GENERALIZED CARLESON EMBEDDINGS INTO WEIGHTED OUTER MEASURE SPACES

YEN DO AND MARK LEWERS

ABSTRACT. We prove generalized Carleson embeddings for the continuous wave packet transform
from LP(R,w) into an outer L? space over R x R x (0, 00) for 2 < p < 0o and weight w € A, ,. This
work is a weighted extension of the corresponding Lebesgue result in [12]] and generalizes a similar
result in [[9]]. The proof in this article relies on L? restriction estimates for the wave packet transform
which are geometric and may be of independent interest.

1. INTRODUCTION

Lennart Carleson’s influential paper [3]] in 1966 resolved Lusin’s Conjecture by proving the
Fourier series of a function f € L?[0,1] converges almost everywhere; see also the work of Hunt
[14]. The techniques used in Carleson’s proof, now referred to as time-frequency analysis, have
since played an important role in analysis and serve as a tool in proving LP estimates on modulation
invariant integral operators. We highlight for example Fefferman’s proof of Lusin’s Conjecture in
[13]] along with Lacey and Thiele’s use of time-frequency analysis in their work on the bilinear
Hilbert transform [[15][16]] and the Carleson operator [17].

The methods of time-frequency analysis usually pass the analysis on a multilinear form A to a
model sum

(1.1) A1y f) ~ D €A a1 (1) g o)
N

indexed over a discrete collection of rectangles s in the phase plane. The terms within each sum-
mand, localized to s, are either dependent on the form A or one of the input functions f;. From
there, the rectangles are grouped into specified collections on which the desired estimates are ob-
tainable. As shown by the first author and Thiele in [[12[], this procedure follows an outer measure
framework which focuses on two main steps in proving L? estimates for multilinear forms. The first
step is to estimate the multilinear form A by applying Holder’s inequality in the context of outer
measures,

(1.2) Ao )l S C] TIE D rix o5,

j=1

Here, LPi(X, 0,8;) is an outer LPj space constructed over a suitable outer measure space (X, 0, 8;).
The formulation of outer LP spaces will be discussed in Section The operators F; are akin to the
a,; in and represent a suitable projection of A over X. The final steps are then to establish
outer measure LP embeddings on each operator F; in the form

(1.3) IFi G rixo5,) < CE IS luoi ey

Estimates such as are referred to, see [[12}[8]], as generalized Carleson embeddings.
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What the outer measure framework reveals is that the crux in establishing inequalities on mod-
ulation invariant operators is passed to proving Carleson embeddings of form (1.3). This is seen
in several recent articles which focus on solving certain Carleson embeddings in order to obtain LP
estimates for specific operators. In the original article [12]] which introduced the outer measure
framework, the key result in reproving L? estimates on the bilinear Hilbert transform with the same
restricted range as [[15]] is a Carleson embedding of the wave packet transform, see . Di Plinio
and Ou in [8] later recovered L? estimates for the bilinear Hilbert transform in the full range of
[16] by proving a localized Carleson embedding for the same wave packet transform; here localized
is in the sense of (1.9). We also mention the work by Uraltsev [26]] in reproving LP estimates for
the variational Carleson operator, first obtained in [[23]], which relies on Carleson embeddings for a
modified wave packet transform in addition to the wave packet transform (1.4). Note the Carleson
embedding results stated in this paragraph are done with respect to functions f in Lebesgue L?
and embeddings into a "non-weighted" outer measure space.

The purpose of this paper is to explore the outer measure framework of time-frequency analysis
in the context of weighted inequalities. Specifically, we seek to understand generalized Carleson
embeddings

IFC| goix w50y < COWINS locemy

where w is a weight on R and (X, o",8") is an outer measure space dependent on w. The motiva-
tion is in part due to the recent progress in identifying weighted LP estimates in harmonic analysis.
Using a weighted time-frequency analysis based on the model sum (1.1), the first author with
Lacey [19, |10] obtained novel weighted estimates for the variational Carleson operator and Walsh
counterpart. Part of the analysis in the series focused on inequalities in traditional time-frequency
analysis analog to a Carleson embedding for weighted LP functions. We are interested in
understanding the embeddings in the outer measure framework.

It is worth mentioning there are suitable alternatives for obtaining weighted LP estimates in
time-frequency analysis which have been recently explored. The application of sparse domination
techniques for instance has seen success with the highlight being the remarkable find by Culiuc, Di
Plinio, and Ou [6] in determining weighted estimates for the bilinear Hilbert transform, the first
of its kin We point out more recent work with weighted estimates for the bilinear Hilbert trans-
form and similar operators by Cruz-Uribe and Martell [5], and Benea and Muscalu [[1} [2]. Note
that sparse domination has also been used to obtain weighted norm inequalities for the variational
Carleson operator [7] which are an improvement of [[9]]. It is questionable however if sparse dom-
ination can be used to establish weighted norm estimates for operators with less symmetry such as
the truncated bilinear Hilbert transform [[11]] or the biest operator [|21}[22]] whose weighted results
are unknown.

1.1. Continuous Wave Packet Transform and Main Result. The space we work over is upper
3-space X =R x R x R, whose coordinates are viewed as parameterizations of symmetries on the
class of modulation invariant integral operators. The primary outer L? embedding map of interest
in this work is the wavelet projection operator of a function f : R — C into upper 3-space

L4 PO = () = f F (e (L=
R

” )dx, (y,mt)eX

where ¢, (y) is a modulated wave function of a Schwartz function ¢ on R with compact frequency
support. We also refer to the formulation P(f)(y,n,t) = (f, ¢, ) where

. 1 /v—x~
() Byna() = 02 ()

IXiaochun Li [20] has some unpublished results about weighted estimates for the bilinear Hilbert transform.
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is the wave packet of ¢ at (y,n,t) € X, here as usual (f,g) = ff§. In this regard, P(f) is also
referred to as the continuous wave packet transform of f .

The wave packet transform (1.4) serves as a projection of modulation invariant operators in
upper 3-space. As shown in [[12]], the wave packet representation of the bilinear Hilbert transform
in X is a linear combination of integrals whose integrand is a pointwise product of wave packet
transforms. To recover LP estimates for the bilinear Hilbert transform, the key result in [12} The-
orem 5.1] is that the wave packet transform is a generalized Carleson embedding from L?(R) to
some outer LP space on X for 2 < p < 00,

(1.6) 1P erx,0.8) < Cpp If oy -

It was also stated in [[12]] and later shown in [|26] that P(f) is one of two embedding maps arising
from the decomposition (1.2) in connection with the Carleson and variational Carleson operators.

The main result of this paper is an extension of to A, weighted spaces. Given 1 < p < oo,
recall a weight w : R — [0, 0o ] belongs to the class of A, weights if

p—1
1.7) W]y ;= sup ( L fw(x)dx)( Jw(x) b1 dx) < 00.
P interval ICR IIl | |

Theorem 1. Fix a Schwartz function ¢ on R whose Fourier transform is supported in a small neigh-
borhood (—6,0). Let 2 < q < 00 and w € Ay 5. Then

(1.8) IPU) cax,ow,svy S 1 llnaqrw)

forall f € LYR,w) where the implicit constant depends on ¢, g, and [W]Aq/z.

The details concerning the outer LP space in (1.8) are postponed to Section In the scenario
= 1 is associated with Lebesgue measure, the theorem immediately implies the strong embedding
result (1.6) from [12] Theorem 5.1] as w =1 is an A, weight for all p > 1.

We envision (1.8) can be used akin to the Lebesgue version ) to establish weighted estimates
in time-frequency analysis. The weighted results previously mentloned which use the outer mea-
sure framework are based on embeddings which send Lebesgue L? functions f into non-weighted
outer measure spaces. Developing a weighted outer measure framework in time-frequency anal-
y51i could lead to natural self-contained proofs and potentially be a tool to examine the open
problems previously mentioned. We stress that using the weighted outer measure framework in
this work to obtain weighted LP estimates for modulation invariant operators is beyond the scope
of the paper.

Another question not being addressed in this work is the prospect of a localized version of (1.8)).
While the Carleson embedding of P(f) is not bounded for 1 < p < 2, Di Plinio and Ou [8}
Theorem 1] showed there is a localized extension for 1 < p < 2 in the sense

(1.9) IPC ) Lx\g, llcagx,o,8) S Cpgllf ey » p'<gq< oo

where E; is an exceptional set dependent on large L? averages of f. Localized embeddings of
form are key ingredients in recent papers concerning L? estimates for modulation invariant
operators, cf. [26}[8]|6)[7]] but it is open whether a localized version of holds; this question is
left for further study.

2We point out work by Thiele, Treil, and Volberg [25] which uses weighted outer measure spaces in the context of
martingale multipliers.



4 YEN DO AND MARK LEWERS

1.2. Structure of Paper. In Section we setup the outer measure space over upper 3-space X and
the corresponding outer L? space which is the setting for Theorem The section concludes with
relevant properties for general outer LP spaces which are needed in the paper. Section discusses
L? restriction estimates for the wave packet transform in upper 3-space. These estimates are key
to the proof of Theorem|1|which is pushed to Section [4}

1.3. Notation. Given a finite interval I with center c;, denote al as the interval with center ¢; and
length |aI| = alI|. For a fixed finite interval I, let

X —cy[\27-1
(1.10) w0 =1+ (BT
Let &(R) denote the space of Schwartz functions on R. We write the Fourier transform of f € & (R)
as

F(&) =J e f (x) dx.
R

Given a weight w : R — [0, 00], let w(E) = fE w(x)dx for all Lebesgue measurable sets E on R.
When E = (a, b) is an interval on R, we write w(a, b) = w((a, b)) for convenience. We denote
weighted LP spaces on R as LP(w) = LP(R,w) and the norm as [|f ||.o(w) = ||f | Le(r w) With similar
convention for weak LP spaces. Finally, for a dyadic grid D, we write the dyadic (weighted) L?
maximal functions over R as

1/p

1

M,(f)(x)=sup | = f |f Go)IP w(x)dx
dyadic Q>x |Q| Q

where M = M ; is the standard dyadic maximal function and M,, = M, ; is the dyadic L? maximal

function.

