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Abstract

Tropical highland environments present substantial challenges for climate pro-
jections due to sparse observations, significant local heterogeneity and inconsis-
tent performance of global climate models (GCMs). Moreover, these areas are
often densely populated, with agriculture-based livelihoods sensitive to transient
climate extremes not always included in available climate projections. In this
context, we present an analysis of observed and projected trends in temperature
and precipitation extremes across agroecosystems (AESs) in the northwest
Ethiopian Highlands, to provide more relevant information for adaptation. Lim-
ited observational networks are supplemented with a satellite-station hybrid
product, and trends are calculated locally and summarized at the adaptation-
relevant unit of the AES. Projections are then presented from GCM realizations
with divergent climate projections, and results are interpreted in the context of
agricultural climate sensitivities. Trends in temperature extremes (1981-2016) are
typically consistent across sites and AES, but with different implications for agri-
cultural activities in the other AES. Trends in temperature extremes from GCM
projected data also generally have the same sign as the observed trends. For pre-
cipitation extremes, there is greater site-to-site variability. Summarized by AES,
however, there is a clear tendency towards reduced precipitation, associated with
decreases in wet extremes and a tendency towards temporally clustered wet and
dry days. Over the retrospective analysis period, neither of the two analysed
GCMs captures these trends. Future projections from both GCMs include signifi-
cant wetting and an increase in precipitation extremes across AES. However,
given the lack of agreement between GCMs and observations with respect to
trends in recent decades, the reliability of these projections is questionable. The
present study is consistent with the “East Africa Paradox” that observations show
drying in summer season rainfall while GCMs project wetting. This has an
expression in summertime Ethiopian rain that has not received significant atten-

tion in previous studies.
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1 | INTRODUCTION

The Ethiopian highlands are topographically and climati-
cally diverse. Mixed subsistence agriculture with limited
external input use is the dominant means of livelihood,
where both crops and livestock production are integrated in
traditional farming systems. Moreover, these areas are
highly affected and challenged by climate extremes.
Ethiopia, where the study area is located, has a long history
of extreme weather events that lead to crop failure, food
shortages and reduced or negative economic growth rates
(Block et al., 2008; World Bank, 2011; Mekasha et al., 2014).
Although the area receives high rainfall, the rain in these
regions is highly variable, and the events tend to be highly
erratic and typically come in the form of intense, erosive
convective storms (Nyssen et al., 2005; Zaitchik et al., 2012).

Over the past three decades, Ethiopia has experienced
numerous localized drought events and seven major
droughts, five of which resulted in famines (Philip et al.,
2018). For instance, the 2015/16 drought affected the
southeastern and eastern part of our study region and
caused significant and widespread acute food insecurity
(Philip et al., 2018). There is evidence that climate
extreme events, particularly droughts and floods, are on
the rise (Mann and Warner, 2017), and the warming cli-
mate may cause further increase (Teshome and
Zhang, 2019). The anticipated future climate variability
and change in extremes could accelerate already high
levels of land degradation, soil erosion, deforestation
(Fetene et al., 2014; Gessesse and Melesse, 2018), loss of
biodiversity and recurrent floods, which affect people and
infrastructure (World Bank, 2011; Wold Bank, 2019).

Given the exposure of highland agriculture to climatic
extremes, there is considerable interest in improving
understanding of current and projected trends in climate
extremes in this region. At the same time, the highly
localized nature of tropical highland climate variability
would result in high variability in trends and the agricul-
tural implications of these trends over short distances.
This poses a challenge for adaptation-relevant climate
projections. It is important not only to characterize trends
at a scale that is specific enough to highland agricultural
systems but also at a scale that is generally enough to
allow for a regional risk assessment and adaptation plan-
ning. Moreover, patterns and trends in climate extremes
should be interpreted in the context of local agricultural
systems to understand how changes in different climate
extreme indices (CEI) impact crops and production sys-
tems in a given agroecosystem (AES).

The relevance of climate extremes for agriculture, and
of CEI used for their characterization, is generally recog-
nized (Vogel et al., 2019). Many studies have applied one or
a combination of pre-defined CEI to examine trends in

extreme events in different regions of the world, including
Africa and Ethiopia. Global level studies revealed that
temperature-based indices showed a significant increase,
and maximum five-day precipitation and 95th percentile of
precipitation are projected to increase significantly in most
parts of the world (Sillmann and Roeckner, 2008). De los
Milagros Skansi et al. (2013) reported a significant warming
and wetting across the whole of South America since the
mid-20th century onwards. A study conducted in Georgia
also showed an overall increase in precipitation and tem-
perature extreme indices (Keggenhoff et al, 2014).
Mouhamed et al. (2013) did a climate extreme study in
West African Sahel and reported a general tendency of
decreased annual total rainfall and maximum number of
consecutive wet days. Gebrechorkos et al. (2019) did a cli-
mate extreme analysis over East Aftrica using the grided
data and reported an overall increasing trend in tempera-
ture indices and a mix of decreasing and increasing trends
in precipitation indices. Studies conducted on CEI trends in
Ethiopia have reported diverse results. Most studies indicate
significant increasing trends for temperature indices in
recent decades (Mekasha et al., 2014; Kiros et al., 2017;
Esayas et al., 2018a). For precipitation, some studies show a
decrease in CEI (Gebrechorkos et al., 2019), while some
studies show a mix of increasing and decreasing trends
(Degefu and Bewket, 2014), and some other studies showed
increasing trends (Shang et al., 2011). These differences
could be associated with the differences in spatial and tem-
poral coverage of the studies, particularly considering the
local character of climate in the highlands. Thus, localized
studies on climate extremes will benefit local farmers whose
livelihood is entirely dependent on agricultural activities
that necessitate the present study. Appropriate scale and
resolution of data are also critical. Several studies, to date,
in the region have concentrated on the analysis of indices
for climate extremes based on observational data from a
very limited set of weather stations. While others covered
very large areas, averaging over local heterogeneities, others
focused primarily on the changes of extremes in future cli-
mate projections (Sillmann and Roeckner, 2008). The limi-
tations of climate extreme studies in the area are well
documented in Gebrechorkos et al. (2019).

Unlike many other studies, our analysis considers the
unique differences between AES, and results are inter-
preted in terms of their implications for agricultural
activities in each AES. We also focus on climate extreme
indices deemed most relevant for local agriculture, and
adjust CEI thresholds where necessary to match relevant
indicators for local crops. Applying this perspective, our
analysis aimed to (i) analyse recent (1981-2016) observed
trends in precipitation and temperature extremes over a
tropical highland region based on AES, (ii) assess the per-
formance of selected global climate models (GCMs) to
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generate precipitation and temperature extremes, and
(iii) examine projections of AES-level changes in precipi-
tation and temperature extremes over the 21st century.

