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Abstract

Neural networks (NN) for single-view 3D reconstruction
(SVR) have gained in popularity. Recent work points out
that for SVR, most cutting-edge NNs have limited perfor-
mance on reconstructing unseen objects because they rely
primarily on recognition (i.e., classification-based methods)
rather than shape reconstruction. To understand this issue
in depth, we provide a systematic study on when and why
NNs prefer recognition to reconstruction and vice versa.
Our finding shows that a leading factor in determining
recognition versus reconstruction is how “dispersed” the
training data is. Thus, we introduce the dispersion score, a
new data-driven metric, to quantify this leading factor and
study its effect on NNs. We hypothesize that NNs are bi-
ased toward recognition when training images are more dis-
persed and training shapes are less dispersed. Our hypoth-
esis is supported and the dispersion score is proved effec-
tive through our experiments on synthetic and benchmark
datasets. We show that the proposed metric is a principal
way to analyze reconstruction quality and provides novel
information in addition to the conventional reconstruction
score. We have open-sourced our code.'

1. Introduction

Using deep learning (DL) for single-view 3D reconstruc-
tions (SVR) is our main focus. Numerous recent publica-
tions presented innovative neural network (NN) designs to
advance the state-of-the-artin SVR [6, 9, 15, 17, 20, 21, 23—
25, 27, 28]. Their primary focus is on improving the quality
of reconstruction on benchmark datasets, which is measured
by reconstruction metrics, such as Chamfer distance (CD)
[6], Earth Mover Distance [6], mIoU [5], and F-score [22].
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While several studies have proposed improved methods to
reconstruct shapes, only few focus on the underlying mech-
anisms of NNs in SVR and whether the actual mechanisms
meet the designers’ expectations.

Several studies [19, 22] have shown that cutting-edge DL
models in SVR primarily perform recognition rather than
reconstruction. In other words, NNs tend to find a shortcut
to solve SVR by using the easy-to-learn classification-based
approaches, e.g., by implicitly grouping the training shapes
into clusters and memorizing only the mean shapes of these
clusters. This mean-shape-based approach is fundamentally
different from our intuition of 3D reconstruction.

More importantly, their finding shows that NN has lim-
ited performance on reconstructing novel objects when it re-
lies more on recognition, rendering the question of “do NNs
perform recognition or reconstruction”. Furthermore, find-
ings [19, 22] show that the bias toward recognition can arise
from properties of the dataset, e.g., some training dataset
uses the object-centered (OC) coordinate [5, 6, 9, 16]. In
the OC coordinate, the 3D shapes of objects are aligned to
the same orientation. In the other viewer-centered (VC) co-
ordinate, the 3D shapes are aligned to randomly sampled
input viewpoints. In particular, they observe that using OC
can make NNs more biased toward recognition than VC.
Although these examinations provide valuable insights into
how NNs perform SVR, the answer to the question depends
on a multitude of factors. Determining whether NNs should
perform in OC or VC is not enough to resolve the question.

To address the issue of NNs’ bias toward recognition in
SVR, we provide a systematic study on recognition versus
reconstruction. Our investigation leads to a comprehensive
evaluation metric (dispersion score or DS) and applicable
experiment procedures to improve SVR. In particular, we
show that DS can diagnose the trained model’s bias toward
recognition (in Section 5.3). We also illustrate that the use
of more dispersed training shapes can improve reconstruc-



tion as shown by CD and DS (in Section 5.4). Specifically,
our main contributions provide answers to the following
questions.

What causes NNs to prefer recognition in SVR? In our
experiments, we showed that whether NNs would perform
reconstruction or recognition depends on if the training data
is “dispersed” or “clustered”. For example, we hypothesize
that OC makes NNs perform recognition because aligning
training objects to a common orientation makes the training
shapes more clustered. The clustered training shapes can
bias NNs toward using recognition-based approaches.” Our
main claim is that NNs tend toward reconstruction when
3D training shapes are more dispersed. They are prone to
perform recognition when the 2D training images are more
dispersed.

How can we measure the extent of reconstruction or
recognition? We propose a new metric, DS, to measure
how dispersed or “unclustered” the data is. A larger score
indicates that the data is more dispersed and less clustered,
whereas a lower score indicates the opposite. DS is mea-
sured from two perspectives: input DS on training data and
output DS on reconstructed shapes (results of test). The in-
put DS is calculated to diagnose the training data and de-
scribe its relationship with the corresponding trained mod-
els. The output DS is calculated to measure whether the
trained models tend to perform reconstruction or recogni-
tion. We notice that measuring the DS of reconstructed
shapes (i.e., output DS) can indicate whether NNs are bi-
ased toward recognition because the output shapes tend to
form clusters when the NNs rely on using mean shapes to
reconstruct.

