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Abstract: Machine learning has been applied to a wide variety of models, from classical statistical

mechanics to quantum strongly correlated systems, for classifying phase transitions. The recently

proposed quantum convolutional neural network (QCNN) provides a new framework for using

quantum circuits instead of classical neural networks as the backbone of classification methods.

We present the results from training the QCNN by the wavefunctions of the variational quantum

eigensolver for the one-dimensional transverse field Ising model (TFIM). We demonstrate that the

QCNN identifies wavefunctions corresponding to the paramagnetic and ferromagnetic phases of the

TFIM with reasonable accuracy. The QCNN can be trained to predict the corresponding ‘phase’ of

wavefunctions around the putative quantum critical point even though it is trained by wavefunctions

far away. The paper provides a basis for exploiting the QCNN to identify the quantum critical point.

Keywords: quantum neural network; convolutional neural network; quantum phase transition;

transverse field Ising model; quantum convolutional neural network; variational quantum

eigensolver; variational method; quantum computing; quantum machine learning

1. Introduction

Machine learning (ML) and quantum computing (QC) are among the most notable
topics that significantly impact various fields of physics. ML has become a powerful tool for
scientific and academic use in the age of big data. The progress of QC, in particular, the real-
ization of quantum computers with tens of qubits, may provide a new opportunity to study
challenging problems in strongly correlated many-body physics, among other applications.

The motivation for the present work was to take advantage of recent developments in
quantum algorithms to find the ground state of the many-body Hamiltonian and classify
quantum states [1–5]. Understanding quantum criticality is the driving force of many
exotic phenomena in condensed matter physics and material science [6,7]. In particular,
the theory to explain non-Fermi liquid is based on the existence of a quantum critical point
in high-temperature superconducting cuprates [6,8]. Unfortunately, numerical studies are
relatively limited, primarily due to the minus sign problem in the quantum Monte Carlo
algorithm. Thus, a new direction for studying quantum critical points may be essential for
analyzing strongly correlated systems.

ML has been applied to physics and other branches of science and engineering. Explo-
sive growth has been seen in diverse applications in the past decade or so. This growth
is principally driven by the availability of an extensive dataset and accessible libraries for
sophisticated deep learning methods based on neural networks [9,10]. Among the different
types of neural network, the convolution neural network (CNN) is widely used [11]. Unlike
conventional dense or fully connected neural networks, CNN emphasizes local correlation
information. It serves as a high-performance classifier for computer vision. Image identifi-
cation is a central topic for classifiers. Most images have a certain level of spatial correlation.
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CNN is designed to utilize the local spatial correlations in the input data. In practice, most
physical data also possesses a robust spatial correlation; therefore, in hindsight, it is not
surprising that CNN has seen many successful applications in physics.

In ML, CNN has been adopted mainly to identify phase transitions for classical
statistical models from snapshots of classical Monte Carlo or molecular dynamics con-
figurations and also configurations from quantum Monte Carlo of strongly correlated
systems [12–16]. Attempts have been made to use the quantum wavefunction from
exact diagonalization [17–29]. Recent studies further involve feeding spatially resolved
experimental data from scanning tunneling microscopy to identify different phases of
materials [30].

However, a quantum computer for fault-tolerant quantum computations, which can
supersede the best classical computer for many tasks, may not be available in the near
future. Noisy quantum computers with tens of qubits are immediately available. Noisy
intermediate-scale quantum (NISQ) computers are likely to be feasible shortly [31]. They
open up new opportunities to use quantum computation to solve problems strikingly
different from classical numerical simulations. Among the various methods feasible on
such NISQ computers, the variational quantum eigensolver [32] and the general idea of the
quantum approximation optimization algorithm represent promising proposals [33].

An enormous amount of effort for addressing problems in optimization, chemistry,
and strongly correlated systems has been invested in recent years [3,34]. Conceptually,
the approach is based on a quantum state with parameters. The quantum computer is used
to calculate the expectation value of a given quantum state to the quantity produced for
optimization [34]. This can be a cost function, an optimization problem, or the ground state
energy of a molecule. In general, calculating such an expectation value scales exponentially
to the problem size by classical methods. The quantum computer offers an opportunity
to speed up such calculations. A classical optimization algorithm then optimizes the
parameter. The idea of variational methods is not limited to ground state calculation; it is a
general concept used to mimic any operator in the variational sense. For example, quantum
dynamics based on solving the Schrödinger equation can be estimated by the variational
method [35,36].

