (reduced by 1.22–2.62 days/year). All

TXx, TXn, TNx and TNn show highest mean values in

AES1 and lowest mean values in AES5 (Figure 3 and Sup-

plementary Tables 2 and 9).

A general warming in recent decades is observed,

which resulted in positive trends in SU25, TXx, TXn,

TNx, TNn, TX90P and TN10P, while FD10, TX10P and

TN10P showed a decreasing trend, with some spatial var-

iability in the significance of trends (Figures 3 and 4 and

Supplementary Tables 2 and 3). DTR showed both signifi-

cant increasing and decreasing trends for sties in AES1–3
and a significant increasing trend in AES4–5 (Supplemen-

tary Table 4 and Figure 4e). Between the GCMs, MIROC5

showed a significant decreasing trend in all AES, and

IPSL showed insignificant trend in all AES. In general, a

higher significant trend in temperature extremes is

observed in higher elevation AES (Figure 3 and

TABLE 4 Comparison of precipitation indices computed from GCMs with ENACTS dataset

GCMs Metrics CDD CWD r10mm r20mm rx1day rx5day Prcptot Sdii

IPSL-CM5A-LR d 0.66 0.25 0.48 0.96 0.49 0.38 0.98 0.5

pbias 12 −49 31 −5 −37 −71 4 20

MIROC5 d 0.66 0.16 0.41 0.86 0.25 0.36 0.98 0.7

pbias 10 39 34 −19 −113 −60 4 10

Note: d, Wilmot index of agreement; pbias, percentage of bias.
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Supplementary Table 2). The magnitude of these trends

differs substantially by location and AES (Figures 3 and 4

and Supplementary Tables 2 and 3).

TNn in some sites (19%) showed a decreasing trend

that reflects an increase in temperature variance, which

can cause an increase in extreme cold events despite of

FIGURE 3 Trends of temperature indices in Choke Mountain (1981–2016): (a) TXx, (b) TXn, (c) SU25, (d) TNn, (e) TNx, and (f) FD10.

Downward/upward arrows represent decreasing/increasing trends, and * indicates a significant trend [Colour figure can be viewed at

wileyonlinelibrary.com]
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increases in mean temperature (Anav et al., 2010;

Medvigy et al., 2012).

The ability of downscaled GCMs to reproduce tem-

perature indices is better than precipitation indices in

most cases (Table 5). This is consistent with the general

understanding that temperature, a smoothly varying field

for which underlying physical processes are relatively

well understood, is better captured by GCMs. This could

FIGURE 4 Trends of temperature indices in Choke Mountain (1981–2016): (a) TN10P, (b) TN90P, (c) TX10P, (d) TX90P, and (e) DTR.

Downward/upward arrows represent decreasing/increasing trends, and * indicates a significant trend [Colour figure can be viewed at

wileyonlinelibrary.com]
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be because precipitation exhibits high spatial and tempo-

ral variations that cannot be captured by GCMs.

While TXx, TXn and TNx are quite well captured by the

GCMs, however, there are substantial biases for SU25 and

FD10, which are both threshold indices, and TX10P, TX90P,

TN10P and TN90P, which are percentile indices, and DTR,

which is sensitive to even modest bias in GCM representa-

tion of temporal variability in temperatures. In this case, both

GCMs have a positive bias for SU25, TN90P and TX90P and

a negative bias for FD10, TX10P, TX90P and DTR,

suggesting that the bias correction and downscaling process

overestimates the warm tail and underestimates the cold tail

of the temperature distribution relative to ENACTS data.

Interestingly, TNn and DTR show significant positive bias in

both GCMs. This is consistent with the FD10 result, and it

suggests that the downscaled GCMs have a particular prob-

lem capturing cold extremes in this region.

For temperature trends, GCMs generally reproduce the

positive trends observed in ENACTS data (Supplementary

Table 5), albeit with less ability to capture AES-level vari-

ability in the prevalence of statistically significant trends.

This lack of spatial structure in trends indicates that the

GCMs do not resolve processes relevant to differing

warming trends across Choke's elevation gradient. Down-

scaling can bring the models into agreement with observa-

tions for the spatial structure of mean values in

temperature extremes (Table 5), but the BCSD downscaling

method cannot introduce nonstationary processes that are

not resolved by GCMs. This fact should be kept in mind

when applying downscaled GCM analyses to studies of cli-

mate trends and vulnerabilities. Over the period of analysis

MIROC5 shows fewer significant trends than IPSL, indicat-

ing that this realization of MIROC5 had a lower overall

warming trend than IPSL for this region.

