
Be SMART, Save I/O: Probabilistic Approach to
Avoid Uncorrectable Errors in Storage Systems

Md Arifuzzaman∗, Masudul Bhuiyan†, Mehmet Gumus∗, and Engin Arslan∗
∗ University of Nevada, Reno, USA

{marifuzzaman, mgumus, earslan}@unr.edu
†CISPA, Germany

masudul.bhuiyan@cispa.de

Abstract—Silent data corruption poses a significant risk to the
integrity of data in storage systems. Although error correction
codes (ECC) can recover the majority of such errors, a non-
negligible portion of them escape ECC, referred as uncorrectable
errors (UEs). Despite being rare in nature, increasing scale
of storage systems and fast-growing I/O rates decreased the
mean time between UEs from months to hours. Yet, unlike
disk failures, UEs are hard to predict with high precision,
making it difficult to adopt proactive measures. In this paper,
we introduce a probabilistic approach to deploy UE mitigation
strategies that can capture significant portion of UE while keeping
the system overhead at a tolerable range. To achieve this, we
first estimate the probability of I/O operations to be exposed to
UEs and find a minimum subset of disks for which employing
UE avoidance strategies can lead to significant decrease in UE
exposure. We demonstrate through extensive simulations that
when the proposed probabilistic model is used to implement write
verification strategy to detect and recover from UEs, more than
50% of all write-triggered UEs can be avoided with 1% read
overhead, and more than 70% of UEs can be mitigated with
less than 3.5% read overhead. We further measure the impact
of incurred read overhead on write performance in production
Lustre and GPFS file systems and validate our findings that
more than half of UEs can be avoided while degrading write I/O
throughout by less than 0.9%.

I. INTRODUCTION

Advancements in computing and sensing technologies
paved the way for many science applications to generate
a massive volumes of data. For example, Hardware/Hybrid
Accelerated Cosmology Code is an extreme-scale cosmology
simulation that produces 20 petabyte data in a single particle
simulation [1]. To accommodate the increasing storage needs
of scientific applications, the capacity of storage systems have
seen a steady increase over the years. As an example, while the
fastest supercomputer in 2010, Jaguar, had 10 petabyte storage
capacity, the fastest supercomputer in 2022, Frontier, has
around 700 petabyte storage capacity [2]. Increasing capacity
in turn leads to frequent observation of otherwise rare silent
errors (e.g., dropped and off-track writes) which could lead to
permanent data loss and service interruptions [3].

Although most disk drives utilize error correcting codes
(ECC) to detect and recover from silent errors, a non-
negligible portion of them happen in a way that ECC cannot
correct, referred as uncorrectable errors (UEs) or latent sector
errors [3], [4], [5]. They are typically caused by undetected
write errors or media imperfections and if not handled timely

may result in complete data loss even with parity-based RAID
arrays [3]. Previous studies showed that UEs take place once in
every 1012 (125GB) to 1015 (125TB) bits of I/O operation [6],
[7] and affect up to 25% of all hard disks in datacenters [8]. As
today’s high performance computing clusters and commercial
datacenters host thousands of disks and handle hundreds of
terabytes of I/O workload daily [9], UEs pose a significant
risk to the reliability of file systems.

Since ECC falls short identify and recover from many
types of undetected write errors, most modern file systems
rely on checksumming, which computes and stores a unique
hash value for each data block (or set of blocks) separate
from data block [10]. However, Krioukov et al. showed
that checksumming can fail to guarantee protections against
complex failures such as lost writes and misdirected writes [5].
Although the use of file system level checksumming together
with parity or mirror-enabled disk arrays (e.g., RAID-Z) can
help to detect and recover from many types of UEs through
RAID reconstruction, the cost of recovery could significantly
deteriorate I/O response time [11], [12]. Even worse, recovery
procedures may occasionally lead to partial or full system
outages. As an example, a previous study found that 46% of
all system-wide outages in BlueWaters [13] supercomputer is
caused by file system issues as existing fail-over strategies
fall short to handle all error types properly [14]. In another
instance, data corruption in an inode block of a Lustre file
system has led to 13 days of complete service interruption in
an HPC cluster [15]. Therefore, we argue that an ability to
predict UEs before they occur will improve the efficiency and
reliability of file systems as proactive measures can be taken
to mitigate them before they cause catastrophic failures.

To achieve this goal, we first train machine learning mod-
els to estimate the probability of UEs ahead of time using
historical Self-Monitoring, Analysis and Reporting Technol-
ogy (SMART) [16] which report various health statistics for
disk (and SSD) drives such as current device temperature,
and reallocated sector count [17]. We find that the machine
learning models achieve up to 98% accuracy in predicting the
occurrence of UEs a day in advance. Yet, they cause relatively
high (up to 11% for 90% true positive rate) false positive rate
(i.e., incorrect error estimations), which is a major impediment
in the adoption of proactive measures (e.g., data scrubbing and
write verification) due to requiring to check too many healthy

disks along with UE-prone ones. As an example, 3% false
positive rate requires checking 300 healthy disks (i.e., no UE
exposure) along with 5 unhealthy ones in a storage system
with 10, 000 disks. To overcome this issue, we introduce a
novel probabilistic model to quantify UE probability for I/O
operations, then determine a minimum set of disks to deploy
UE mitigation strategies to lower the risk to a tolerable range.
As an example, write verification (aka read after write) can be
used to detect and correct write-triggered UEs by reading data
back from disk for verification purposes, however it induces
significant overhead to storage systems in addition to slowing
down write performance considerably. We demonstrate that the
proposed probabilistic model can be used to identify a subset
of disks for which enabling write verification can detect and
mitigate the majority of UEs while keeping the cost on the file
system at minimum. Our extensive simulation results show that
the use write verification probabilistically leads to detection
of more than half of all write-triggered UEs by verifying only
less than 1% of all write operations. Hence, we believe that
the probabilistic model makes an important contribution to the
field by paving the way for the deployment of error mitigation
strategies despite low precision of prediction models, thereby
enhancing the reliability of storage systems. In summary, this
paper makes following contributions:

• We process 143 million SMART logs from 106 thousand
disks to analyze the characteristics of UEs and train pre-
diction models. We find that eXtreme Gradient Boosting
(XGBoost) classifiers attains the best performance by
correctly identifying more than 90% of all UEs with less
than 2% false positive rate.

• We introduce a probabilistic model to capture and recover
from UEs by finding a minimum set of disks to take
precautionary measures such as checking the correctness
of write operations.

• We evaluate the performance of probabilistic model
through extensive simulations and observe that when it
is used to verify file write operations, more than half of
all write-triggered UEs can be captured by verifying less
than 1% write operations. It can also capture more than
70% of UEs with less than 3.5% read overhead.

• We evaluate the performance impact of the probabilistic
write verification model on four production HPC clusters
and show that more than half of UEs can be captured with
negligible (less than 0.9%) impact on write throughput.
Finally, we discuss possible deployment challenges and
lay out potential solutions.

II. RELATED WORK

Most previous work on error detection in file systems focus
on predicting complete disk failures [18], [19], [20], [21],
[22], [23]. For example, Lu et al. developed machine learning
models to process historical SMART logs and performance
statistics and predict the disk failures [21]. Xiao et al. em-
ployed online learning to disk failure predictions to adapt the
prediction models to evolving nature of disk statistics and
workload characteristics [24]. Han et al. further extends the

online learning by also updating the model type as change
in data may cause performance degradation for the original
model (e.g., Online Random Forest) [20].