Variational methods have been widely adopted in condensed matter physics. Specifi-
cally, the variational quantum Monte Carlo (VMC) is one of the effective numerical methods
for solving correlated systems [37,38,38–42]. Monte Carlo calculates the quantum expecta-
tion values for the ground state energy. The multivariate minimization method minimizes
the ground-state energy with respect to the variational parameters of the wavefunction. Its
main advantage is the absence of the minus sign problem, which hinders most quantum
Monte Carlo methods for fermion problems.

The VQE provides a new framework for sidestepping the computational intensive part
of the conventional VMC method in calculating quantum expectation values by quantum
computers [34]. The wavefunctions represented in quantum circuits also provide new
opportunities and challenges due to the different nature of the wavefunctions used in the
conventional VMC [43]. It is worth noting that most numerical methods for finding the
‘ground state’ of a many-body system are based on the non-unitary propagation of a trial
state; a typical example is the projection quantum Monte Carlo [44].

From the viewpoint of utilizing quantum computing approaches for strongly corre-
lated systems, the ground state energy calculation alone is often insufficient to reveal much
detail of the system. An exciting issue is the possibility of quantum phase transitions at zero
temperature by tuning the parameters in the Hamiltonian [7,45]. The ground-state energy of
relatively small system sites, which could be simulated in the near future, does not provide
a direct answer to determine a quantum phase transition. Constructing an order parameter
corresponding to the known broken symmetry in the thermodynamic limit allows direct
access to phase transitions. Given the small system size and the nature of a second-order
phase transition of quantum phase transitions, an order parameter alone is often a more
obscure way to tell whether the systems possess a phase transition. A true singularity at
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the phase transition is realized only in the thermodynamic limit. This challenge has led to
the development of the finite-size scaling method [46]. However, proper finite-size scaling
may not be feasible for quite small system sizes that can be simulated. Moreover, there
are systems where phase transitions do not appear in local-order parameters, or the order
parameter is simply unknown [47,48].

The notion of using a quantum circuit as a classifier or clustering algorithm began to
attract attention more than two decades ago [49–55]. The concept of the classical neural
network has been filtered into the idea of quantum classifiers in recent years [1,56–77].
The classical neural network consists of links and neuron units represented by activation
functions, which are organized in a layered structure. The key properties of CNN are
translationally invariant convolution and pooling layers, each characterized by a constant
number of parameters (independent of the system size), and sequential data size reduction
(i.e., a hierarchical structure) [78].

Using a neural network as a classifier decreases the number of neuron units in each layer
until one or a few units remain in the output layer. Thus, each layer can be regarded as a
pooling layer because the number of inputs to the neuron units at each layer is smaller than the
number of outputs. It is a method for compressing and reducing the degrees of freedom; thus,
the suggestion of a renormalization group can be pertinent in particular neural networks.

For most space-dependent data, there is a non-zero spatial correlation. Short-range
correlations appear in data from images of objects to physical systems, such as spin correla-
tion and spatial correlation of the positions of atoms or molecules in a solid phase and even
in a liquid phase. Therefore, it is not surprising that CNN has seen many applications in
physics in learning patterns from statistical models to strongly correlated systems.

CNN is realized by introducing a so-called convolutional layer within each layer
of activation functions of a dense neural network. The purpose is to extract ’hidden’
information through some combination of local data, which is missing in the standard
dense neural network. In practice, the combination is a weighted sum of local data.

A simple analogue can be drawn to the quantum circuit by replacing the links and
activation by the quantum links and the quantum gates, respectively [78]. The principal
structure of a QCNN is composed of two distinct types of layers. First, the pooling layer,
which reduces the degrees of freedom, can be replaced by multi-qubit gates. The sim-
plest possibility is the CNOT gate [78]. Second, the convolution layer in the CNN can
be replaced by multi-qubit quantum gates among nearby qubits. Thus, QCNN can be
understood naively as a quantum neural network classifier with convolutional layers in
which ‘convolution’ between nearby qubits can be processed.