2 | MATERIALS AND METHODS

2.1 | Description of the study site

This study focuses in Choke Mountain and its constituent
peaks, located in the Blue Nile Highlands of northwest
Ethiopia. The watersheds of Choke Mountain cover an
elevation range from 800 to 4,200 masl and are located
within geographic coordinates of 9.75°-11.5°N and 37.8°-
38.33°E (Figure 1). The study area covers 19,915 km?, in
which 3.1 million people reside, with a population den-
sity of 161 people per km® Ninety percent of the
population lives in rural areas (http://www.csa.gov.et/
census-report/complete-report/census-2007). The region
is characterized by significant interannual climate vari-
ability, complex topography and associated local climate
contrasts, erosive rains and erodible soils.

The area also experiences intense land pressure due
to an increasing population and agriculture-based econ-
omy, which is entirely dependent on smallholder low-
input-output agriculture. Farming is predominantly a
crop-livestock mixed system that is operated by indepen-
dent farmers on small plots (Simane et al., 2012, 2013;
Zaitchik et al., 2012). Nitisols, Vertisols, Andosols and
Acrisols are dominant soil types of the area (Zaitchik
et al., 2012). Dry valleys, gently rolling, deep soil midland
plains and cool, wet alpine zones are found within a

of Climatology

short distance from the mountain, and complex topogra-
phy leads to strong local contrasts in precipitation and
temperature (Zaitchik et al., 2012). The topographic cli-
mate gradient ranging from warm to cool allows for the
production of diverse crops of both tropical and temper-
ate origins, which are highly relevant when considering
climate variability. Temperate origin crops at higher ele-
vations benefit from or are entirely dependent on season-
ally cold temperatures. Here, we apply the AES as an
agriculturally relevant unit of aggregation (Conway,
1985). The AES represents the intersection of a common
set of climate conditions, soil properties and farming sys-
tems and, thus, offers a unit that is relevant for analysing
and communicating impacts of climate on agriculture
(Simane et al., 2013). A brief description of the AES in
the mountain watersheds is presented in Table 1.

2.2 | Study approach

2.2.1 | Data type and source

Records of daily precipitation and minimum and maxi-
mum temperature were extracted from the Enhancing
National Climate Services (ENACTS) dataset. ENACTS is
a 4 x4 km gridded dataset reconstructed from weather
stations and meteorological satellite records from 1981 to
2016 (Dinku et al., 2014, 2016). ENACTS has been evalu-
ated extensively and has demonstrated strong perfor-
mance when evaluated at station locations across the
country (Dinku et al., 2014, 2016; Alemayehu and
Bewket, 2017). For this study, the Ethiopian National
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TABLE 1 Characteristics of agroecosystems of the Choke Mountain watersheds (adapted from Simane et al., 2013)
Traditional Dominant
Agroecosystem Farming system climatic zone soils Major crops
AES1: Lowlands and Abay Fragmented sorghum- Upper Kola Leptosols Sorghum, teff, maize, haricot
valley based extensive Cambisols bean
AES2: Midland plains with Intensive teff-based Lower Weyna Dega Vertisols Teff, durum wheat, barley,
black soil chickpea, grass pea
AES3: Midland plains with Intensive maize-wheat- Lower Weyna Dega Nitosols Wheat, maize, teff
brown soil based Alisols
AES4: Midland sloping lands ~ Semi-intensive wheat/ Upper Weyna Leptosols Wheat, teff, barley, Engido
barley based Dega—lower Dega Nitosols (Avena spp.)
Alisols
AESS5: Hilly and Potato/barley-based Upper Dega Leptosols Potato, barley, faba bean,
mountainous highlands Luvisols Engido

Meteorological Agency providled ENACTS data for
36 locations in Choke Mountain. In using a gold standard
hybrid gridded product (ENACTS) but doing so for
selected locations at which stations are available for
direct evaluation of the product, we are able to assemble
temporally complete records of confirmed reliability.

All GCM outputs used in this study are drawn from
the NEX-GDDP archive, which is a collection of down-
scaled CMIP5 simulations with a resolution of
0.25° x 0.25°. The producers used to prepare the dataset
are detailed in (Thrasher et al., 2012). Model output used
for projecting future trends was obtained from two GCMs
that have demonstrated the ability to capture climate
teleconnections relevant to the Ethiopian Highlands:
MIROC5 and IPSL CM5A LR (Bhattacharjee and
Zaitchik, 2015). GCM-derived estimates of daily precipi-
tation and minimum and maximum temperatures were
obtained from the NASA Earth Exchange Global Daily
Downscaled Projections (NEX-GDDP) dataset (van
Vuuren et al., 2011; Thrasher et al., 2012).

We note that these two GCMs do not perform particu-
larly well on conventional metrics of bias with respect to
historical observations, but the fact that they are able to
capture some elements of large-scale climate influence on
the region suggests that they are reasonable choices for
generating future projections (Siam and Eltahir, 2017). In
addition, the models were selected, because the available
realizations of the two models diverge significantly from
one to another. In this sense, the two capture the uncer-
tainty present in climate projections for the region. The
NEX-GDDP data have been corrected for biases using bias-
correction and spatial disaggregation (BCSD), including
empirical quantile mapping (Piani et al., 2010; Thrasher
et al., 2012; Maraun, 2016; Cannon, 2018; Navarro-racines
et al., 2020). The NEX-GDDP bias correction is limited by
its reliance on a global reference dataset that is not

optimized for Ethiopia. Thus, we perform a second bias
correction to adjust NEX-GDDP to ENACT using an addi-
tive (delta) method for temperature and multiplication ratio
for precipitation data (Berg et al., 2012). This makes GCM
results statistically consistent with observations and allows
us to quantify their projected changes. The bias-corrected
GCM data were divided into two parts: near-term projection
(2017-2050) and late-21st century projection (2051-2095).
For evaluation, we construct a retrospective GCM dataset
using the “historical” simulation—i.e., the CMIP5 20th cen-
tury experiments, which run through 2005—merged with
RCP4.5 for 2006-2016 to get records representative of the
1981-2016 period of ENACTS availability.

2.2.2 | Data preparation and quality control
Homogeneity and change points for ENACTS dataset
were checked using the penalized maximal F (PMF) test
(Wang, 2008a, 2008b). The PMF test is used as the stan-
dard homogeneity and change point tests (like standard
normal homogeneity [SNH] test) did not detect changes
at any location in the data series, and a reference series
for the test is not available. RHtestsV3 and
RHtests_dlyPrcp software packages were used for tem-
perature and rainfall, respectively. Details of these tools
are documented in the literature (Wang et al., 2010;
Wang and Feng, 2013).

2.2.3 | Climate extreme indices studied

Using the AES as the lens for analysis, we examine a
suite of standard CEI in observations and in selected
downscaled GCMs, considering both the recent past and
projections for the mid- and late-21st century. As
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temperature and precipitation are among the major bio-
physical factors that affect crop production (Hatfield and
Prueger, 2015), we focus on extremes related to these two
variables. Accordingly, we calculate a suite of indices
defined by the Expert Team on Climate Change Detec-
tion and Indices (ETCCDI) (Table 2).