Finally, it is worth noting that the question of recogni-
tion versus reconstruction is not equivalent to memorization
versus generalization. The latter has a clear definition, e.g.,
Eqgn. (1) of [7]. The question of recognition versus recon-
struction currently does not have a rigorous definition. We
provide the first metric to quantify recognition versus recon-
struction. However, the DS is not necessarily a one-size-
fits-all statistic that can distinguish recognition from recon-
struction. We know that existing reconstruction metrics like
CD, which measures a single shape’s quality, cannot tell
whether the reconstruction uses the mean shape because
quantifying the mean shape requires measuring more than
one shape. Thus, the proposed DS provides novel infor-
mation in addition to the conventional reconstruction score
when assessing SVR models.

2. Related Work

Single-view 3D reconstruction There have been lots of
studies on DL-based SVR using various 3D representations,

’In the Appendix A, we provide further details of OC and VC, and
more experiments on their difference.

including voxels [5], point clouds [6, 9, 28], meshes [8, 24],
and signed distance fields (SDF) [16, 26]. These techniques
have been proven efficient in improving the quality of shape
reconstruction, measured by similarity metrics such as CD,
Earth Mover Distance [6], mIoU [5], and F-score [22]. A
critical difference between these work and ours is that they
make a single predicted shape closer to the ground truth
shape by neglecting if the NNs use recognition-based or
reconstruction-based schemes, which requires the knowl-
edge obtained from the whole dataset.

Reconstruction vs Recognition Recently, a few studies
advocate a rethinking of how NNs perform SVR tasks.
In particular, the mechanism of SVR is hypothesized to
be a combination between reconstruction and recognition
[19, 22]. For example, [19] proposes that the commonly
used shape representation and object-centered coordinate
make NNs place more importance on recognizing the ob-
ject category (or cluster) and thus encourage memorizing
the object shape. This hypothesis is supported by the qual-
itative results that trained NN models sometimes predict a
shape in an entirely different object category than the input
image, which is conjectured to be caused by a classification
error. Further, [22] shows that state-of-art NNs for SVR
tasks rely predominantly on recognition instead of recon-
struction. The claim is supported by observing that NNs
have similar reconstruction performance with recognition-
based methods measured by the mloU score. Although
prior work points out some factors that could bias NNs to-
ward recognition, their findings are limited to special issues
like shape coordinate representation. In our work, we pro-
vide a more systematic view of this problem and give oper-
ational ways to guide NNs toward reconstruction.

Choice of The Coordinate Representation The conven-
tional setting for SVR tasks is to predict output shapes in
OC coordinate [5, 6, 9, 16, 26]. However, VC coordinate is
recommended to alleviate the bias toward recognition [22]
and improve the generalization ability to reconstruct unseen
object classes [19]. In this work, we study the impact of the
two coordinate representations on the DS of datasets and
trained models.

3. Definition and Main Claim
3.1. Single-view 3D Reconstruction

We consider the problem of SVR using NNs. The input
I € RW*H jg a 2D image with width W and height H.
The output, denoted as .S, is a 3D point cloud € RNX3 We
only consider point-cloud-based shape representation in this
work. A NN model f is trained to reconstruct the shape S
from the input image I, by minimizing the empirical loss
defined for a certain loss function [:

n—1

min y_U(f (L), S)- (1)
=0



3.2. Recognition vs. Reconstruction

Recognition and reconstruction are two modes that NNs
can perform in the SVR tasks. The basic mechanisms of
these two are outlined as the following:

Recognition A recognition-based model reconstructs
shapes in two steps. First, during training, the model parti-
tions the training shapes into clusters based on shape simi-
larity and memorizes the mean shape of each cluster. Then,
during testing, the model classifies the input test image into
one of the clusters and retrieves the corresponding mean
shape as the output. In this case, the reconstructed shapes
are highly clustered because different input images could be
classified into one single mean shape.

Reconstruction A reconstruction-based model directly
generates the 3D reconstruction rather than using any clus-
ter or semantic information. In this case, the reconstructed
shapes are dispersed because the feature of each shape cor-
responds to the low-level image cues.

The two mechanisms described above are distinctive but
not disjoint. It is known that a trained NN in practice com-
bines these two to perform SVR. The investigation of recog-
nition versus reconstruction is different from memorization
versus generalization of NN in SVR [2]. The latter focuses
on reducing the generalization gap between training and
test, while our work only studies the working mechanism
of NNs for SVR.

3.3. Dispersion Score Metric

We define the dispersion score (DS) to measure how dis-
persed the data is. The metric is defined based on the clas-
sical notion of clustering inertia [4].