2. OUTER LP SPACES

This section sets up the outer LP space over upper 3-space in Theorem This setup is built
upon the outer L? definitions and concepts formulated in [12]]. For convenience, we record useful
properties of outer LP spaces in Section[2.2]

2.1. Outer L? Spaces over X. We work with the outer LP space associated with outer measure
space (X,0,8) where X = R x R x R, is upper 3 space, o is a pre-measure on X with respect to
a distinguished collection of Borel sets E, and § is a size, i.e., a quasi sub-additive averaging map
over each collection E € E. In keeping with the language developed in time-frequency analysis,
the first coordinate of X represents time, the second coordinate represents frequency, and the third
coordinate represents scale.

2.1.1. Outer Measure Spaces and 3D Tents. The distinguished collection of Borel sets in X which our
outer measure space is built over is the collection of 3D tents (or tents for short) in upper 3-space.
Fix a triplet © = (C;, C,, b) such that min(C;, C,) > b > 0 where b is a sufficiently small parameter
to be used later. For each (x, &,s) € X, define the 3D tent

C C
To(x,€,s) 1= {(y,n,t)eX L t<s, |y —x|<s—t, —71 <n—€<72}‘

A tent Tg(x, &, s) is asymmetric in frequency unless C; = C,. An image of the center component in
a generic 3D tent Tg(x, &,s) with C; # C, is shown in Figure[1]
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FIGURE 1. The center component of a generic 3D tent Tg(x,&,s) with C; # Cs.
Note that the image is only a portion of the whole tent Tg(x,&,s) as tents have
unbounded support in frequency.

We further subdivide a 3D tent Tg(x, £,s) into core and lacunary components. The overlapping
or core of the tent Tg(x, &,s), denoted by T(g(x, £,s), is defined as

T(g(x: 555) = {(J’ﬂ?: t) € T@(X', 555) : |77—<f| < bt_l}'

The lacunary part of the tent Tg(x,&,s), denoted by Té(x, £,s) is the asymmetric shell which is
disjoint from the core,
Té(xz 5:5) = T@(.X', gzs) \ T@I;(xz 5,5).

Figure shows two-dimensional projections of a tent which helps distinguish the separation be-
tween the core and lacunary parts. The choice in b < min(Cy, C,) is to ensure the shells of Tg are
nontrivial. In the context of Theorem we set § = 27°b for the frequency support of the kernel
¢ in the wave packet transform.

We now consider a pre-measure over the distinguished collection of 3D tents. Fixing ©, let E
be the collection of all tents Tg in X. For a fixed weight function w : R — [0, 0o ], define the
pre-measure ¢ : E — [0, o) where

GW(T@(x, §,s)) =w(x—s,x+s)= f Ly |<sw(u) du.
R

To extend o to an outer measure " on X, define for an arbitrary set E C X,

u”(E) :zinf{ Z o"(Tg) : EC U T@}

To€E’ To€E/
where the infimum is over all countable sub-collections E’ of E which covers E. It is straightforward
to check that u"(Tg) = 0" (Tg) for all tents Tg € E.

It remains to define a non-negative averaging operator called a size on the space B(X) of Borel-
measurable functions over X. A sizeisamap 8 : B(X) — [0, 0o ]¥ such that the following properties
hold for all F,G € B(X) and all Tg € E.

(1) [Monotone] If |F| < |G|, then 8(F)(Tg) < 8(G)(Tg) .
(2) [Scaling] If A € C, then 8(AF)(Tg) = |A| 8(F)(Tg).
(3) [Quasi Triangle] There exists constant C = C(8) > 1 such that

2.1) S(F +G)(To) < C[S(F)(Te) +8(G)(To)].

The infimum of all such C is the quasi-triangle constant of size 8.
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~

(x,s) “15)

(x—s,0) (x+s,0)

FIGURE 2. Projections of a tent Tg(x,&,s) with C; # C,. The left image is the
time-scale projection and the right image is the frequency-scale projection with the
partition between the core T(f)’ and lacunary Té regions.

To construct the size in Theorem|1| we first denote St as the continuous square function operator
of a Borel function F € B(X) restricted to the lacunary part of a fixed tent T,

1/2
dt

St (F)(w) = (J |F(y9n:t)|21|y—u|<tdydn_) .
T (x,8.) t

The size §" in Theoremis then a superposition of an L°° norm over the core of a tent and an
L?(w) average norm for the square function S, Formally,

SW(F)(T@(X: g:s)) =

|ST6(F)||L2(W)+ sup |F(J’;TI; t)|

—— |
AV w(x—s,x +s) (r,mETE(x,E.5)

1/2
1 dt
WX =5, +5) )7t (e 2.0 t (,ETE(x,E,5)

It is straightforward to check 8" is a size on X with quasi-triangle constant 1. The triplet
(X,0",8") as defined above is therefore the outer measure space for this paper. Rather than de-
noting the space with u", we use the pre-measure ¢" for it is implicitly in terms of the collection of
tents E. As we are working with a fixed © = (Cy, C,, b), we drop the © notation out of convenience
and write a 3D tent as T(x,&,s) = Tg(x, &,s). Be aware that the implicit constant in Theoremis
also in terms of ©.

2.1.2. Outer LP Spaces. We formulate the outer integrable spaces with respect to the outer measure
space (X,0",8"). Given A > 0 and F € B(X), define the super level measure associated with u" by

u"(8"(F)> 2) ==inf{u"(E) : EC X Borel st. sup8"(Fly)(T)<A}.
TeE

For each 0 < p < oo and F € B(X), consider the outer L maps
%) 1/p
1Fl| s, om,5v) = ( f AP (87 (F) > A)dx)
0
1F | oo gr, 0,50y = sup (A2 (8¥(F) > 1))
A>0
IF || goo.coxt,0w 8wy = IF | goox, 0w, gw) = S%UESW(F)(T)
S

and set LP(X,0",8"), LP-°°(X,c",8") as the set of Borel functions whose corresponding outer
LP map is finite. As in classical L? theory, LP(X,c",8") is contained in LP-°°(X,c",8"Y).
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2.2. Properties of outer L? spaces. We record useful properties concerning outer L? spaces and
their weak versions. The properties hold for general outer measure spaces so we use an abstract
outer measure space (X, o,8) (where X is a metric space) and outer LP space LP(X, 0, S8).

The following proposition from [12| Proposition 3.1] shows || - || z»(x,+,s) is @ quasi seminorm.

Proposition 1. Let (X, 0,8) be an outer measure space. Consider F,G € B(X) and 0 < p < oo.

(D) IfIF| < |G| then |IFllgo(x,0,8) < IGllgr(x,0.9)
(2) IfA€C, [|AF |l px,0,8) = AIF coix 0.9)
(3) Let C be the quasi-triangle inequality of size 8. Then

2.2) IF +Glleox o) < Co 1Flleopxons) + G cogxos) )

2/P¢ 0<p<1
where C, = { 2C 1<p<oo.
Cc p=00
The above properties also hold for the weak space LP-*°(X, 0, 8).

Recall size 8" has quasi-triangle constant of 1. As such, both £LP(X,c",8") and LP-*°(X,c",8")
for p > 1 have a quasi-triangle constant of 2.
Note the quasi-triangle inequality can be generalized to a summation of n functions F; by

n n
12 Fill ooy < 2 CallFllcoge,os)
j=1 j=1

with a similar inequality if the summation is with respect to LP>*°(X, o, 8). Assuming the sequence

IF;ll cox,0,) has sufficient decay when j — oo, this can be extended to an infinite series. One
application is the following domination property presented by Uraltsev [26} Corollary 2.1].

Proposition 2 (Dominated Convergence). Fix an outer measure space (X,c,8) and 0 < p < oo.
Consider Borel functions F, F; € B(X) satisfying the following properties.

(1) |F| <limsup;_,c, |F;| pointwise on X.

(2) There exists C 1/7 > C, > 1 where C,, is a quasi-triangle constant for LP(X, 0, 8) such that
(2.3) Sulf(C;)j IFjz1 — Fill ceex o0,8) S IFallcox,o,8)-

j=

Then ||F || zp(x.0.8) 5%,% IF11| p(x 0.5)- Moreover, if || Fq |l cpx o.5) S C and the upper estimate in (2.3)
is replaced by C, then ||F||zp(x 0,5) S C. A similar result holds in the context of weak outer L spaces.

We finish by recording an outer L? version of classical Marcinkiewicz interpolation as shown in
[12] Proposition 3.5].

Proposition 3 (Outer Marcinkiewicz interpolation). Let (X,o,8) be an outer measure space and
(Y, v) be a measure space. Fix 1 < p; < py < 00. Let F : LPi(Y,v) — B(X) be an operator for
j = 1,2 such that for any f, g € LP1(Y, v) + LP2(Y, v) and A = 0 we have

(1) [F(Af)I = [AE(f)I.

@) |F(f + 9| < CUFE()| +|F(g)]) for some constant C > 0.

) IFU) grioex.0,8) S Ajllf Nl ei v,y for j=1,2.