In the area of partial disk failures, Bairavasundaram et al.
analyzed Latent Sector Errors (LSEs), commonly caused by
uncorrectable errors, for 1.53M hard disks over a period of 32
months [25] and found that 3.25% of all disks developed at
least one LSE. Moreover, recent studies based on Facebook
and Google datacenters statistics reported that a significant
portion of solid state drives (20−57%) developed at least one
LSE during their lifetime [26], [27]. This, in turn, poses data
loss risk as Hafner at al. showed that undetected errors when
followed by disk failures may result in complete data loss
even in parity based RAID arrays [3]. Although combining
file system-level checksumming with parity or mirror-enabled
disk arrays can find and fix most undetected write errors
through disk scrubbing [28], it can have adverse impact on
system performance due to requiring to recreate inaccessible
data blocks.

The most relevant work to our study is conducted by
Mahdisoltani et al. in which the authors proposed Random
Forest models to detect reallocated sector errors and uncor-
rectable errors using historical SMART logs [8]. Our work
differs from [8] in two ways: First, we find that Extreme
Gradient Boosting (XGB) model attains slightly better per-
formance (around 2% higher true positive rate 3% less false
negative rate) compared to Random Forest. Second and more
importantly, [8] proposed adaptive disk scrubbing solution to
scrub file system at an accelerated rate to find and recover
from errors quicker. On the other hand, we introduce a novel
probabilistic model which first quantifies the likelihood of a
given workload to be exposed to a UE, then finds a mini-
mum set of disks to deploy mitigation strategies (e.g., write
verification and write redirection) if the predicted error rate is
not tolerable for the application. Unlike file system scrubbing
which adversely affects all application alike, the probabilistic
model offers an application/workload-specific solution such
that it can be selectively used based on workload/application
requirements to avoid incurring system-wide overhead. More-
over, adaptive disk scrubbing can only be applicable for small
clusters for which the mean time between errors is in the
order of several days or weeks to limit its impact. Finally,
while adjusting the rate of disk scrubbing helps to reduce mean
time to detection (MTTD) by 1.3 × −1.7×, its UE detection
frequency is still in the order of days. In contrast, when
probabilistic model is used to implement write verification
measure, it can detect UE as soon as file write is completed,
reducing MTTD to seconds to minutes.

III. MODELING UNCORRECTABLE ERRORS

To gain insights into UEs, we analyze publicly available
Backblaze dataset that contains 270 million SMART logs
200 thousand disks collected over the period of 93 months,
from January 2014 to September 2021 [29]. SMART logs are
populated once a day by each disk to report several operational
statistics, such as temperature and hours-on-power as shown

TABLE I
OVERVIEW OF DISK MODELS USED IN THIS WORK.

Disk model Capacity Total
Disks

Ratio of Disks with
Uncorrectable

Errors
ST12000NM0007 12 TB 38,797 5.08%
ST4000DM000 4 TB 37,038 10.29%

ST8000NM0055 8 TB 15,161 6.86%
ST8000DM002 8 TB 10,283 6.75%
ST3000DM001 3 TB 4,708 36.81%

2014
2015

2016
2017

2018
2019

2020
2021

2022

Year

0.0

0.1

0.2

0.3

0.4

Ra
tio

 o
f D

isk
s w

/ E
rro

r (
%

)

Fig. 1. The ratio of disks with uncorrectable errors is around 0.02% during
most of observation duration but reached to 0.3% in 2014 and 0.1% in late
2021, affecting 5− 36% of all disks.

in Table II. Although the dataset contains logs from more than
80 disk models, we excluded the ones with less than thousand
disks to avoid misleading results. This filtering left a total
of 106 thousand disks from five disk models whose details
are given in Table I. The disk models ST12000NM0007 and
ST4000BM000 constitute 71.55% of all disks as there are
more than 37K disks from each model. Despite having the
similar number of disks, 2x more disks developed UEs in
ST4000DM000 disk model compared to ST12000NM0007.
Moreover, while the ratio of disks with UEs is less than 10.3%
for four disk models, it reaches to 36.8% for ST3000DM001,
indicating a significant variation between the disk models.

We find that 9.25K of 106K (8.7%) disks reported at least
one UE within the observation period. Figure 1 presents the
ratio of disks that reported new UEs in a daily basis. The
ratio was as high as 0.43% in July 2014, but later stabilized at
around 0.02% after disk model ST3000DM001 was removed
from the system. We observe another increase in UE rate in last
24 months as the rate approached to 0.1%. Given that petabyte
scale file systems are composed of thousands of disks, these
seemingly small values correspond to several occurrence of
UEs every day. For example, Frontier supercomputer consists
of 47, 700 hard disk drives which would result in 9− 10 UEs
on a daily basis for a conservative UE rate of 0.02%. It is
therefore important to predict UEs before they happen and
take precautionary steps to prevent catastrophic failures and
protect sensitive data against irreparable corruptions.

To achieve this, we first investigate the possibility of using
SMART reports to estimate the occurrences of UEs ahead
of time. We apply Random Forest to assess the relationship
between previous day’s SMART metrics and the value of
UE (1 if new UE is reported, 0 otherwise). We find that
13 features (listed in Table II) can explain 99% variance for
UE, indicating a strong correlation between UE incidents and

TABLE II
SMART METRICS USED TO TRAIN THE PREDICTION MODELS

SMART ID Attribute Name Importance Score
7 Seek Error Rate 0.1711
9 Power-On Hours 0.1633
1 Read Error Rate 0.1346
193 Load Cycle Count 0.1208
187 Uncorrectable Error 0.1176
5 Reallocated Sectors Count 0.0953
194 Temperature 0.0557
4 Start/Stop Count 0.0367
12 Power Cycle Count 0.0357
198 Uncorrectable Sector Count 0.0286
197 Current Pending Sector Count 0.0262
188 Command Timeout 0.0098
199 UltraDMA CRC Error Count 0.0046

previous day’s SMART metrics. Note that the attribute #187
in selected features refers to total number of UEs that a disk
has reported until day i, which we use to predict the value of
feature #187 for day i + 1. High importance score for #187
suggests that the probability of new UEs is correlated to the
number of UEs that a disk has reported previously. In fact,
we find that 92% of all disks with at least one UE developed
more than one UE in their lifetime.

Since the daily number of disks with UEs constitutes around
0.02% of all disks, there is nearly 1 : 5000 imbalance between
positive (i.e., error) and negative (i.e., no error) samples, an is-
sue that adversely affects the performance of machine learning
models. The typical approach to balance multiclass datasets
involves resampling the minority or majority classes through
undersampling or oversampling. Oversampling duplicates the
observations of the minority class and undersampling drops
the observations of the majority class to obtain a balanced
dataset. We chose to undersample SMART logs with negative
label as it significantly shortens training time and reduces false
positive rate compared to oversampling. We experimented with
several undersampling methods such as Cluster Centroids,
Condensed Nearest Neighbour, Edited Nearest Neighbours,
One Sided Selection, and Random Undersampler. We observe
that they perform similarly, so we pick Random Undersampler
due to its simplicity. We also applied various undersampling
rates (e.g., 1:10, 1:5, 1:3, 1:1) but did not observe any
difference, so settled with 1 : 1 sampling ratio. Finally, we
trained four machine learning models that are commonly used
for classification problems, Support Vector Classifier (SVC),
Decision Tree (DT), Random Forest (RF), eXtreme Gradient
Boosting (XGB). We also tested Deep Neural Network (DNN)
and CNN-LSTM models to evaluate the performance of neural
network models as they yield competitive results for disk error
prediction problems using SMART logs [21].