Given a dataset D = {z;} ' and a distance function
d(z,y), we first determine clustering of the dataset by using
the K-medoids algorithm [10]. We provide ablation studies
on different clustering methodologies in Appendix B. Given
the number of clusters n, the clustering result is denoted as
Cy(+), where for each sample z; € D, K-medoids gives
the cluster label C,,(x;). Ctr; denotes the centroid of the
cluster that contains the sample x;. Then, the inertia I of
the dataset D partitioned by C,(-) is defined as:

N-1

Ic, (D) =Y d(xi,Ctry). 2)

i=0
The DS, defined using the inertia, is given by:

Ic, (D)
DS(D) = ——=. 3
(D) = =5 3)
DS measures the average distance of each sample to its
assigned cluster centroid. Thus, with a larger DS, the sam-
ple is further away from its cluster centroid and the dataset
is more dispersed. For example, if the NN performs pure

recognition, each reconstructed shape is equal to the cor-
responding cluster’s mean shape (cluster centroid). In this
case, the DS of the reconstructed shapes equals 0, which is
the limit of pure recognition.

The K-medoids algorithm requires assigning the number
of clusters. We automatically determine this hyperparame-
ter using the “Kneedle”” method [18]. The detail is provided
in Appendix C. When evaluating DS in SVR tasks, we need
to define the distance function d(z,y) to measure pairwise
distance between data samples. For 3D point cloud data, we
define d(z,y) as CD which measures the distance between
two point sets. For the 2D image data, we define d(z, y) as
the feature reconstruction loss which compares image con-
tents in a high dimensional feature space [13].

3.4. Dispersion Relationship Hypothesis
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Figure 1: Caricature of the two approaches to change train-
ing datasets’ DS: using more dispersed training images
makes the reconstructed shapes more clustered, whereas us-
ing more dispersed training shapes makes the reconstructed
shapes more dispersed.

In this paper, we experimentally demonstrate that the
bias of trained NNs toward either recognition or reconstruc-
tion depends on whether the training dataset is clustered or
dispersed. Specifically, we consider two ways to change
datasets’ DS: more dispersed training images and more dis-
persed training shapes, as illustrated in Figure 1. We will
experimentally demonstrate the following claim.

(Main claim) In SVR, the more dispersed training images
make NNs biased toward recognition, whereas the more dis-
persed training shapes guide NNs to use reconstruction.

The claim is motivated by prior SVR work. First, [22]
proposes to use VC instead of OC. Training shapes in VC
are more dispersed than OC, while training images in both
cases are the same. Second, it is common to use image aug-
mentations to enhance SVR [9, 16], in which training im-
ages become more dispersed while training shapes remain
unchanged.

We illustrate intuition behind the main claim in Figure 1.
By making training images more dispersed with the clus-



tered training shapes, we make the trained model exhibit a
higher tendency toward recognition, i.e., the shape predic-
tions concentrate on the mean shapes and are highly clus-
tered. The clustered shape predictions are illustrated in Fig-
ure | as the intersections between the two dashed lines and
the y-axis. On the other hand, making training shapes more
dispersed in the shape space guides the model to learn more
dispersed shape data. Thus, the NNs learn to reconstruct
more dispersed shapes and rely less on mean shapes.

4. Experiments on Synthetic Dataset

In this section, we verify our claim on synthetic datasets.
We first describe the designs of the synthetic datasets, which
correspond to the two transitions proposed in Section 3.4,
specifically, more dispersed training images and shapes. We
then show the effects of the two transitions on NNs’ ten-
dency toward recognition or reconstruction by analyzing
both distance matrices and input/output DS. The definition
of distance matrices is in Section 4.2.

4.1. Dataset

We create and split a synthetic base dataset into training
and test sets. By sampling instances from the training set
of the base dataset, we generate two groups of sub-trainsets
representing the varying DS for training images and shapes.
Synthetic Shape Generation The base dataset is generated
by interpolating between a cube and a sphere of a similar
size. We use Blender [11] to implement the interpolation,
and more details are in Appendix D. The interpolation gen-
erates 1000 intermediate shapes. Given each intermediate
shape in mesh format, we render an image from the isomet-
ric view and sample a point cloud consisting of 2500 points.
We use the image and the point cloud to comprise an image-
shape pair as a data sample.
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Figure 2: The illustration of the two transitions imple-
mented by toy examples. (a) Interpolating more images be-
tween sphere and cube images makes training images more
dispersed. (b) Interpolating more shapes between sphere
and cube shapes makes training shapes more dispersed.

Dataset Composition We use the same test set generated
from the base dataset for all the experiments. We produce
the training sets in different experiments to create scenarios
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Figure 3: Visualization of the distance matrices from ex-
periments on sub-trainsets S1./; and S;Ig. Blue represents
small distance and red represents large distance. Images:
training images. Shapes: training shapes. Recons: trained
models’ reconstructed shapes on an identical test set. More
Dispersed Images (Left Columns): Reconstructed shapes
become more clustered when training images are more dis-
persed. More Dispersed Shapes (Right Columns): Re-
constructed shapes become more dispersed when training
shapes are more dispersed.

with varying dispersed training images or shapes. In par-
ticular, we build sub-trainsets with uncorrelated image and
shape DS by sampling images and shapes independently
from the base training set.