Suppose p € (p1,p»)- Then there exists a constant C = C(py, po, p) > 0 such that
6, ,6
WE M erex,o,8) < CAT AL S Ilocy,v)

where 0 < 6, 0, < 1 satisfy 11) = % + 2_;_
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3. L2 RESTRICTION ESTIMATES FOR THE WAVELET PROJECTION OPERATOR

In this section we collect and prove some local L? estimates for the wavelet projection operator

P(A)y,mt)={f,dyne), (M) EX =RxRxR,,

and recall that ¢, , is the L' normalized wave packet of ¢ at (y,n,t) € X, defined in (1.5). For
the convenience of the reader, we recall this definition below,

o1 y—Xx
bync(x) = e X)?ff?(T),

here ¢ is often referred to as the mother wavelet in the literature. Our methods actually work for
more general setups, where the mother wavelet ¢ may depend on (y,n,t), as long as it satisfies
uniform decay estimates of Schwartz type and uniform frequency support conditions. For the sim-
plicity of the presentation, the proof is only presented in our simpler setup where the wave packets
all share the same mother wavelet ¢.

We look for geometric conditions on Y C X such that there is a nontrivial improvement of the
basic estimate

1/2
(J |(f) ¢y,n,t>|2 d)’dndt) S sup |<f) ¢y,n,t>|m-
Y

(ym,0)eY
Here |Y| is the 3D Lebesgue measure of Y. Note that if Y is the lacunary region of a tent then

1/2
(J (s @yl dydﬂdt) SISl
Y

thanks to Calderén Zymgund theory. Thus, we expect that the tent structure and ||f ||, will play
an important role in the estimate and in the assumed geometric structure of Y. In fact, if we
normalize ||f ||, = 1 then a first step is to obtain some geometric condition on Y such that there is
an improvement of the following nature

1/2 e
( f |<f,¢y,n,t>|2dydndt) < (14 sup [{FdyndVIVT)
Y

(y,n,t)ey

for some € € (0, 1). This will be the main theme of this section.

3.1. Discrete restriction estimates. We first consider a discretized variant of the above local L?
norm, namely geometric conditions on a set of points E C X such that there is some € € (0, 1) such
that

1—e
an (3 t|<f,¢y,n,t>|2)”25||f||;(||f||2+ sup 1(F, byl D t)m) .

(v:m,t)EE Gom.0EE (m,t)eE
A preliminary result we need is the following standard estimate regarding inner products of
wave packets; see [[24] for proof in phase plane analog.

Lemma 1. Let ¢ € & (R). Consider points (y,n,t), (¥',n’,t") € X with t’ > t. Then for any integer
N>1,

/
\—1 |y - | 217N
|<¢y,n,t: ¢y’,n’,t’>| qu,N (t ) [1 + ( ¢ ) ] .
We now define a notion of well-separation for a discrete collection of points in X which is an
extension of the analog of well-separation in phase plane analysis.
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Definition 1. A collection of points E C X is well-separated if there exists constants a, 3 > 0 such
that for all (y,n,t),(y’,n’,t’) € E, either

(3.2) ly —y'| > amax(t,t’) or In—n'|>p max(t_l,(t’)_l).

Over a discrete collection of well-separated points in X, it is possible to obtain a version of
estimate in the following form.

Lemma 2. Fix ¢ € &(R) such that supp $ C (=6, 6). Consider a countable collection of well sepa-
rated points E = {(yx, Nk, tx)} C X with separation constants a > 0 and 3 > 46 as in (3.2). Suppose
s €(0,1). Then for any f € L*(R),

1/2 s
(3.3) (Z tk|<fa ¢yk,'r]k,tk>|2) qu,a,s ||f||2 + |:Sllip |(f) ¢)’kﬂ)k:tk>| (Z tk)1/2i| ”f “;_5-
k

k

The proof of Lemma |2|follows a format similar to corresponding proofs in the phase plane
setting, cf. [[17] 23] [9]], and in the continuum setting [[12]]. We first prove the s = 1/3 case by
appealing to standard phase plane analysis on wave packets. The general 0 < s < 1 case follows
from a logarithmic argument.

Proof. Assume the sum of t; is finite else nothing to show. By scaling, assume without loss of
generality that ||f||, = 1. For each k, let ¢; = ¢,, ,, .. and denote D = supy |(f, ¢1)|-
Case s =1/3. Let A= > ti|(f, $)|> > 0. Apply Hélder’s inequality to get

A< DT 0df, ¢ dills = ekt (F dk) (i b5) (@5, F).
k k,j

Split the right-hand double summation into a “diagonal" term {8 't; < t; < 8t} and an “off-
diagonal" term {8¢; < t;} U {8t < t;}. By symmetry, the summation is bounded by

(3.4) Dot ) (b b)) (¢, )
k,j:87 1t <t;<8t;
(3.5) +2 >0 it (F. k) (D1 b)) (5. F).
k,j:8t;<ty

To estimate the diagonal summand (3.4), use symmetry to bound the smaller of the f-inner
products with the large one to obtain

DT ntl{fd) (b)) (n <2 0l o0l DD tllen)l).
k,j:8 1t <t;<8ty k j:87 1t <t; <8ty

We now show the inner summation of wave packets is bounded uniformly over all k, j. For fixed
k, assume without loss of generality that (¢, ¢;) # O for all j terms. Application of Lemma and
equivalence of scales t; ~ t; yield the inner product estimate

Z til{dw i) So Z [1+‘yj_yk‘2]_l So i(l‘sz)_l#Ek(m)
m=0

t
j:87 1 <t;<8t, j:87 1 <t;<8t; k

where
_ m
Ek(m):: {(.yanat)EE : 8 1tkst38tk7 (¢k}¢y,n,t>7é07 Ztks|yk_.y|<

It remains to show #E;(m) is uniformly bounded over all m and k. The nonzero inner product
condition between ¢; and any ¢, , , € E;(m) implies they have overlapping frequency support

with [, —n| < 95t;1. Thus, all (y,n, t) € E;(m) must lie over a rectangular region with bounded

m+1tk}-
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area dependent on 5. Moreover, well separation of E implies for any (y,n, t), (y’,n’,t") € E;(m)

that either |y — y’| > 2 3at, or |n —n’| > 2716t, L. Therefore, the order of Ex(m) < a™! is

uniformly bounded for all k, m and so the diagonal term (3.4) has the estimate
(3.6) Dot {fn) (b)) (8. F) Spah
k,j:8 1t <t;<8t
Turing our attention to the off-diagonal summand (3.5), application of the Cauchy Schwarz
inequality yields the bound
DTty (f, dn) (bro ) (¢, f) < AV2H
k,j:8tj<tk
where
2 2
He=>[ > @)2t5l(¢n ) (0] <02 D 6] D tli¢ndl]
ko j:8t<ty k j8ti<ty

Fix k and without loss of generality assume (¢, ¢;) # O for all j terms in inner summation above.
By consideration of frequency support, |1, —n;| < 26 tj_1 < ﬁt;l and so well separation dictates

lyk — ;| > at. By Lemma

98| o 60 [0+ (B2 T e 24 (007 [1+ (%) T e
k Ly=%ty+54] k

We claim the intervals [y; — %t Yt %t ;] above are all disjoint from each other. Consider another
point (y,,ny, k,) € E such that 8t, < t; and (¢, ¢,) # 0. As ¢ and ¢, have overlapping frequency
support (just as ¢y and ¢; do),

[nj—nel <28(¢7" + ;1) < pmax(e;, 6 ).

Well separation between (y;,7;,t;) and (y,ny, t;) then requires |y; — y,| = amax(t;, t;) which
prevents the intervals from intersecting nontrivially. Hence all such intervals are disjoint and by
summing over all such j,

2 — X2 2
Ztk[ Z fj|(¢k,¢j>|] S Zk:tk(ifR[“‘(ykt—x) ] 1dx) chszk:fk-

k ji8tj<ty k

This gives us the off-diagonal inequality

(3.7) Z titi (> i) (D1 ®j) (D), f) S¢ AI/ZD(Z tk)l/z-
%

k,j:8t;<ty
Applying the diagonal estimate and off diagonal estimate yields the bound
A ZyA+D(Y] t)'*a1
k
and the desired inequality for case s = 1/3 follows by rearrangement.
Case s € (0,1). Assume D = supy |(f, 1)l is finite. Subdivide the collection E = | i=0A;j where
Aj={k : 27U*UD < |(f, ;)| < 277D} .

Let Ay = Ui2 A be the union of indices corresponding to the points in all levels below A;. For
fixed j, the sub-collection corresponding to A ; is still well separated. Apply the s = 1/3 estimate
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to A, ; to get

( Z tkl(f:¢k>|2)l/2 Soa 1+[ (277D)( Z 1/2]1/3

k€A2j keAs ; j

Note the right-hand side above decays to 1 for large j. By taking j > max(0,log,[D(3., t;)/2]),
(3.8) Z trl(f, P Sgpa 1

kGAZj

A similar bound exists over each individual level A;. Indeed, the points associated with each A; are
themselves well separated so application of the s = 1/3 case shows

(2000 a1+ [P 20 )21 g1+ [ ity 2] "
keA;

and by rearrangement,

(3.9) Dot ¢ Spa 1

keA;

Fix the smallest positive integer j > max(0, log,[D(3}, t;)*/2]) and apply (3.8)-(3.9) to obtain the
logarithmic estimate

j—1
Dl e = D tl(f 0P+ D > tl(f i)

(3.10) k keAs i=0 keA;
Sealt max(O, logz[D(Z tk)l/z]).
3

The passage to arbitrary s € (0, 1) uses the standard logarithmic properties slog(x) = log(x*) and
max(0,logx) < x for all x > 0,

1/2
(O 6t 00 2)? g (25+ (0> tk)l/z]zs) s 140> o
k

k k

3.2. Continuous restriction estimates. In this section, we describe a set of geometric conditions
on a set Y C X such that there is some nontrivial estimate for

J |<f: ¢y,n,t>|2 dydndt.
Y

As indicated at the beginning of this section, these conditions will involve some union of tents, or
more precisely union of lacunary parts of tents.