Since hyperparameters have significant impact on the per-
formance of these models, we used scikit-optimize library –
with Gaussian-based Bayesian optimization – to independently
discover the optimal values for each machine learning and disk
models combinations. We used Neural Architecture Search
(NAS) [30] to find an optimal architecture for the DNN model.
In the training phase, we mark SMART logs with a positive

TABLE III
THE PERFORMANCE COMPARISON OF MACHINE LEARNING MODELS IN PREDICTION UNCORRECTABLE ERRORS. EXTREME GRADIENT BOOSTING

YIELDS THE BEST PERFORMANCE IN OVERALL WITH ALMOST 95% AUC SCORE FOR ALL DISK MODELS EXCEPT ST3000DM001.

Models DT CNN-LSTM [21] DNN SVC RF [8] RF XGB

ST12000NM0007 90.40 95.41 96.90 97.93 97.85 98.19 98.25

ST4000DM000 81.68 93.79 94.17 93.98 93.81 94.45 94.70

ST8000NM0055 81.94 90.08 91.82 94.81 94.32 94.87 95.57

ST8000DM002 83.90 92.20 93.85 95.87 95.17 95.47 96.05

ST3000DM001 76.80 88.13 91.30 88.71 91.83 92.63 91.78

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ST3000DM001
ST4000DM000
ST8000DM002
ST8000NM0055
ST12000NM0007

Fig. 2. ROC curve for different disk models using XGBoost classifier.

label if corresponding disk reported at least one UE in the
following day (i.e., increase in value of #187 in SMART
log), and with a negative label otherwise. The performance of
models is then evaluated based on the accuracy in predicting
UEs using SMART attributes of previous day in unlabeled
data (i.e., test dataset). Rather than randomly splitting SMART
logs for training and test datasets, we adopted time-based
partitioning to avoid data leakage. As an example, SMART
logs from Nov 2014 to Dec 2019 are used for training and
SMART logs from Jan-March of 2020 are used for testing.
We repeated this five times using different training and test
splits and report the average results.

Model Evaluation: To compare the performance of different
machine learning models, we calculate True Positive Rate
(TPR) and False Positive Rate (FPR) values. TPR indicates
the portion of positive samples in test data that is correctly
identified by a model. In this paper, it represents the percentage
of disks with UEs (i.e., positive class) that the prediction
models are able to identify correctly. FPR, on the other
hand, refers to the portion of actual negative cases that is
misidentified as positive cases by a model. It represents the
percentage of disks without UEs that is incorrectly classified
as disks with uncorrectable error. Even though the default
threshold of 0.5 is used to determine the class of a sample
in binary classifier (e.g., a sample with 0.51 error probability
is marked with error label), one change the threshold to find
a balance between TPR and FPR values. Receiver operating
characteristic (ROC) curve then presents TPR and FPR values
for different classification threshold. As an example, Figure 2
presents ROC curve for different disk models using XGB
classifier. Finally, Area Under Curve (AUC) is used to combine
TPR and FPR values into a single metric by calculating the
area under ROC curve.

Table III presents AUC scores of machine learning models

for different disk models. RF [8] presents the performance
of Random Forest model that is used to predict latent sector
errors using SMART logs. It is clear that most models yield
competitive results with over 90% AUC score. Despite be-
ing significantly costly to train, the neural network models
(CNN-LSTM and DNN) always fall behind RF and XGB
models. The RF model described in [8] also perform slightly
lower than the RF model we trained, which demonstrates
the benefit of automated hyperparameter tuning. In addition
to performance variation of the machine learning models,
disks also exhibit discrepancy in prediction performances. For
example, all prediction models return the lowest AUC score
for ST3000DM001. Similarly, the models attain the best AUC
score for ST12000NM0007.

Despite yielding high AUC scores, the prediction models
results in relatively high false positive rate (i.e., low precision).
As an example, XGB model results in 2− 11% false positive
rate to attain 90% TPR. This in turn impedes the adoption
of common mitigation strategies such as disk removal due to
high overhead. To put this into a perspective, 5% FPR would
require retiring 300 healthy disks along with 2− 3 unhealthy
(i.e., exposed to UE) ones in a cluster with 10, 000 disks with
0.02% average UE probability. Even less intrusive mitigation
strategies such as disk scrubbing and write verification can
have significant impact on system/application performance
due to checking too many disks. We therefore introduce a
probabilistic model to to capture as many UEs as possible
while keeping system overhead at minimum. To do so, we
utilize the prediction models to quantify the probability of
a system/application to be exposed to a UE, then find a
minimum set of disks to apply preventive measures if the
calculated UE rate is higher than a tolerable value. Please note
that while we demonstrate the effectiveness of the probabilistic
model in the implementation of write verification-based UE
mitigation strategy at the application level in § V, it can be
used to implement other UE avoidance strategies such as I/O
redirection. Hence, we believe that the probabilistic model
makes a novel contribution to the field by paving the way
for the adoption of ML models in production systems even
with relatively low precision performance. Next, we present
the probabilistic model and show its application to detect and
recover from write I/O-triggered UEs.

IV. THE PROBABILISTIC MODEL

In the absence of predictive models, one can estimate
the probability of UEs using Uncorrectable Bit Error Rate
(UBER), which defines the probability of UE for unit (i.e.,
single bit) operation. Although this information is not re-
leased by disk manufacturers, previous studies estimate it
to be around 10−15 (125TB) for enterprise disks and flash
drives [6], [7]. Hence, the probability a workload W that issues
a total of b bit data to N (N ≥ 1) disks (due to RAID or file
system striping) to be exposed to a UE can be estimated by

E(W) = 1−
N∏︂
i=1

(1− bi · UBER) (1)

where bi refers data size (in bits) written to disk i. Equation 1
can be approximated to

E(W) ≈
N∑︂
i=1

bi · UBER = b · UBER (2)

when UBER is ≈ 10−15 and N is small (e.g., < 1, 000).
Note that the number of disks and the distribution of workload
to disks has no impact in this estimation since the value of
UBER is the same for all disks when no other information
is available. Next, we calculate the UE probability using
the XGBoost model that is trained with historical SMART
logs as described in § III. Specifically, the XGBoost model
uses previous day’s SMART report of a disk to predict the
likelihood of new UEs to take place in the disk within next
day1. Let pi be the probability of ith disk to develop an UE
as estimated by the XGBoost model for i = 1, . . . , N , bi be
the data size that is issued to disk i, and Di is the total I/O
size that the disk i handles on a given day, where bi ≤ Di.
Then, the probability of the workload W to be exposed to a
UE on disk i becomes

E(Wi)M = bi
pi
Di

= Pi (3)

Since pi is the probability of exactly one UE to happen in
a day during which a total of Di bits are processed, pi

Di
is

analogous to UBER as it represents the probability of a UE
to affect a unit write operation (i.e., one bit). We then multiply
this by write I/O size the workload W issues (bi) to find the
probability of the workload W to be exposed to a UE on disk
i, referred as Pi. Therefore, the probability of at least one UE
for W can be estimated by

E(W)M = 1−
N∏︂
i=1

(1− Pi) ≈
N∑︂
i=1

Pi (4)

Note that even E(W)M will be different than E(W) in most
cases since individual workloads only write to a small set of
disks and UE rate for majority of disks is much smaller than
average UE rate UBER. We can thus exploit an ability to

1Since SMART metrics are populated once a day, the predictions made
by the XGBoost model are used for all estimations made until new SMART
metrics published the following day.

compute UE probability at an higher precision that model-
agnostic approach (based on UBER) to decide when to
activate UE mitigation strategies. As an example, one can set
a threshold for error probability to activate write verification
such that it will only be used if the estimated probability
is higher than the threshold, thereby reducing the system
overhead. Since it can be challenging to find the right value
for the threshold, we use an improvement ratio over UBER-
based error prediction as a metric to determine when to activate
mitigation strategies, which can be calculated by

k =
E(W)

E(W)M
(5)

improvement ratio

For example, if an application/system demands UE proba-
bility to be decreased by 100× over base UE calculation (i.e.,
E(W)M ≤ E(W)

100), then the probabilistic model will search
for a set of disks to apply preventive actions such that the
predicted error probability, E(W)M , for the remaining disks
will lead to improvement ratio of 99% or more (k = 100 ∗
X−0.01∗X

X). Note that the improvement ratio can be negative
if the XGBoost model predicts that the selected disks have
higher UE probability than UBER. Equation (4) can further
be extended to calculate the probability of developing more
than one UE, but we focus on at least one error probability
calculation in the rest of the paper and leave the analysis and
evaluation of more than one error scenario as a future work.

