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ABSTRACT. We prove generalized Carleson embeddings for the continuous wave packet transform

from Lp(R, w) into an outer Lp space over R⇥R⇥ (0,1) for 2< p <1 and weight w 2 Ap/2. This

work is a weighted extension of the corresponding Lebesgue result in [12] and generalizes a similar

result in [9]. The proof in this article relies on L2 restriction estimates for the wave packet transform

which are geometric and may be of independent interest.

1. INTRODUCTION

Lennart Carleson’s influential paper [3] in 1966 resolved Lusin’s Conjecture by proving the

Fourier series of a function f 2 L2[0,1] converges almost everywhere; see also the work of Hunt

[14]. The techniques used in Carleson’s proof, now referred to as time-frequency analysis, have

since played an important role in analysis and serve as a tool in proving Lp estimates on modulation

invariant integral operators. We highlight for example Fefferman’s proof of Lusin’s Conjecture in

[13] along with Lacey and Thiele’s use of time-frequency analysis in their work on the bilinear

Hilbert transform [15, 16] and the Carleson operator [17].

The methods of time-frequency analysis usually pass the analysis on a multilinear form Λ to a

model sum

(1.1) Λ( f1, ..., fn)⇠
X

s

cs(Λ) · as,1( f1) · · · as,n( fn)

indexed over a discrete collection of rectangles s in the phase plane. The terms within each sum-

mand, localized to s, are either dependent on the form Λ or one of the input functions f j . From

there, the rectangles are grouped into specified collections on which the desired estimates are ob-

tainable. As shown by the first author and Thiele in [12], this procedure follows an outer measure

framework which focuses on two main steps in proving Lp estimates for multilinear forms. The first

step is to estimate the multilinear form Λ by applying Hölder’s inequality in the context of outer

measures,

(1.2) |Λ( f1, ..., fn)| C

nY

j=1

��F j( f j)
��
L

p j (X ,�,S j)
.

Here, Lp j (X ,�,S j) is an outer Lp j space constructed over a suitable outer measure space (X ,�,S j).

The formulation of outer Lp spaces will be discussed in Section 2. The operators F j are akin to the

as, j in (1.1) and represent a suitable projection of Λ over X . The final steps are then to establish

outer measure Lp embeddings on each operator F j in the form

(1.3)
��F j( f j)

��
L

p j (X ,�,S j)
 C(F j , p j)k f jkLp j (R).

Estimates such as (1.3) are referred to, see [12, 8], as generalized Carleson embeddings.
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What the outer measure framework reveals is that the crux in establishing inequalities on mod-

ulation invariant operators is passed to proving Carleson embeddings of form (1.3). This is seen

in several recent articles which focus on solving certain Carleson embeddings in order to obtain Lp

estimates for specific operators. In the original article [12] which introduced the outer measure

framework, the key result in reproving Lp estimates on the bilinear Hilbert transform with the same

restricted range as [15] is a Carleson embedding of the wave packet transform, see (1.4). Di Plinio

and Ou in [8] later recovered Lp estimates for the bilinear Hilbert transform in the full range of

[16] by proving a localized Carleson embedding for the same wave packet transform; here localized

is in the sense of (1.9). We also mention the work by Uraltsev [26] in reproving Lp estimates for

the variational Carleson operator, first obtained in [23], which relies on Carleson embeddings for a

modified wave packet transform in addition to the wave packet transform (1.4). Note the Carleson

embedding results stated in this paragraph are done with respect to functions f in Lebesgue Lp

and embeddings into a "non-weighted" outer measure space.

The purpose of this paper is to explore the outer measure framework of time-frequency analysis

in the context of weighted inequalities. Specifically, we seek to understand generalized Carleson

embeddings ��F( f )
��
Lp(X ,�w,Sw)

 C(p, w)k f kLp(R,w)

where w is a weight on R and (X ,�w,Sw) is an outer measure space dependent on w. The motiva-

tion is in part due to the recent progress in identifying weighted Lp estimates in harmonic analysis.

Using a weighted time-frequency analysis based on the model sum (1.1), the first author with

Lacey [9, 10] obtained novel weighted estimates for the variational Carleson operator and Walsh

counterpart. Part of the analysis in the series focused on inequalities in traditional time-frequency

analysis analog to a Carleson embedding (1.3) for weighted Lp functions. We are interested in

understanding the embeddings in the outer measure framework.

It is worth mentioning there are suitable alternatives for obtaining weighted Lp estimates in

time-frequency analysis which have been recently explored. The application of sparse domination

techniques for instance has seen success with the highlight being the remarkable find by Culiuc, Di

Plinio, and Ou [6] in determining weighted estimates for the bilinear Hilbert transform, the first

of its kind1. We point out more recent work with weighted estimates for the bilinear Hilbert trans-

form and similar operators by Cruz-Uribe and Martell [5], and Benea and Muscalu [1, 2]. Note

that sparse domination has also been used to obtain weighted norm inequalities for the variational

Carleson operator [7] which are an improvement of [9]. It is questionable however if sparse dom-

ination can be used to establish weighted norm estimates for operators with less symmetry such as

the truncated bilinear Hilbert transform [11] or the biest operator [21, 22] whose weighted results

are unknown.

1.1. Continuous Wave Packet Transform and Main Result. The space we work over is upper

3-space X = R⇥R⇥R+ whose coordinates are viewed as parameterizations of symmetries on the

class of modulation invariant integral operators. The primary outer Lp embedding map of interest

in this work is the wavelet projection operator of a function f : R! C into upper 3-space

(1.4) P( f )(y,⌘, t) := f ⇤�⌘,t(y) =

Z

R

f (x)ei⌘(y�x)1

t
�
Ä y � x

t

ä
d x , (y,⌘, t) 2 X

where�⌘,t(y) is a modulated wave function of a Schwartz function� onRwith compact frequency

support. We also refer to the formulation P( f )(y,⌘, t) = h f ,�y,⌘,ti where

(1.5) �y,⌘,t(x) = e�i⌘(y�x)1

t
�
Ä y � x

t

ä

1Xiaochun Li [20] has some unpublished results about weighted estimates for the bilinear Hilbert transform.
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is the wave packet of � at (y,⌘, t) 2 X , here as usual h f , gi =
R

f g. In this regard, P( f ) is also

referred to as the continuous wave packet transform of f .

The wave packet transform (1.4) serves as a projection of modulation invariant operators in

upper 3-space. As shown in [12], the wave packet representation of the bilinear Hilbert transform

in X is a linear combination of integrals whose integrand is a pointwise product of wave packet

transforms. To recover Lp estimates for the bilinear Hilbert transform, the key result in [12, The-

orem 5.1] is that the wave packet transform is a generalized Carleson embedding from Lp(R) to

some outer Lp space on X for 2< p <1,

(1.6) kP( f )kLp(X ,�,S)  Cp,� k f kLp(R) .

It was also stated in [12] and later shown in [26] that P( f ) is one of two embedding maps arising

from the decomposition (1.2) in connection with the Carleson and variational Carleson operators.

The main result of this paper is an extension of (1.6) to Ap weighted spaces. Given 1< p <1,

recall a weight w : R! [0,1] belongs to the class of Ap weights if

(1.7) [w]Ap
:= sup

interval I⇢R

✓
1

|I |

Z

I

w(x) d x

◆✓
1

|I |

Z

I

w(x)
� 1

p�1 d x

◆p�1

<1.

Theorem 1. Fix a Schwartz function � on R whose Fourier transform is supported in a small neigh-

borhood (��,�). Let 2< q <1 and w 2 Aq/2. Then

(1.8) kP( f )kLq(X ,�w,Sw) . k f kLq(R,w)

for all f 2 Lq(R, w) where the implicit constant depends on �, q, and [w]Aq/2
.

The details concerning the outer Lp space in (1.8) are postponed to Section 2. In the scenario

w= 1 is associated with Lebesgue measure, the theorem immediately implies the strong embedding

result (1.6) from [12, Theorem 5.1] as w= 1 is an Ap weight for all p > 1.

We envision (1.8) can be used akin to the Lebesgue version (1.6) to establish weighted estimates

in time-frequency analysis. The weighted results previously mentioned which use the outer mea-

sure framework are based on embeddings which send Lebesgue Lp functions f into non-weighted

outer measure spaces. Developing a weighted outer measure framework in time-frequency anal-

ysis2 could lead to natural self-contained proofs and potentially be a tool to examine the open

problems previously mentioned. We stress that using the weighted outer measure framework in

this work to obtain weighted Lp estimates for modulation invariant operators is beyond the scope

of the paper.

Another question not being addressed in this work is the prospect of a localized version of (1.8).

While the Carleson embedding of P( f ) (1.6) is not bounded for 1  p  2, Di Plinio and Ou [8,

Theorem 1] showed there is a localized extension for 1< p < 2 in the sense

(1.9) kP( f )1X\E f
kLq(X ,�,S)  Cp,qk f kLp(R) , p0 < q 1

where E f is an exceptional set dependent on large Lp averages of f . Localized embeddings of

form (1.9) are key ingredients in recent papers concerning Lp estimates for modulation invariant

operators, cf. [26, 8, 6, 7] but it is open whether a localized version of (1.8) holds; this question is

left for further study.

2We point out work by Thiele, Treil, and Volberg [25] which uses weighted outer measure spaces in the context of

martingale multipliers.
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1.2. Structure of Paper. In Section 2, we setup the outer measure space over upper 3-space X and

the corresponding outer Lp space which is the setting for Theorem 1. The section concludes with

relevant properties for general outer Lp spaces which are needed in the paper. Section 3 discusses

L2 restriction estimates for the wave packet transform in upper 3-space. These estimates are key

to the proof of Theorem 1 which is pushed to Section 4.

1.3. Notation. Given a finite interval I with center cI , denote aI as the interval with center cI and

length |aI |= a|I |. For a fixed finite interval I , let

(1.10) �I (x) =
î
1+

Ä |x � cI |

|I |

ä2ó�1
.

LetS (R) denote the space of Schwartz functions onR. We write the Fourier transform of f 2 S (R)
as

bf (⇠) =
Z

R

e�i⇠x f (x) d x .

Given a weight w : R! [0,1], let w(E) =
R

E
w(x) d x for all Lebesgue measurable sets E on R.