Figure 2a shows the transition with more dispersed train-
ing images, in which the training images are highly clus-
tered initially and more dispersed after the transition. We
build a group of 8 sub-trainsets to gradually increase image
DS by interpolating between the two ends of this transition.
This procedure gives the first group of the 8 sub-trainsets.
The corresponding training shape sets are identical across
the 8 sub-trainsets and are specifically designed to be highly
clustered. The design aims to approximate the most com-
mon scenario when training shapes are clustered, e.g. when
the OC coordinates are used.

Figure 2b shows the other transition with more dispersed
training shapes. The training shapes change from being



clustered to being dispersed. Similarly, we build a group of
8 sub-trainsets to gradually increase shape DS by interpolat-
ing between the two ends of this transition. Also, note that
the corresponding training image sets are the same across
the 8 sub-trainsets and are kept highly dispersed to approx-
imate the most common scenario in ShapeNet that training
images have a large variety of lighting, viewpoint, texture.
We use S11; and S;Ig (¢, = 1,2,...,8) to symbol-
ize these two groups of sub-trainsets. S represents training
shapes while [ represents training images. The subscript
1 and j represent the DS’s order of training images and
training shapes, respectively. Thus, S1I; (i = 1,2,...,8)
represents the sub-trainsets with the least dispersed train-
ing shapes and gradually more dispersed training images,
corresponding to the scenario in Figure 2a. Similarly, S; /g
(g =1,2,...,8) represents the sub-trainsets with the most
dispersed training images and gradually more dispersed
training shapes, corresponding to the scenario in Figure 2b.

4.2. Implementation Details

We adopt AtlasNet-Sphere [9] as the baseline model. For
two groups of 8 sub-trainsets, we train 16 models separately
using training protocol detailed in Appendix E and evaluate
the trained models from the last epoch. We compute the dis-
tance matrices of the 16 reconstructed shape sets and corre-
sponding training data, visualizing them in Figure 3. The
distance functions for different types of data are defined in
Section 3.3. We further evaluate the input/output DS of the
16 sub-trainsets and the trained models. The results are re-
ported in Figure 4. The cluster-number hyperparameter of
input/output DS is set to be 2.

4.3. More Dispersed Training Images

We now show results to support the main claim in Sec-
tion 3.4. Note that one part of the claim is that NNs tend to-
ward recognition when training images are more dispersed.
We use two evaluation methods to analyze our experiments:
distance matrices (shown in Figure 3) and DS (shown in
Figure 4).

We first analyze Figure 3 to show how the distance ma-
trices support the claim. Each subfigure in Figure 3 repre-
sents a distance matrix measured on one of the datasets or
reconstructed shape sets. The reconstructed shape sets are
generated at test time. In this subsection, we parse the left
three columns of Figure 3.

We measure the distance matrices of training images
(first column), training shapes (second column), and recon-
structed shapes on the test set (third column). Now, look at
the first row marked by S /7. The two distance matrices in
the first and second columns, titled “Images” and “Shapes”
respectively, show sudden color mutation from blue to red,
indicating training images and shapes are highly clustered.
The distance matrix in the column titled “Recons” shows

a continuous color change from blue (low value) to red
(high value), meaning the reconstructed shapes are dis-
persed. Then, we can analyze the following rows marked
by S1I; (i = 2,...,8) similarly. The distance matrices
on the “Recons” column show increasingly clustered pat-
terns, while the distance matrices under the “Images” col-
umn show increasingly dispersed patterns. It indicates that
the reconstructed shapes of NNs become more clustered,
which supports our claim that NNs tend toward recognition
when training images are more dispersed.

Next, we look at the values of DS for training images,
training shapes, and reconstructed shapes, shown in Figure
4a, 4b, and 4c, respectively. Figure 4a shows that the input
DS of the training image sets gradually increases, indicating
that the training image sets become more dispersed. Note
that this increasingly dispersed pattern matches the first col-
umn in Figure 3. Then, Figure 4b shows that the training
shapes remain unchanged, matching the second column in
Figure 3. Finally, Figure 4c shows that the output DS of
reconstructed shapes gradually decreases, matching the in-
creasingly clustered color patterns shown in the third col-
umn of Figure 3.

Thus, both the distance matrices (shown in Figure 3) and
the DS trends (shown in Figure 4) show that NNs prone
to perform recognition and predict more clustered shapes
when training images become more dispersed.

4.4. More Dispersed Training Shapes

The other part of our main claim is that NNs tend to-
ward reconstruction when training shapes become more dis-
persed. We conduct the same analysis as the previous sub-
section using both distance matrices and DS.

For distance matrices, see the right three columns in Fig-
ure 3. From top to bottom, the column titled “Shapes”
shows increasingly dispersed patterns while the column ti-
tled “Images” remains dispersed. It indicates a list of train-
ing datasets of more dispersed shapes and consistently dis-
persed images. The column titled “Recons” shows more
dispersed color patterns, meaning that the reconstructed
shapes become dispersed. Thus, more dispersed training
shapes make the reconstructed shapes more dispersed, indi-
cating that NNs tend toward reconstruction.