These include two agronomically important indices of
temporal rainfall variability, consecutive dry days (CDD)
and consecutive wet days (CWD), threshold indices for
high (“summertime” = SU) temperature (SU25) and for
two levels of daily rainfall extreme (days with more than
10 mm precipitation (R10mm) and 20 mm precipitation
(R20mm), nine indices of absolute temperature or rainfall
amount (TXx, TNx, TXn, TNn, DTR, Rxlday and Rx5day,
prcptot and sdii) and four indices of percentile tempera-
ture (TX10p, TX90p, TN1Op and TN9Op) (Abatan
et al., 2018). In addition, one regionally specific tempera-
ture extreme (threshold index) was defined, which we
call “chill days” (FD10). This index was used to examine
the number of days when minimum temperature is less
than 10°C. This threshold is selected, because it is the

of Climatology

base temperature for most tropical crops below which
chilling injury may occur, and the upper threshold for
the chilling temperature requirement of temperate crops.
Many temperate fruits and vegetables require prolonged
exposure to a cold (a chilling temperature) to trigger
flower bud induction in a process called vernalization
(Atkinson et al., 2013; Li et al., 2013).

2.2.4 | Data analysis

Extremes trend analysis over the retrospective analysis
period (1981-2016) was conducted using the Mann-
Kendall trend test. Where autocorrelation was not signifi-
cant, a standard Mann-Kendall trend tests were applied.
When serial autocorrelation was found to be significant,
a trend test was performed following the modified Mann-
Kendall Test. The magnitude of the trend change was
estimated using Sens's slope estimator (Mann, 1945;
Sen, 1968) as implemented in R-package Rclimdex 1.0
(Karl et al., 1999).

TABLE 2 Definitions of indices used in the study (adapted from Karl et al., 1999)

Indices Type Name Definition Unit
Temperature indices
SU25 Threshold Summer days Annual count of days when TX >25°C Days
FD10* Threshold Chill days Annual count of days when TN <10°C Days
TXx Absolute Max. Tmax/warmest day Maximum of daily maximum temperature °C
TXn Absolute Max. Tmin/coldest day Minimum of daily maximum temperature °C
TNx Absolute Min. Tmax/warmest night Maximum of daily minimum temperature °C
TNn Absolute Min. Tmin/coldest night Minimum of daily minimum temperature °C
TX10p Percentile Cold days Percentage of time when daily TX <10th percentile %
TX90p Percentile Warm days Percentage of time when daily TX >90th percentile %
TN10p Percentile Cold nights Percentage of time when daily TN <10th percentile %
TN90p Percentile Warm nights Percentage of time when daily TN >90th percentile %
DTR Absolute Diurnal temperature range Monthly mean difference between daily max and min °C
Precipitation indices
CDD Duration Consecutive dry days Maximum number of consecutive days with RR < 1 mm Days
CWD Duration Consecutive wet days Maximum number of consecutive days with RR > 1 mm Days
R10mm Threshold Heavy rainfall days Annual count of days when PRCP > 10 mm Days
R20mm Threshold Very heavy rainfall days Annual count of days when PRCP > 20 mm Days
Rxlday Absolute Maximum one-day rainfall Maximum amount of one-day rainfall in a year Mm
Rx5day Absolute Maximum five-day rainfall Maximum amount of five-day cumulative rainfall in a Mm
year
SDII Absolute Simple daily intensity index Daily precipitation amount on wet days mm/day
Prcptot Absolute Total precipitation Annual total rainfall in wet days Mm

Note: TX, TN, and RR are daily maximum temperature, minimum temperature, and rainfall, respectively.

#User-defined temperature index.
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The Mann-Kendal test was applied using the formula:

5=57 3 sen(y-x) 1)
k=1j=k+1

where n = number of data points, x; and x; = data values
in time series k and j (j > k), and sgn(x; — x;) = sign func-
tion as:

1 ifxj—x;>0
sgn(xj—x)=¢ 0 ifx;—x=0 (2)
-1 ifxj—x<0

The variance of S is computed as:

n(n—-1)(2n+5) - gqj tp(tp—1)(2tp+5)
p=1

VAR(S)= 5

(3)

where g = number of tied groups, and ¢, = the number of
data points in the pth group.
The values of S and VAR(S) were used to compute

the test statistic Z as follows:

S-1
VAR(S)
Z,= 0
S+1
VAR(S)

if >0

if S=0 (4)
if S<0

Positive/negative Z; indicates an upward/downward
trend for the period.

Sen's slope estimator (Sen, 1968) was used to estimate
the slope of the trend. Sen's method can be used in cases
where the trend can be assumed to be linear and is equal to:

f()=Q+B (5)

where f(t) is a continuous monotonic increasing or
decreasing function of time, Q; is the slope, and B is a
constant. The slopes of all data value pairs were calcu-
lated to get the slope estimate Q in Equation (3) as:

Qi=x{_i" fori=1,..,N (6)

where X; and X are the data values at times j and
k (j > k). Hence, we only have one datum in each period,
and N is computed as:

(7)

where n is the number of time periods. The N values of
Q; were ranked from smallest to largest, and the median
of slope or Sen's estimator was computed as (Gocic and
Trajkovic, 2013):

Q[M] if Nisodd
Qmed= Q[ ]+Q[N+2] . (8)

if Nis even
2

Positive/negative values of Q; indicate an increasing/
decreasing trend, respectively (Salmi et al., 2002). Confi-
dence intervals (C,) about the time slopes were used to
test significance of the trend and were computed as fol-
lows (Gilbert, 1987):

Ca :ZI—a/Z Var(S) (9)

where Var(S) is defined in Equation (3), and z;_g/, is
obtained from the standard normal distribution table.

The Wilmot index was used to evaluate the perfor-
mance of GCMs to reproduce extreme indices
compared with indices generated from ENACT data. The
Wilmot index of agreement (d) was calculated as
(Willmott, 1982):

i( 0,2
d=1- | =——— (10)
> (1P|+l0n)’

where O; is the index computed from ENACT data value
for the ith observation, P; is the index value computed
from GCMs data for the ith observation, O is the mean of
the index computed from ENACT data, and » is the num-
ber of observations, P; =P, — Oand O; = O; — O.

Changes in climate extremes in the mid and end
terms of the century relative to the baseline period were
computed as (Feyissa et al., 2018):

I,—T
AI="""2x100 (11)
Iy

for precipitation indices and
Al=I,-1Iy (12)

for temperature indices, where AI = change in index,
I, = index in each period, and I, = index in the baseline.
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The generalized extreme value (GEV) distribution
was used to understand the change in the distribution of
variance of some extreme indices using the following for-
mula (Omey et al., 2009):

G(Z)=exp{—(1+§(%)>_%} (13)

For 1 + &(z — p)/o > 0, u = location parameter, ¢ = scale
parameter and ¢ = shape parameter.

Finally, changes in extreme values for selected indices
at landscape level are interpolated from site values. Inverse
distance weighting (IDW), a commonly used approach for
estimation of missing data in hydrology and geographical
sciences (Teegavarapu and Chandramouli, 2005), was
applied using ArcMap 10.6.1. The IDW interpolated values
were computed as:

(14)

where 60, is the observation at the location m, n is the
number of stations, 6; is the observation at station i, d,,;
is the distance from the location of station i to location
m, and k is referred to as friction distance, which can
range from 1.0 to 6.0 and is fixed at 2.0 in this study.