When E = (a, b) is an interval on R, we write w(a, b) = w((a, b)) for convenience. We denote

weighted Lp spaces on R as Lp(w) = Lp(R, w) and the norm as k f kLp(w) = k f kLp(R,w) with similar

convention for weak Lp spaces. Finally, for a dyadic grid D, we write the dyadic (weighted) Lp

maximal functions over R as

Mp,w( f )(x) = sup
dyadic Q3x

Ç
1

|Q|

Z

Q

| f (x)|p w(x)d x

å1/p

where M = M1,1 is the standard dyadic maximal function and Mp = Mp,1 is the dyadic Lp maximal

function.

2. OUTER Lp SPACES

This section sets up the outer Lp space over upper 3-space in Theorem 1. This setup is built

upon the outer Lp definitions and concepts formulated in [12]. For convenience, we record useful

properties of outer Lp spaces in Section 2.2.

2.1. Outer Lp Spaces over X . We work with the outer Lp space associated with outer measure

space (X ,�,S) where X = R⇥R⇥R+ is upper 3 space, � is a pre-measure on X with respect to

a distinguished collection of Borel sets E, and S is a size, i.e., a quasi sub-additive averaging map

over each collection E 2 E. In keeping with the language developed in time-frequency analysis,

the first coordinate of X represents time, the second coordinate represents frequency, and the third

coordinate represents scale.

2.1.1. Outer Measure Spaces and 3D Tents. The distinguished collection of Borel sets in X which our

outer measure space is built over is the collection of 3D tents (or tents for short) in upper 3-space.

Fix a triplet Θ = (C1, C2, b) such that min(C1, C2)> b > 0 where b is a sufficiently small parameter

to be used later. For each (x ,⇠, s) 2 X , define the 3D tent

TΘ(x ,⇠, s) :=

ß
(y,⌘, t) 2 X : t < s, |y � x |< s� t, �

C1

t
< ⌘� ⇠<

C2

t

™
.

A tent TΘ(x ,⇠, s) is asymmetric in frequency unless C1 = C2. An image of the center component in

a generic 3D tent TΘ(x ,⇠, s) with C1 6= C2 is shown in Figure 1.
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FIGURE 1. The center component of a generic 3D tent TΘ(x ,⇠, s) with C1 6= C2.

Note that the image is only a portion of the whole tent TΘ(x ,⇠, s) as tents have

unbounded support in frequency.

We further subdivide a 3D tent TΘ(x ,⇠, s) into core and lacunary components. The overlapping

or core of the tent TΘ(x ,⇠, s), denoted by T b
Θ
(x ,⇠, s), is defined as

T b
Θ
(x ,⇠, s) :=

�
(y,⌘, t) 2 TΘ(x ,⇠, s) : |⌘� ⇠| bt�1

 
.

The lacunary part of the tent TΘ(x ,⇠, s), denoted by T `
Θ
(x ,⇠, s) is the asymmetric shell which is

disjoint from the core,

T `
Θ
(x ,⇠, s) := TΘ(x ,⇠, s) \ T b

Θ
(x ,⇠, s).

Figure 2 shows two-dimensional projections of a tent which helps distinguish the separation be-

tween the core and lacunary parts. The choice in b <min(C1, C2) is to ensure the shells of TΘ are

nontrivial. In the context of Theorem 1, we set � = 2�8 b for the frequency support of the kernel

� in the wave packet transform.

We now consider a pre-measure over the distinguished collection of 3D tents. Fixing Θ, let E

be the collection of all tents TΘ in X . For a fixed weight function w : R ! [0,1], define the

pre-measure �w : E! [0,1) where

�w
�
TΘ(x ,⇠, s)

�
:= w(x � s, x + s) =

Z

R

1|u�x |<sw(u) du.

To extend �w to an outer measure µw on X , define for an arbitrary set E ⇢ X ,

µw(E) := inf
¶ X

TΘ2E0

�w(TΘ) : E ⇢
[

TΘ2E0

TΘ

©

where the infimum is over all countable sub-collections E0 of Ewhich covers E. It is straightforward

to check that µw(TΘ) = �
w(TΘ) for all tents TΘ 2 E.

It remains to define a non-negative averaging operator called a size on the space B(X ) of Borel-

measurable functions over X . A size is a map S : B(X )! [0,1]E such that the following properties

hold for all F, G 2B(X ) and all TΘ 2 E.

(1) [Monotone] If |F | |G|, then S(F)(TΘ) S(G)(TΘ) .

(2) [Scaling] If � 2 C, then S(�F)(TΘ) = |�|S(F)(TΘ).
(3) [Quasi Triangle] There exists constant C = C(S)� 1 such that

(2.1) S(F + G)(TΘ) C
î
S(F)(TΘ) + S(G)(TΘ)

ó
.

The infimum of all such C is the quasi-triangle constant of size S.
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y

t

(x , s)

(x + s, 0)(x � s, 0)
⌘

t

(⇠, s)
(⇠+ C2s�1, s)(⇠� C1s�1, s)

T b
Θ

T `
Θ

T `
Θ

FIGURE 2. Projections of a tent TΘ(x ,⇠, s) with C1 6= C2. The left image is the

time-scale projection and the right image is the frequency-scale projection with the

partition between the core T b
Θ

and lacunary T `
Θ

regions.

To construct the size in Theorem 1, we first denote STΘ
as the continuous square function operator

of a Borel function F 2B(X ) restricted to the lacunary part of a fixed tent TΘ,

STΘ
(F)(u) =

ÇZ

T `
Θ
(x ,⇠,s)

|F(y,⌘, t)|21|y�u|<t d yd⌘
d t

t

å1/2

.

The size S
w in Theorem 1 is then a superposition of an L1 norm over the core of a tent and an

L2(w) average norm for the square function STΘ
. Formally,

S
w(F)(TΘ(x ,⇠, s)) :=

1p
w(x � s, x + s)

��STΘ
(F)
��

L2(w)
+ sup
(y,⌘,t)2T b

Θ
(x ,⇠,s)

|F(y,⌘, t)|

=

Ç
1

w(x � s, x + s)

Z

T `
Θ
(x ,⇠,s)

|F(y,⌘, t)|2w(y � t, y + t)d yd⌘
d t

t

å1/2

+ sup
(y,⌘,t)2T b

Θ
(x ,⇠,s)

|F(y,⌘, t)|.

It is straightforward to check S
w is a size on X with quasi-triangle constant 1. The triplet

(X ,�w,Sw) as defined above is therefore the outer measure space for this paper. Rather than de-

noting the space with µw, we use the pre-measure �w for it is implicitly in terms of the collection of

tents E. As we are working with a fixed Θ = (C1, C2, b), we drop the Θ notation out of convenience

and write a 3D tent as T (x ,⇠, s) = TΘ(x ,⇠, s). Be aware that the implicit constant in Theorem 1 is

also in terms of Θ.

2.1.2. Outer Lp Spaces. We formulate the outer integrable spaces with respect to the outer measure

space (X ,�w,Sw). Given � > 0 and F 2B(X ), define the super level measure associated with µw by

µw
�
S

w(F)> �
�

:= inf
¶
µw(E) : E ⇢ X Borel s.t. sup

T2E
S

w(F1X\E)(T ) �
©

.

For each 0< p <1 and F 2B(X ), consider the outer Lp maps

kFkLp(X ,�w,Sw) :=

✓Z 1

0

p�p�1µw
�
S

w(F)> �
�

d�

◆1/p

kFkLp,1(X ,�w,Sw) := sup
�>0

Ä
�pµw

�
S

w(F)> �
�ä1/p

kFkL1,1(X ,�w,Sw) = kFkL1(X ,�w,Sw) := sup
T2E

S
w(F)(T )

and set Lp(X ,�w,Sw), Lp,1(X ,�w,Sw) as the set of Borel functions whose corresponding outer

Lp map is finite. As in classical Lp theory, Lp(X ,�w,Sw) is contained in L
p,1(X ,�w,Sw).
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2.2. Properties of outer Lp spaces. We record useful properties concerning outer Lp spaces and

their weak versions. The properties hold for general outer measure spaces so we use an abstract

outer measure space (X ,�,S) (where X is a metric space) and outer Lp space L
p(X ,�,S).

The following proposition from [12, Proposition 3.1] shows k · kLp(X ,�,S) is a quasi seminorm.

Proposition 1. Let (X ,�,S) be an outer measure space. Consider F, G 2B(X ) and 0< p 1.

(1) If |F | |G| then kFkLp(X ,�,S)  kGkLp(X ,�,S)

(2) If � 2 C, k�FkLp(X ,�,S) = �kFkLp(X ,�,S)

(3) Let C be the quasi-triangle inequality of size S. Then

(2.2) kF + GkLp(X ,�,S)  Cp

Ä
kFkLp(X ,�,S) + kGkLp(X ,�,S)

ä

where Cp =

8
<

:

21/pC 0< p < 1

2C 1 p <1

C p =1

.

The above properties also hold for the weak space Lp,1(X ,�,S).

Recall size Sw has quasi-triangle constant of 1. As such, bothL
p(X ,�w,Sw) andL

p,1(X ,�w,Sw)

for p > 1 have a quasi-triangle constant of 2.

Note the quasi-triangle inequality (2.2) can be generalized to a summation of n functions F j by

��
nX

j=1

F j

��
Lp(X ,�,S)



nX

j=1

C j
pkF jkLp(X ,�,S)

with a similar inequality if the summation is with respect to L
p,1(X ,�,S). Assuming the sequence

kF jkLp(X ,�,S) has sufficient decay when j ! 1, this can be extended to an infinite series. One

application is the following domination property presented by Uraltsev [26, Corollary 2.1].

Proposition 2 (Dominated Convergence). Fix an outer measure space (X ,�,S) and 0 < p  1.

Consider Borel functions F, F j 2B(X ) satisfying the following properties.

(1) |F | lim sup j!1 |F j | pointwise on X .

(2) There exists C 0p > Cp � 1 where Cp is a quasi-triangle constant for Lp(X ,�,S) such that

(2.3) sup
j�1

(C 0p)
j kF j+1 � F jkLp(X ,�,S) . kF1kLp(X ,�,S).