We now define a notion of well separation with regards to a collection of 3D tents; assume all
tents have the same parameterization © = (C;, C,, b). Below by partial tents we mean subsets of
tents.

Definition 2. Consider a collection of partial tents E = {T,’} where T C Ty, = T(x, &, i) and the
T} are pairwise disjoint from each other. The collection E is well-separated if there exists constants
a>1, >0, and B> 1such that if (y,n,t) € T} and (y',n’,t') € Uj T} satisfy Bt’ < t then either

(3.11) In—n'|> Bt or lx; — y'| > als, —t).
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The well separation mandates points sufficiently small in scale with respect to a partial tent T,
must either be sufficiently far in frequency from another point in T}’ or in another tent altogether.
Note that when T is a singleton set with coordinates comparable to the tent Ty and a > 1, this
reduces to well separation of points. It would be interesting to see an appropriate well separation
definition for an arbitrary Y C X but this is beyond the scope of the paper.

Similar to the well separation of points, the projection operator P(f ) over well separated partial
tents is almost L2.

Lemma 3. Fix ¢ € &(R) such that supp a)\ C (=06, 6). Consider a collection of well separated partial
tents E = {T;, = T*(xy, &k, S )} with separation constants a > 1, = 46, and B > 1 as in (3.11).

Suppose s € (0,1). Then for any f € L%(R),

1/2 s
(3.12) (JU |<f,¢y,n,t>|2dydndt) §||f||z+[ sup |<f,¢y,n,t>|(2sk)”2] LI
ke T

(ymelJy T¢ k
where the implicit constant depends on ¢, ©, B, 3, and s.

The proof uses the same structure as in Lemma where one proves the s = 1/3 case and then
generalizes to 0 < s < 1. In order to show the general 0 < s < 1 inequality, we need the following
simpler estimate.

Lemma 4. Fix ¢ € &(R) such that supp a)\ C (—8,6). Consider a subset Y C | J, T with nonzero
(three-dimensional) Lebesgue measure where the collection of partial tents T, is well-separated as in
Lemma|3| Then

1/2 1/3
( f |<f,¢y,n,t>|2dydndt) §||f||2+[ sup |<f,¢y,n,t>|\/m] IfF 11573,
Y

(y,n,t)ey

Proof ofLemma By scaling invariant we may assume that ||f ||, = 1. LetA = fY I{f> Dym.e) [2dydndt.
By Cauchy Schwarz,

2
25| f (F,byn) by dydnde]
Y

= f (f: ¢y,n,t> <¢y,n,t: ¢y’,n’,t’> <¢y’,n’,t’:f> dy d"? dt dy/dn/ dtl'
YxY

Split the integral into three parts: the diagonal B~'t’ < t < Bt’, the upper half t > Bt’, and the
lower half t > Bt. We may estimate the diagonal part by

< ZJ |(f: ¢y,n,t>|2 |:f |(¢y,n,t> ¢y’,n’,t’>|dy/dn/dt/:| d}’dndf
Y (y";n")ER?,B-1t/<t<Bt’

Claim 1. We have the following uniform estimate for all (y,n,t) €Y.

J J |(¢)’,7],t’ ¢y’,n’,t’>|dy/dn/dt/ 5 1.
B~1t<t'<Bt JR?

Using Claim it is clear that the diagonal part is O(A). To see Claimis true, we first note that
by taking supremum of t’ over B!t < t/ < Bt and integrating dt’ over that region, we obtain

f f |<¢y,n,t’¢y’,n’,t’>|dy/dn/dt/ SB sup f t|<¢y,n,t:¢y’,n’,t/)|dy/dn/
B~1t<t’<Bt JR? B~1t<t’<Bt JR2

. / .
To mtegrate frequency 71’, }recall that nonzero inner podugt.of wave packets ¢, anq Dyt
implies they have overlapping support in frequency. Restricing to such wave packets, it follows
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that 1’ has to be contained in an interval of length comparable to t~!. Thus, the last display is
bounded from above by

SB,ﬁ sup sup (J |<¢y,n,t: ¢y’,n’,t’>|dy/)
R

B~1t<t’<Bt n’€R

y—y 27!
S¢pp Sup  sup (t“lj [1+| { ] dy’) Senpl
B-1t<t’<Bt n’€R R t
where Lemma was used in the passage to the second line. This establishes Claim [1|and the
estimate on the diagonal terms.
For the off-diagonal terms, we show the details for the upper half term where ¢t > Bt’ noting
the lower half term may be treated similarly. Denote D = sup(, , 1)ey |{f, ®y.n,)| for notation

convenience. By Cauchy-Schwarz,

J Frby) (D ymer yryer) (Do f)dy'dn/dt'dydndt
Y (y',m',t")EY:Bt/<t
, 1/2
<A? (J (f |<¢ym,t:¢y’,n’,t') (¢y’,n’,t”f>| dy'dn’dt') dydndt)
Y (¥, ,t')EY Bt/ <t

1/2
2
SAl/ZDU (J |(¢y,n,t,qby,,n,,t,)|dy’dn’dt’) dydndt) :
Y (', ,t")eY:Bt’'<t

It remains to show

sup f |<¢y,n,ta ¢y’,n’,t’>|dy/dn/dt/ Sqﬁ 1.
(r,m,0)EY J (y/ 0 t')eY Bt/ <t

Fix (y,n,t) €Y. AsY cJ i TJ?“, it suffices to show the following claim.

Claim 2. We have the following uniform estimate for all k and (y,n,t) € T},
sk —lxk —yI\1?
Zf l<¢yﬂ),t’ ¢y/’n/’t/>| dy/d'n/d t/ §¢ [1 + (—t_’ )] .
j FiBr/st

Fix (y,n,t) € T, and consider (y’,n’,t") € T} such that Bt’ < t. We may assume without
loss of generality that (¢, . ;, ¢,/ /) 7 0 which means their Fourier transforms have overlapping
support. As Bt' < t,

In—n'| <25(Y < p(e)
so we are integrating dn’ with respect to an interval of length 28(t')~!. By the well-separation
criteria, we can also restrict the integral dy’ to the region |y’ — x| > s, — t.

It remains to consider the integral with respect to dt’. For fixed position y’, we claim that any

points of the form (y’,n”,t"”) € Uj T} with Bt” < t and (¢, ¢, Py #) # 0 must be within a
: / / / : 1/ 17 17

factor of B of each other in scale. Indeed, recall (y’,n’,t") T]?“ and consider (y”,n",t") € T

where (¢, ¢, ¢y v v) # 0 and Bt” < t. If we were to assume Bt” < t’ then it follows that

|n/_n//| S 45(t//)_1 S ﬂ(t/)_l
and so well-separation dictates
|y//—Xj| > Sj —_ t// > Sj — t/ 2 |y/—X]|

This shows y” # y’ so setting y” = y’ implies that t” ~5 t’.
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Given y’ € R, let E(y") be the collection of scales t” for which there exists " and T} such that
,n",t"e T; with Bt"” < t and (¢, $y v ) # 0. For each y’ € R with E(y’) # @, there
exists an interval I(y") = [a(y’), Ba(y’)] which contains E(y’). Here, one can check

a(y):=B~! sup t” < oo.
t"e€E(y’")

Applying Lemmal1|the well separation observations above with yields

> J (bymr )| dy'dn’dt’
j T*:Bt'<t

S J J J |(¢y,'r],t, ¢y’,n’,t’)|dn/dt/dy/
ly'=xic[>si—=t JI(y") J [n—=B/t'n+p/t']

ng ( Sup f t/|<¢y,7),t> ¢y’,n’,t’>|dn/)d}//
=it NSO Jin—p/t /)

— / I _ _ _
So.86 Jw . tt‘1[1+(%)2] 2dy'5[1+(5k|x—tkﬂ)] !
Ak k—

as desired, verifying Claim Collecting the diagonal and off-diagonal estimates, we have
A2 <A+AY2D|Y|Y/?
and from here the desired result follows. O

Proof of Lemma. Assume D = sup(,, ,, el T; |{f, 9, m ¢)| and the sum of s are finite. By scaling,

we may assume without loss of generality that IIfll, =1.
Case s =1/3. LetA:=, fT* I(f,®y.ne)[>dydndt. By Cauchy-Schwarz,
k

A2 5 ZJ (f) ¢y,'r],t> (¢y,n,t’ ¢y’,n’,t’) <¢y’,n’,t’,f> dydﬂdf d)’/dn/df/-

* *
kij

Split the integral the diagonal part B~'t’ < t < Bt’, the upper half t > Bt’, and the lower half
t’ > Bt. It remains to show the diagonal part is bounded above by O(A) and the off diagonal parts
are bounded above by

o([ sup |<f,¢y,n,t>|](zsk)”"‘w).
(y,m,t)EU T} k

This would imply

A? §¢A+[ sup  |[{f, ¢ynt ](Zsk)l/z 1/2
(v, t)EU T 2

and the s = 1/3 case follows by rearrangement.
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To estimate the diagonal part, we have by symmetry

2 Z J |<f; qby,n,t)lz |(¢y,n,t, ¢y’,n’,t’)| d)’dndtdy/dn/dt/
k,j=1J TxT :B~1t<t’<Bt

<2A sup ZJ |<¢y,n,t> ¢y’,n’,t’>|d.y/dn/dt/
k,(y,n,)ETE \ 5 T;:B~1t<t'<Bt

<2A sup (J f |<¢y,n,t: d)y’,n’,t’)ldy/dn/dt/)
k,(y.,n,t)ET \JB-1t<t’<Bt JR2

where last part is due the disjointness of TJT“. Using Claim (1} the last display is clearly O(A).