3 | RESULTS AND DISCUSSION

3.1 | Historical extreme analysis

3.1.1 | Precipitation indices

Total precipitation and all precipitation-related
extremes exhibit a significant topographic dependence
across Choke Mountain. From the ENACTS data, total
rainfall, rainfall intensity and number of CWD showed
an increasing trend as one moves from low elevation
AES (AES;) to high elevation AES (AESs). Meanwhile,
CDD declined with increase in elevation (Figure 2).
These patterns are unsurprising, and they capture the
fact that AES; is a relatively dry, drought prone area, in
which prolonged CDD are common and pose signifi-
cant risks to agricultural production, while high eleva-
tion AES are wetter and more vulnerable to destructive
rainfall events, snows, storms and associated erosion.
Analysis of downscaled data from both MIROCS5 and
IPSL generally captures the spatial pattern observed
with the ENACTS data at AES scale (Supplementary

of Climatology

Table 8), as NEX-GDDP downscaling resolves the gen-
eral topography of Choke Mountain.

Trends in total precipitation and precipitation
extremes derived from ENACTS data indicate that rain-
fall amount and rainfall extremes generally decreased in
Choke Mountain over the study period, with some het-
erogeneity across sites (Figure 2; Supplementary Table 1).
At landscape level, most studied sites in western and
northern parts of Choke Mountain showed statistically
significant trends in prcptot unlike those located in the
southern slope of the mountain (Figure 2a).

Statistically significant decreasing trends in prcptot
were more prevalent in high and low elevation AES than
in the middle elevations. About 40%, 22%, 25% and 46%
of the sites in AES;, AES,, AES; and AESs, respectively,
showed a significant decreasing trend. Only three sites
(one in AES, and two in AESs) showed a significant
increasing trend in prcptot (Figure 2a).

Trends in other rainfall extreme indices generally follow
the pattern of total precipitation. Statistically significant
trends were most prevalent for sdii, which showed a signifi-
cant decreasing trend in all AES and sites except for a few in
the west, southwest, east and northeast part of watersheds
(Figure 2d and Supplementary Table 1). In 80%, 89%, 29%
100% and 82% of the sites, there was a significant decreasing
trend of sdii in AES;-AESs, respectively (Supplementary
Table 8). Statistically significant declines of rx5day were
most prevalent for low and high elevation AES (Figure 2c),
which were consistent with the pattern observed for prcptot.
Results for other intensity indices (rxlday, rlOmm and
r20mm) generally agree with this pattern, with the greatest
prevalence of statistically significant declines in low and
high elevation AES. But these metrics show some heteroge-
neity in the sign of statistically significant trends (Figure 2b,
e,f), with a few stations showing statistically significant posi-
tive trends (Supplementary Tables 1 and 8).

Collectively, the results of prcptot and rainfall inten-
sity indices showed a picture of general drying across all
of Choke Mountain with some localized heterogeneity.
The results also indicate that change in rainfall extremes
is most prevalent at sites located in low and high AES,
which also happen to be the most climate vulnerable
parts of the mountain (Simane et al., 2016). Agronomi-
cally, the decline in prcptot in the lower elevation AES
poses a significant risk to crop production, as the area
already receives relatively low rainfall, and any further
reduction will bring moisture stress. This is particularly
true for the beginning and end of the growing season
(Frahm et al., 2004; Eggen et al., 2019). In the higher
AES, the reduction in prcptot can affect agricultural
water management, particularly through reducing the
volume of rivers and streams that are used for small-scale
irrigation during the dry season. The reduction in rainfall
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FIGURE 2 Trends of rainfall
(a) Preptot z (b) rx1day N z . . i
g A z indices on Choke Mountain (1981~
= b 2016): (a) total precipitation,
(b) maximum one-day precipitation,
z z (c) maximum five-day precipitation,
£ s
i g (d) simple daily intensity index,
(e) heavy precipitation days, (f) very
heavy precipitation days,
; ABS ; (g) consecutive dry days, and (h)
z =; : consecutive wet days. Downward/
%:,‘ : upward arrows represent decreasing/
‘
— B increasing trends, and * indicates a
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intensity (rxlday and rx5day) may have some positive higher AES also associated with rainfall reductions at the
impacts on soil fertility via reducing soil erosion and  beginning and end of the growing season poses a produc-
landslide risk. However, the reduction in prcptot in tion risk for long season crops.
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TABLE 3

Consecutive dry days (CDD)

of Climatology

Trend test of CDD and CWD in the Choke Mountain Watersheds (1981-2016)

Consecutive wet days (CWD)

Main rain season Dry season Small rain season Main rain season Dry season Small rain season
AES Z Slope z Slope Z Slope zZ Slope z Slope VA Slope
1 -0.98 —0.04™ 125  0.36™ 247 0.44" 0.76 0.05™ 0.93  0.030™ 216 0.064"
2 -1.54  —0.07™ 202 057 376 0.56 2.02 0.33" 0.81  0.025™ 1.81 0.053"
3 —-2.66 -0.09™" 256 0.67  3.24 0.53™" 0.95 0.12" 0.64 0017"° 041 0.018™
4 -2.59 -011" 095 020" 247 0.43" 1.06 0.17™ 0.96  0.032™  0.52 0.019"
5 -1.95 -0.11° 0.78  0.20™  1.93 0.25" 0.99 0.19™ 0.07  0.024™  0.82 0.025™

Abbreviations: AES, agroecosystem; ns, non-significant (p > 0.1); S, slope of the line; Z, Mann-Kendal test.

* ** and ***significant at 10%, 5%, 1% and 0.1% probability respectively.

Trends in CWDs and CDDs reveal another aspect of
precipitation change. The observed increase in CDD at
most sites across AES (Figure 2g; Supplementary Table 8)
is roughly consistent with the observed decreases in pre-
cipitation indices. Interestingly, however, the prevalence
of statistically significant increase in CDD is greatest in
AES;, located at mid-elevation, which is the opposite of
the spatial pattern of trend prevalence seen for other met-
rics (Figure 2g). Even more surprisingly, CWD trends,
though quite mixed site-by-site (Figure 2h; Supplemen-
tary Table 1), show a tendency towards statistically signif-
icant increases, which are seen most frequently in middle
elevation AES (AES,_4). This increase in CWD in the
context of declining prcptot indicates that rainy season
precipitation is becoming more clustered in time, with
fewer heavy rainfall days but increased number of wet
days (Supplementary Figure 5).