Then kFkLp(X ,�,S) .Cp ,C 0p
kF1kLp(X ,�,S). Moreover, if kF1kLp(X ,�,S) . C and the upper estimate in (2.3)

is replaced by C, then kFkLp(X ,�,S) . C. A similar result holds in the context of weak outer Lp spaces.

We finish by recording an outer Lp version of classical Marcinkiewicz interpolation as shown in

[12, Proposition 3.5].

Proposition 3 (Outer Marcinkiewicz interpolation). Let (X ,�,S) be an outer measure space and

(Y,⌫) be a measure space. Fix 1  p1 < p2  1. Let F : Lp j (Y,⌫) ! B(X ) be an operator for

j = 1,2 such that for any f , g 2 Lp1(Y,⌫) + Lp2(Y,⌫) and � � 0 we have

(1) |F(� f )|= |�F( f )|.

(2) |F( f + g)| C(|F( f )|+ |F(g)|) for some constant C > 0.

(3) kF( f )k
L

p j ,1(X ,�,S)  A jk f kLp j (Y,⌫) for j = 1, 2.

Suppose p 2 (p1, p2). Then there exists a constant C = C(p1, p2, p)> 0 such that

kF( f )kLp(X ,�,S)  CA
✓1

1
A
✓2

2
k f kLp(Y,⌫)

where 0< ✓1,✓2 < 1 satisfy 1
p =

✓1

p1
+
✓2

p2
.
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3. L2
RESTRICTION ESTIMATES FOR THE WAVELET PROJECTION OPERATOR

In this section we collect and prove some local L2 estimates for the wavelet projection operator

P( f )(y,⌘, t) = h f ,�y,⌘,ti, (y,⌘, t) 2 X := R⇥R⇥R+,

and recall that �y,⌘,t is the L1 normalized wave packet of � at (y,⌘, t) 2 X , defined in (1.5). For

the convenience of the reader, we recall this definition below,

�y,⌘,t(x) = e�i⌘(y�x)1

t
�
Ä y � x

t

ä
,

here � is often referred to as the mother wavelet in the literature. Our methods actually work for

more general setups, where the mother wavelet � may depend on (y,⌘, t), as long as it satisfies

uniform decay estimates of Schwartz type and uniform frequency support conditions. For the sim-

plicity of the presentation, the proof is only presented in our simpler setup where the wave packets

all share the same mother wavelet �.

We look for geometric conditions on Y ⇢ X such that there is a nontrivial improvement of the

basic estimate ✓Z

Y

|h f ,�y,⌘,ti|
2 d yd⌘d t

◆1/2

. sup
(y,⌘,t)2Y

|h f ,�y,⌘,ti|
∆
|Y |.

Here |Y | is the 3D Lebesgue measure of Y . Note that if Y is the lacunary region of a tent then

✓Z

Y

|h f ,�y,⌘,ti|
2 d yd⌘d t

◆1/2

. k f k2

thanks to Calderón Zymgund theory. Thus, we expect that the tent structure and k f k2 will play

an important role in the estimate and in the assumed geometric structure of Y . In fact, if we

normalize k f k2 = 1 then a first step is to obtain some geometric condition on Y such that there is

an improvement of the following nature

✓Z

Y

|h f ,�y,⌘,ti|
2d yd⌘d t

◆1/2

.✏

Ä
1+ sup

(y,⌘,t)2Y

|h f ,�y,⌘,ti|
∆
|Y |
ä1�✏

,

for some ✏ 2 (0,1). This will be the main theme of this section.

3.1. Discrete restriction estimates. We first consider a discretized variant of the above local L2

norm, namely geometric conditions on a set of points E ⇢ X such that there is some ✏ 2 (0,1) such

that

(3.1)
Ä X

(y,⌘,t)2E

t|h f ,�y,⌘,ti|
2
ä1/2

. k f k✏2

 
k f k2 + sup

(y,⌘,t)2E

|h f ,�y,⌘,ti|
Ä X

(y,⌘,t)2E

t
ä1/2

!1�✏

.

A preliminary result we need is the following standard estimate regarding inner products of

wave packets; see [24] for proof in phase plane analog.

Lemma 1. Let � 2 S (R). Consider points (y,⌘, t), (y 0,⌘0, t 0) 2 X with t 0 � t. Then for any integer

N � 1,
��h�y,⌘,t ,�y 0,⌘0,t 0i

��.�,N (t
0)�1

î
1+

Ä |y � y 0|

t 0

ä2ó�N
.

We now define a notion of well-separation for a discrete collection of points in X which is an

extension of the analog of well-separation in phase plane analysis.
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Definition 1. A collection of points E ⇢ X is well-separated if there exists constants ↵,� > 0 such

that for all (y,⌘, t), (y 0,⌘0, t 0) 2 E, either

(3.2) |y � y 0|> ↵max(t, t 0) or |⌘�⌘0|> �max
�
t�1, (t 0)�1

�
.

Over a discrete collection of well-separated points in X , it is possible to obtain a version of

estimate 3.1 in the following form.

Lemma 2. Fix � 2 S (R) such that supp “� ⇢ (��,�). Consider a countable collection of well sepa-

rated points E = {(yk,⌘k, tk)} ⇢ X with separation constants ↵> 0 and � � 4� as in (3.2). Suppose

s 2 (0, 1). Then for any f 2 L2(R),

(3.3)

✓X

k

tk|h f ,�yk ,⌘k ,tk
i|2
◆1/2

.�,↵,s k f k2 +


sup

k

��h f ,�yk ,⌘k ,tk
i
��
ÄX

k

tk

ä1/2
� s

k f k1�s
2 .

The proof of Lemma 2 follows a format similar to corresponding proofs in the phase plane

setting, cf. [17, 23, 9], and in the continuum setting [12]. We first prove the s = 1/3 case by

appealing to standard phase plane analysis on wave packets. The general 0 < s < 1 case follows

from a logarithmic argument.

Proof. Assume the sum of tk is finite else nothing to show. By scaling, assume without loss of

generality that k f k2 = 1. For each k, let �k = �yk ,⌘k ,tk
and denote D = supk |h f ,�ki|.

Case s = 1/3. Let A=
P

k tk|h f ,�ki|
2 > 0. Apply Hölder’s inequality to get

A2 
��
X

k

tkh f ,�ki�k

��2

2
=
X

k, j

tk t j h f ,�ki h�k,� ji h� j , f i .

Split the right-hand double summation into a “diagonal" term {8�1 tk  t j  8tk} and an “off-

diagonal" term {8t j < tk}[ {8tk < t j}. By symmetry, the summation is bounded by
X

k, j : 8�1 tkt j8tk

tk t j h f ,�ki h�k,� ji h� j , f i(3.4)

+ 2
X

k, j :8t j<tk

tk t j h f ,�ki h�k,� ji h� j , f i .(3.5)

To estimate the diagonal summand (3.4), use symmetry to bound the smaller of the f -inner

products with the large one to obtain
X

k, j : 8�1 tkt j8tk

tk t j | h f ,�ki h�k,� ji h� j , f i | 2
X

k

tk|h f ,�ki|
2
Ä X

j : 8�1 tkt j8tk

t j |h�k,� ji|
ä
.

We now show the inner summation of wave packets is bounded uniformly over all k, j. For fixed

k, assume without loss of generality that h�k,� ji 6= 0 for all j terms. Application of Lemma 1 and

equivalence of scales tk ⇠ t j yield the inner product estimate

X

j : 8�1 tkt j8tk

t j |h�k,� ji|.�

X

j : 8�1 tkt j8tk

î
1+

���
y j � yk

tk

���
2ó�1

.�

1X

m=0

(1+m2)�1#Ek(m)

where

Ek(m) :=
¶
(y,⌘, t) 2 E : 8�1 tk  t  8tk, h�k,�y,⌘,ti 6= 0,

m

4
tk  |yk � y|<

m+ 1

4
tk

©
.

It remains to show #Ek(m) is uniformly bounded over all m and k. The nonzero inner product

condition between �k and any �y,⌘,t 2 Ek(m) implies they have overlapping frequency support

with |⌘k �⌘| 9�t�1
k

. Thus, all (y,⌘, t) 2 Ek(m) must lie over a rectangular region with bounded
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area dependent on �. Moreover, well separation of E implies for any (y,⌘, t), (y 0,⌘0, t 0) 2 Ek(m)

that either |y � y 0| > 2�3↵tk or |⌘ � ⌘0| > 2�1�tk
�1. Therefore, the order of Ek(m) . ↵

�1 is

uniformly bounded for all k, m and so the diagonal term (3.4) has the estimate

(3.6)
X

k, j : 8�1 tkt j8tk

tk t j h f ,�ki h�k,� ji h� j , f i .�,↵ A.

Turing our attention to the off-diagonal summand (3.5), application of the Cauchy Schwarz

inequality yields the bound
X

k, j : 8t j<tk

tk t j h f ,�ki h�k,� ji h� j , f i  A1/2H1/2

where

H :=
X

k

î X

j : 8t j<tk

(tk)
1/2 t j |h�k,� ji h� j , f i|

ó2
 D2

X

k

tk

î X

j : 8t j<tk

t j |h�k,� ji|
ó2

.

Fix k and without loss of generality assume h�k,� ji 6= 0 for all j terms in inner summation above.

By consideration of frequency support, |⌘k � ⌘ j | < 2�t�1
j
< � t�1

j
and so well separation dictates

|yk � y j |> ↵tk. By Lemma 1,

t j

��h�k,� ji
��.� t�1

k

î
1+

Ä yk � y j

tk

ä2ó�1
t j .� (tk)

�1

Z

[y j�
↵
4 t j ,y j+

↵
4 t j]

î
1+

Ä yk � x

tk

ä2ó�1
d x .

We claim the intervals [y j �
↵
4 t j , y j +

↵
4 t j] above are all disjoint from each other. Consider another

point (y`,⌘`, k`) 2 E such that 8t` < tk and h�k,�`i 6= 0. As�k and�` have overlapping frequency

support (just as �k and � j do),

|⌘ j �⌘`| 2�(t�1
j + t�1

`
) �max(t�1

j , t�1
`
).

Well separation between (y j ,⌘ j , t j) and (y`,⌘`, t`) then requires |y j � y`| � ↵max(t j , t`) which

prevents the intervals from intersecting nontrivially. Hence all such intervals are disjoint and by

summing over all such j,

X

k

tk

î X

j : 8t j<tk

t j |h�k,� ji|
ó2

.�

X

k

tk

✓
1

tk

Z

R

î
1+

Ä yk � x

tk

ä2ó�1
d x

◆2

. C�

X

k

tk.