The results are again verified by DS evaluation, as shown
in Figure 4d, 4e, and 4f. First, Figure 4d shows that the in-
put DS of training images remains unchanged. Second, Fig-
ure 4e shows that the input DS of training shapes gradually
increases. Finally, Figure 4f shows that the output DS of the
reconstructed shapes gradually increases. These trends all
match the results shown in Figure 3.

Therefore, both of the two evaluation methods support
the claim that NNs lean toward reconstruction and predict
more dispersed shapes when training shapes also become
more dispersed.
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Figure 4: Input/Output DS of synthetic datasets and trained models. (a-c) More dispersed images make NNs tend toward
recognition as the reconstructed shapes become less dispersed when training images become more dispersed. (d-f) More
dispersed shapes make NNs tend toward reconstruction as the reconstructed shapes become more dispersed when training
shapes become more dispersed. GT: ground-truth shapes of test set.

5. Experiments on ShapeNet

In this section, We further verify our main claim by
conducting experiments on the commonly used benchmark
dataset ShapeNet [3]. We show how varying levels of dis-
persed images and shapes affect the tendency of NNs to
perform reconstruction or recognition. Due to space limi-
tations, we focus on encoder-decoder-based NNs, including
PSGN [6], FoldingNet [28], and AtlasNet [9]. We conduct
additional experiments on SDF-based NNs in Appendix F.

5.1. Dataset

ShapeNet We conduct experiments on ShapeNetCore con-
sisting of 3D models in 13 object categories [3]. We use the
train/test split in [5] and use the point cloud data provided
by AtlasNet [9]. In experiment 5.3, we render new image
datasets using the method of [26] to control the rendering
viewpoints of training images. Both OC and VC coordi-
nates are investigated. In experiments 5.4, we use images
rendered by [5]. In this dataset, each 3D model has been
rendered 24 images of random views. We use one fixed
view among 24 views in the training/test set in 5.4 and in-
vestigate the impact of using more views per shape in 5.5.

5.2. Implementation Details

For experiments in 5.3 and 5.5, we adopt AtlasNet-
Sphere [9] as the baseline. In 5.4, we use multiple SVR
models. The details of model implementation and training
are provided in Appendix E. We evaluate the trained model
from the last epoch. We run the model on each dataset using
three random seeds and report the mean and standard devi-
ation for evaluation. Point clouds are used as shape rep-
resentation. Each point cloud includes 2500 points. The
cluster-number hyperparameter of input/output DS is set to
be 500.

5.3. More Dispersed Training Images

We study the transition more dispersed training images.
The image set is generated to be more dispersed while the
shape set remains clustered.

Experiment Design We render a list of new image datasets
from the training shapes of ShapeNet and increase the an-
gle range of the rendering viewpoint. The angle range is
denoted by «, and the unit is degree. We build seven render-
ing datasets in this way. For each of them, we only render
a single image for each shape. During rendering, the 6,,
of viewpoint is randomly sampled from —a to o and 6 is
sampled from 20 to 30 degree. The 6,, and 6, are azimuth
angle and elevation angle of viewpoint, respectively. « is
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Reconstructed shapes become less dispersed. (d) CD scores of reconstructed shapes become smaller. The smaller, the better.

selected as 0, 15, 30, 45, 60, 75, 90 for the seven different
datasets. As « increases, training images become more dis-
persed. We only use shapes in OC coordinate so that the
training shapes remain clustered. During testing, the input
images of the test set are rendered using an « value equal to
90.

Results We show how NNs perform when the training im-
ages become more dispersed. First, Figure 5a and 5b show
that our approach makes training images more dispersed
while maintaining the DS of training shapes. Then, Figure
5c shows that the trained NNs tend more towards recogni-
tion as the value of output DS decreases. This trend matches
our main claim that more dispersed training images make
the output shapes tend towards recognition.

However, Figure 5d shows that NNs trained on more
dispersed images have improved reconstruction score mea-
sured by the CD. This improvement could result from aug-
menting the training dataset or the case where the distribu-
tion of images in the training set becomes closer to that of
the test set under this transition. Thus, if only looking at
the CD measure, one may believe that adding more training
images can lead to improved 3D reconstruction quality but
may neglect the confounding factor that the output shapes
become more clustered. This finding shows that while more
dispersed images can potentially improve the CD score,
they also incline NN to reconstruct more clustered shapes.
In other words, the improved CD score is not sufficient to
capture whether the output shapes become more clustered
or not. Therefore, we illustrate that the proposed DS pro-
vides novel information in addition to the conventional re-
construction score.

5.4. More Dispersed Training Shapes

We study what happens when we use gradually more dis-
persed training shapes while maintaining the training im-
ages dispersed.