In short, a quantum circuit model is introduced, which extends the key properties
of the classical CNN to the quantum domain. The circuit’s input is a quantum state.
A convolution layer applies a single quasilocal unitary in a translationally invariant way
for finite depth. A fraction of qubits are measured for pooling; their outcomes determine
unitary rotations, which are applied to nearby qubits [78]. Hence, the non-linearities in
QCNN arise from reducing the number of degrees of freedom. Convolution and pooling
layers are performed until the system size is sufficiently small. Then, a fully connected
layer is applied as a unitary function on the remaining qubits if needed. The outcome of the
circuit is finally obtained by measuring a fixed number of output qubits. Similarly, in the
classical CNN, circuit structures (i.e., hyperparameters of QCNN), such as the number of
convolution and pooling layers, are fixed.

Recent studies have shown that quantum-enhanced machine learning is a promising
approach for recognizing the phase of matter [79]. An interesting question is whether the
QCNN method can identify different phases of a quantum many-body system. This is the
first step towards applying it for detecting quantum phase transitions. Using ML to identify
phases by inputting the wavefunction is a challenge, as the Hilbert space of the system
increases exponentially with respect to the system size. A practical method to bypass such
a challenge is to consider the reduced density matrix or some other derived quantities
based on the wavefunction [18].
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An evident advantage of the QCNN approach is that the input is naturally quantum
mechanical; the wavefunction does not need to be written as a classical vector. The dimen-
sion grows exponentially to the system size to be fed to the ML method. The disadvantage,
or perhaps an unknown factor, is that the wavefunction is not calculated exactly, and that
there is no control parameter to systematically improve the wavefunction.

It has to be input as some form of a quantum circuit—the one which is most promising
in the NISQ is the VQE. The primary purpose of the present paper is to present a study
of a many-body quantum system solved by VQE and then to use the QCNN to identify
the VQE wavefunction corresponding to the different phases of the model. This provides a
possible framework for extracting quantum critical points.

The use of quantum algorithms for machine learning is a rapidly developing topic.
Some of the latest developments have included, but have not been limited to, edge detec-
tion [80], quantum particle swarm optimization [81], quantum circuit Born machine [82],
and image generation via generative network [83]. We refer readers interested in the
proposed applications to a recent review paper [84].

This paper is organized as follows: In Section 2, we briefly describe the transverse
field Ising model (TFIM). In Section 3, the data from the VQE of the TFIM is discussed,
and the structure of the QCNN is presented. The results from the variational autoencoder
are described in Section 4. We conclude the paper and discuss the implications and possible
future applications of the method developed in this study in Section 5.

2. Transverse Field Ising Model

2.1. Model

We consider the one-dimensional Ising model with a transverse field. The Hamiltonian
is given as

H = −J
N

∑
i=1

σ̂z
i σ̂z

i+1 − Γ
N

∑
i=1

σ̂x
i , (1)

where σ̂α(α = x, y, z) are the Pauli matrices that obey the commutation relation, [σ̂α
i , σ̂

β
j ] =

2ιδijǫαβγσ̂
γ
i , where ι is an imaginary number. J is the coupling between the nearest-neighbor

spins and is set to 1 to serve as the energy scale of the problem. We only consider a
ferromagnetic case with periodic boundary conditions.

σ̂z has the eigenvalues of ±1, and their corresponding eigenvectors are symbolically
denoted by

| ↑>=

(

1
0

)

(2)

and

| ↓>=

(

0
1

)

. (3)

The model is solvable in the sense that the eigenenergy can be obtained exactly via the
Jordan–Wigner transformation. The quantum critical point can also be determined exactly
by mapping the model to an anisotropic two-dimensional Ising model in a square lattice
and employing the self-duality property of the model. The quantum critical point of the
TFIM is at Γc = J [85]. Given the relative simplicity of the model and that the value of the
transverse field is exactly known at the quantum critical point, the TFIM provides a good
test bed for the capability of a quantum classifier for identifying the phase transition of a
quantum many-body system.

2.2. Wavefunction from VQE

As our goal is to demonstrate that the QCNN can identify the wavefunction in different
phases, the input should be represented in a quantum circuit. It is possible to cast the
wavefunction in terms of a classical vector into quantum data. This is precisely what needs
to be done using a quantum classifier for classical data, such as identifying classical images.
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