This gives us the off-diagonal inequality

(3.7)
X

k, j :8t j<tk

tk t j h f ,�ki h�k,� ji h� j , f i .� A1/2D
�X

k

tk

�1/2
.

Applying the diagonal estimate (3.6) and off diagonal estimate (3.7) yields the bound

A2 .� A+ D
�X

k

tk

�1/2
A1/2

and the desired inequality for case s = 1/3 follows by rearrangement.

Case s 2 (0, 1). Assume D = supk |h f ,�ki| is finite. Subdivide the collection E =
S

j�0 A j where

A j =
�

k : 2�( j+1)D < |h f ,�ki| 2� j D
 

.

Let A� j =
S

i� j Ai be the union of indices corresponding to the points in all levels below A j . For

fixed j, the sub-collection corresponding to A� j is still well separated. Apply the s = 1/3 estimate
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to A� j to get

� X

k2A� j

tk|h f ,�ki|
2
�1/2

.�,↵ 1+
î�

2� j D
�� X

k2A� j

tk

�1/2
ó1/3

.

Note the right-hand side above decays to 1 for large j. By taking j �max(0, log2[D(
P

k tk)
1/2]),

(3.8)
X

k2A� j

tk|h f ,�ki|
2 .�,↵ 1.

A similar bound exists over each individual level A j . Indeed, the points associated with each A j are

themselves well separated so application of the s = 1/3 case shows

�X

k2A j

tk|h f ,�ki|
2
�1/2

.�,↵ 1+
î�

2� j D
��X

k2A j

tk

�1/2
ó1/3
⇠�,↵ 1+

î
(
X

k2A j

tk|h f ,�ki|
2)1/2

ó1/3

and by rearrangement,

(3.9)
X

k2A j

tk|h f ,�ki|
2 .�,↵ 1.

Fix the smallest positive integer j �max(0, log2[D(
P

k tk)
1/2]) and apply (3.8)-(3.9) to obtain the

logarithmic estimate

X

k

tk|h f ,�ki|
2 =

X

k2A� j

tk|h f ,�ki|
2 +

j�1X

i=0

X

k2Ai

tk|h f ,�ki|
2

.�,↵ 1+max
Ä
0, log2[D(

X

k

tk)
1/2]

ä
.

(3.10)

The passage to arbitrary s 2 (0, 1) uses the standard logarithmic properties s log(x) = log(x s) and

max(0, log x) x for all x > 0,

�X

k

tk|h f ,�ki|
2
�1/2

.�,↵,s

Ç
2s+

î
D
�X

k

tk

�1/2
ó2s

å1/2

.�,s 1+
î
D
�X

k

tk

�1/2
ó s

. ⇤

3.2. Continuous restriction estimates. In this section, we describe a set of geometric conditions

on a set Y ⇢ X such that there is some nontrivial estimate for
Z

Y

|h f ,�y,⌘,ti|
2 d yd⌘d t.

As indicated at the beginning of this section, these conditions will involve some union of tents, or

more precisely union of lacunary parts of tents.

We now define a notion of well separation with regards to a collection of 3D tents; assume all

tents have the same parameterization Θ = (C1, C2, b). Below by partial tents we mean subsets of

tents.

Definition 2. Consider a collection of partial tents E = {T ⇤
k
} where T ⇤

k
⇢ Tk = T (xk,⇠k, sk) and the

T ⇤
k

are pairwise disjoint from each other. The collection E is well-separated if there exists constants

↵� 1, � > 0, and B > 1 such that if (y,⌘, t) 2 T ⇤
k

and (y 0,⌘0, t 0) 2
S

j T ⇤
j

satisfy Bt 0 < t then either

(3.11) |⌘�⌘0|> �(t 0)�1 or |xk � y 0|> ↵(sk � t 0).
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The well separation mandates points sufficiently small in scale with respect to a partial tent T ⇤
k

must either be sufficiently far in frequency from another point in T ⇤
k

or in another tent altogether.

Note that when T ⇤
k

is a singleton set with coordinates comparable to the tent Tk and ↵ > 1, this

reduces to well separation of points. It would be interesting to see an appropriate well separation

definition for an arbitrary Y ⇢ X but this is beyond the scope of the paper.

Similar to the well separation of points, the projection operator P( f ) over well separated partial

tents is almost L2.

Lemma 3. Fix � 2 S (R) such that supp “� ⇢ (��,�). Consider a collection of well separated partial

tents E = {T ⇤
k
= T ⇤(xk,⇠k, sk)} with separation constants ↵ � 1, � � 4�, and B > 1 as in (3.11).

Suppose s 2 (0,1). Then for any f 2 L2(R),

(3.12)

✓Z

S
k T ⇤

k

|h f ,�y,⌘,ti|
2d yd⌘d t

◆1/2

. k f k2 +


sup

(y,⌘,t)2
S

k T ⇤
k

��h f ,�y,⌘,ti
��
ÄX

k

sk

ä1/2
� s

k f k1�s
2

where the implicit constant depends on �, Θ, B, � , and s.

The proof uses the same structure as in Lemma 2 where one proves the s = 1/3 case and then

generalizes to 0 < s < 1. In order to show the general 0 < s < 1 inequality, we need the following

simpler estimate.

Lemma 4. Fix � 2 S (R) such that supp “� ⇢ (��,�). Consider a subset Y ⇢
S

k T ⇤
k

with nonzero

(three-dimensional) Lebesgue measure where the collection of partial tents T ⇤
k

is well-separated as in

Lemma 3. Then
✓Z

Y

|h f ,�y,⌘,ti|
2d yd⌘d t

◆1/2

. k f k2 +


sup

(y,⌘,t)2Y

��h f ,�y,⌘,ti
�� ∆|Y |

�1/3

k f k
2/3
2

.

Proof of Lemma 4. By scaling invariant we may assume that k f k2 = 1. Let A=
R

Y
|h f ,�y,⌘,ti|

2d yd⌘d t.

By Cauchy Schwarz,

A2 .

���
Z

Y

h f ,�y,⌘,ti�y,⌘,t d yd⌘d t

���
2

2

=

Z

Y⇥Y

h f ,�y,⌘,ti h�y,⌘,t ,�y 0,⌘0,t 0i h�y 0,⌘0,t 0 , f i d y d⌘ d t d y 0 d⌘0 d t 0.

Split the integral into three parts: the diagonal B�1 t 0  t  Bt 0, the upper half t > Bt 0, and the

lower half t 0 > Bt. We may estimate the diagonal part by

 2

Z

Y

|h f ,�y,⌘,ti|
2

ñZ

(y 0,⌘0)2R2, B�1 t 0tBt 0

|h�y,⌘,t ,�y 0,⌘0,t 0i|d y 0d⌘0d t 0

ô
d yd⌘d t.

Claim 1. We have the following uniform estimate for all (y,⌘, t) 2 Y .
Z

B�1 tt 0Bt

Z

R2

|h�y,⌘,t ,�y 0,⌘0,t 0i| d y 0d⌘0 d t 0 . 1.

Using Claim 1, it is clear that the diagonal part is O(A). To see Claim 1 is true, we first note that

by taking supremum of t 0 over B�1 t  t 0  Bt and integrating d t 0 over that region, we obtain
Z

B�1 tt 0Bt

Z

R2

|h�y,⌘,t ,�y 0,⌘0,t 0i| d y 0d⌘0 d t 0 .B sup
B�1 tt 0Bt

Z

R2

t |h�y,⌘,t ,�y 0,⌘0,t 0i| d y 0d⌘0

To integrate frequency ⌘0, recall that nonzero inner poduct of wave packets �y,⌘,t and �y 0,⌘0,t 0

implies they have overlapping support in frequency. Restricing to such wave packets, it follows
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that ⌘0 has to be contained in an interval of length comparable to t�1. Thus, the last display is

bounded from above by

.B,� sup
B�1 tt 0Bt

sup
⌘02R

ÄZ

R

|h�y,⌘,t ,�y 0,⌘0,t 0i| d y 0
ä

.�,B,� sup
B�1 tt 0Bt

sup
⌘02R

Ä
t�1

Z

R

î
1+

�� y � y 0

t

��2
ó�1

d y 0
ä
.�,B,� 1

where Lemma 1 was used in the passage to the second line. This establishes Claim 1 and the

estimate on the diagonal terms.

For the off-diagonal terms, we show the details for the upper half term where t > Bt 0 noting

the lower half term may be treated similarly. Denote D = sup(y,⌘,t)2Y |h f ,�y,⌘,ti| for notation

convenience. By Cauchy-Schwarz,
Z

Y

h f ,�y,⌘,ti

Z

(y 0,⌘0,t 0)2Y :Bt 0<t

h�y,⌘,t ,�y 0,⌘0,t 0i h�y 0,⌘0,t 0 , f i d y 0d⌘0d t 0d yd⌘d t

 A1/2

ÇZ

Y

ÄZ

(y 0,⌘0,t 0)2Y :Bt 0<t

��h�y,⌘,t ,�y 0,⌘0,t 0i h�y 0,⌘0,t 0 , f i
�� d y 0d⌘0d t 0

ä2
d yd⌘d t

å1/2

 A1/2D

ÇZ

Y

ÄZ

(y 0,⌘0,t 0)2Y :Bt 0<t

|h�y,⌘,t ,�y 0,⌘0,t 0i|d y 0d⌘0d t 0
ä2

d yd⌘d t

å1/2

.

It remains to show

sup
(y,⌘,t)2Y

Z

(y 0,⌘0,t 0)2Y :Bt 0<t

|h�y,⌘,t ,�y 0,⌘0,t 0i|d y 0d⌘0d t 0 .� 1.

Fix (y,⌘, t) 2 Y . As Y ⇢
S

j T ⇤
j
, it suffices to show the following claim.

Claim 2. We have the following uniform estimate for all k and (y,⌘, t) 2 T ⇤
k
,

X

j

Z

T ⇤
j

: Bt 0t

|h�y,⌘,t ,�y 0,⌘0,t 0i| d y 0d⌘0d t 0 .�

î
1+

Ä sk � |xk � y |

t

äó�1
.