Trends in temperature indices could have significant

implications for crop production in the region. The

decrease in FD10 in high elevation areas will significantly

hinder the production of cool season crops, such as apples,

which require cold days to initiate flower buds via vernali-

zation, and hence, their orchards will face reduction of

yield or increase of non-viability as the number of

FD10 days drops. On the other hand, reduction in the risk

of frost and other cold damage could benefit agriculture by

extending growing seasons and allowing for introduction

of cold-sensitive plants higher on the mountain. The

increase in temperature in higher AES will also hasten

plant growth, potentially allowing for double crop cultiva-

tion in a year. The increase in SU25 in lower elevation AES

will bring a challenge for crop production, as the higher

temperature causes heat stress coupled with an increase in

evapotranspiration and moisture stress.

Results of the present study are consistence with the find-

ings of previous studies. A study conducted in east African

region showed that warm days and nights, warm spell dura-

tion indicator and summer days showed a significant increas-

ing trend, whereas cold days and nights showed a significant

decreasing trend (Gebrechorkos et al., 2019). Another study

conducted in the central rift valley of Ethiopia showed a sig-

nificant increasing trend for warm indicators and a signifi-

cant decreasing trend for cold-related indices (Mekasha

et al., 2014). A study conducted in southern Ethiopia also

showed a significant increasing trend in both warm and cold

indicator indices in high and low altitude areas unlike the

mid-altitude areas (Esayas et al., 2018a).

3.2 | Future extreme analysis

3.2.1 | Projected change in precipitation
indices

The ability of selected GCMs to reproduce precipitation indi-

ces in the historical period is shown in Table 4, and only

indices showing strong agreement with ENACTS dataset

indices are selected for the projected period. The primary

result from downscaled projections of future precipitation

extremes is that both models project wetting across Choke

Mountain over the 21st century (Figure 5; Supplementary

Table 3; Supplementary Figure 7).

Interestingly, for total precipitation and very heavy

precipitation days, MIROC5 (Figure 5b,d) shows some-

what stronger trends than IPSL (Figure 5a,c), particularly

for mid-century and moderate emissions (RCP4.5-M).

This contrasts with the fact that IPSL has stronger tem-

perature trends in the retrospective period and, as will be

discussed later, in its projections. For the case of these

TABLE 5 Comparison of temperature indices computed from GCMs with ENACT dataset

GCMs Metrics SU25 FD10 TXx TXn TNn TNx TX10p TX90p TN10p TN90p DTR

IPSL-CM5A-LR d 0.91 0.81 0.99 0.99 0.46 1 0.18 0.2 0.14 0.2 0.59

pbias 14 −39 0 0 17 0 3 −5 −1.7 −2 3

MIROC5 d 0.92 0.85 0.93 0.87 0.15 0.98 0.17 0.12 0.17 0 0.4

pbias 19 −37 −3 4 37 2 5 −3 0.1 −0.3 25

Note: d, Wilmot index of agreement; pbias, percentage of bias.
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two model realizations, then, change in precipitation

extremes does not scale with change in temperature. As

expected, changes are larger for the high emissions sce-

nario (RCP8.5) and later in the 21st century (end [E] vs.

middle [M] in Figure 5).

The results show relatively little contrast between AES,

though trends are slightly stronger for higher elevation AES

in most cases. Contrasts between AES in these downscaled

GCM projections, however, may be overly smoothed. As

noted previously, the downscaling technique cannot cap-

ture non-stationarity that is not resolved by the GCM. In

addition, these projections do not account for any local land

surface changes, including land cover conversions, that

might contribute to local climate changes. In keeping with

these AES-averaged projections, reasonably strong consis-

tency was observed in total precipitation trends across the

studied sites (Supplementary Figure 1). There is site-to-site

variability in the magnitude of trends, and spatially interpo-

lated projections show some spatial structure (Supplemen-

tary Figure 1), but aside from an elevation effect, these

spatial patterns are not particularly systematic or consistent

across time periods, scenarios or GCMs.