V. PROBABILISTIC WRITE VERIFICATION

We next demonstrate the implementation of the probabilistic
model to mitigate UEs that are caused by undetected write
errors (UWE) as previous studies find that UWEs are among
the major reasons of UEs both for enterprise disks and flash
drives [6], [7]. UWEs can alter multiple bits at unintended disk
sectors [25], [3], [31], [6], causing corrupted data to be stored
in disks. Although Data Integrity Field has been proposed
(aka T10 DIF) to improve the integrity of write operations, it
is not widely available due to hardware support requirement.
Moreover, some types of UWEs such as dropped writes can
still take place even if T10 DIF is implemented [3]. Therefore,
additional preemptive measure can be implemented to protect
sensitive write operations against UWEs thereby avoiding UE
to go undetected.

One potential way to detect and recover from UWEs is
reading data back from disk after completing the write opera-
tion to check for UEs, similar to read-after-write (RAW) that
some disk models support to detect and fix the errors [32],
[33]. Since disk-level RAW does not cover end-to-end path
and is not widely available in all storage systems, it can be
implemented in the application level to detect and fix UWEs.
As an example, some file transfer services (e.g., Globus [34],
Shift [35], and XRootD [36]) support end-to-end integrity
verification to avoid silent errors that might happen while
transmitting data in the network or writing it to storage. How-
ever, using application-layer verification as a default solution

for all write operations increases load on storage systems and
degrades I/O performance. Hence, we propose probabilistic
write verification to exercise write verification strategy only
when the predicted UE rate is higher than a tolerable range.
For example, if an I/O operation is split into two disks with
10−13 and 10−17 UE probabilities, then we may want to
verify the write operations issued to the first disk as its error
probability is 100× higher than average UE rate of 10−15.
By doing so, we can capture and recover from potential UEs
on the first disk which reduces the effective UE rate for
the I/O operation by 10, 000 times compared to initial UE
probability. Although conducting write-verification for both
disks will eliminate UEs completely, it comes at the cost of
increased overhead on storage systems. Thus, the probabilistic
write verification aims to find a sweet spot between error
avoidance and associated costs.

Let S be the set of disks used to handle a write workload
W using N disks, S = {1, . . . , N} and ESc

(W)M be UE
probability when write verification is applied on a subset of
disks, Sc ⊂ S, which can be calculated by

ESc
(W)M =

N∑︂
i∈S\Sc

bi
pi
Di

(6)

We can then find a subset of S that satisfies the improvement
ratio requirement for the UE rate by iterating over all subsets
of S. Since multiple subsets of S can meet the requirement,
we define a cost function to find the one that minimizes the
overhead (i.e., amount of data that write verification is applied)
while lowering overall UE rate as

C(Sc) = α
∑︁

i∈Sc
bi + (1− α)

∑︁
i∈S\Sc

bi
pi

Di
(7)

write-verified I/O size UE probability

where 0 ≤ α ≤ 1. The cost function consists of two parts
as total data size to apply write verification,

∑︁
i∈Sc

bi, and
the predicted UE rate,

∑︁
i∈S\Sc

for the remaining portion
of the data. α is then used to strike a balance between the
overhead and the improvement ratio. When α is set to 1,
the cost function will search for a subset S that requires the
lowest amount of data to be write-verified while meeting the
improvement ratio. On the other hand, when α is equal to
0, the cost function will find a subset of disks for which
enabling write verification will lead to the lowest UE rate.
Note that although we only consider subsets of S that satisfy
the desired improvement factor requirement, α < 1 gives us
an opportunity to reduce the error probability further if an
increase in the overhead is negligible. For instance, one can
prefer 5% write-verification overhead (5% of all writes are
verified) over 3% overhead even if both satisfies the improve-
ment ratio requirement but the former results in significantly
higher (e.g., 2x more) improvement ratio.

A straightforward approach to find a subset of disks with
minimum cost would involve iterating over all subsets of
S, i.e., brute-force search. However, it is not be a feasible

solution especially when the number of disks is high due to
exponential growth of the subset size. We therefore develop
a greedy search to find a close-to-optimal solution in a
polynomial time. It follows an incremental approach to find
a solution. Specifically, it first calculates the error probability
when write-verification is not enabled for any write operations
(S0 = {}) and checks to see if it satisfies the improvement
factor. If it does, then the search will be terminated and empty
set will be returned as a solution. Otherwise, it will select a
disk for which enabling write verification would lower the cost
function the most using

S1 = arg min
Sc∈{{i} | i∈S}

C(Sc). (8)

and add it to the set, S1. If ES1(W)M meets the desired
improvement ratio, then it returns S1 as a solution. Otherwise,
it will continue the process by selecting another disk in
addition to the disk indexed by the element of S1. The search
will continue until a subset that satisfies the improvement ratio
is found or all disks are selected. Since the greedy approach
only selects one disk at a time, its time complexity becomes
O(N2) = N + (N − 1) + (N − 2) + · · · + 2. The results
as presented in the next section show that the greedy search
performs similar to brute-force approach in terms of mitigating
UEs while taking significantly shorter time to execute.

A. Simulation Results

Due to prohibitive cost of producing UEs organically, we
rely on simulations to thoroughly evaluate the performance of
the probabilistic write verification algorithm. We choose file
size, file count, the number of disks, and UE probability of the
selected disks as follows: File Size: Previous studies show that
file sizes in HPC facilities follow a long-tail distribution with
median file size is around 1MB [37], [38], [9]. We thus used
lognormal distribution with mean of 14 and standard deviation
of 1.5 to simulate file sizes in workloads. It produces files with
median size of 1.1MiB and average size of 3.3MiB. Please
note that file size does not affect results as we report the per-
centage of I/O operations that needs to be checked against UE,
which is not dependent of file size. Yet, Section V-B evaluates
the potential impact of the probabilistic write verification in
production file systems using workloads that contain only only
one type of files as small, medium, or large. File Count: Since
HPC application can greatly vary on the number of files they
produce, we use geometric distribution to estimate file count in
workloads. Geometric distribution represents the probability of
the number of successive failures before a success is obtained
in a Bernoulli trial which can have only two outcomes as
success and failure. We set the probability of success (p) to
0.3, which results in mean value of 3.3 and standard deviation
value of 7.7. We also present a detailed analysis on the impact
of file count of the performance in Figure 7.