Fix (y,⌘, t) 2 T ⇤
k

and consider (y 0,⌘0, t 0) 2 T ⇤
j

such that Bt 0  t. We may assume without

loss of generality that h�y,⌘,t ,�y 0,⌘0,t 0i 6= 0 which means their Fourier transforms have overlapping

support. As Bt 0 < t,

|⌘�⌘0| 2�(t 0)�1  �(t 0)�1

so we are integrating d⌘0 with respect to an interval of length 2�(t 0)�1. By the well-separation

criteria, we can also restrict the integral d y 0 to the region |y 0 � xk|> sk � t.

It remains to consider the integral with respect to d t 0. For fixed position y 0, we claim that any

points of the form (y 0,⌘00, t 00) 2
S

j T ⇤
j

with Bt 00 < t and h�y,⌘,t ,�y 0,⌘00,t 00i 6= 0 must be within a

factor of B of each other in scale. Indeed, recall (y 0,⌘0, t 0) 2 T ⇤
j

and consider (y 00,⌘00, t 00) 2 T ⇤m
where h�y,⌘,t ,�y 00,⌘00,t 00i 6= 0 and Bt 00  t. If we were to assume Bt 00  t 0 then it follows that

|⌘0 �⌘00| 4�(t 00)�1  �(t 0)�1

and so well-separation dictates

|y 00 � x j |> s j � t 00 > s j � t 0 � |y 0 � x j|.

This shows y 00 6= y 0 so setting y 00 = y 0 implies that t 00 ⇠B t 0.
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Given y 0 2 R, let E(y 0) be the collection of scales t 00 for which there exists ⌘00 and T ⇤
j

such that

(y 0,⌘00, t 00) 2 T ⇤
j

with Bt 00 < t and h�y,⌘,t ,�y 0,⌘00,t 00i 6= 0. For each y 0 2 R with E(y 0) 6= ;, there

exists an interval I(y 0) = [↵(y 0), B↵(y 0)] which contains E(y 0). Here, one can check

↵(y) := B�1 sup
t 002E(y 0)

t 00 <1.

Applying Lemma 1 the well separation observations above with yields

X

j

Z

T ⇤
j

: Bt 0t

|h�y,⌘,t ,�y 0,⌘0,t 0i| d y 0d⌘0d t 0

.

Z

|y 0�xk|>sk�t

Z

I(y 0)

Z

[⌘��/t 0,⌘+�/t 0]

|h�y,⌘,t ,�y 0,⌘0,t 0i| d⌘
0d t 0d y 0

.B

Z

|y 0�xk|>sk�t

✓
sup

t 02I(y 0)

Z

[⌘��/t 0,⌘+�/t 0]

t 0|h�y,⌘,t ,�y 0,⌘0,t 0i| d⌘
0

◆
d y 0

.�,B,�

Z

|y 0�xk|>sk�t

t�1
î
1+

Ä |y � y 0|

t

ä2ó�2
d y 0 .

î
1+

Ä sk � |xk � y|

t

äó�1

as desired, verifying Claim 2. Collecting the diagonal and off-diagonal estimates, we have

A2 . A+ A1/2D|Y |1/2

and from here the desired result follows. ⇤

Proof of Lemma 3 . Assume D = sup(y,⌘,t)2
S

k T ⇤
k
|h f ,�y,⌘,ti| and the sum of sk are finite. By scaling,

we may assume without loss of generality that k f k2 = 1.

Case s = 1/3. Let A :=
P

k

R
T ⇤

k

|h f ,�y,⌘,ti|
2 d yd⌘d t. By Cauchy-Schwarz,

A2 .
X

k, j

Z

T ⇤
k
⇥T ⇤

j

h f ,�y,⌘,ti h�y,⌘,t ,�y 0,⌘0,t 0i h�y 0,⌘0,t 0 , f i d yd⌘d t d y 0d⌘0d t 0.

Split the integral the diagonal part B�1 t 0  t  Bt 0, the upper half t > Bt 0, and the lower half

t 0 > Bt. It remains to show the diagonal part is bounded above by O(A) and the off diagonal parts

are bounded above by

O

Çî
sup

(y,⌘,t)2[k T ⇤
k

|h f ,�y,⌘,ti|
óÄX

k

sk

ä1/2
A1/2

å
.

This would imply

A2 .� A+
î

sup
(y,⌘,t)2[k T ⇤

k

|h f ,�y,⌘,ti|
óÄX

k

sk

ä1/2
A1/2

and the s = 1/3 case follows by rearrangement.
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To estimate the diagonal part, we have by symmetry

2
X

k, j=1

Z

T ⇤
k
⇥T ⇤

j
: B�1 tt 0Bt

|h f ,�y,⌘,ti|
2 |h�y,⌘,t ,�y 0,⌘0,t 0i| d yd⌘d t d y 0d⌘0d t 0

 2A sup
k,(y,⌘,t)2T ⇤

k

 
X

j

Z

T ⇤
j

: B�1 tt 0Bt

|h�y,⌘,t ,�y 0,⌘0,t 0i| d y 0d⌘0 d t 0

!

 2A sup
k,(y,⌘,t)2T ⇤

k

✓Z

B�1 tt 0Bt

Z

R2

|h�y,⌘,t ,�y 0,⌘0,t 0i| d y 0d⌘0 d t 0
◆

where last part is due the disjointness of T ⇤
j
. Using Claim 1, the last display is clearly O(A).

We now focus on the off-diagonal terms. We will prove the desired estimate for the upper half

and the lower half will follow by similar construction. Taking note that the partial tents T ⇤
k

are

pairwise disjoint, apply Cauchy-Schwarz to obtain estimates

X

k, j

Z

T ⇤
k
⇥T ⇤

j

h f ,�y,⌘,ti h�y,⌘,t ,�y 0,⌘0,t 0i h�y 0,⌘0,t 0 , f i d yd⌘d t d y 0d⌘0d t 0  A1/2
ÄX

k

Hk

ä1/2

where

Hk :=

Z

T ⇤
k

✓X

j

Z

T ⇤
j

: Bt 0t

|h�y,⌘,t ,�y 0,⌘0,t 0i h�y 0,⌘0,t 0 , f i| d y 0d⌘0d t 0
◆2

d yd⌘d t



ï
sup

(y,⌘,t)2[k T ⇤
k

|h f ,�y,⌘,ti|

ò2
Z

T ⇤
k

✓X

j

Z

T ⇤
j

: Bt 0t

|h�y,⌘,t ,�y 0,⌘0,t 0i| d y 0d⌘0d t 0
◆2

d yd⌘d t

For simplicity in notation, let D be the supremum above. Using Claim 2 above, we have

Hk .�,B,� D2

Z

T ⇤
k

î
1+

Ä sk � |xk � y|

t

äó�2
d yd⌘d t

.�,B,� D2

Z sk

0

Z xk+sk

xk�sk

Z ⇠+C2 t�1

⇠�C1 t�1

î
1+

Ä sk � |xk � y |

t

äó�2
d⌘d yd t .�,Θ D2sk

Summing over all k gives
ÄX

k

Hk

ä1/2
.�

î
sup

(y,⌘,t)2[k T ⇤
k

|h f ,�y,⌘,ti|
óÄX

k

sk

ä1/2

and the desired off-diagonal estimate now follows.

Case s 2 (0, 1). Generalization to s 2 (0,1) is essentially the same argument as in Lemma 2 with

appropriate modifications. Recall D = sup(y,⌘,t)2
S

k T ⇤
k
|h f ,�y,⌘,ti|<1. Subdivide the collection E

of partial tents into

A j =
¶
(y,⌘, t) 2

[

k

T ⇤
k

: 2�( j+1)D < |h f ,�y,⌘,ti| 2� j D
©

.

Denote A� j =
S

i� j Ai , and for convenience let A� j,k = T ⇤
k
\ A� j . For fixed j, the sub-collection

{A� j,k} of partial tents is well-separated so by applying the s = 1/3 estimate,

✓X

k

Z

A� j,k

|h f ,�y,⌘,ti|
2 d yd⌘d t

◆1/2

.�,B,� 1+

Ä
2� j D

äÄX

k

sk

ä1/2
�1/3

.
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Note the upper estimate above decays such that for j �max(0, log2[D(
P

k sk)
1/2]),

(3.13)

Z

A� j

|h f ,�y,⌘,ti|
2 d yd⌘d t . 1.

To estimate each individual level A j , use Lemma 4 to obtain

2�( j+1)D|A j |
1/2 

ÄZ

A j

|h f ,�y,⌘,ti|
2 d yd⌘d t

ä1/2
.�,B,� 1+

îÄ
2� j D

ä
|A j |

1/2
ó1/3

.

From this estimate, it follows immediately that 2� j D|A j |
1/2 . 1, and consequently,

(3.14)
ÄZ

A j

|h f ,�y,⌘,ti|
2 d yd⌘d t

ä1/2
. 1.

Fix the smallest integer j � max(0, log2[D(
P

k sk)
1/2]). By (3.13) and (3.14), we obtain the

following logarithmic estimate spanning all of
S

k T ⇤
k
=
S

A j .

X

k

Z

T ⇤
k

|h f ,�y,⌘,ti|
2 d yd⌘d t =

Z

A� j

|h f ,�y,⌘,ti|
2 d yd⌘d t +

j�1X

k=1

Z

Ak

|h f ,�y,⌘,ti|
2 d yd⌘d t

.�,B,� 1+max
Ä
0, log2[D(

X

k

sk)
1/2]

ä
.

The desired result for s 2 (0,1) is then obtained by using the same logarithmic argument as in the

conclusion of Lemma 2. ⇤

4. PROOF OF THEOREM 1

We start with reductions which reduces the proof of Theorem 1 and make some useful obser-

vations. The outline of the proof will be then stated in Section 4.2 followed by the specifics of the

proofs in Sections 4.3-4.4.

4.1. Preliminary reductions and observations.

4.1.1. Reduction - Discrete Parameter Tents. Following [12], we pass our tent paramterizations to

a discrete subset of X and prove Theorem 1 in the discrete parameter setting. The chosen discrete

subset is chosen such that tents in E are centrally contained within the discrete parameter tents.