3.2.2 | Change in temperature indices

Projected temperature trends were relatively consistent

across models, where both models showed a warming

and an increase in extremes (but decrease in FD10) that

rises from mid-21st century to late-21st century and is

highest in the late-21st century for RCP8.5 (Figure 6; Sup-

plementary Table 7). For the mid-21st century period,

there is relatively little difference between emissions

pathways, which is consistent with the understanding

that these trajectories diverge primarily in the second half

of the 21st century.

Projected changes are generally uniform across differ-

ent AESs for the minimum and maximum temperature

indices, but there is spatial structure for the threshold

indices (FD10 and SU25). For both, the change in num-

ber of days is projected to be smallest in AES1 than it is

in other AES, reflecting the fact that this low-lying AES

already has relatively few FD10 days and a large number

of SU25 days (Figure 6). There is also a tendency towards

stronger trends on the eastern side of the mountain and

smaller trends for the southern and western slopes (Sup-

plementary Figure 2). This pattern warrants further

investigation. Choke Mountain is located at the inter-

section of multiple atmospheric circulations, including

westerly winds associated with the Congo Air Stream and

south-easterly flow in from the Indian Ocean. Zonal

structure to projected climate trends could reflect shifting

influence of different airmasses or differences in trends

within those airmasses.

The IPSL simulation projects more dramatic trends

than MIROC5 for all indices except TXx (Figure 6). This
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is consistent with trends over the historical period (Sup-

plementary Table 4), in which IPSL showed more sensi-

tivity than MIROC5. The TXx result indicates that the

MIROC5 simulation still produces some extremely hot

days, although the other elements of the temperature dis-

tribution shift more modestly than they do in IPSL

(Figure 6c,j).

Importantly, the prospective temperature extreme

analysis showed that the future changes in climate

extreme indices are not only a simple mean shift, but also

a change in the shape of distribution and the variance.

The variance for mean minimum and maximum temper-

ature is presented in Figure 7. For MIROC5, maximum

temperature variance increases consistently from base-

line to mid-21st century to late-21st century (Figure 7, left

top), while minimum temperature variance is relatively

flat in baseline to mid-21st century before increasing in

late-21st century (Figure 7, left bottom).

For IPSL, minimum temperature also shows a steady

increase in variance from baseline to mid-21st century to

late-21st century (Figure 7, right bottom), but the IPSL

maximum temperature result is not consistent. The vari-

ance of mean maximum temperature decreased in the

mid-21st century and then increased in late-21st century

(Figure 7, right top). As this is the result of a single reali-

zation, the unexpected variance result in the mid-21st

century for IPSL could be a result of decadal variability in

that model realization. Analysis of a larger ensemble of

realizations would be required to determine whether this

signal is meaningful. A change in the variance can have a

larger effect on the frequency and intensity of extremes

than a change in the mean (Katz and Brown, 1992).

Supplementary Figures 3 and 4 show the generalized

extreme value (GEV) PDF for mean maximum and mini-

mum temperatures obtained from the two GCMs under

RCP8.5. As shown in the figures, the distribution of

values and the mean both change with time. For

instance, the mean and variance of maximum tempera-

ture at AES1 (Supplementary Figure 3, left top) shifted by

1.06�C and 3.43�C, and −0.25 and 0.13 for IPSL and

1.90�C and 5.13�C, and 0.19 and 0.31 for MIROC5 in the

mid and end period, respectively (Figure 7, left top, and

Figure 7, right top).

There are also higher order shifts in distribution pro-

jected over the 21st century. The kurtosis of the PDF

curve for maximum and minimum temperature, for
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example, shows variable changes through mid-century,

but by late-21st century, there is a tendency towards plat-

ykurtic distributions—generally flatter around the mean,

though with fewer extreme outliers relative to the

variance—that is indicative of an increase invariability

(Supplementary Figures 3 and 4).

3.2.3 | Complexity of agricultural impacts of
projected extremes

Many of the agronomic implications of projected changes

in temperature extremes can be viewed as intensified

extensions of impacts related to current warming trends.