Agronomically, these changes in CDD and CWD have
several implications. The CWD result implies a shift
towards more days with light rain, which is also confirmed
by the analysis of the number of rainy days (Supplemen-
tary Figure 5). This has potential benefits, particularly for
shallow rooted crops that are sensitive to water stress.
Farmers describe such low intensity episodes as “a rain nei-
ther damages the leaf nor erodes the soil”. From a manage-
ment perspective, these conditions are also favourable for
top dressing of additional fertilizer, but consistently muddy
conditions can also interfere with other field management
operations. An increase in CWD in July and August may
specifically benefit Teff cultivation in AES,, as a more fre-
quent wet condition is required for land preparation and
planting on Vertisols (heavy clay soils). Impacts of an
increase in CDD depend very much on crop type and
timing. An increase in CDD during the planting season
can affect germination and emergence, and lead to crop
failure and thereby either a need to replant or to a signifi-
cant decrease in plant population and subsequent yield.
However, most CDD occur in the dry season.

Considering the agricultural implications of seasonal
CDD and CWD, AES level seasonal analysis was per-
formed for these metrics. The analysis revealed that CDD
in the main rain season showed a significant decreasing
trend in AES; 5, and a non-significant decreasing trend
was observed in AES, ,,q » (Table 3 and Supplementary
Figure 6a). AES, ; and all AES showed a significant
increasing trend for dry and small rain seasons, respec-
tively. An increase in CDD in dry season can facilitate
harvest operations. A drastic increase in the dry season
and small rain season CDD can impact base flow in
streams and can also harm perennial crops, as the soil
moisture falls below the permanent wilting point for long
period. Moreover, the small rain season is important for
planting of potato in AES, ,nq 5 and the long season crops
like Maize and Sorghum in AES; .4 3, and the increasing
trend in CDD will bring drought, which significantly
affect growth and yield. An increase in CDD in
December-February, however, can facilitate harvest
operations. Seasonal analysis for CWD showed that only
AES, for the main season and AES; ,.q » for the small
rain season showed a significant increasing trend, and
the rest seasons and AES showed insignificant positive
trend (Table 3).

Results of the present study are consistent with the pre-
vious findings regardless of the spatial and temporal varia-
tions. For instance Gebrechorkos et al. (2019) reported the
increasing and decreasing trends precipitation indices over
Ethiopia, Kenya and Tanzania without any general pattern.
Contrary to this, a study conducted in southwest Ethiopia
reported a significant increase in R20mm (Degefu and
Bewket, 2014). Another study in the central rift valley of
Ethiopia showed insignificant trend change in most of the
sites studied (Mekasha et al., 2014). A study conducted in a
similar region reported insignificant trend change in pre-
cipitation extremes (Shang et al., 2011).

The ability of bias corrected and downscaled GCMs to
capture characteristics of precipitation extremes was
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TABLE 4 Comparison of precipitation indices computed from GCMs with ENACTS dataset
GCMs Metrics CDD CWD rlI0mm r20mm rxlday rx5day Prcptot Sdii
IPSL-CM5A-LR d 0.66 0.25 0.48 0.96 0.49 0.38 0.98 0.5
pbias 12 —49 31 =5 -37 =71 4 20
MIROCS5 d 0.66 0.16 0.41 0.86 0.25 0.36 0.98 0.7
pbias 10 39 34 =19 -113 —60 4 10

Note: d, Wilmot index of agreement; pbias, percentage of bias.

investigated by averaging point-wise comparison across all
sites. Table 4 shows the Wilmot index of agreement (d) and
percent bias (pbias) for indices computed from ENACTS
data and from NEX-GDDP bias-corrected realizations of
the IPSL and MIROC5 GCMs. Comparisons for prcptot
and r20mm are quite strong, as would be expected for
models that were bias corrected for total precipitation
(Table 4). Results are mixed for other indices. Although
NEX-GDDP includes quantile matching, the approach does
not necessarily capture the frequency of very extreme
events. Results of CDD are relatively good as well (d > 0.5,
and pbias on order of 10%), perhaps because of the long
dry periods that occurred in this region during the winter
season. Other indices prove to be more difficult for the
GCMs, even after bias correction and downscaling. For
example, calculated d is very low (<0.5) while the percent
bias is very large for most of the precipitation indices stud-
ied, such as CWD, r10mm, rxlday and rx5day (Table 4).
Interpretation of trends in GCMs over the historical
period must be approached with caution. The retrospec-
tive analysis period is 36 years long, which is sufficient
for many trend analyses, but calculated trends could be
the product of decadal variability in addition to long-term
change. As the GCM realizations used here are century
scale runs that are initialized from equilibrium condi-
tions, single realizations of a model may catch decadal
variability in different phases from what was observed in
the historical record. With this caveat in mind, it is still
noteworthy that downscaled GCM simulation included
in this study shows evidence of the reductions in total
precipitation and precipitation extremes that were
observed in ENACTS data (Supplementary Table 5). In
most cases, the downscaled GCMs show no significant
trend, and in some cases, MIROC5 shows significant
increases in precipitation extremes where observations
tend towards significant decreases. The only point of
agreement is in CWD, where both IPSL and ENACT have
statistically significant increases dominating over
decreases (Supplementary Tables 5 and 8). The contrast
between GCM results and ENACT observations does not
disqualify these GCMs for use in future climate projec-
tion. Both have shown some performance strengths rele-
vant to Blue Nile basin climate simulation (Bhattacharjee

and Zaitchik, 2015), and as noted, 36 years is a relatively
short period for model-observation trend comparisons. The
absence of statistically significant trends in the downscaled
GCMs, however, does point to a potential limitation in our
application of GCMs to studies of extremes on this scale.
While both downscaled models are able to capture extremes
according to the indices used in this analysis, albeit with
some substantial bias relative to observations (Supplemen-
tary Table 8), the downscaling approach is stationary in
time. Insomuch as trends in extremes might be influenced
by shifts in local dynamics in response to a large-scale cli-
mate change forcing (i.e., locally nonstationary dynamics);
the downscaled GCM outputs used in this study will miss
some dynamics of local change.

3.1.2 | Temperature indices

Compared with precipitation indices, temperature indices
and trends are more coherent in observations and consis-
tent between observations and models. The distribution
of mean values of all extreme indices follow expected ele-
vation gradients. SU25 is highest in AES; and lowest in
AESs, with annual increasing by 1.43-2.8 and 0.99-
2.51 days/year, respectively. In contrast, FD10 is highest
in AESs (201 days with a reduction of 2.01-3.7 days/year)
and lowest in AES, (reduced by 1.22-2.62 days/year). All
TXx, TXn, TNx and TNn show highest mean values in
AES; and lowest mean values in AESs (Figure 3 and Sup-
plementary Tables 2 and 9).

A general warming in recent decades is observed,
which resulted in positive trends in SU25, TXx, TXn,
TNx, TNn, TX90P and TN10P, while FD10, TX10P and
TN10P showed a decreasing trend, with some spatial var-
iability in the significance of trends (Figures 3 and 4 and
Supplementary Tables 2 and 3). DTR showed both signifi-
cant increasing and decreasing trends for sties in AES;_3
and a significant increasing trend in AES,_s (Supplemen-
tary Table 4 and Figure 4¢). Between the GCMs, MIROC5
showed a significant decreasing trend in all AES, and
IPSL showed insignificant trend in all AES. In general, a
higher significant trend in temperature extremes is
observed in higher elevation AES (Figure 3 and
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Supplementary Table 2). The magnitude of these trends
differs substantially by location and AES (Figures 3 and 4
and Supplementary Tables 2 and 3).

of Climatology

TNn in some sites (19%) showed a decreasing trend
that reflects an increase in temperature variance, which
can cause an increase in extreme cold events despite of
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increases in mean temperature (Anav et al., 2010;
Medvigy et al., 2012).