Disk Count: The number of disks, N , depends on the num-
ber of files in the workload and file system settings including
RAID (e.g., RAID level and RAID stripe size) and file system
(e.g., stripe count) configurations. Without loss of generality,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
80

85

90

95

100

Co
ve

ra
ge

 R
at

io
(%

)

Greedy
Brute Force

(a) Coverage

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

40

60

80

100

I/O
 O

ve
rh

ea
d

(%
) Greedy

Brute Force

(b) I/O Overhead

4 8 12 16 20 24
Number of Disks

100

101

102

Co
m

pu
ta

tio
n

Ti
m

e
(s

) Greedy
Brute Force

(c) Computation Time

Fig. 3. Performance comparison of brute force and greedy approaches in terms of coverage ratio, I/O overhead, and execution time. The greedy approach
when used with α = 0 achieves similar coverage and I/O overhead as the brute-force method with α = 1, thus it can be used to find a solution quickly.

we set the RAID level to 0 (i.e., no parity or mirroring), the
number of disks in RAID arrays to 8, RAID stripe size to
128KB, and file system stripe count– the number of storage
servers used to distribute a file– to 1, as default settings in
simulations. Thus, the number of disks used for each file is
set to 8, by default. To assign a UE probability for selected
disks, we randomly select N SMART logs from the Backblaze
dataset which are then evaluated by the XGBoost model for
error prediction. We use the SMART logs for December 2020
which contain 300K − 700K unique SMART logs depending
on disk model. The UE prediction models are then trained
using the SMART logs for January 2014 to November 2020.
We repeat the simulation for 1 million times for each disk
model using randomly selected workload characteristics (i.e.,
file count and size) and disks (i.e., SMART logs). Since file
count generator returns 3 files on average and each file is
assumed to be distributed to 8 disks, each SMART log in the
test dataset is selected 34 (1M×3×8

700K for ST12000NM0007) to
80 (1M×3×8

300K for ST8000DM002) times, on average.

Metrics: We define two metrics as coverage ratio and I/O
overhead ratio for performance evaluation. The coverage ratio
represents the percentage of write workload that is protected
against undetected write errors through write verification. Note
that it only considers the portion of data that is directed to
disks with UEs. Since the number of disks with UE only
constitutes 0.02% of all disks, this results in approximately
0.02% of write data to be issued to disks with error, assuming
equal distribution of workload over available disks. Overhead
ratio, on the other hand, refers to the percentage of I/O that is
verified by reading it back from disk. For example, assume a
total of 100GiB I/O is written to a file system out of which
100MiB is directed to disks with UEs. Also assume that the
probabilistic write verification checked 2GiB of 100GiB I/O
against UEs out of which 80MiB were on disks with UE.
Then, the coverage ratio becomes 80% meaning that 80MiB
of total 100MiB I/O on disks with UEs are protected against
UEs by write verification. I/O overhead is equal to 2% as
2GiB of total 100GiB write workload is read back for write
verification. The goal of the probabilistic write verification
model is therefore to maximize coverage ratio while keeping
minimizing I/O overhead as described in Equation 7. Unless
otherwise specified, we set the improvement ratio, k, to 2,
which requires finding a set of disks, Sc that will lower the
risk of uncorrectable errors by at least two times compared to

default error probability, E(W), as described in Equation 2.

Brute force vs greedy: Figure 3 compares the performance
of brute force and greedy approaches for varying α values
as defined in Equation 7. We observe that α value has a
limited impact on the coverage ratio of the greedy solution
as improvement ratio 90% is sufficient enough to check high-
risk disks against UEs. On the other hand, the brute force
approach yields 100% I/O overhead when α = 0 as it chooses
the subset with all disks to lower E(T)model. In exchange, it
yields 100% coverage ratio by capturing all UEs. Brute force,
however, achieves 92% coverage ratio with 31% I/O overhead
when α is set to 1. Higher α values lead 10− 15% increased
in I/O overhead for the greedy method. This is because it
selects disks with smallest write I/O size first to lower data size
portion of the cost function,

∑︁
i∈Sc

bi, but those disks may fall
short to satisfy the improvement ratio requirement for the UE
rate. Consequently, it will then move to disks with larger I/O
size, resulting in a suboptimal solution. As an example, if we
are given a list of integers {1, 2, 10} and asked to find a subset
whose sum of elements is the smallest value that is greater
than 5, then the greedy approach will end up with a subset
that contains all three numbers due to selecting the smallest
number in each iteration. As a result, the greedy solution might
yield suboptimal results when α value is close to 1. We leave
its optimization under such circumstances as a future work and
use α = 0 in the rest of the experiments as it yields competitive
results compared to brute force method with α = 1 (33% vs
31% in I/O overhead and 92% vs 93% in coverage ratio).
Figure 3(c) compares the execution time to find a solution
with greedy and brute force approaches for increased number
of disks. Note that although the number of disks used for a
single file is set to 8 by default, total number of disks used for
a workload can be high if a workload contains multiple files
or file system striping is enabled. It is obvious that brute force
method is not feasible approach when the number of disks is
larger than 20. On the contrary, the execution time for greedy
is smaller than one second even when searching for a solution
with 100 disks. Therefore, we used the greedy approach in
the rest of the analysis as it yields competitive results while
taking significantly less time to find a solution.

Batch vs Streaming: Write verification can be implemented
in two main ways for workloads that create multiple files over
time. The first approach (batch) either assumes that workload
characteristics (i.e., file count and sizes) and selected disks

2 5 10 25 100
Improvement Ratio (k)

70

80

90

100
Co

ve
ra

ge
 R

at
io

 (%
)

ST12000NM0007
ST4000DM000
ST8000DM002
ST8000NM0055

(a) Batch - UE Coverage

2 5 10 25 100
Improvement Ratio (k)

1

3

10

25

100

I/O
 O

ve
rh

ea
d

(%
)

ST12000NM0007
ST4000DM000
ST8000DM002
ST8000NM0055

(b) Batch - I/O Overhead

2 5 10 25 100
Improvement Ratio (k)

80

90

100

Co
ve

ra
ge

 R
at

io
 (%

)

ST12000NM0007
ST4000DM000
ST8000DM002
ST8000NM0055

(c) Streaming - UE Coverage

2 5 10 25 100
Improvement Ratio (k)

1

3

10

25

100

I/O
 O

ve
rh

ea
d

(%
)

ST12000NM0007
ST4000DM000
ST8000DM002
ST8000NM0055

(d) Streaming - I/O Overhead

Fig. 4. Uncorrectable error detection rate and I/O overhead of the probabilistic write verification model for batch (a and b) and streaming (c and d) workloads.
Improvement ratio (k) of 2 can help to capture 53− 73% of UEs with less than 5% I/O overhead.

are known ahead of time or waits for all write operations
to complete learn workload information and used disks. The
second (streaming) approach, on the other hand, makes no
assumption and gives write verification decisions as new files
are created over time. The batch approach has a potential
benefit of obtaining a better solution as it has a global view
of the workload and selected disks. However, it requires an
additional support from the application. In the case it assume
prior knowledge of workload and disk information, it necessi-
tate applications to make accurate estimation about workload
characteristics and selected disks to create files, which can be
nearly impossible to achieve. In case it waits for workloads
to complete, it demands applications to cache (or reproduce)
write operations to recover from UEs since deferring the write
verification decision until all files are created will prevent file
systems to keep the data in its cache. Streaming approach
alleviates this risk as it makes write verification decisions
as soon as new files are created, thus it is easier to retrieve
the corrupted data from storage node caches and reissue the
write operation with correct data. Please note that while the
streaming method is unable to change the decisions it has
given previously, it can keep track of previous decisions and
adjust future decisions accordingly.