Note that a point (x 0,⇠0, s0) 2 T (x ,⇠, s) is centrally contained if the following inequalities hold:

(4.1) 2�3s  s0  2�2s , |x 0 � x | 2�4s , |⇠0 � ⇠| 2�8 bs�1.

Consider the subset X∆ of points (x ,⇠, s) 2 X such that there exists integers k, m, n satisfying

x = 2k�4n, ⇠= 2�k�8 bm, s = 2k.

Let E∆ be the collection of all tents T (x ,⇠, s) with (x ,⇠, s) 2 X∆. We recall the following relation

[12, Lemma 5.2] regarding tents in E and E∆.

Lemma 5. For any (x 0,⇠0, s0) 2 X there exists (x ,⇠�, s), (x ,⇠+, s) 2 X∆, such that (x 0,⇠0, s0) is

centrally contained in the tents T (x ,⇠�s), T (x ,⇠+, s) as specified in (4.1) and satisfy

T (x 0,⇠0, s0) ⇢ T (x ,⇠�, s)[ T (x ,⇠+, s),

T (x 0,⇠0, s0)\ T b(x ,⇠�, s)\ T b(x ,⇠+, s) ⇢ T b(x 0,⇠0, s0).
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FIGURE 3. The intersection of a 3D tent (in green) and a triangular strip (in blue)

is another 3D tent (in red).

Let Sw
∆

, �w
∆

, and µw
∆

be Sw, �w, and µw respectively restricted to the generating sub-collection

E∆. Given T 2 E, there exist T+, T� 2 E∆ satisfying T ⇢ T+ [ T� and

�w(T ) �w
∆
(T+) +�w

∆
(T�) C�w(T )

where right-most inequality uses the doubling property of w. This implies the outer measures µw

and µw
∆

are equivalent. Furthermore, given F 2 B(X ) and tent T 2 E, application of T+, T� 2 E∆
as above shows

S
w(F)(T ) C

Ä
S

w
∆
(F)(T+) + S

w
∆
(F)(T�)

ä

where C is dependent on the doubling constant of w.

We therefore have an equivalence of the outer Lp spaces and weak outer Lp spaces

L
p(X ,�w,Sw)⇠ L

p(X ,�w
∆

,Sw
∆
), L

p,1(X ,�w,Sw)⇠ L
p,1(X ,�w

∆
,Sw
∆
)

for 1  p  1. Thus, to prove Theorem 1, it suffices to establish the following theorem with

respect to the discrete parameter setting.

Theorem 2. Let � 2 S (R) such that supp “� ⇢ (�2�8 b, 2�8 b). Given a locally integrable function f

on R, let P( f ) be the wave packet transform (1.4). Suppose 2< q <1 and w 2 Aq/2. Then

kP( f )kLq(X ,�w
∆

,Sw
∆
) .Θ,�,q,[w]Aq/2

k f kLq(w).

4.1.2. Useful Observations.

Remark 1 (Tent Containment). The proof of Theorem 2 requires us to pass from a collection of selected

tents to another while maintaining well separation in the style of Section 3. To that end, we use the

following geometric observation regarding tents.

Given x 0 2 R and s0 > 0, denote the triangular strip

Ex 0,s0 = {(y,⌘, t) 2 X : 0< t < s0, |y � x 0|< s0 � t}

Consider a tent T (x ,⇠, s) 2 E such that T (x ,⇠, s)\ Ex 0,s0 is nonempty. Then the intersection itself is a

3D tent T (x 00,⇠, s00) 2 E where (x 00�s00, x 00+s00) = (x�s, x+s)\(x 0�s0, x 0+s0). Figure 3 illustrates

this intersection. As the frequency parameters play no role in this observation, the containment extends

to the core and lacunary partial tents:

T b(x ,⇠, s)\ Ex 0,s0 = T b(x 00,⇠, s00) and T `(x ,⇠, s)\ Ex 0,s0 = T `(x 00,⇠, s00).

Remark 2 (Ap weights are not L1 integrable). We briefly point out the standard fact that Ap weights

are not integrable on Rn. Otherwise, reverse Hölder’s inequality implies for all cubes Q
Z

Q

⇥
w(x)

⇤r
d x .r |Q|

1�r
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where r > 1 is dependent on w. Application of monotone convergence theorem shows w= 0 a.e. which

isn’t an Ap weight. We state this remark as we haven’t found another reference mentioning it.

Remark 3 (Shifted Dyadic Intervals). While the discrete parameter tents are not necessarily over

dyadic intervals, we will implement another pass to work with dyadic grids on R. The dyadic intervals

we are interested are

Dk =
¶î

2� j(m+ (�1) jk/3) , 2� j(m+ 1+ (�1) jk/3)
ä

: j, m 2 Z
©

k 2 {0,1, 2}

where D0 is the standard dyadic grid, D1 is the 1/3 shifted grid, and D2 is the 2/3 shifted grid. We

recall the three grids lemma (see [4]) where a finite interval I ⇢ R is comparable to a dyadic interval

J 2D j for some j 2 {0, 1,2} such that I ⇢ J and 3|I | |J | 6|I |.

4.2. Structure of Proof. Fix 2 < q <1 and weight w 2 Aq/2. To prove Theorem 2, it suffices to

establish the following weak outer Lp estimates.

kP( f )kL1(X ,�w
∆

,Sw
∆
) .�,q,[w]Aq/2

k f kL1(w)(4.2)

kP( f )kLq,1(X ,�w
∆

,Sw
∆
) .�,q,[w]Aq/2

k f kLq(w)(4.3)

If true, reverse Hölder’s inequality says (4.3) holds with q replaced by some q� ✏ and then invoke

outer Marcinkiewicz interpolation (see Proposition 3) to pass to the strong estimate at q itself.

Moreover, it suffices to show (4.3) holds for a Schwartz function f on R. Indeed, given f 2 Lq(w)

pick a sequence of Schwartz functions fk converging to f in Lq(w) norm satisfying

• k f1kLq(w)  Ck f kLq(w) and

• k fk+1 � fkkLq(w)  C2�10kk f kLq(w).

It is clear P( f ) = limk P( fk) pointwise and if we assume (4.3) holds for Schwartz functions,

kP( fk+1)� P( fk)kLq,1(X ,�w
∆

,Sw
∆
) . k fk+1 � fkkLq(w) . C2�10kk f kLq(w).

The reduction follows by application of Proposition 2 to the sequence P( fk).

We prove the outer L1 estimate (4.2) in Section 4.3 by appealing to Littlewood-Paley square

function estimates to control each tent. Section 4.4 handles the more complicated weak outer Lq

estimate (4.3) by good-lambda type arguments restricted to tents with large size. We remain in the

discrete parameter setting for the rest of the paper, unless otherwise stated. As such, we drop the

∆ notation and denote E = E∆, S= S
w
∆

, and µ= µw
∆

.

4.3. The outer L1 embedding (4.2). Consider f 2 L1(w). The goal is to show

S
�
P( f )

�
(T (x ,⇠, s)) Ck f kL1(w)

with implicit constant C independent of (x ,⇠, s) 2 X∆ and f . As S is the sum of an L1 size and

an L2(w) size, we prove this inequality for each size separately. The estimate for the L1 portion

is clear from the definition of the wave packet transform.

sup
(y,⌘,t)2T b(x ,⇠,s)

|h f ,�y,⌘,ti| k f k1k�k1  Ck f kL1(w).

It remains to control the L2(w) portion of size S,

(4.4)

Z

T `(x ,⇠,s)

|P( f )(y,⌘, t)|2w(y � t, y + t)d yd⌘
d t

t
 Cw(x � s, x + s)k f k21.
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Fix (x ,⇠, s) 2 X∆ and consider the decomposition f = f1 + f2 where f1 := f 1(x�2s,x+2s). For each

(y,⌘, t) such that y 2 (x � s, x + s) and t < s,

|P( f2)(y,⌘, t)|

Z

[�s,s]c

�� f2(y � z)
1

t
�
Äz

t

ä��dz  C
t

s
k f k1.

As (y,⌘, t) 2 T `(x ,⇠, s), we have the containment (y � t, y + t) ⇢ (x � s, x + s). Therefore

��ST

�
P( f2)

���2

L2(w)
=

Z

T `(x ,⇠,s)

|P( f2)(y,⌘, t)|2w(y � t, y + t)d yd⌘
d t

t

 C

Z s

0

Z x+s

x�s

Z ⇠+C2 t�1

⇠�C1 t�1

Ä t

s
k f k1

ä2
w(y � t, y + t) d⌘d y

d t

t
 Cw(x � s, x + s)k f k21

which establishes the desired estimate on f2.

For the f1 piece, it suffices to show the square function estimate

(4.5)
��ST

�
P(h)

���
Lq(w)
 C�,q,[w]Aq/2

khkLq(w),

for any h 2 Lq(w). As ST (P( f1)) is compactly supported, we can pass to (4.5) by applying Hölder’s

inequality to the left side of (4.4). From there, appeal to the compact support of f1 and doubling

property of w to control k f1kLq(w) by the desired result. By symmetry, we only need to establish

(4.5) where T ` is replaced by T ` \ {⌘ > ⇠}. Consider a change in variables ⌘ = ⇠+ �/t, and an

absolute constant C 0 >max(C1, C2). It remains to show

���
ÄZ 1

0

Z

R

Z C 0

b

��P(h)(y,⇠+
�

t
, t)
��21|y�u|<t d�d y

d t

t2

ä1/2
���

L
q
u(w)
 C khkLq(w).

Let g(u) = h(u)e�i⇠u and M��(z) = ei�z�(z). Since b  � C 0 and “� is supported in (�2�8 b, 2�8 b),

the frequency support of M�� is bounded away from 0 and1 and M�� satisfies the usual decay

estimates (where the implicit constant can be chosen uniformly over b  � C 0). Observe that

P(h)
�

y,⇠+
�

t
, t
�
= ei⇠y

Ä
g ⇤ (M��)t(y)

ä

where (M��)t(z) = t�1M��(z/t). Uniformly over b  � C 0, we have

���
ÄZ 1

0

Z

R

��P(h)(y,⇠+
�

t
, t)
��21|y�u|<t d y

d t

t2

ä1/2
���

L
q
u(w)
=

=

���
ÄZ 1

0

Z

R

��g ⇤ (M��)t(y)
��21|y�u|<t d y

d t

t2

ä1/2
���

L
q
u(w)
 CkgkLq(w) = CkhkLq(w)

where the second-to-line inequality is a consequence of Lq(w) boundedness for continuous square

function estimates with w 2 Aq � Aq/2; see [18, 19] for details. This establishes (4.5) and concludes

the proof of the outer L1 embedding (4.2).