The ability of downscaled GCMs to reproduce tem-
perature indices is better than precipitation indices in

most cases (Table 5). This is consistent with the general
understanding that temperature, a smoothly varying field
for which underlying physical processes are relatively
well understood, is better captured by GCMs. This could

(a) TN10p z (b) TN9Op z
N | N |s
4 4
A s‘ A s‘
& &
= =
z z
S s
*® ®
3 3
=l =l
& s
z z
AES E AES E
= o
|} g |k g
I - - B =
s Ik
B [
| E B
37°0'0"E 37°42'0"E 38°24'0"E 37°0'0"E 37°42'0"E 38°24'0"E
(¢) TX10p
z (d) TX90p 4
° N [
= =3
§ A §
z z
e s
g 3
= >
z z
AES ; AES ;
I g I g
Il - B
s (E
[ -
B B
37°0'0"E 37°42'0"E 38°24'0"E 37°0'0"E 37°42'0"E 38°24'0"E

(¢) DTR

AES

X
| E
[
. -
__E

10°48'0"N 11°20'0"N

10°16'0"N

37°0r'0"E 37°42'0"E

38°24'0"E

FIGURE 4 Trends of temperature indices in Choke Mountain (1981-2016): (a) TN10P, (b) TN9OP, (c) TX10P, (d) TX90P, and (e) DTR.
Downward/upward arrows represent decreasing/increasing trends, and * indicates a significant trend [Colour figure can be viewed at

wileyonlinelibrary.com]

2SUAOIT suowwo)) aanear) ajqeorjdde ayy £q pauraaoS are saonIe Y asn Jo sa[nI 10J AIeIqr Aul[uQ KJ[IAN UO (SUONIPUOD-PUB-SULIA)/WO0d' K[1m" K1eIqIjauljuo//:sdny) suonipuo) pue swd [, ay) 228 [7z0g/¢1/8¢] uo Kreiqry auruQ Lapip ‘Ansioatun sunydoy suyor £q g/ ¢/ 90070010 1/10p/wod Ka[im K1eiqrjaurjuo’sjauy//:sdny woiy papeoumod ‘v ‘2702 ‘8800L601



BIRHAN ET AL. International Journal S
of Climatology EJRMets
TABLE 5 Comparison of temperature indices computed from GCMs with ENACT dataset
GCMs Metrics SU25 FD10 TXx TXn TNn TNx TX10p TX9%p TN1Op TN90p DTR
IPSL-CM5A-LR  d 0.91 0.81 0.99 0.99 0.46 1 0.18 0.2 0.14 0.2 0.59
pbias 14 -39 0 0 17 0 3 =5 -1.7 -2 3
MIROCS5 d 0.92 0.85 0.93 0.87 0.15 0.98 0.17 0.12 0.17 0 0.4
pbias 19 =37 =3 4 37 2 5 -3 0.1 -0.3 25

Note: d, Wilmot index of agreement; pbias, percentage of bias.

be because precipitation exhibits high spatial and tempo-
ral variations that cannot be captured by GCMs.

While TXx, TXn and TNx are quite well captured by the
GCMs, however, there are substantial biases for SU25 and
FD10, which are both threshold indices, and TX10P, TX90P,
TN10P and TN90OP, which are percentile indices, and DTR,
which is sensitive to even modest bias in GCM representa-
tion of temporal variability in temperatures. In this case, both
GCMs have a positive bias for SU25, TN90P and TX90P and
a negative bias for FD10, TX10P, TX90P and DTR,
suggesting that the bias correction and downscaling process
overestimates the warm tail and underestimates the cold tail
of the temperature distribution relative to ENACTS data.
Interestingly, TNn and DTR show significant positive bias in
both GCMs. This is consistent with the FD10 result, and it
suggests that the downscaled GCMs have a particular prob-
lem capturing cold extremes in this region.

For temperature trends, GCMs generally reproduce the
positive trends observed in ENACTS data (Supplementary
Table 5), albeit with less ability to capture AES-level vari-
ability in the prevalence of statistically significant trends.
This lack of spatial structure in trends indicates that the
GCMs do not resolve processes relevant to differing
warming trends across Choke's elevation gradient. Down-
scaling can bring the models into agreement with observa-
tions for the spatial structure of mean values in
temperature extremes (Table 5), but the BCSD downscaling
method cannot introduce nonstationary processes that are
not resolved by GCMs. This fact should be kept in mind
when applying downscaled GCM analyses to studies of cli-
mate trends and vulnerabilities. Over the period of analysis
MIROCS5 shows fewer significant trends than IPSL, indicat-
ing that this realization of MIROC5 had a lower overall
warming trend than IPSL for this region.

Trends in temperature indices could have significant
implications for crop production in the region. The
decrease in FD10 in high elevation areas will significantly
hinder the production of cool season crops, such as apples,
which require cold days to initiate flower buds via vernali-
zation, and hence, their orchards will face reduction of
yield or increase of non-viability as the number of
FD10 days drops. On the other hand, reduction in the risk
of frost and other cold damage could benefit agriculture by

extending growing seasons and allowing for introduction
of cold-sensitive plants higher on the mountain. The
increase in temperature in higher AES will also hasten
plant growth, potentially allowing for double crop cultiva-
tion in a year. The increase in SU25 in lower elevation AES
will bring a challenge for crop production, as the higher
temperature causes heat stress coupled with an increase in
evapotranspiration and moisture stress.

Results of the present study are consistence with the find-
ings of previous studies. A study conducted in east African
region showed that warm days and nights, warm spell dura-
tion indicator and summer days showed a significant increas-
ing trend, whereas cold days and nights showed a significant
decreasing trend (Gebrechorkos et al., 2019). Another study
conducted in the central rift valley of Ethiopia showed a sig-
nificant increasing trend for warm indicators and a signifi-
cant decreasing trend for cold-related indices (Mekasha
et al., 2014). A study conducted in southern Ethiopia also
showed a significant increasing trend in both warm and cold
indicator indices in high and low altitude areas unlike the
mid-altitude areas (Esayas et al., 2018a).

3.2 | Future extreme analysis
3.2.1 | Projected change in precipitation
indices

The ability of selected GCMs to reproduce precipitation indi-
ces in the historical period is shown in Table 4, and only
indices showing strong agreement with ENACTS dataset
indices are selected for the projected period. The primary
result from downscaled projections of future precipitation
extremes is that both models project wetting across Choke
Mountain over the 21st century (Figure 5; Supplementary
Table 3; Supplementary Figure 7).