Altough Section V formulates the probabilistic write verifi-
cation for batch workloads, the greedy model can be extended
to operate in streaming manner as follows: When the first file
f1 is created at time t = 1, the greedy model estimates the UE
probability for it, E(W)M (Equation 2), then selects a subset
disks to enable write verification such that the improvement
ratio requirement can be met. When a second file, f2 is created
at time t = 2, the model recalculates E(W)M considering
unverified disks of f1 and all disks used for f2. If the
new E(W)M is too high to meet the improvement ratio
requirement, then the model will start selecting disks of f2
one by one for write verification until E(W)M is lowered
sufficiently or all disks are selected. Note that the streaming
model can also operate at periodic intervals to process a set
of files that are created at around same time. Yet, the results
for streaming method are collected under the one file at-a-time
scenario to present its worst case performance as increasing
number of files leads to higher overall performance (please
refer to Figure 7).

Figure 4(a) and 4(b) demonstrate the impact of improvement
ratio on the performance of probabilistic write verification

1 2 4 8 16 32
Stripe Count

40

60

80

Co
ve

ra
ge

 R
at

io
 (%

) ST12000NM0007
ST4000DM000
ST8000DM002
ST8000NM0055

(a) UE Coverage

1 2 4 8 16 32
Stripe Count

1

2

3

I/O
 O

ve
rh

ea
d

(%
) ST12000NM0007

ST4000DM000
ST8000DM002
ST8000NM0055

(b) I/O Overhead

Fig. 5. File system striping can be used to reduce I/O overhead in exchange
of reduced UE coverage rate.

using the batch selection method. As expected, increasing
improvement ratio leads to higher coverage ratio as it executes
the write verification on more disks to lower the UE rate.
Checking more disks, in turn, leads to higher I/O overhead.
For example, when the improvement ratio is set to 2, more
than 70% of UE coverage can achieved with less than 4%
I/O overhead. On the other hand, the improvement ratio of
5 can increase the UE coverage to over 88% in exchange
of increasing the I/O overhead up to 17%. Figure 4(c) and
4(d) show the performance of the probabilistic model when
using the streaming approach to execute the probabilistic
write verification model. Surprisingly, the model yields slightly
higher coverage ratio (around 3%) despite attaining similar I/O
overhead. This could be attributed to the fact that the streaming
method tends to check more files for write verification than
the batch method since it can only make decision for one file
at a time. On the other hand, the batch model typically checks
fewer large files for write verification because their probability
of UE exposure is higher compared to small files due to I/O
size. As a result, the batch method mostly protects large files
against UE exposure even if they are issued to “relatively” low
risk disks. Since the streaming method is more convenient to
use and achieves higher coverage ratio, we present the rest of
the results when the write verification model is executed using
the streaming method.

File System Striping: We also assessed the impact of file
system striping on the performance of probabilistic integrity
verification for a fixed improvement ratio of 2. File system
striping is used to split and store files on multiple storage
servers to improve I/O throughput. While the default striping
level is set to 1 in most production parallel file systems, the
use of higher values is advised for large files for improved
I/O throughput. Figure 5 shows that increasing striping can

1 3 5 14
I/O Overhead (%)

1

3
5

10
W

rit
e

Sl
ow

do
wn

 (%
) Small

Medium
Large

(a) Expanse

1 3 5 14
I/O Overhead (%)

1

3
5

10

W
rit

e
Sl

ow
do

wn
 (%

) Small
Medium
Large

(b) Stampede2

1 3 5 14
I/O Overhead (%)

1

3
5

10

W
rit

e
Sl

ow
do

wn
 (%

) Small
Medium
Large

(c) Darwin

1 3 5 14
I/O Overhead (%)

1

3
5

10

W
rit

e
Sl

ow
do

wn
 (%

) Small
Medium
Large

(d) Campus Cluster
Fig. 6. Impact of probabilistic write verification on write performance in production distributed file systems for small (4KiB-4MiB), medium (250MiB-
750MiB), and large (1GiB-20GiB) workloads. 1% read overhead leads to less than 0.9% slowdown in write performance.

0 20 40 60 80 100
File Count

40

60

80

100

Co
ve

ra
ge

 R
at

io
 (%

) ST12000NM0007
ST4000DM000
ST8000DM002
ST8000NM0055

(a) UE Coverage

0 20 40 60 80 100
File Count

0

2

4

6

I/O
 O

ve
rh

ea
d

(%
) ST12000NM0007

ST4000DM000
ST8000DM002
ST8000NM0055

(b) I/O Overhead
Fig. 7. For a fixed improvement ratio of 2, increasing number of files
in workload lowers the I/O overhead from around 5% to less than 2% in
exchange of significant reduction in coverage ratio.

considerably lower I/O overhead for all disk models. For
example, while I/O overhead is between 2% and 3.5% when
stripe count is set to 1, it reduces to less than 1% for all disk
models for stripe count of 32. In return, the coverage ratio
drops from around 70% to 25− 50% range. The reduction in
I/O overhead can be attributed to the fact that as the number
of disks increases, I/O amount per disk decreases for the same
workload, letting the probabilistic write verification model
to make more precise disk selection decisions to meet the
improvement ratio.

File Count: Finally, Figure 7 presents the impact of the
number of files in workload on incurred I/O overhead for
a fixed improvement ratio of 2. As mentioned above, each
file is distributed to 8 disks, hence the number of disks used
for a workload is proportional to the number of files in the
workload. While I/O overhead ranges between 2.9% and 5.1%
when there is only one file in a workload, it reduces to nearly
2% as the number of files are increased to 100. In exchange,
UE coverage ratio decreases from over 95% to nearly 40%.
Similar to file striping results, this can be attributed to increase
in the number of disks used for a workload.

B. Overhead Analysis on Production File Systems

In this section, we evaluate the impact of I/O overhead on
write performance in production HPC clusters. In other words,
since a probabilistic integrity verification reads some portion
of a workload back from disk to check against UEs, this will
increase the execution duration of write operations. Thus, we
measure the slowdown rate of write operations under various
I/O overhead rates that the probabilistic model can incur to
quantify its impact on application performance.

We conducted tests on Expanse [39] (located at San Diego
Supercomputing Center, CA), Stampede2 [40] (located at
Texas Advanced Computing Center, TX), Darwin [41] (located

at University of Delaware, DE), and campus HPC clusters.
Expanse, Stampede2, and Darwin use Lustre parallel file
system whereas the campus cluster relies on GPFS (aka
IBM Spectrum Scale) file system to handle I/O workload
of HPC applications. We created three workloads as small
(4KiB − 4MiB), medium (250MiB − 750MiB), and large
(1GiB − 20GiB) to write files in different sizes. The exact
file sizes are determined using a random number generator that
picks a value within the file size range of each workload using
uniform distribution. The number of files in each workload is
adjusted to ensure that the experiment lasts long enough (i.e.,
more than five minutes) to make sure that the workload size
is bigger than Lustre client cache size. The default file system
striping is set to 1 in all Lustre clusters, thus each file in a
workload is stored in a single Object Storage Target (OST)
that are configured with 10-disk RAID-Z2 arrays.