Thus, the risks to temperate crops at high elevation and

heat and drought sensitive crops at low elevation of the

mountain will increase, while growing season length

may extend at high elevation AES. Some implications of

projections, however, are qualitatively different from

those of the moderate warming observed in recent

decades. For example, high temperatures in low elevation

AES are projected to exceed the maximum heat tolerance

of some currently grown crops, suggesting that appropri-

ate adaptation activities are required if agriculture is to

remain viable in these areas. Some of the viable adapta-

tion options in the lowland areas could be in situ water

harvesting activities that can reduce heat and moisture

stress, implementation of agroforestry practices to modify

the microclimate, working on genetic improvements for

heat and drought tolerance and crop switching. In addi-

tion to crop switching, significant management changes

might be required regarding irrigation availability and

frequency, control of newly emerging pests and the type

and timing of fertilizer application. These new challenges

carry implications for costs, resources and infrastructure.

Choke Mountain experienced a decrease in precipita-

tion extreme indices and an increase in temperature

extreme indices in the baseline period. The increase in

temperature in projected periods resulted in a smaller

number of FD10, which has negative implications for the

expansion and productivity of some perennial crops origi-

nated in the temperate region, such as apples. Temperate
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crops (including fruit trees and grape vines) require expo-

sure to some numbers of chilling hours, and with rising

temperatures, chilling hours will be reduced (Hatfield

et al., 2014). The positive change in TXx, SU25, TXn, TNx

and TNn would also result in negative effects on crop

production due to its influence on physiological pro-

cesses, resource utilization and water productivity. Rela-

tively few adaptation strategies are available to cope with

this situation; changes in crop selection could be the most

effective response.

The reduction in DTR reflects the fact that the mini-

mum daily temperature is projected to increase at a

higher rate than the maximum. This would affect temper-

ature dependent basic plant processes (photosynthesis,

dry matter production and dry matter partitioning) and

developmental processes. For example, tuber initiation in

potato, one of the major crops in the Choke Mountain,

depends on many biological processes, including carbon

partitioning, signal transduction and meristem determi-

nation, which, in turn, is affected by DTR. Low tempera-

ture promotes high C:N ratio and accumulation of more

dry matter at the tip of the stolen and promotes tuber ini-

tiation (Vreugdenhil et al., 2007). Research also indicates

that high night temperature during tuber initiation delays

tuber development, thus altering tuber mass distribution

by reducing the yield proportion of large tubers and low-

ering early harvest index, causing a significant yield loss

without interfering with photosynthesis (Kim and

Lee, 2019). Diurnal temperature variation is of particular

importance in many orchards in the development of sec-

ondary metabolites and production of high acid and high

sugar content as fruits' exposure to sunlight increases rip-

ening qualities while the sudden drop in temperature at

night preserves the balance of natural acids in the fruit

(Cohen et al., 2012). Projected reduction in DTR could

also affect the yield and quality of crops grown in the

watershed. Wider DTR also had significantly positive

effect on seed germination (Liu et al., 2013) and distribu-

tion of plant species (Rosbakh and Poschlod, 2015).

Several specific agronomic implications of trending

precipitation and temperature extremes have been noted

above. At the same time, it must be recognized that plant

response to climate change depends on complex interac-

tions between climate elements and between climate and

human activity. As temperatures increase over this cen-

tury, crop production areas may shift to the optimal tem-

perature range that is favourable for growth and yield

(Hatfield et al., 2011). There is an extensive literature that

demonstrates how extremes of temperature and precipi-

tation affect crop productivity in various climatic and

agricultural contexts. This includes work on the impacts

of temperature extremes on plant productivity (Craufurd

and Wheeler, 2009; Hatfield and Prueger, 2015) and on pol-

len viability, fertilization and grain or fruit formation

(Hatfield et al., 2014; Zhao et al., 2017). Increased variation

in precipitation, coupled with shifting patterns of precipita-

tion within the season will create more variation in soil

water availability, with potentially significant impacts for

crop yields (Hatfield et al., 2014). Such impacts are, how-

ever, location and crop specific, such that generalizing

impacts of extremes on crop production from one region to

another—or, for the tropical highlands, even from one

AES to another—can be misleading. Crops have cardinal

temperature ranges (Hatfield et al., 2011; Hatfield and

Prueger, 2015), and any shift in the location of means and

the distribution of the cardinal temperature would affect

growth, development, yield and quality of crops either

directly or indirectly through creating favourable condi-

tions for pest development and distributions (Hatfield et

al., 2014). Increasing temperatures generally cause culti-

vated plants to grow and mature more quickly, and if the

soil is not able to supply nutrients at required rates for

faster growing plants, then yield may be smaller, which

may, in turn, result in reduced grain, forage, fruit or fibre

production (Hatfield et al., 2014).