Interestingly, for total precipitation and very heavy
precipitation days, MIROC5 (Figure 5b,d) shows some-
what stronger trends than IPSL (Figure 5a,c), particularly
for mid-century and moderate emissions (RCP4.5-M).
This contrasts with the fact that IPSL has stronger tem-
perature trends in the retrospective period and, as will be
discussed later, in its projections. For the case of these
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two model realizations, then, change in precipitation
extremes does not scale with change in temperature. As
expected, changes are larger for the high emissions sce-
nario (RCP8.5) and later in the 21st century (end [E] vs.
middle [M] in Figure 5).

The results show relatively little contrast between AES,
though trends are slightly stronger for higher elevation AES
in most cases. Contrasts between AES in these downscaled
GCM projections, however, may be overly smoothed. As
noted previously, the downscaling technique cannot cap-
ture non-stationarity that is not resolved by the GCM. In
addition, these projections do not account for any local land
surface changes, including land cover conversions, that
might contribute to local climate changes. In keeping with
these AES-averaged projections, reasonably strong consis-
tency was observed in total precipitation trends across the
studied sites (Supplementary Figure 1). There is site-to-site
variability in the magnitude of trends, and spatially interpo-
lated projections show some spatial structure (Supplemen-
tary Figure 1), but aside from an elevation effect, these
spatial patterns are not particularly systematic or consistent
across time periods, scenarios or GCMs.

3.2.2 | Change in temperature indices

Projected temperature trends were relatively consistent
across models, where both models showed a warming

and an increase in extremes (but decrease in FD10) that
rises from mid-21st century to late-21st century and is
highest in the late-21st century for RCP8.5 (Figure 6; Sup-
plementary Table 7). For the mid-21st century period,
there is relatively little difference between emissions
pathways, which is consistent with the understanding
that these trajectories diverge primarily in the second half
of the 21st century.

Projected changes are generally uniform across differ-
ent AESs for the minimum and maximum temperature
indices, but there is spatial structure for the threshold
indices (FD10 and SU25). For both, the change in num-
ber of days is projected to be smallest in AES; than it is
in other AES, reflecting the fact that this low-lying AES
already has relatively few FD10 days and a large number
of SU25 days (Figure 6). There is also a tendency towards
stronger trends on the eastern side of the mountain and
smaller trends for the southern and western slopes (Sup-
plementary Figure 2). This pattern warrants further
investigation. Choke Mountain is located at the inter-
section of multiple atmospheric circulations, including
westerly winds associated with the Congo Air Stream and
south-easterly flow in from the Indian Ocean. Zonal
structure to projected climate trends could reflect shifting
influence of different airmasses or differences in trends
within those airmasses.

The IPSL simulation projects more dramatic trends
than MIROCS for all indices except TXx (Figure 6). This
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FIGURE 6 (a-n) Change in temperature indices in the mid and end of the 21st century

is consistent with trends over the historical period (Sup-
plementary Table 4), in which IPSL showed more sensi-
tivity than MIROCS. The TXx result indicates that the
MIROCS5 simulation still produces some extremely hot
days, although the other elements of the temperature dis-
tribution shift more modestly than they do in IPSL
(Figure 6c,)).

Importantly, the prospective temperature extreme
analysis showed that the future changes in climate
extreme indices are not only a simple mean shift, but also
a change in the shape of distribution and the variance.
The variance for mean minimum and maximum temper-
ature is presented in Figure 7. For MIROCS5, maximum
temperature variance increases consistently from base-
line to mid-21st century to late-21st century (Figure 7, left
top), while minimum temperature variance is relatively
flat in baseline to mid-21st century before increasing in
late-21st century (Figure 7, left bottom).

For IPSL, minimum temperature also shows a steady
increase in variance from baseline to mid-21st century to
late-21st century (Figure 7, right bottom), but the IPSL
maximum temperature result is not consistent. The vari-
ance of mean maximum temperature decreased in the

mid-21st century and then increased in late-21st century
(Figure 7, right top). As this is the result of a single reali-
zation, the unexpected variance result in the mid-21st
century for IPSL could be a result of decadal variability in
that model realization. Analysis of a larger ensemble of
realizations would be required to determine whether this
signal is meaningful. A change in the variance can have a
larger effect on the frequency and intensity of extremes
than a change in the mean (Katz and Brown, 1992).

Supplementary Figures 3 and 4 show the generalized
extreme value (GEV) PDF for mean maximum and mini-
mum temperatures obtained from the two GCMs under
RCP8.5. As shown in the figures, the distribution of
values and the mean both change with time. For
instance, the mean and variance of maximum tempera-
ture at AES1 (Supplementary Figure 3, left top) shifted by
1.06°C and 3.43°C, and —0.25 and 0.13 for IPSL and
1.90°C and 5.13°C, and 0.19 and 0.31 for MIROCS in the
mid and end period, respectively (Figure 7, left top, and
Figure 7, right top).

There are also higher order shifts in distribution pro-
jected over the 21st century. The kurtosis of the PDF
curve for maximum and minimum temperature, for
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example, shows variable changes through mid-century,
but by late-21st century, there is a tendency towards plat-
ykurtic distributions—generally flatter around the mean,
though with fewer extreme outliers relative to the
variance—that is indicative of an increase invariability
(Supplementary Figures 3 and 4).

3.2.3 | Complexity of agricultural impacts of
projected extremes

Many of the agronomic implications of projected changes
in temperature extremes can be viewed as intensified
extensions of impacts related to current warming trends.
Thus, the risks to temperate crops at high elevation and
heat and drought sensitive crops at low elevation of the
mountain will increase, while growing season length
may extend at high elevation AES. Some implications of
projections, however, are qualitatively different from
those of the moderate warming observed in recent
decades. For example, high temperatures in low elevation

AES are projected to exceed the maximum heat tolerance
of some currently grown crops, suggesting that appropri-
ate adaptation activities are required if agriculture is to
remain viable in these areas. Some of the viable adapta-
tion options in the lowland areas could be in situ water
harvesting activities that can reduce heat and moisture
stress, implementation of agroforestry practices to modify
the microclimate, working on genetic improvements for
heat and drought tolerance and crop switching. In addi-
tion to crop switching, significant management changes
might be required regarding irrigation availability and
frequency, control of newly emerging pests and the type
and timing of fertilizer application. These new challenges
carry implications for costs, resources and infrastructure.

Choke Mountain experienced a decrease in precipita-
tion extreme indices and an increase in temperature
extreme indices in the baseline period. The increase in
temperature in projected periods resulted in a smaller
number of FD10, which has negative implications for the
expansion and productivity of some perennial crops origi-
nated in the temperate region, such as apples. Temperate
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crops (including fruit trees and grape vines) require expo-
sure to some numbers of chilling hours, and with rising
temperatures, chilling hours will be reduced (Hatfield
et al., 2014). The positive change in TXx, SU25, TXn, TNx
and TNn would also result in negative effects on crop
production due to its influence on physiological pro-
cesses, resource utilization and water productivity. Rela-
tively few adaptation strategies are available to cope with
this situation; changes in crop selection could be the most
effective response.