As presented in Figure 4, I/O overhead of the probabilistic
model ranges between 2.1% and 3.6% for k = 2 and between
3.7% and 14.4% for k = 5. Moreover, Figure 5 and 7
show that the use of file system striping and having a large
number of files in a workload can lower the I/O overhead
to around 1% while sustaining 50% or higher coverage ratio.
Hence, we measured the impact of 1%, 3%, 5% and 14%
I/O overhead on the execution time of write workloads. To
avoid potentially misleading impact of caching, we created all
files in each workload before reading some of them back for
write verification. Although is it possible that files can still be
cached at the OSTs, we verified that read performance in these
experiments is not affected by OST caching as we obtained
similar reach throughput when reading files after several hours.
We randomly selected file blocks to read back whose total
size corresponds to overhead ratio we are trying to evaluate.
For example, we read back random file blocks whose total
size is around 14.4 GiB when evaluating 3% overhead ratio
for a workload with total size of 480 GiB. We repeated each
experiment three times and report the average values.

Figure 6 shows that the rate of slowdown is always smaller
than the I/O overhead ratio which can be attributed to hav-
ing higher read throughput compared to write throughput.
Specifically, 1% overhead ratio leads to 0.2−0.9% slowdown
and 5% I/O overhead leads to 1.3 − 4.5% slowdown in
write performance. It is important to note that both write and
read operations in these experiments are issued from Lustre
client nodes whereas in actual deployment read operations

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
ST3000DM001
ST4000DM000
ST8000DM002
ST8000NM0055

Fig. 8. ROC curve for the XGBoost model when trained with
ST12000NM0007 disk model and tested with others.

(as part of write verification) can be executed directly at the
storage server to further lower the cost of write slowdown.
The results obtained at the campus cluster with GPFS file
system (Fig 6(d)) matched with the ones captured in Lustre
clusters. As a result, it is fair to say that the probabilistic
write verification model can be used to reduce UE risk by
more than 50% with negligible (less than 1%) impact on write
performance.

TABLE IV
IMPACT OF PROBABILISTIC WRITE VERIFICATION ON TRANSFER TIME

Write-Verified Files (%)
100% 90% 50% 10%

Transfer Time (sec) 360.8s 353.6s 263.0s 168.5s

Impact on application performance: Many file transfer ap-
plications used to transfer large scale datasets (e.g.,
Globus [34], XDRootD [36], and Shift [35]) employ full
write verification to avoid undetected errors, which increases
transfer times in addition to incurring read overhead on file
systems [42], [43]. Thus, probabilistic write verification can be
used to lower I/O overhead and improved transfer performance
by eliminating write verification for files that are issued to
low-risk disks. To validate this, we measure transfer duration
of a dataset (10 × 1GB files) with various write verification
levels in a network with 10Gbps bandwidth and 30ms round
trip time. As an example, 10% write verification will conduct
the integrity verification on disk data for 9 of the 10 files
by reading them back from disk (i.e., write verification) and
on cache data (as data is being streamed from the network)
for the last file. The results (as given in Table IV) show
that while the transfer task takes 360 seconds when the
integrity verification process is conducted in a traditional
way (i.e., 100% write verification), it takes only 168 seconds
(53% reduction) and 263 seconds (27% reduction) when 10%
and 50% of all I/O is verified, respectively. Consequently,
integrating the probabilistic write verification to file transfer
applications can eliminate high overhead on file systems and
increase the transfer speeds significantly for file transfers while
satisfying desired reduction rate in UE probability.

VI. DISCUSSION ON DEPLOYMENT CHALLENGES

One of the deployment challenges for the proposed method
is the accessibility of SMART metrics. Luckily, most disk
manufacturers support SMART monitoring system, thus it can
be enabled to utilize pre-trained prediction models to decide
whether or not disks are likely to develop a UE within next 24
hours. Since SMART reports contain less than 60 attributes,

the storage footprint of collecting and storing daily SMART
logs would be negligible compared to the scale of today’s
large-scale parallel file systems. Specifically, one day worth
of SMART logs for 120K disks in Backblaze dataset took
only around 30MiB disk space. In addition, we found that it
is possible to lower the training data size for UE prediction
models to only use last two months of SMART logs without
sacrificing the performance considerable, thus it is possible
further reduce the storage requirement of SMART logs.

Another potential deployment challenge is an ability to
collect and train a UE prediction model for each disk type.
While this is a common challenge for any supervised learning
models, we show in Figure 8 that a model that is trained for
one disk model performs well enough when used for other
disk models. Specifically, we evaluate the performance of the
XGBoost model when it is trained using SMART logs of
ST12000NM0007 disk model and tested against other disk
models. The model attained more than 80% TPR with less
than 5% FPR for all disk models except ST3000DM001,
which is sufficient to capture more than 80% of UEs with
minimal overhead. Thus, while data collection is important to
improve the performance of the prediction models, pre-trained
models can be used to avoid majority of UEs with the help
of transfer learning. Another potential solution is incremental
learning which involves training prediction models with small
amount of initial data and updating them over time as new
data becomes available [20], [44].

VII. CONCLUSION

Uncorrectable errors pose a threat to data integrity in storage
systems as they may result in complete data loss when not
handled properly. Thus, an ability to predict uncorrectable
errors (UE) before they occur allows users and systems admin-
istrators to take precautionary actions such as taking high-risk
disks offline or verifying the integrity of I/O operations. In this
paper, we analyzed 143M SMART logs from 106K disks over
the period of 93 months to gain insights into the characteristics
of uncorrectable errors and to derive prediction models. We
find that XGBoost classifiers can be used to predict UEs with
90% accuracy with as low as 2% false negative rates. Building
on these models, we then introduce a novel probabilistic model
to execute UE mitigation strategies while keeping the system
overhead at minimum. The model first quantifies the likelihood
of UE for a given workload and then selects a minimum
set of disks to launch UE mitigation strategies (e.g., write
verification) if the calculated error rate is deemed to high for
the workload. Without loss of generality, we demonstrated the
impact of the probabilistic model on the implementation of
write verification technique to detect and recover from UEs
as soon as they happen. Our extensive simulations along with
real-world evaluations show that verifying the correctness of
write operations probabilistically leads to the elimination of
most write-triggered UEs while incurring negligible impact
on write performance. In particular, we show that more than
50% of write-triggered UEs can be avoided with less than 1%
decrease in write throughput.

ACKNOWLEDGEMENT

The work in this study was supported in part by the NSF
grant 2145742.

REFERENCES

[1] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel,
P. Fasel, V. Morozov, G. Zagaris, T. Peterka et al., “Hacc: Simulating
sky surveys on state-of-the-art supercomputing architectures,” New As-
tronomy, vol. 42, pp. 49–65, 2016.

[2] “TOP 500,” 2022, https://www.top500.org/.
[3] J. L. Hafner, V. Deenadhayalan, W. Belluomini, and K. Rao, “Undetected

disk errors in raid arrays,” IBM Journal of Research and Development,
vol. 52, no. 4.5, pp. 413–425, 2008.

[4] L. N. Bairavasundaram, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
G. R. Goodson, and B. Schroeder, “An analysis of data corruption in
the storage stack,” ACM Transactions on Storage (TOS), vol. 4, no. 3,
pp. 1–28, 2008.

[5] A. Krioukov, L. N. Bairavasundaram, G. R. Goodson, K. Srinivasan,
R. Thelen, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Parity
lost and parity regained.” in FAST, vol. 2008, 2008, p. 127.

[6] E. W. Rozier, W. Belluomini, V. Deenadhayalan, J. Hafner, K. Rao,
and P. Zhou, “Evaluating the impact of undetected disk errors in raid
systems,” in 2009 IEEE/IFIP International Conference on Dependable
Systems & Networks. IEEE, 2009, pp. 83–92.