Experiment Design Two coordinate representations OC
and VC are used here to change the input DS of the
ShapeNet dataset. As mentioned in Section 1, shape sets
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Figure 6: Comparing Input DS of OC and VC. (a) Train-
ing images remain unchanged. (b) Training shapes become
more dispersed.

in VC are more dispersed than those in OC. We use the
same training images for both two datasets to ensure that
the DS of training images remains unchanged. We train
four different SVR models: PSGN [6], AtlasNet-Sphere [9],
AtlasNet-25 [9], and FoldingNet [28]. We measure these
models in both OC and VC and use the output DS to see
if the predicted shapes are more or less dispersed. How-
ever, note that the output shapes are not in the same coor-
dinates and are not directly comparable if we change the
coordinates. Thus, during the calculation of output DS, we
transform the predicted shapes back to OC coordinates to
keep the same output configuration for a fair comparison on
output DS.

Results We now present our results to demonstrate that the
transition with more dispersed shapes guides NNs towards
more reconstruction. See Figure 6 for the input DS and Ta-
ble 1 for the output DS. From Figure 6, we see that the tran-
sition makes training shapes more dispersed while letting
training images remain unchanged. Then, from Table 1, we
see that models trained in the VC coordinate have more dis-
persed shape predictions than OC, as the output DS values
of all the models in VC are larger than that in OC. Besides,
in Table 1, we also measure the CD, and we see that all
the VC models outperform OC models. Based on the two
observations, we can conclude that more dispersed train-



Output DS CD
oC vC oC vC
PSGN 1.63+0.07 2.47+0.00 | 6.60 £0.12 5.90 £ 0.15
FoldingNet | 2.39+0.04 3.34+£0.05 | 7.26 +£0.08 5.84 £0.10
AtlasNet-Sph. | 2.83+£0.00 3.6040.02 | 7.12+0.08 5.40 &+ 0.02
AtlasNet-25 | 2.84 £0.01 3.55+0.01 | 6.59+0.07 5.06 + 0.02
GT 5.68 5.68 -

Table 1: Evaluation (mean-=+stdev) of models trained in OC
(Left) and VC (Right) coordinates. Metrics are output DS
(x 0.001, 1), CD (x 0.001, }). NNs trained in VC predict
more dispersed and better reconstructed shapes than NNs in
OC.

ing shapes encourage NNs to use more reconstruction than
recognition as the underlying mechanism to perform. At
the same time, more dispersed training shapes also improve
reconstruction performance measured by CD.

Finally, from the results of Section 5.3 and 5.4, we see
that both more dispersed training images and more dis-
persed training shapes can lead to improved reconstruction
scores. However, more dispersed training images actually
let the NNs prefer recognition to reconstruction. Such re-
sults again show that our new way of measuring the disper-
sion of output shapes provides novel information on assess-
ing the 3D reconstruction quality.

5.5. More Training Samples

We investigate whether more training samples can guide
NN to perform more reconstruction in SVR. Note that in
Section 5.3 and 5.4, we only make training shapes more
dispersed or only make training images more dispersed, to
show how the output DS changes with each covariate. In
this subsection, we conduct this additional experiment to
change training shapes and images simultaneously because
it is often practically convenient to do so, e.g., by adding
more samples.

Experiment Design We obtain more training samples using
more rendered images that have been given in [5]. The con-
ventional training protocol in [5, 9] is to use one view of the
image among 24 views per shape for each epoch. However,
in this experiment, we use more views per shape for each
epoch, which ranges from 1 to 18. We use the VC coordi-
nate, and hence shapes are rotated based on the input view-
point of the rendered images. Thus, using more views per
shape is equivalent to using more training images and more
training shapes obtained by performing rotations in the 3D
space. Also, the amount of training data is linear in the
number of views per shape. We adopt AtlasNet-Sphere [9]
as the baseline model and use the same protocol in Section
5.2.

Results The results are reported in Figure 7. First, both
output DS and CD are shown to improve with more train-
ing samples. More specifically, the increased output DS in-
dicates that more training samples guide NNs to perform

more reconstruction. And the decreased CD score indicates
that more training samples improve the reconstruction qual-
ity. Second, Figure 7a shows a noticeable gap between GT
(0.01) and the limit of the improved output DS (0.0072) of
NNs trained on 18 x more data samples. This indicates that
it is challenging to further improve NNs to perform recon-
struction based on simply augmenting the public dataset.
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Figure 7: Evaluation of models trained on more data sam-
ples in VC. The amount of training data samples is linear
in the number of views per shape. Although more training
shapes make NNs prefer reconstruction, the capability of
NNs to perform reconstruction is still limited, even using
18 x training data. (a) Output DS (7). (b) CD ({).