4.4. The weak outer Lq embedding (4.3). As mentioned, we may assume that f is a Schwartz

function on R. Given � > 0 we need to find a countable collection of points Q ⇢ X∆ such that
X

(x ,⇠,s)2Q

w(x � s, x + s). ��qk f k
q

Lq(w)
,

and for every T 2 E∆ we have, with E :=
S
(x ,⇠,s)2Q T (x ,⇠, s),

(4.6) S
�
P( f )1X\E

�
(T ) �.
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We first reduce to the case when bf is compactly supported. Indeed, we may select frequencies

⇠0 = 0< ⇠1 < ⇠1 < . . . such that with bfk =
bf 1⇠k�1|⇠|⇠k

, k � 1, satisfy

k fkkLq(w)  C2�10kk f kLq(w).

Using the special case to each fk with �k = 2�k� we obtain collections Qk, and clearly
X

k�1

X

(x ,⇠,s)2Qk

w(x � s, x + s) C��q
X

k

2qkk fkk
q

Lq(w)
 C��qk f k

q

Lq(w)
.

On the other hand using subadditivity of the size, we may estimate

S
�
P( f )1X\E

�
(T )

X

k�1

S
�
P( fk)1X\E

�
(T )

X

k�1

2�k�  �.

Thus from now on we may assume that f is Schwartz such that bf is compactly supported.

4.4.1. Treatment for the L1 part of the size. We first isolate tents T 2 E∆ which contain all

(y,⌘, t) 2 X such that |P( f )(y,⌘, t)|> �. Note that by Cauchy-Schwarz,

(4.7) |P( f )(y,⌘, t)|=

���
Z

R

f (y � z)ei⌘z 1

t
�
�z

t

�
dz

��� t�1/2k f k2k�k2 = O(t�1/2),

so if |P( f )(y,⌘, t)| > � then there is an a priori bound t < O(��2). We remark this estimate is

not essential; the upper bound is only needed to ensure that the L1 selection algorithm described

below will terminate and it will never be used quantitatively.

L∞ Selection Algorithm. Suppose there is some (y,⌘, t) 2 X such that |P( f )(y,⌘, t)| > �.

By Lemma 5, we can associate with (y,⌘, t) a point (x ,⇠, s) 2 X∆ such that (y,⌘, t) is centrally

contained in T (x ,⇠, s). In particular s has to be bounded a priori by (4.7) and is always a power

of 2. We may therefore choose (y1,⌘1, t1) 2 X and (x1,⇠1, s1) 2 X∆ so that

• |P( f )(y1,⌘1, t1)|> �,

• (y1,⌘1, t1) 2 T (x1,⇠1, s1) centrally, and

• s1 is maximal.

We iterate this process. Assume that we have already selected (yk,⌘k, tk) 2 X and (xk,⇠k, sk) 2 X∆
for 1 k < n. Suppose there is a point (y,⌘, t) 2 X outside the union of selected tents T (xk,⇠k, sk)

satisfying |P( f )(y,⌘, t)|> �. We now choose (yn,⌘n, tn) 2 X and (xn,⇠n, sn) 2 X∆ such that

• (yn,⌘n, tn) 62
Sn�1

k=1 T (xk,⇠k, sk),

• |P( f )(yn,⌘n, tn)|> �,

• (yn,⌘n, tn) 2 T (xn,⇠n, sn) centrally, and

• sn is maximal.

Figure 4 gives a visual representation of the selection. For each k � 1, denote Tk = T (xk,⇠k, sk)

and Ik = (xk � sk, xk + sk) for notation conveinence.

Our goal is to show that

(4.8)

nX

k=1

w(Ik) C��qk f k
q

Lq(w)

for all n. Assuming (4.8) holds, we justify the algorithm successfully terminates. If the algorithm

finishes after n steps, then all points (y,⌘, t) outside the union of tents Tk for 1  k  n satisfy

|P( f )(y,⌘, t)|  �. Suppose the algorithm doesn’t terminate after a finite number of steps. We

observe the sequence of selected heights sk must decay to 0 in this scenario. This is due to the

selection process being independent of the chosen weight w meaning (4.8) would hold for the
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FIGURE 4. Example of tents from the L1 selection algorithm. Here, the green tent

(with largest scale) is selected first, followed by the two blue tents and finally the

red tent (with smallest scale).

Lebesgue case w = 1. Therefore, if we consider some (y,⌘, t) outside the union
S

k�1 Tk then

t > s j for some j. As T j is the tallest tent at the j-step with respect to containing a centralized point

whose wavelet projection is greater than �, we conclude |P( f )(y,⌘, t)| �. Thus, up to the proof

of (4.8), all points (y,⌘, t) outside the union of the selected tents in the algorithm must satisfy

|P( f )(y,⌘, t)| �.

It remains to prove weighted estimate (4.8). We first make the following observation regarding

the well separation of the selected points (yk,⌘k, tk).

Claim 3. The collection of points {(yk,⌘k, tk)}k�1 is well separated in the sense of (3.2) with separa-

tion constants ↵= 2�2 and � = 2�6 b; here, b is the parameter in Θ = (C1, C2, b).

To verify the claim, consider (y j ,⌘ j , t j), (yk,⌘k, tk) such that j < k. By the selection algorithm,

(y j ,⌘ j , t j) 2 T j was selected prior to (yk,⌘k, tk) 2 Tk. Suppose to the contrary that

|⌘ j �⌘k| 2�6 b max(t�1
j , t�1

k
) and |y j � yk| 2�2 max(t j , tk).

Central containment and s j � sk implies |y j � yk| 2�4s j and |⌘ j �⌘k| 2�3 bs�1
k

. Thus,

|yk � x j | |yk � y j |+ |y j � x j | 2�3s j  s j � tk

and

⌘k � ⇠ j = (⌘k �⌘ j) + (⌘ j � ⇠ j) t�1
k

2�4 b  t�1
k

C2

with similar work gives ⌘k � ⇠ j � �t�1
k

C1. As tk < sk  s j , this means (yk,⌘k, tk) 2 T j which

contradicts the assumption the point was selected after T j was removed. Thus, Claim 3 is true.

By the three grids trick (see Remark 3), each Ik is contained in a dyadic interval Jk of comparable

length where Jk is either in the standard dyadic grid D0, the 1/3 shifted grid D1, or the 2/3 shifted

grid D2. It suffices to prove

(4.9)

nX

k=1

w(Jk) C��qk f k
q

Lq(w)

where Jk is an element of D0, D1, or D2 such that Ik ⇢ Jk and 3|Ik|  |Jk|  6|Ik|. Without loss of

generality, we may assume all Jk belong to the same dyadic grid, which for convenience we assume

to be the standard grid D0.
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For each m� 0 let Km be the set of k such that 2m�  |P( f )(yk,⌘k, tk)|  2m+1�. It suffices to

show that for any m X

k2Km

w(Jk) C(2m�)�qk f k
q

Lq(w)
.

We show this for m = 0 as the general case can be obtained by simply letting �0 = 2m� and

repeating the argument. Fixing m = 0, assume without loss of generality that K = K0 so all k are

automatically inside K0.

For convenience let

N =
X

k

1Jk
and NI =

X

k:Jk⇢I

1Jk

be the tent counting function and counting function restricted to interval I respectively. The fol-

lowing lemma is a localization inequality for the L1(w) norm of NI .

Lemma 6. Fix a dyadic interval I , ↵> 0, and integer n� 0. Let �I (x) be as defined in (1.10). Then

�kNIk
1/q

L1(w)
.n,↵ kNIk

↵
1k f �

n
I kLq(w).

Proof. Fix interval I , without loss of generality we may assume N = NI . We first consider the

simpler proof for n= 0. For convenience, denote P( f )(yk,⌘k, tk) = h f ,�ki where

�k(x)⌘ �yk ,⌘k ,tk
(x) =

1

tk

e�i⌘k(yk�x)�
Ä yk � x

tk

ä
.

As �  |P( f )(yk,⌘k, tk)| 2�, we obtain

�2
X

k

w(Jk).
X

k2Km

w(Jk)|P( f )(yk,⌘k, tk)|
2 = kS( f )k2

L2(w)

where

S( f )(x) :=
ÄX

k

|h f ,�ki|
21Jk
(x)
ä1/2

is the square function summed over the selected points.

We now implement a sharp maximal inequality argument. Note first that supp
�
S( f )

�
⇢ supp(N).

Using Hölder’s inequality and the sharp maximal inequality we have

��S( f )
��

L2(w)
 w

�
supp(N)

� 1
2�

1
q
��S( f )

��
Lq(w)

.
ÄX

k

w(Jk)
ä 1

2�
1
q
��(S( f ))#

��
Lq(w)

where (S( f ))# is the dyadic sharp maximal function, taken with respect to the grid that contains

all intervals Jk. Consequently,

(4.10) �
îX

k

w(Jk)
ó1/q

.
��(S( f ))#

��
Lq(w)

.

We will now establish the pointwise estimate

(4.11) (S( f ))#(x).�,s M2( f )(x) +�
s[M(N)(x)]s/2[M2( f )(x)]

1�s

where M is the usual dyadic maximal function and s 2 (0, 1). For each dyadic interval J it suffices

to show there is some constant ↵J > 0 such that
✓

1

|J |

Z

J

|S( f )(x)�↵J |
2d x

◆1/2

. inf
x2J

M2( f )(x) +�
s inf

x2J
[M(N)(x)]s/2 inf

x2J
[M2( f )(x)]

1�s
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Setting cJ as the center of J , let ↵J = Sout( f )(cJ ) where

Sout( f )(x) :=
Ä X

k:J⇢Jk

|h f ,�ki|
21Jk
(x)
ä1/2

.