Further increases in temperature and changes in pre-

cipitation patterns will induce new conditions that will

affect insect populations, incidence of pathogens and the

geographic distribution of insects and diseases (Hatfield

et al., 2014; Patterson et al., 1999). Higher winter temper-

atures increase insect populations due to overwinter sur-

vival, while higher summer temperatures increase their

reproduction rates and allow for multiple generations in

each year (Ziska and Runion, 2007; Hatfield et al., 2014).

Moreover, the high number of very heavy precipitation

days (r20mm) and more total precipitation in the projec-

tion period would also impact planning of soil and water

conservation activities, infrastructure development and

farm management practices.

In general, in the present study, we note that different

AESs exhibit unique climate extremes that necessitate

proper identification and implementation of adaptation

options to maintain the sustainability of various systems.

Neither ENACTS nor GCMs dataset captured a fre-

quently occurring frost in the watershed. Moreover,

GCMs did not exactly capture the precipitation extreme

indices at the watershed level thought the impacts of

these extremes practically noticeable. Thus, further works

should be done to improve the predictability precipitation

extremes from GCM datasets. However, results of the

present analysis can be applicable in different parts of

Ethiopia and other regions, because there are many

watersheds with the same AES setup like our study

region in many parts of Ethiopia and other regions.
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4 | CONCLUSION

Results of the present analysis indicate that precipitation

indices showed decreasing trends in the baseline period

in observations, while downscaled GCMs project an

increasing trend in the mid and end of the 21st century.

Temperature indices showed an increasing trend in

observations and in both retrospective and prospective

periods under both GCMs and RCPs, with few excep-

tions. There is site-to-site variability in these results but

aggregating by the AES offers a way to characterize these

trends at an agronomically relevant unit.

Projected increases in precipitation indices in the

future periods, should they prove to be correct, and may

have both positive and negative implications for agricul-

tural practices and crop production in the area. The tor-

rential rain indicated by high r20mm will bring more soil

erosion, flooding and waterlogging in the area, which

will affect crop performance, growth and development. It

may also cause landslide and gully formation in sloping

AES like AES1, AES4 and AES5 that could pose signifi-

cant risks for agricultural lands, crops and households in

general unless drainages and waterways are properly

designed and constructed.

Projected changes in temperature extremes, in which

we might have greater confidence on account of stronger

GCM performance in the historical period, are also criti-

cal to cropping systems. The reduction in the number of

FD10 also will create ecological alterations and currently

grown crops, particularly in higher elevated AES

(AES4–5), will not be viable unless due care is taken in

the selection and introduction of low chilling requiring

varieties. The significant increase in hot/summer days

will also challenge crop production, particularly in hot

dry AES (AES1–AES3) because of the already high tem-

perature. The decrease in DTR will affect the quality of

many fruit trees (like apple and orange trees) grown in

the area and tuber and bulb formation in root (example

potato) and bulb (example shallot) crops grown in the

watershed. Additional warming threatens to bring the

temperature above the upper threshold limit for currently

growing crops. Warming will also increase potential

evapotranspiration and reduce water productivity, exac-

erbating competition for water during the dry season.

In assessing the reliability of GCM projections, both

GCMs generally agree with observations for trends in

temperature extremes in the historical period. However,

they generally do not match observed trends for precipi-

tation extremes. While this can be forgiven for single

realizations over a relatively short baseline period, the

result bears some resemblance to the “East Africa Para-

dox” that has been debated for East African spring rains.

There is the possibility, then, that models are

systematically biased in representation of precipitation

trends in this region. At the same time, the general pro-

jection that humid tropical areas like Choke Mountain

are expected to wet under global warming has a mean-

ingful theoretical foundation (as embodied in models).

So, the possibility that recent drying trends are ephem-

eral and will reverse in future decades cannot be

discounted. Agricultural adaptation planning in this

region will benefit from continued efforts to understand

recent trends and to improve GCM simulation of precipi-

tation variability. In conclusion, more research in predic-

tion of rainfall is required, and GCM for rainfall

predictions shall be refuted by having more observed data

across the East Africa region including the study area.
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