We now focus on the off-diagonal terms. We will prove the desired estimate for the upper half
and the lower half will follow by similar construction. Taking note that the partial tents T are
pairwise disjoint, apply Cauchy-Schwarz to obtain estimates

1/2
> f (2 @yme) (Do @yrer) (Syren ) dydndedy’dn’de’ < AYV2( D Hy)
k,j JTExT? k

where

2
Hy = f (ZJ byonr @y <¢y/,n/,t/,f>|dy’dn’dt’) dydndt
T \ 5 J1rBese
2

2
S|: sup |<f) ¢y,n,t)|] f (Zf |(¢y,n,t) ¢y/’n/’t/)|d_y/dn/dt’) dydndt
T} j JTF:Bt/<t

(ym,0)eU T}

For simplicity in notation, let D be the supremum above. Using Claim [2]above, we have

He Spnp D J pqw)]‘%ydndt

Sk X +Sg §+C2t 1 S |_X' y|
kK™ 1Mtk —
So.5.p DZJ f f " HEEEIN]  andyde S4.0 D5
x &—

k—Sk Cytt
Summing over all k gives

(ZHk)1/2§¢[ sup |(f:¢y,n,t>|:|(zsk)l/2
X (y;m,t)EU T} X

and the desired off-diagonal estimate now follows.

Case s € (0,1). Generalization to s € (0, 1) is essentially the same argument as in Lemmawith
appropriate modifications. Recall D = SUP(y . 0)el J, T |(f, ¢y,n,e)| < 00. Subdivide the collection E
of partial tents into

A ={.n.0elJ1y : 270D <|(f, 9,0 <27D}.
k

Denote A ; = Uiszi’ and for convenience let A, = T;' NAy;. For fixed j, the sub-collection
{Asj «} of partial tents is well-separated so by applying the s = 1/3 estimate,

1/2 1/3
(ZJ |<f,¢y,n,t>|2dydndt) Somp 1+[(2‘fD)(ZSk)m] -
k JAsjk

k
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Note the upper estimate above decays such that for j > max(0,log,[D(>, s )2,

(3.13) f [(fs yne)*dydndt S 1.
As;

To estimate each individual level A;, use Lemmato obtain
(i 1/2 . 1/3
27U, 12 < ( f (F, by Pdydndt) "~ <455 1+[(27D)I4112] .
4,
From this estimate, it follows immediately that 277 D|Aj|1/ 2 <1, and consequently,

1/2
(3.14) (J (f, @ yn0)Pdydnde) "~ < 1.
Aj

Fix the smallest integer j > max(0,log,[D(3}, 5¢)'/2]). By (3.13) and (3.14), we obtain the
following logarithmic estimate spanning all of |_J, T} = [ JA;.

> f f, by me)Pdydnde = f
k JT As

Se.p 1+ max (O, logz[D(Z sk)l/z]).
k

j—1
(f. ¢y me)Pdydnde+ > J (f. yme)Pdydnde
k=1 A

j =1

The desired result for s € (0, 1) is then obtained by using the same logarithmic argument as in the
conclusion of Lemma|2] O

4. PROOF OF THEOREM 1]

We start with reductions which reduces the proof of Theorem and make some useful obser-
vations. The outline of the proof will be then stated in Sectionfollowed by the specifics of the
proofs in Sections|4.3}4.4

4.1. Preliminary reductions and observations.

4.1.1. Reduction - Discrete Parameter Tents. Following [12], we pass our tent paramterizations to
a discrete subset of X and prove Theoremin the discrete parameter setting. The chosen discrete
subset is chosen such that tents in E are centrally contained within the discrete parameter tents.
Note that a point (x’,&’,s”) € T(x, &, s) is centrally contained if the following inequalities hold:

(4.1) 273 <s'<27%, X —x|<27%, |&-gl<28bs
Consider the subset X, of points (x, &,s) € X such that there exists integers k, m, n satisfying
x=2K%, £=27"8pm, s=2k

Let E, be the collection of all tents T(x, &,s) with (x,&,s) € X,. We recall the following relation
[12} Lemma 5.2] regarding tents in E and E,.

Lemma 5. For any (x’,&’,s’) € X there exists (x,&_,s), (x,&,,s) € X, such that (x',&',s") is
centrally contained in the tents T(x,&_s), T(x,&,s) as specified in and satisfy

T(x',&',s")C T(x,E_,s)UT(x,&E,,s),
T(x',&,sYNT (x,E_,s)NTP(x,&,,s) c TP(x',&,s").
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FIGURE 3. The intersection of a 3D tent (in green) and a triangular strip (in blue)
is another 3D tent (in red).

Let 8%, oy, and u be ", o", and u" respectively restricted to the generating sub-collection
EL. Given T €, there exist TT, T~ € E, satisfying T ¢ Tt U T~ and
o"(T) < oR(TH)+oR(T7) < Ca¥(T)
where right-most inequality uses the doubling property of w. This implies the outer measures u"
and u}y are equivalent. Furthermore, given F € B(X) and tent T € E, application of T*, T~ € E

as above shows
$¥(F)(T) < C(SX(F)(TH) +SX(F)(T7))

where C is dependent on the doubling constant of w.

We therefore have an equivalence of the outer LP spaces and weak outer L spaces
for 1 < p < oo. Thus, to prove Theorem it suffices to establish the following theorem with
respect to the discrete parameter setting.

Theorem 2. Let ¢ € #(R) such that supp $ c (—278b,278b). Given a locally integrable function f
on R, let P(f) be the wave packet transform (1.4). Suppose 2 < q < oo and w € Ay5. Then

IPUNgagx.om 51) §e,¢,q,[w]Aq/2 £ 1 Laqw)-
4.1.2. Useful Observations.

Remark 1 (Tent Containment). The proof of Theoremrequires us to pass from a collection of selected
tents to another while maintaining well separation in the style of Section To that end, we use the
following geometric observation regarding tents.

Given x’ € R and s’ > 0, denote the triangular strip

Evg={(y,n,t)eX :0<t<s,|ly—x'| <s' —t}

Consider a tent T(x,&,s) € E such that T(x, &,s) N E,/ ¢ is nonempty. Then the intersection itself is a
3D tent T(x",&,s") € Ewhere (x"”" —s",x" +s") = (x—s,x+s)N(x"—s", x"+s'). Figureillustrates
this intersection. As the frequency parameters play no role in this observation, the containment extends
to the core and lacunary partial tents:

Tb(xz gjs)nEx’,s’ = Tb(x//z <SJS//) and Te(x’ g,S)ﬂEx/’s/ = Tz(x//z 555//)-

Remark 2 (A, weights are not L' integrable). We briefly point out the standard fact that Ap, weights
are not integrable on R". Otherwise, reverse Hélder’s inequality implies for all cubes Q

J [wx)] dx <, QI
Q
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where r > 1 is dependent on w. Application of monotone convergence theorem shows w = 0 a.e. which
isn’t an A, weight. We state this remark as we haven’t found another reference mentioning it.

Remark 3 (Shifted Dyadic Intervals). While the discrete parameter tents are not necessarily over
dyadic intervals, we will implement another pass to work with dyadic grids on R. The dyadic intervals
we are interested are

Dy ={[27(m+(-1Yk/3), 27 (m+ 1+ (-1Y'k/3)) : jmez}  ke{0,1,2}

where Dy, is the standard dyadic grid, D, is the 1/3 shifted grid, and D, is the 2 /3 shifted grid. We
recall the three grids lemma (see [4]) where a finite interval I C R is comparable to a dyadic interval
J € D;j for some j € {0,1,2} such that I C J and 3|I| < |J| < 6|I|.

4.2. Structure of Proof. Fix 2 < q < oo and weight w € A,/,. To prove Theorem it suffices to
establish the following weak outer LP estimates.

(4.2) 1Pl googx,0 8 §<¢>,q,[w]%/2 I 11 oo (w)
(4.3) IPUlgacox 0 5) S(p,q,[w]%/z £ zaqw)

If true, reverse Holder’s inequality says holds with g replaced by some q — € and then invoke
outer Marcinkiewicz interpolation (see Proposition to pass to the strong estimate at q itself.
Moreover, it suffices to show holds for a Schwartz function f on R. Indeed, given f € LI(w)
pick a sequence of Schwartz functions f; converging to f in LY(w) norm satisfying

* |If1llzagwy < ClIf llzaqw) and
o |lfier = fiellzagwy < C27 %N Fllaquy-
It is clear P(f) = lim; P(f;) pointwise and if we assume holds for Schwartz functions,

IP(fi1) = PUidll gaco 0w 81y S s = fiellagwy S C27 K| £l Lay-

The reduction follows by application of Proposition|2|to the sequence P(f;).

We prove the outer L°° estimate in Section by appealing to Littlewood-Paley square
function estimates to control each tent. Section handles the more complicated weak outer L4
estimate by good-lambda type arguments restricted to tents with large size. We remain in the
discrete parameter setting for the rest of the paper, unless otherwise stated. As such, we drop the
A notation and denote E=E,, § = 8%, and u = uy.