6. Conclusion

In this paper, we study the underlying mechanisms of
NNs in SVR tasks. First, we show that NNs can be dis-
posed towards recognition or reconstruction depending on
how dispersed the training data is. We propose a metric
called DS to quantify this relationship. We show that both
of the two experiment procedures, i.e., using more dispersed
training images and shapes, can improve conventional re-
construction scores such as CD. However, the DS measure
shows that the former (training images) leads NNs to pre-
fer recognition rather than reconstruction while the latter
(training shapes) leads NNs to perform more reconstruction.
Thus, the proposed DS provides novel information on how
NN perform SVR tasks. We suggest measuring the DS in
conjunction with conventional reconstruction scores when
assessing trained NNs in SVR tasks. More studies on other
DL techniques, including data augmentation and network
architectures, would be necessary to make NNs perform re-
construction instead of recognition.
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Appendices

A. Choice of The Coordinate Representation

First, we provide the definition of object-centered (OC)
and viewer-centered (VC) coordinates. Then, we provide
quantitative and qualitative results to show the difference
between shapes in the two coordinate representations.
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Figure 8: (a) t-SNE of distance matrix of shapes in OC co-
ordinate. (b) t-SNE of distance matrix of shapes in VC co-
ordinate. (c) The DS of shapes in OC and VC with varying
number of clusters.

As shown in Figure 9, we visualize some shapes in
ShapeNet both in OC and VC coordinates. Given a sin-
gle RGB image as input, we want to predict the 3D shape
of the object from which the image is taken. In the OC co-
ordinate, the shapes are predicted in canonical coordinates
specified in the training set. For example, in the ShapeNet-
Core [3] dataset, the (6., = 0°,0, = 0°) direction corre-
sponds to the commonly agreed front of the object, where
0., and 6, are the azimuth and elevation angle of viewpoint.
In the VC coordinate, the NN is supervised to predict a pre-
aligned 3D shape in the input image’s reference frame. The
image-shape pair ensures that (6,, = 0°,0, = 0°) in the
output coordinate system always corresponds to the input
viewpoint.

We further show the different impacts of the two coordi-

nates on training shapes. The main difference is that shapes
in OC are more clustered, while shapes in VC are much
more dispersed. We use all the shapes of the ShapeNet-
Core [3] test set split by [5] and represent them both in OC
and VC coordinates. There are 8762 shapes in total. These
shapes cover 13 semantic classes, and each of them is repre-
sented as a point cloud with 2500 3D points. First, we com-
pute distance matrices of shapes using Chamfer distance as
the distance function. Then, we visualize the matrices by
t-SNE [12] in Figure 8a and 8b. Comparing Figure 8a with
8b, we see that Figure 8a shows a more clustered pattern,
while Figure 8b shows a more dispersed pattern. It indi-
cates that shapes in OC are more clustered than those in
VC. Besides, we also measure the DS of shapes. We sweep
the number of clusters (NC) from 50 to 2000 with step size
50. The results are shown in Figure 8c. The DS of shapes
in VC is clearly larger, indicating that the VC coordinate
makes shapes more dispersed.

B. Ablation Study of Clustering Methodology

We study two more common clustering methods, namely
hierarchical clustering and affinity propagation (AP), be-
sides the K-medoids method. Figure 10 and Table 2 show
the DS obtained with the three clustering methods evaluated
on all the main experiments on both synthetic and ShapeNet
datasets. The results show consistent trends for different
clustering algorithms.

We provide the implementation detail of clustering meth-
ods . K-medoids and hierarchical clustering require as-
signing the NC. The value of NC for the synthetic dataset
is 2 and for Shapenet is 500. It is automatically deter-
mined by the “Kneedle” method detailed in Appendix C.
K-medoids is initialized by the “k-means++" [1]. The link-
age criterion of hierarchical clustering is the maximum dis-
tances between all observations of the two sets. For affinity
propagation, we construct the affinity matrix by normaliz-
ing the distance matrix by standard deviation and negative
exponential. Then we set the hyperparameter “perference”,
which controls how many exemplars are used, to be the top
g-th percentile of entries in the affinity matrix. For synthetic
dataset, ¢ = 4. For ShapeNet, ¢ = 60.

K-medoids Hierarchical Affinity Propagation
oC vC oC vC oC vC
PSGN 1.63+0.07 2.47+0.00 | 1.84£0.09 2.72£0.00 | 2.51+0.13 3.31+0.00
FoldingNet 2.3940.04 3.344+0.05 | 2.66 £0.03 3.78 £0.07 | 3.55£0.02 4.53 +0.04
AtlasNet-Sph. | 2.83+0.00 3.60£0.02 | 3.18+0.00 4.04+0.04 | 4.21+0.01 5.04+0.05
AtlasNet-25 | 2.844+0.01 3.554+0.01 | 3.17£0.01 3.95+0.03 | 4.20+0.04 4.96 +0.01

Table 2: Output DS (mean4stdev, x 0.001, 1) of models
trained on more dispersed training shapes in ShapeNet.

3 All the methods are implemented based on scikit-learn package.
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Figure 9: Visualization of input images and shapes in OC and VC coordinates of ShapeNet [3].
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Figure 10: DS from different clustering methods. (a)(b) Output DS of models trained on synthetic dataset with more dispersed
training images (a) and shapes (b). (c)(d) Input/Ouput DS of models trained on ShapeNet with more dispersed training

images.