The reduction in DTR reflects the fact that the mini-
mum daily temperature is projected to increase at a
higher rate than the maximum. This would affect temper-
ature dependent basic plant processes (photosynthesis,
dry matter production and dry matter partitioning) and
developmental processes. For example, tuber initiation in
potato, one of the major crops in the Choke Mountain,
depends on many biological processes, including carbon
partitioning, signal transduction and meristem determi-
nation, which, in turn, is affected by DTR. Low tempera-
ture promotes high C:N ratio and accumulation of more
dry matter at the tip of the stolen and promotes tuber ini-
tiation (Vreugdenhil et al., 2007). Research also indicates
that high night temperature during tuber initiation delays
tuber development, thus altering tuber mass distribution
by reducing the yield proportion of large tubers and low-
ering early harvest index, causing a significant yield loss
without interfering with photosynthesis (Kim and
Lee, 2019). Diurnal temperature variation is of particular
importance in many orchards in the development of sec-
ondary metabolites and production of high acid and high
sugar content as fruits’ exposure to sunlight increases rip-
ening qualities while the sudden drop in temperature at
night preserves the balance of natural acids in the fruit
(Cohen et al., 2012). Projected reduction in DTR could
also affect the yield and quality of crops grown in the
watershed. Wider DTR also had significantly positive
effect on seed germination (Liu et al., 2013) and distribu-
tion of plant species (Rosbakh and Poschlod, 2015).

Several specific agronomic implications of trending
precipitation and temperature extremes have been noted
above. At the same time, it must be recognized that plant
response to climate change depends on complex interac-
tions between climate elements and between climate and
human activity. As temperatures increase over this cen-
tury, crop production areas may shift to the optimal tem-
perature range that is favourable for growth and yield
(Hatfield et al., 2011). There is an extensive literature that
demonstrates how extremes of temperature and precipi-
tation affect crop productivity in various climatic and
agricultural contexts. This includes work on the impacts
of temperature extremes on plant productivity (Craufurd

of Climatology

and Wheeler, 2009; Hatfield and Prueger, 2015) and on pol-
len viability, fertilization and grain or fruit formation
(Hatfield et al., 2014; Zhao et al., 2017). Increased variation
in precipitation, coupled with shifting patterns of precipita-
tion within the season will create more variation in soil
water availability, with potentially significant impacts for
crop yields (Hatfield et al., 2014). Such impacts are, how-
ever, location and crop specific, such that generalizing
impacts of extremes on crop production from one region to
another—or, for the tropical highlands, even from one
AES to another—can be misleading. Crops have cardinal
temperature ranges (Hatfield et al., 2011; Hatfield and
Prueger, 2015), and any shift in the location of means and
the distribution of the cardinal temperature would affect
growth, development, yield and quality of crops either
directly or indirectly through creating favourable condi-
tions for pest development and distributions (Hatfield et
al., 2014). Increasing temperatures generally cause culti-
vated plants to grow and mature more quickly, and if the
soil is not able to supply nutrients at required rates for
faster growing plants, then yield may be smaller, which
may, in turn, result in reduced grain, forage, fruit or fibre
production (Hatfield et al., 2014).

Further increases in temperature and changes in pre-
cipitation patterns will induce new conditions that will
affect insect populations, incidence of pathogens and the
geographic distribution of insects and diseases (Hatfield
et al., 2014; Patterson et al., 1999). Higher winter temper-
atures increase insect populations due to overwinter sur-
vival, while higher summer temperatures increase their
reproduction rates and allow for multiple generations in
each year (Ziska and Runion, 2007; Hatfield et al., 2014).
Moreover, the high number of very heavy precipitation
days (r20mm) and more total precipitation in the projec-
tion period would also impact planning of soil and water
conservation activities, infrastructure development and
farm management practices.

In general, in the present study, we note that different
AESs exhibit unique climate extremes that necessitate
proper identification and implementation of adaptation
options to maintain the sustainability of various systems.
Neither ENACTS nor GCMs dataset captured a fre-
quently occurring frost in the watershed. Moreover,
GCMs did not exactly capture the precipitation extreme
indices at the watershed level thought the impacts of
these extremes practically noticeable. Thus, further works
should be done to improve the predictability precipitation
extremes from GCM datasets. However, results of the
present analysis can be applicable in different parts of
Ethiopia and other regions, because there are many
watersheds with the same AES setup like our study
region in many parts of Ethiopia and other regions.
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4 | CONCLUSION

Results of the present analysis indicate that precipitation
indices showed decreasing trends in the baseline period
in observations, while downscaled GCMs project an
increasing trend in the mid and end of the 21st century.
Temperature indices showed an increasing trend in
observations and in both retrospective and prospective
periods under both GCMs and RCPs, with few excep-
tions. There is site-to-site variability in these results but
aggregating by the AES offers a way to characterize these
trends at an agronomically relevant unit.

Projected increases in precipitation indices in the
future periods, should they prove to be correct, and may
have both positive and negative implications for agricul-
tural practices and crop production in the area. The tor-
rential rain indicated by high r20mm will bring more soil
erosion, flooding and waterlogging in the area, which
will affect crop performance, growth and development. It
may also cause landslide and gully formation in sloping
AES like AES;, AES, and AESs that could pose signifi-
cant risks for agricultural lands, crops and households in
general unless drainages and waterways are properly
designed and constructed.

Projected changes in temperature extremes, in which
we might have greater confidence on account of stronger
GCM performance in the historical period, are also criti-
cal to cropping systems. The reduction in the number of
FD10 also will create ecological alterations and currently
grown crops, particularly in higher elevated AES
(AES,_s), will not be viable unless due care is taken in
the selection and introduction of low chilling requiring
varieties. The significant increase in hot/summer days
will also challenge crop production, particularly in hot
dry AES (AES,;-AES;) because of the already high tem-
perature. The decrease in DTR will affect the quality of
many fruit trees (like apple and orange trees) grown in
the area and tuber and bulb formation in root (example
potato) and bulb (example shallot) crops grown in the
watershed. Additional warming threatens to bring the
temperature above the upper threshold limit for currently
growing crops. Warming will also increase potential
evapotranspiration and reduce water productivity, exac-
erbating competition for water during the dry season.

In assessing the reliability of GCM projections, both
GCMs generally agree with observations for trends in
temperature extremes in the historical period. However,
they generally do not match observed trends for precipi-
tation extremes. While this can be forgiven for single
realizations over a relatively short baseline period, the
result bears some resemblance to the “East Africa Para-
dox” that has been debated for East African spring rains.
There is the possibility, then, that models are

systematically biased in representation of precipitation
trends in this region. At the same time, the general pro-
jection that humid tropical areas like Choke Mountain
are expected to wet under global warming has a mean-
ingful theoretical foundation (as embodied in models).
So, the possibility that recent drying trends are ephem-
eral and will reverse in future decades cannot be
discounted. Agricultural adaptation planning in this
region will benefit from continued efforts to understand
recent trends and to improve GCM simulation of precipi-
tation variability. In conclusion, more research in predic-
tion of rainfall is required, and GCM for rainfall
predictions shall be refuted by having more observed data
across the East Africa region including the study area.
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