4.3. The outer L°° embedding (4.2). Consider f € L°°(w). The goal is to show
S(P(FINT(x,&,9)) < ClIf lpoow)

with implicit constant C independent of (x,&,s) € X, and f. As 8 is the sum of an L°° size and
an L2(w) size, we prove this inequality for each size separately. The estimate for the L°° portion
is clear from the definition of the wave packet transform.

sup  [{f, byl S Ifllcll@lly < Cllf llzeoqy-

(y,m,t)ETP(x,8,5)

It remains to control the L2(w) portion of size 8,

dt
(4.4) J IP(f)(y,n,t)IZW(y—t,ert)dydnT < Cw(x—s,x +3)lIf 112,
T4(x,8,5)
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Fix (x,&,s) € X and consider the decomposition f = f; + f, where f; := f1(,_s; x425)- For each
(y,m,t)suchthat y € (x —s,x +s)and t <s,

IP(£2)(y,m, )] < f |foly —2)= ¢( )ldz < C=1f o
[—ss]

As (y,n,t) € T!(x,&,s), we have the containment (y —t,y + t) C (x —s, x +s). Therefore

I+ (PG 20y = L P(£)(ym, OPw(y —t,y + t)dydn%

T(x,E.5)

E+Cyt™? dt
< CJ f f ”f”oo) w(y —t, y+t)dndy— < Cwlx—s,x +s)lIf I,
x—s JE—

Cyt1
which establishes the desired estimate on f,.
For the f; piece, it suffices to show the square function estimate

(4.5) IS (P)|| 1oy S Co 0.0, Wl

for any h € LY(w). As St(P(f;)) is compactly supported, we can pass to by applying Holder’s
inequality to the left side of (4.4). From there, appeal to the compact support of f; and doubling
property of w to control ||f;|1q(,) Dy the desired result. By symmetry, we only need to establish

(4.5) where T* is replaced by T N {n > £}. Consider a change in variables n = £ + y/t, and an
absolute constant C’ > max(Cl, C,). It remains to show

I f JJ Pt e+ L o1y ey )L

Let g(u) = h(u)e " and M, ¢(z) = e"*¢p(z). Since b <y < C’and ab\is supported in (—278b,278b),
the frequency support of M, ¢ is bounded away from 0 and co and M, ¢ satisfies the usual decay
estimates (where the implicit constant can be chosen uniformly over b < y < C’). Observe that

P(R)(y, &+ . 6) = e (g% (M,$),(1)

where (M, ¢).(z) = t'M ,¢(z/t). Uniformly over b <y < C’, we have

f f |P(h)(}’>§+ t)| 1|y u|<td.y

=( JO JR|g*(Myqs)f(y)lzhy_umdy%)” s

where the second-to-line inequality is a consequence of L¢(w) boundedness for continuous square
function estimates withw € Ay D A ,; see [[18}[19]] for details. This establishes and concludes
the proof of the outer L°° embedding (4.2).

< C ||kl Law)-

dty1/2
) Li(w)

< C”g”Lq(w) = C”h”Lq(W)

4.4. The weak outer LI embedding (4.3). As mentioned, we may assume that f is a Schwartz
function on R. Given A > 0 we need to find a countable collection of points Q C X, such that

Do wlx—s,x+5) SAUFIL,
(x,8,5)€Q
and for every T € E, we have, with E := U(x,g,s)eQ T(x,&,s),

(4.6) S(P(f)1x\g)(T) < A.
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We first reduce to the case when f is compactly supported. Indeed, we may select frequencies

Eo=0<¢&; <&, <... such that with fk flik_lslilsﬁk’ k > 1, satisfy
1 fiellzagy < €271 F 1l zagwy-
Using the special case to each f; with A, = 27XA we obtain collections Q,, and clearly

D1 D> wlx—s,x+s)<CA” qZqullfklqu(W) < CAUfF I,

k=1 (x,€,5)€Qk
On the other hand using subadditivity of the size, we may estimate

S(P(Lxe)(T) < D 8(PUI L )(T) < D 27FA < 2.

k>1 k>1

Thus from now on we may assume that f is Schwartz such that f is compactly supported.

4.4.1. Treatment for the L°° part of the size. We first isolate tents T € E, which contain all
(¥,m,t) € X such that |P(f)(y,n,t)| > A. Note that by Cauchy-Schwarz,

2|l llpll, = O,

(4.7) IP(f)(y,n, )l = U f(y—Z)ei”z%N%)dz <
R

so if [P(f)(y,m,t)| > A then there is an a priori bound t < O(172). We remark this estimate is
not essential; the upper bound is only needed to ensure that the L°° selection algorithm described
below will terminate and it will never be used quantitatively.

L®° Selection Algorithm. Suppose there is some (y,n,t) € X such that [P(f)(y,n,t)| > A.
By Lemma [5, we can associate with (y,n, t) a point (x, &,s) € X, such that (y,n,t) is centrally
contained in T(x,&,s). In particular s has to be bounded a priori by and is always a power
of 2. We may therefore choose (y1,7m;,t;) € X and (x1,&1,5;) € X so that

b |P(f)(.y1: 1> tl)l > )L;

e (y1,m1,t1) € T(xq,&1,5,) centrally, and

e s, is maximal.
We iterate this process. Assume that we have already selected (yy, N, tr) € X and (xy, £k, k) € XA
for 1 < k < n. Suppose there is a point (y, n, t) € X outside the union of selected tents T (xy, &, k)
satisfying |P(f)(y,n, t)| > A. We now choose (y,,n,,t,) €X and (x,,&,,s,) € X, such that

o O Mo tn) & Uiy Tk €0
o |P(f)(ns s t)l > A,
o (VM tn) € T(xy, &, 8,) centrally, and
e s, is maximal.
Figure gives a visual representation of the selection. For each k > 1, denote T}, = T (xy, &, Sk)
and I, = (x; — s, xx + s;) for notation conveinence.
Our goal is to show that

(4.8) ;w(lk) < CA7Uf I,y

for all n. Assuming holds, we justify the algorithm successfully terminates. If the algorithm
finishes after n steps, then all points (y,n, t) outside the union of tents T} for 1 < k < n satisfy
|[P(f)(y,m,t)| < A. Suppose the algorithm doesn’t terminate after a finite number of steps. We
observe the sequence of selected heights s, must decay to O in this scenario. This is due to the
selection process being independent of the chosen weight w meaning would hold for the
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FIGURE 4. Example of tents from the L°° selection algorithm. Here, the green tent
(with largest scale) is selected first, followed by the two blue tents and finally the
red tent (with smallest scale).

Lebesgue case w = 1. Therefore, if we consider some (y, 7, t) outside the union | Ji~; Ty then
t > s; for some j. As T; is the tallest tent at the j-step with respect to containing a centralized point
whose wavelet projection is greater than A, we conclude |P(f)(y,n, t)| < A. Thus, up to the proof
of (4.8), all points (y,m,t) outside the union of the selected tents in the algorithm must satisfy

IP(f)(y,m, ) < A
It remains to prove weighted estimate (4.8). We first make the following observation regarding

the well separation of the selected points (yy, N, tr)-

Claim 3. The collection of points {(Yi, Nk, tx)}x>1 is well separated in the sense of with separa-
tion constants o = 272 and p = 27°b; here, b is the parameter in © = (Cy, Co, b).

To verify the claim, consider (y;,n;, t;), (¥, Nk, tx) such that j < k. By the selection algorithm,
(yj,mj, t;) € T; was selected prior to (Y, N, tx) € T. Suppose to the contrary that

[ — el < 27%p rnax(tj_l, t,:l) and |y;—yil < 272 max(t;, ty).
Central containment and s; > s implies |y; — y| < 27%; and |n; — 0| < 273 bs;l. Thus,

ye—x;] S lye— il +1y;— x| <27%; <5, 14
and
Mme—&=M—m;)+Mm;—&;) =< t;:12_4b < tl?1C2

with similar work gives 1, — &; = —t;lcl. As t; < sp < s, this means (yy, N, tx) € T; which

contradicts the assumption the point was selected after T; was removed. Thus, Clairn is true.
By the three grids trick (see Rernark, each I is contained in a dyadic interval J; of comparable

length where Jj is either in the standard dyadic grid D), the 1/3 shifted grid D, or the 2/3 shifted

grid D,. It suffices to prove

n
(4.9) D W) < CATIF I,
k=1
where J; is an element of D, D, or D, such that I; C J; and 3|I;| < |Ji| < 6|I;|. Without loss of
generality, we may assume all J;, belong to the same dyadic grid, which for convenience we assume
to be the standard grid D,,.
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For each m > 0 let K,,, be the set of k such that 2™ < |P(f)(¥x, Mk, tx)| < 2™ LA, It suffices to
show that for any m

D W) < CERMAUIF N,

kekK,,

We show this for m = 0 as the general case can be obtained by simply letting A’ = 2™A and
repeating the argument. Fixing m = 0, assume without loss of generality that K = K, so all k are

automatically inside K.
For convenience let
N=>1, and  Nj= > 1,
k k:J.CI

be the tent counting function and counting function restricted to interval I respectively. The fol-
lowing lemma is a localization inequality for the L'(w) norm of N;.