C. Hyperparameter of Dispersion Score

In this section, we explain our method to tune the num-
ber of clusters (NC) in the proposed DS metric. To choose
the best NC, we do a parameter sweeping and choose the
value equal to the elbow of the DS curves. We automatically

determine the elbow using the “Kneedle” method in [18].
This method approximately finds the point with the maxi-
mum curvature using a score called “normalized distance”
and selects that as the elbow. See Figure 11. For each ex-
periment, we compute the mean of the normalized distance
across different trained models to determine the NC. For the
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Figure 11: The normalized distance computed in Kneedle.
(a)(b) Synthetic dataset with more dispersed training im-
ages and shapes. (c)(d) ShapeNet with more dispersed train-
ing images and shapes.

synthetic dataset, the NC is 2. For ShapeNet, the NC is 500.

D. Synthetic Data Generation

sphere =

sphere

Figure 12: Image and shape examples of the synthetic
dataset built by interpolating between a sphere and a cube.
Upper row shows rendered images. Lower row shows
shapes represented by point clouds.

We provide the details of synthetic data generation in this
section. The image and shape examples are shown in Figure
12. We use the software Blender to generate base shapes in
a mesh format. Then, we use the Shrinkwrap modifier in
the “Nearest Vertex” mode to define the shape morphing
between the two base shapes and control the interpolation
progress by the Blender Shape Keys panel. After creating
the mesh dataset, we render images and sample point clouds
from meshes.

E. Implementation Details

In this section, we provide implementation details, in-
cluding baseline models and training protocol.

Baselines For NN-based methods, we include PSGN [6],
FoldingNet [28], AtlasNet-Sphere [9], AtlasNet-25 [9]. We
use a ResNet-18 image encoder without any pre-training,
the encoder outputs a 1024 dimensional latent vector. We
use the same image encoder for all the models. We imple-
ment the decoder of each model according to architectures
in the original publications.

Training Protocol Among all the experiments, the loss
function is Chamfer distance [6], and optimizer is
Adam [14]. For experiments on the synthetic dataset, each
model is trained for 3600 iterations, using batch size 8. The
initial learning rate is le-3, and the learning rate decays at
2400, 3000, 3300 iterations by a ratio of 0.1. For experi-
ments on ShapeNet, each model is trained for 120 epochs,
the batch size is 64, the initial learning rate is le-3, and it
decays at 90, 110, 115 epoch by ratio 0.1. The weight decay
is set to be 0.

F. Verifying the Dispersion Relationship on
SDF-based NNs

_— le-3

80
o / )
o 855
° ©
£75 <
= Images become = ¥ Shapes remain
2 , more dispersed = © 4.5 unchanged
570 o
=3 a
< 235

65 / -

—o— Training Image —e— Training Shape
0 15 30 45 60 75 90 259 20 40 60 80
Angle range of rendering viewpoint a Angle range of rendering viewpoint a
(@) (b)
le-3 Re Tt
——

105 0.50 \econstruction

9.5 0.45
8 &5
= : NNs perform 50.40
275 more recog. 2
] —_—=
3 0.35

6.5

5.5
—e— Reconstruction

4.5

0 15 30 45 60 75 90 0 15 30 45 60 75 90
Angle range of rendering viewpoint a Angle range of rendering viewpoint a
(© (d)

Figure 13: Measuring input/output DS and IoU in OC coor-
dinate when the training images are rendered by increasing
viewpoint angle range «. The unit of « is degree. (a) (b)
From left to right, training images become more dispersed
and training shapes remain unchanged. (c) Reconstructed
shapes become less dispersed. (d) IoU of prediction become
larger, the larger the better.

In the main paper, we have verified our hypothesis of dis-
persion relationship using point-cloud-based NN methods.
In this section, we conduct experiments with methods based
on signed distance fields (SDF). We adopt Occupancy Net-
work (ONet) [16] as the baseline. For the transition more



dispersed training images, we reuse the group of increas-
ingly dispersed training image datasets and use the training
protocol in Section 5.3. While the training images become
increasingly dispersed, the DS of training shapes remains
unchanged because we use OC coordinate. The input DS
of training images and shapes are shown in Figure 13a and
13b. For evaluation, we use Volumetric IoU [16] to measure
reconstruction quality. To calculate DS, we extract mesh
from predicted SDF following [16] and uniformly sample
2500 points from each mesh surface. The following pro-
cedure is the same as Section 3.3, and we omit the details
here.

As our main claim predicts, the models tend more to-
wards recognition as the decreasing output DS shows in
Figure 13c. We also observe that ONet trained on more dis-
persed images achieves improved Volumetric IoU, as shown
in Figure 13d. We notice that the results of SDF-based
experiment are consistent with the observations of point-
cloud-based experiment shown in Figure 5, which further
verifies that more dispersed training images make NNs do
more recognition.