[7] Y. Zhang, D. S. Myers, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Zettabyte reliability with flexible end-to-end data integrity,”
in Mass Storage Systems and Technologies (MSST), 2013 IEEE 29th
Symposium on. IEEE, 2013, pp. 1–14.

[8] F. Mahdisoltani, I. Stefanovici, and B. Schroeder, “Improving storage
system reliability with proactive error prediction,” in Proceedings of
the 2017 USENIX Conference on Usenix Annual Technical Conference.
USENIX Association, 2017, pp. 391–402.

[9] G. K. Lockwood, S. Snyder, S. Byna, P. Carns, and N. J. Wright, “Under-
standing data motion in the modern hpc data center,” in 2019 IEEE/ACM
Fourth International Parallel Data Systems Workshop (PDSW). IEEE,
2019, pp. 74–83.

[10] Y. Zhang, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “End-to-end data integrity for file systems: A zfs case study.”
in FAST, 2010, pp. 29–42.

[11] S. Wu, H. Jiang, D. Feng, L. Tian, and B. Mao, “Workout: I/o workload
outsourcing for boosting raid reconstruction performance.” in FAST,
vol. 9, 2009, pp. 239–252.

[12] J. Wan, J. Wang, Q. Yang, and C. Xie, “S2-raid: A new raid architecture
for fast data recovery,” in 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST). IEEE, 2010, pp. 1–9.

[13] “Bluewaters,” http://www.ncsa.illinois.edu/enabling/bluewaters, 2021.
[14] C. Di Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and

W. Kramer, “Lessons learned from the analysis of system failures at
petascale: The case of blue waters,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. IEEE,
2014, pp. 610–621.

[15] “The largest unplanned outage in years and how we sur-
vived it,” 2017, https://www.csc.fi/web/blog/post/-/blogs/the-largest-
unplanned-outage-in-years-and-how-we-survived-it.

[16] B. Allen, “Monitoring hard disks with smart,” Linux Journal, vol. 2004,
no. 117, p. 9, 2004.

[17] M. S. Rothberg, “Disk drive for receiving setup data in a self monitoring
analysis and reporting technology (smart) command,” May 17 2005, uS
Patent 6,895,500.

[18] A. Ma, R. Traylor, F. Douglis, M. Chamness, G. Lu, D. Sawyer,
S. Chandra, and W. Hsu, “Raidshield: characterizing, monitoring, and
proactively protecting against disk failures,” ACM Transactions on
Storage (TOS), vol. 11, no. 4, pp. 1–28, 2015.

[19] B. Zhu, G. Wang, X. Liu, D. Hu, S. Lin, and J. Ma, “Proactive drive
failure prediction for large scale storage systems,” in 2013 IEEE 29th
symposium on mass storage systems and technologies (MSST). IEEE,
2013, pp. 1–5.

[20] S. Han, P. P. Lee, Z. Shen, C. He, Y. Liu, and T. Huang, “Toward
adaptive disk failure prediction via stream mining,” in Proceedings of
IEEE ICDCS, 2020.

[21] S. Lu, B. Luo, T. Patel, Y. Yao, D. Tiwari, and W. Shi, “Making disk
failure predictions smarter!” in 18th {USENIX} Conference on File and
Storage Technologies ({FAST} 20), 2020, pp. 151–167.

[22] I. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caulfield, A. Sivasub-
ramaniam, B. Cutler, J. Liu, B. Khessib, and K. Vaid, “Ssd failures in
datacenters: What? when? and why?” in Proceedings of the 9th ACM
International on Systems and Storage Conference, 2016, pp. 1–11.

[23] Y. Xu, K. Sui, R. Yao, H. Zhang, Q. Lin, Y. Dang, P. Li, K. Jiang,
W. Zhang, J.-G. Lou et al., “Improving service availability of cloud
systems by predicting disk error,” in 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18), 2018, pp. 481–494.

[24] J. Xiao, Z. Xiong, S. Wu, Y. Yi, H. Jin, and K. Hu, “Disk failure
prediction in data centers via online learning,” in Proceedings of the
47th International Conference on Parallel Processing, 2018, pp. 1–10.

[25] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and J. Schindler,
“An analysis of latent sector errors in disk drives,” in Proceedings of
the 2007 ACM SIGMETRICS international conference on Measurement
and modeling of computer systems, 2007, pp. 289–300.

[26] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A large-scale study of
flash memory failures in the field,” ACM SIGMETRICS Performance
Evaluation Review, vol. 43, no. 1, pp. 177–190, 2015.

[27] B. Schroeder, R. Lagisetty, and A. Merchant, “Flash reliability in
production: The expected and the unexpected,” in 14th {USENIX}
Conference on File and Storage Technologies (FAST), 2016, pp. 67–80.

[28] A. Oprea and A. Juels, “A clean-slate look at disk scrubbing.” in FAST,
2010, pp. 57–70.

[29] “Backblaze,” 2019, https://www.backblaze.com.
[30] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A

survey,” J. Mach. Learn. Res., vol. 20, no. 1, p. 1997–2017, jan 2019.
[31] B. Schroeder, S. Damouras, and P. Gill, “Understanding latent sector

errors and how to protect against them,” ACM Transactions on storage
(TOS), vol. 6, no. 3, pp. 1–23, 2010.

[32] J. Tillson, “Disk drive incorporating read-verify after write method,”
Aug. 24 1999, uS Patent 5,941,998.

[33] A. Riska and E. Riedel, “Idle read after write-iraw.” in USENIX Annual
Technical Conference, 2008, pp. 43–56.

[34] “Globus,” 2021, https://www.globus.org/.
[35] “Shift,” 2021, https://www.nas.nasa.gov/hecc/support/kb/shift-transfer-

tool-overview 300.html.
[36] “XRootD,” 2021, https://xrootd.slac.stanford.edu/doc/dev50/xrd config.htm.
[37] F. Wang, H. Sim, C. Harr, and S. Oral, “Diving into petascale production

file systems through large scale profiling and analysis,” in Proceedings
of the 2nd Joint International Workshop on Parallel Data Storage &
Data Intensive Scalable Computing Systems, 2017, pp. 37–42.

[38] Z. Liu, R. Lewis, R. Kettimuthu, K. Harms, P. Carns, N. Rao, I. Foster,
and M. E. Papka, “Characterization and identification of hpc applications
at leadership computing facility,” in Proceedings of the 34th ACM
International Conference on Supercomputing, 2020, pp. 1–12.

[39] “Expanse,” https://www.sdsc.edu/services/hpc/expanse/, 2021.
[40] “Stampede2,” https://www.tacc.utexas.edu/systems/stampede2, 2021.
[41] “Darwin,” https://dsi.udel.edu/core/computational-resources/darwin/,

2021.
[42] B. Charyyev, A. Alhussen, H. Sapkota, E. Pouyoul, M. H. Gunes,

and E. Arslan, “Towards securing data transfers against silent data
corruption,” in IEEE/ACM International Symposium in Cluster, Cloud,
and Grid Computing, IEEE/ACM, 2019.

[43] B. Charyyev and E. Arslan, “Riva: Robust integrity verification algo-
rithm for high-speed file transfers,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 6, pp. 1387–1399, 2020.

[44] M. Arifuzzaman and E. Arslan, “Swift and accurate end-to-end through-
put measurements for high speed networks,” in The Network Traffic
Measurement and Analysis Conference, 2022.

	Introduction
	Related Work
	Modeling Uncorrectable Errors
	The Probabilistic Model
	Probabilistic Write Verification
	Simulation Results
	Overhead Analysis on Production File Systems

	Discussion on Deployment Challenges
	Conclusion
	References