Lemma 6. Fix a dyadic interval I, a > 0, and integer n = 0. Let y;(x) be as defined in (1.10). Then
1
AINIEE S S INGIZS L 2 s

Proof. Fix interval I, without loss of generality we may assume N = N;. We first consider the
simpler proof for n = 0. For convenience, denote P(f )(yx, Nk, tx) = (f, ¢x) where

BV Z By, () = e O I,
As A < |P(Ff)(Yk> N> ti)| < 2A, we obtain
22N W) S Y WP o P = 15()IE,
k

keK,,

where

sS(HE) = (10 6P, )"
k

is the square function summed over the selected points.
We now implement a sharp maximal inequality argument. Note first that supp (S (f )) C supp(N).
Using Holder’s inequality and the sharp maximal inequality we have

1S 120y < W(supp @) IS 100y < (S Tw000) 1SN
k

where (S(f))* is the dyadic sharp maximal function, taken with respect to the grid that contains
all intervals Jy.. Consequently,

(4.10) A[ZW(Jk)]l/q SNSEN || oy
k

We will now establish the pointwise estimate

(4.11) (SUN*(x) Sg.s Ma(f)) + A TMN) ()P [Ma(f ) ()]

where M is the usual dyadic maximal function and s € (0, 1). For each dyadic interval J it suffices
to show there is some constant a; > 0 such that

1/2
(|71|J ISCf)(x)— aJ|2dx) < ;I(Iéhfsz(f)(x) + 28 )i(relg[M(N)(x)]s/Z chfelﬁ[Mz(f)(x)]l_s
J



EMBEDDINGS FROM WEIGHTED L? INTO OUTER MEASURE SPACES 23

Setting c; as the center of J, let a; = S,,;(f )(c;) where

Seuc N = (ST 1A 3P, 0)

k'JCJk

For convenience, let S;,,(f )(x) = (S(f )(x)?—S,u¢ (f )(x)?)}/? and consider f; = f ¥ for some large
constant N. By the square function estimate (from Lebesgue theory) we have

f IS(F () — ayldx < J |Sin(f)()Pdx = J ISin(f1) () dx
J J J

where S;, uses the mollified wave functions )(J_N ¢«. Note the mollified wave function has the same
frequency support as ¢; and has sufficient decay while localization over (y; — ti, ¥ + ti) in the
sense Lemmais applicable for appropriate exponents. Recall from Claimthat the selected points
(¥%»> N, tx) are well-separated with separation constants dependent solely on ©. We can therefore
apply Lemmaalong with the observation t; < |J;| at each k to get

1/2 .
( IS(f)(x)—aJIZdX) 5||fJ||2+[st;p|P(f)(yk,nk,rk)|(Z|Jk|)”2] T3 b
J

k:J CJ
S W2 inf My(f)(x) + X171 infIMN)()]2 inf[My(f )(2))' ™

as desired.
Now, using (4.11) and the fact that w € A5,

2 _
1SN [L1ay < ||f||Lq(W)+AS||N||;Q,2(W)||f||;q;W)

()( _
TN i

S oy + A N1l IS

As |INlz1w) = 22 w(Jg), combine (4.10) with the above sharp maximal function bounds to get

1 =G-b
MINIIEE ) S INTLS 2

S 1lzaqw)-

By selecting 0 < s < 1 suitably we obtain the desired conclusion for any a > 0, but for n = 0.
For n > 0, apply the argument above for the mollified wave functions d)k(x) =y ()¢ k(x) and
note that (f, ¢x) = (f 17, $,) for all k. As previously stated, the mollified wave function ¢, has
the same frequency support as ¢; and sufficient decay while still localized over (y; — ti, Yi + ti)

so the same analysis as before applies. O
With the L!(w) norm estimate on N;, we deduce a similar estimate for L"°°(w) with 0 < r < 1.
Corollary 1. Fix dyadic interval I. For any r € (0,1) and n > 0 it holds that
NGl ooy S AHIF 27 lauy)

Proof. Arguing as before, without loss of generality we may assume that N = N; and n = 0. Given
any t > 0, we have
w(N>t)= ZW(Zkt <N <2k 1),
k>0

For each k, let A, be the collection of k such that J, N {N < 2X*1t} £ @ and denote N, as the
counting function N restricted to A,. Then for every x € {N < 2X*1t} we have N(x) = Ni(x),
therefore

(2Kt < N < 271t} c (N, > 2K¢).



24 YEN DO AND MARK LEWERS

Furthermore, we also have
INilloo < 2K¥1¢.

Indeed, N is locally constant, and any interval on which Nj, is constant must be part of some J;
that in turn intersects {N < 2k*1t}, and clearly N, <N.
Thus, applying Lemma @With a > 0 we obtain

1
AN <IN oy < 2500 F o

therefore
AIw(Ng > 21 6) < 27D Ny S 27U 0D e
Summing over k > 0, it follows that
},qW(N > t) 5 t_(l_aq)”f”%q(w)
provided that 0 < a < 1/q. Letting r = 1 — aq we obtain

tw(N > YT AT

To get n > 0, apply the argument above for mollified wave functions $k =1 bk 0

Next, we establish a good A inequality with respect to N. Below, let M, ,,f be the weighted
Li-maximal function.

Lemma 7. Consider L > 0 and r € (0,1). There is some ¢ > 0 such that for any t > 0,
1
W(N > £) < Zw(N > t/4) + w(Mo,f > cAtT9).

Proof. Let I be the collection of all maximal dyadic intervals that are subsets of {N > t/4}. Suppose
that I € Tand IN{M,,f < cAt?/T} £ 0. Then for every x € {N > t}NI we have N(x)—N;(x) < t/4,
so in particular x € {N; > t/4}. It follows that, using Corollary

WlN > )0 1) < w(N; > £/4) S ¢ Af 27 0
< t_rl_qw(l))i(rqu’W(f)(x)q < AT (eAt D) < clw(T).
Consequently, by choosing ¢ > 0 sufficiently small (independent of I) we obtain
w({N>t}nI)< %W(I).
Summing over I we obtain the desired claim. U

We are now ready to show (4.9). Integrating over ¢t > 0 in the good A estimate provided by
Lemma it follows (from the standard argument) that
SA My (O ) S 2YIEN,

INILiwy S f
0
La/r(w) ~ La/r(w)’

Using the fact that the A, condition is an open condition, we actually have w € A, /, for some
r € (0,1). Thus, by replacing q with qr,

INT16wy S A7 N gy
This completes the proof of which in turn implies the desired estimate (4.8)).

oo oo

WMy, (f) > cat"/Ndt = (cA) " f WMy, (f) > s)s'\ds
0
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We finish by denoting Q as the collection of (xy, &, s,) selected and
EO = U T(xz 555)-
(x,£,5)€Qq
We have |P(f)(y,n,t)| < A for all (y,n,t) € E:, while the weighted outer measure of E, is
O(A™ | f || Laqw))- We free the notations (Y, N, ti), (X, ExsSic)> Ties I, k = 1.

4.4.2. Treatment for the L? part of the size. We now select tents over which the L?(w) portion of
size § is large with respect to A. We split a tent T(x, £, s) into its upper half

T,(x,8,5)=T(x,&,s)n{(y,n,t)€X : n=¢&}

and its lower half T_(x,&,s) = T(x,&,s)\T(x,&,s). We define Ti’ and Ti similarly.
This section focuses on finding a countable collection of points Q, C X, such that

Z W(X_S,X+s) < Cl_q”f“%q(w)
(x,€,8)EQ

and for every tent T(x,&,s) € Ex,
1

dt
— 1P, m, OPw(y —t,y + t)dydn— < A2
w(x —s,x+5s) T¢(x,ES\E, t

where
E,=EuU [ T(x&s)
(x.£:5)€Q.
We remark that the work to generate Q, and E, can be applied symmetrically to find a countable
collection of points Q_ C X 5 such that

Do wlr—s,x+5) < CATfIIL,
(x,€,5)€Q_
and if
E_=EuU |J T(x&s),
(x,€,5)eQ_
then
1

dt
— IP(F)(,m, Olxe (3,1, OPw(y — £,y + )dydn— < A2
w(x —s,x+s) T (x.£.) t

for all tents T(x,&,s) € Eo. By setting Q = Qo UQ, UQ_ and E := U(x,g,s)eQ T(x,&,s), the proof
of the g-endpoint estimate will then be completed.

L? Selection Algorithm. Let C be larger than the doubling constant of w. Suppose there exists
(x,&,s) € X such that
(4.12) —_ P, O'wly —t,y + t)dydn— = C A%

w(x —s,x+s) TE (e, E.5)\Fo t

Applying (4.5), it follows that w(x —s,x +s) is bounded from above a priori. By substituting
f=f xé’( BN 5 N sxts) in (4.12) where N > g, similar work in conjunction with Remark shows

s itself is bounded a priori. Indeed, as w ¢ L' is a doubling weight, it forces |x|/s to be sufficiently
large whenever s itself is large. Consequently, || f xﬁ ey +5)||oo is sufficiently small. As

||ng—s,x+s)”Ll(w) Sw(x—s,x+s),

we conclude the value of s for points (x, £, s) satisfying (4.12) must be bounded.
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Let 5 be the least upper bound on s. As such, & is a discrete parameter since it is a multiple
of 278p(5) 1. Since f is compactly supported, there is an upper bound on £ meaning there is a
maximal possible value & = & .., to consider in (4.5). Select (x1,&1,5,) € X satisfying such
that £, = &, and s; is maximal with respect to the restriction §; = &, Let T; = T(x1,&1,51)
and I; = (x; —sq,x; +57) for convenience of notation. By the maximality of s; and the doubling
property of w, note

1

dt
. IP(F ), 0, OPw(y —t,y + t)dydn— < A%,
W) J 1t (xy 0\Eo t
We now iterate the argument. Assume that we have selected (xi, &y, sx) € Xp for 1 <k <n-—1
and set E,, = Ey U UZ; T). Suppose there is some (x, &,s) € X, such that

1

dt _
—_ IP(F)(y,m, OPw(y —t,y + t)dydn— > C'A?
w(x—s,x+s) t

T.{(x;g;s)\En

We now select such a point (x,,&,,s,) such that £, is a (possibly new) maximal &, and s, is
maximized with respect to & .. Denote T, = T(x,,&,,s,) and I, = (x,, —s,, X, +5,). Again, by
the maximality of s,,,

1

dt
; IP(f)(y,m, OPw(y —t,y + t)dydn— < A
W) J 1t (e, 60 sa\En t

Our goal is to show that

n
(4.13) ;w(zk) < CAIf Iy

where C is independent of n. Assuming (4.13) is valid, we now justify the termination of the L2
selection algorithm. If the algorithm terminates after selecting n tents, then

1

dt _
— IP(F)(,m, OPw(y —t,y + t)dydn— < C'2%
w(x—s,x+s) t

T (x,8,5)\Ens1
holds for all (x,&,s) € E5 and we set Q. as the collection of (xy,&,s,) for 1 < k < n. In the
scenario the algorithm does not terminate after a finite number of steps, set E(;) = EOUUk21 T; and
Q4,(1) as the collection of selected (xi, &, si) for k > 1. Note the selected & form a non-increasing
sequence of elements in the lattice Z278b(5)~. In the case &, tends to negative infinity, suppose
there is some (x, &,s) € X\ satisfying

1 9 dt 142
(4.14) —— [P, n, O wly —t,y + t)dydn— = C A%

w(x—s,x+s) T (x.£.5)\Eqy t

As & — —oo, then &; < & for some j which contradicts the selection of T;. Thus, the converse
inequality to must hold for all (x,&,s) € X, and we set Q; = Q. (1).

Now suppose &£ does not tend to negative infinity and instead stabilizes at some finite &(y).
We restart the algorithm and redefine the selected tents Ty by Ty, = T (X1 E(1)k>S1)k) and
intervals I} by I(q) ;. Observe in this scenario that the tail of the sequence s(;) ; decays to 0. Indeed,
if s(1) x converges to some nonzero s(;) then the tail of Q (1 is of the form (x(q)x, &(1),5(1)) where
X(1),k is an element in the lattice 22_45(1). The corresponding intervals Iy therefore eventually
slide towards infinity or negative infinity. By recycling the argument for the a priori bound on s,
such a sequence cannot occur.
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Consider (x,&,s) € X, where holds. As before, there is a maximal frequency &, to
consider for such a point. Given the previous selection of tents, we know &.x < &(qy. If o = &1
and (x, &%, 5) satisfies then s > s(1) ;. for some k by the previous paragraph which contra-
dicts the selection of T(y) ;. Therefore, it follows that &,,,x < &(7). Choose a point (x(2)1&(2)1,5(2).1)
satisfying such that s(y) ; is maximized under the condition &£,y 1 = &, Iterate the selec-
tion algorithm as before to obtain a sequence of tents and intervals

Toyx = T(x@)0 E@2)k0S@).4) 5 and  Ig)r = (x2)k —S@)0 X@)k T 52)0)-
The proof of (4.13), to be shown, will naturally extend here to give

oo
2w+ D o) < CAIF I,
k=1

k>1

Continue the process as shown above. If we eventually have a sequence of frequencies &, «
(m is fixed) which either terminates after finitely many k or &,y — —oo then there are no more
(x,&,s) € X, for which the (now updated) version of holds. At worst, we eventually obtain
a double sequence of tents T(,,) , where the double summation of w(I(,,) ) is O(A74||f ”%q(w))' In

addition, the sequence of stabilizing points £ ) in this case is strictly decreasing in a discrete lattice
and tending to negative infinity. We finish by setting Q.. as the collection of (x(j) k> &j),k>S(j),k)
where j,k € N and E, as the union of tents T (x(j), &(j)k>S(j),k)- We can therefore conclude that
there are no more points (x,&,s) € X, such that

1

e
— IP(F )y, m, OPw(y —t,y + t)dydn— > C 22
w(x—s,x+s) t

T4 (x,E,5)\Ey

and so the L? algorithm terminates.
It remains to prove the weighted estimate (4.13). Note the proof follows similar steps as in the
L°° treatment in Section For convenience of notation let

T,:‘sz(xk,Ek,sk)\Ek fork>1
with E; = E,. We first note the well separation of the partial tents T,’.

Claim 4. The collection of partial tents {T}'} is well-separated in the sense of (3.11) with separation
constants a =1, f = 27°b, and B = 28 max(C;, C;)b™! in terms of © = (Cy, Cy, b).

To verify the claim, consider (y,n,t) € T]T" and (y’,n’,t") € T} such that Bt’ < t. Assuming
In—mn'l <27°bt’"?, it follows from (y’,n’, t') being in the upper lacunary part of Ty that &; > &;.

Ei—&k=n—n)——&)+n"—&)
> 270t =Gyt bt > (1 -2 —278)bt" 1 > 0

This means tent T; was selected prior to T} so ( vy, t) ¢ T; by the selection process. Furthermore,
observe that t’ < t <s; and

n' =& ='-n+Mn-¢&;)< (2_717 + CzB_l)(t/)_l < Cy(t) 7!
with similar work showing ' —&; > —C,(¢')™". As (y',n/,t’) ¢ T;, we then require
Iy =xj|>s;—t'>s;—t

which verifies Claim
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As in the L°° selection argument, application of the three grids trick (see Remark means it
suffices to show

(4.15) ;wuk) < CATUIF I

where all J;, are dyadic intervals in the standard grid D, 1/3 shifted grid D, or 2/3 shifted grid
D, such that I} C J and 3|I| < |Ji| < 6]I;|. We may assume without loss of generality that all J
belong to the standard dyadic grid.

As before, let N(x) be the counting function over the selected intervals J;, and N;(x) be the
counting function N restricted to J; contained in interval I. We need the following analogue of
Lemma@ and the rest of the proof for the L2 portion (with respect to upper half of tents) is exactly
the same as the L® portion in Section[4.4.1]

Lemma 8. Fix a dyadic interval I, a > 0, and integer n > 0. Let y;(x) be as defined in (1.10). Then

1
AN S NG LF 7 -

Proof. As before, we may assume without loss of generality that N = N; (freeing up the notation
of interval I) and set n = 0.
Let S be the following square function

1/2
dt
S(F)(u):z(z f |F(y,n,t)|21|y_u|<tdydn7) , uER.
T

k:Jk

Appealing to the doubling property of w and the selection criteria for the tents T,
dt
22> W) S ZJ IPCFIG 1, Py =y + ) dydn = = IS DI
k k JT}

We note that if (y,n,t) € T(xx, Ex,s5¢) and |y —u| < t thenu e (y —t,y +t) C (X3 — Sk, Xi + Sg)-
Therefore supp(SF) C | ;. s, Jk- Consequently, by an application of Holder’s inequality,

MINIEE ) S USSP zagn)-

It remains to control the LI(w) norm of this square function. Our main idea here is to cover
(y—t,y+t) using a (shifted) dyadic interval I comparable to (y —t, y +t) via the three grids trick
and pass to (shifted) square functions over these grids. More precisely, the interval I will belong
to either the classical grid D, or one of the shifted grids D, D, mentioned prior. We may bound

2
S(F)(w) < > 5;(F)(u)
j=0

where S;(F) is a square function over grid D;. Namely, for each grid D; we may define for some
C > 1 (sufficiently large absolute constant)

1/2
Sj(F)(”):(ZJ FGon. 0 . 1I(y)11(u)dydn%) _
T 1€D;:t

k:Jy Jc<|T|<Ct

Fix j. Standard estimates show

1S;CPC M zagy < 1(S; PN o)
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where (-)! is the dyadic sharp maximal function, with intervals from the grid D ;. Now, for each
dyadic J € D;, we then let

1/2
a(u)=(2f IP(f)(y,m, OF Z 11(y)11(u)dydn%) _
Ty

k:I; IeD;:C-1t<|I|<Ce,Jcl

Note that a(u) is constant over u € J, which we now refer to as a; (despite its dependence on j).
Foreachu€J,

1/2
18;(P(F) (W) = ayl < (Z f P(F)(y,m, )2 >, h(y)ll(u)dydn%)
T

ki, IeD;:Cc-1t<|I|<Ct,Ic]

1/2
dt
S (ZJ IP(F)(,m, t)|21|y—u|:o(t)1t:o(u|)d}’dﬂT)
Ty

kZIk

thus using Lebesgue theory we have

1/2
|3| L |sj(P(f))(u)—aJ|§(—|}|Z L* |p(f)(y,n,t)|21(y_t,y+t)ccjdydndt)
k:Jk k

where C > 0 is sufficiently large. Recall (y —t,y +t) C CJ is equivalent to 0 < t < C|J|/2 and
ly —c¢;| < ClJ|/2—t. By Remark T n{(y —t,y +t) c CJ} is a subset of tent T,i with top
interval I = I; N CJ. Note the collection of partial tents T, N {(y —t, y +t) C CJ} in T}, is still well
separated with same separation constants as Claim

Let f; = f x%, for some large constant N. Using Lemmawith POl = 115 280 Dym.e)l
and |P(f)(y,n, t)| < A for all points in T; N {(y —t,y +t) C CJ}, we have

L |S;(PU N —ay|du S Nf o+ [N e, T3

S W2 inf My(£)0) + 1711228 inf [MN) ] inf [My(£)(0)]
and so

(4.16) (S;PCN) () S My + A M T [ My ()]
Combining and the fact w € A5,

I18;PC Dy S 1F Moy + NI 1F 1y

< AS N (3)(%_1) N S/q 1—s
S llagwy + AMINToo ™ TIN w1 gy

Summing over j =0, 1,2 we obtain

/g - sy ([P, 015/ 1-s
ANy S 1 llagwy + ANl oo N vy I 1l ey
and we get by rearrangement
1 L_S(l_l)
MINIE ) SN I sy

We obtain the desired result for the n = 0 case by choosing s € (0,1) sufficiently small. For
the case n > 1, consider the mollified wave packet ¢, , . = x; "¢, , . and apply work above to

PO, ) = (Fxls ymc)- O
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