For convenience, let Sin( f )(x) = (S( f )(x)
2�Sout( f )(x)

2)1/2 and consider fJ = f �N
J for some large

constant N . By the square function estimate (from Lebesgue theory) we have
Z

J

|S( f )(x)�↵J |
2d x 

Z

J

|Sin( f )(x)|
2d x =

Z

J

|eSin( fJ )(x)|
2d x

where eSin uses the mollified wave functions ��N
J �k. Note the mollified wave function has the same

frequency support as �k and has sufficient decay while localization over (yk � tk, yk + tk) in the

sense Lemma 1 is applicable for appropriate exponents. Recall from Claim 3 that the selected points

(yk,⌘k, tk) are well-separated with separation constants dependent solely on Θ. We can therefore

apply Lemma 2 along with the observation tk  |Jk| at each k to get
✓Z

J

|S( f )(x)�↵J |
2d x

◆1/2

. k fJk2 +
î

sup
k

��P( f )(yk,⌘k, tk)
��
Ä X

k:Jk⇢J

|Jk|
ä1/2ó s

k fJk
1�s
2

. |J |1/2 inf
x2J

M2( f )(x) +�
s|J |1/2 inf

x2J
[M(N)(x)] s/2 inf

x2J
[M2( f )(x)]

1�s

as desired.

Now, using (4.11) and the fact that w 2 Aq/2,
��(S( f ))#

��
Lq(w)

. k f kLq(w) +�
skNk

s/2

Lq/2(w)
k f k1�s

Lq(w)

. k f kLq(w) +�
skNk

( s
q )(

q
2�1)

1 kNk
s/q

L1(w)
k f k1�s

Lq(w)
.

As kNkL1(w) =
P

k w(Jk), combine (4.10) with the above sharp maximal function bounds to get

�kNk
1/q

L1(w)
. kNk

s
1�s (

1
2�

1
q )

1 k f kLq(w).

By selecting 0 < s < 1 suitably we obtain the desired conclusion for any ↵ > 0, but for n = 0.

For n> 0, apply the argument above for the mollified wave functions e�k(x) = �I (x)
�n�k(x), and

note that h f ,�ki = h f �
n
I , e�ki for all k. As previously stated, the mollified wave function e�k has

the same frequency support as �k and sufficient decay while still localized over (yk � tk, yk + tk)

so the same analysis as before applies. ⇤

With the L1(w) norm estimate on NI , we deduce a similar estimate for Lr,1(w) with 0< r < 1.

Corollary 1. Fix dyadic interval I . For any r 2 (0, 1) and n> 0 it holds that

kNIkLr,1(w) . (�
�1k f �n

I kLq(w))
q/r .

Proof. Arguing as before, without loss of generality we may assume that N = NI and n= 0. Given

any t > 0, we have

w(N > t) =
X

k�0

w(2k t < N  2k+1 t).

For each k, let Ak be the collection of k such that Jk \ {N  2k+1 t} 6= ; and denote Nk as the

counting function N restricted to Ak. Then for every x 2 {N  2k+1 t} we have N(x) = Nk(x),

therefore

{2k t < N  2k+1 t} ⇢ {Nk > 2k t}.
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Furthermore, we also have

kNkk1  2k+1 t.

Indeed, Nk is locally constant, and any interval on which Nk is constant must be part of some Jk

that in turn intersects {N  2k+1 t}, and clearly Nk  N .

Thus, applying Lemma 6 with ↵> 0 we obtain

�kNkk
1/q

L1(w)
. kNkk

↵
1k f kLq(w) . 2(k+1)↵ t↵k f kLq(w)

therefore

�qw(Nk > 2k+1 t) 2�(k+1) t�1�qkNkkL1(w) . 2�(k+1)(1�↵q) t�(1�↵q)k f k
q

Lq(w)

Summing over k � 0, it follows that

�qw(N > t). t�(1�↵q)k f k
q

Lq(w)

provided that 0< ↵< 1/q. Letting r = 1�↵q we obtain

tw(N > t)1/r . ��q/rk f k
q/r

Lq(w)
.

To get n> 0, apply the argument above for mollified wave functions e�k = �
�n
I �k. ⇤

Next, we establish a good � inequality with respect to N . Below, let Mq,w f be the weighted

Lq-maximal function.

Lemma 7. Consider L > 0 and r 2 (0, 1). There is some c > 0 such that for any t > 0,

w(N > t)
1

L
w(N > t/4) +w(Mq,w f > c�t r/q).

Proof. Let I be the collection of all maximal dyadic intervals that are subsets of {N > t/4}. Suppose

that I 2 I and I\{Mq,w f  c�tq/r} 6= ;. Then for every x 2 {N > t}\I we have N(x)�NI (x) t/4,

so in particular x 2 {NI > t/4}. It follows that, using Corollary 1,

w({N > t}\ I) w(NI > t/4). t�r��qk f �n
I k

q

Lq(w)

. t�r��qw(I) inf
x2I

Mq,w( f )(x)
q . t�r��qw(I)(c�t r/q)q . cqw(I).

Consequently, by choosing c > 0 sufficiently small (independent of I) we obtain

w({N > t}\ I)
1

L
w(I).

Summing over I we obtain the desired claim. ⇤

We are now ready to show (4.9). Integrating over t > 0 in the good � estimate provided by

Lemma 7, it follows (from the standard argument) that

kNkL1(w) .

Z 1

0

w(Mq,w( f )> c�t r/q)d t = (c�)�q/r

Z 1

0

w(Mq,w( f )> s)s
q
r�1ds

. ��q/rkMq,w( f )k
q/r

Lq/r (w)
. ��q/rk f k

q/r

Lq/r (w)
.

Using the fact that the Aq condition is an open condition, we actually have w 2 Aqr/2 for some

r 2 (0,1). Thus, by replacing q with qr,

kNkL1(w) . �
�qk f k

q

Lq(w)
.

This completes the proof of (4.9) which in turn implies the desired estimate (4.8).
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We finish by denoting Q0 as the collection of (xk,⇠k, sk) selected and

E0 =
[

(x ,⇠,s)2Q0

T (x ,⇠, s).

We have |P( f )(y,⌘, t)|  � for all (y,⌘, t) 2 Ec
0, while the weighted outer measure of E0 is

O(��qk f kLq(w)). We free the notations (yk,⌘k, tk), (xk,⇠k, sk), Tk, Ik, k � 1.

4.4.2. Treatment for the L2 part of the size. We now select tents over which the L2(w) portion of

size S is large with respect to �. We split a tent T (x ,⇠, s) into its upper half

T+(x ,⇠, s) = T (x ,⇠, s)\ {(y,⌘, t) 2 X : ⌘ � ⇠}

and its lower half T�(x ,⇠, s) = T (x ,⇠, s)\T+(x ,⇠, s). We define T b
± and T `± similarly.

This section focuses on finding a countable collection of points Q+ ⇢ X∆ such that
X

(x ,⇠,s)2Q+

w(x � s, x + s) C��qk f k
q

Lq(w)

and for every tent T (x ,⇠, s) 2 E∆,

1

w(x � s, x + s)

Z

T `+(x ,⇠,s)\E+

|P( f )(y,⌘, t)|2w(y � t, y + t)d yd⌘
d t

t
 �2

where

E+ = E0 [
[

(x .⇠,s)2Q+

T (x ,⇠, s).

We remark that the work to generate Q+ and E+ can be applied symmetrically to find a countable

collection of points Q� ⇢ X∆ such that
X

(x ,⇠,s)2Q�

w(x � s, x + s) C��qk f k
q

Lq(w)

and if

E� = E0 [
[

(x ,⇠,s)2Q�

T (x ,⇠, s),

then

1

w(x � s, x + s)

Z

T `�(x ,⇠,s)

|P( f )(y,⌘, t)1X\E�
(y,⌘, t)|2w(y � t, y + t)d yd⌘

d t

t
 �2

for all tents T (x ,⇠, s) 2 E∆. By setting Q = Q0 [Q+ [Q� and E :=
S
(x ,⇠,s)2Q T (x ,⇠, s), the proof

of the q-endpoint estimate (4.3) will then be completed.

L2 Selection Algorithm. Let C be larger than the doubling constant of w. Suppose there exists

(x ,⇠, s) 2 X∆ such that

(4.12)
1

w(x � s, x + s)

Z

T `+(x ,⇠,s)\E0

|P( f )(y,⌘, t)|2w(y � t, y + t)d yd⌘
d t

t
� C�1�2.

Applying (4.5), it follows that w(x � s, x + s) is bounded from above a priori. By substituting

f = f �N
(x�s,x+s)

��N
(x�s,x+s)

in (4.12) where N > q, similar work in conjunction with Remark 2 shows

s itself is bounded a priori. Indeed, as w 62 L1 is a doubling weight, it forces |x |/s to be sufficiently

large whenever s itself is large. Consequently, k f �N
(x�s,x+s)

k1 is sufficiently small. As

k�N
(x�s,x+s)

kL1(w) . w(x � s, x + s),

we conclude the value of s for points (x ,⇠, s) satisfying (4.12) must be bounded.
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Let es be the least upper bound on s. As such, ⇠ is a discrete parameter since it is a multiple

of 2�8 b(es )�1. Since bf is compactly supported, there is an upper bound on ⇠ meaning there is a

maximal possible value ⇠= ⇠max to consider in (4.5). Select (x1,⇠1, s1) 2 X∆ satisfying (4.12) such

that ⇠1 = ⇠max and s1 is maximal with respect to the restriction ⇠1 = ⇠max. Let T1 = T (x1,⇠1, s1)

and I1 = (x1 � s1, x1 + s1) for convenience of notation. By the maximality of s1 and the doubling

property of w, note

1

w(I1)

Z

T `+(x1,⇠1,s1)\E0

|P( f )(y,⌘, t)|2w(y � t, y + t)d yd⌘
d t

t
 �2.

We now iterate the argument. Assume that we have selected (xk,⇠k, sk) 2 X∆ for 1  k  n� 1

and set En = E0 [
Sn�1

k=1 Tk. Suppose there is some (x ,⇠, s) 2 X∆ such that

1

w(x � s, x + s)

Z

T `+(x ,⇠,s)\En

|P( f )(y,⌘, t)|2w(y � t, y + t)d yd⌘
d t

t
� C�1�2

We now select such a point (xn,⇠n, sn) such that ⇠n is a (possibly new) maximal ⇠max and sn is

maximized with respect to ⇠max. Denote Tn = T (xn,⇠n, sn) and In = (xn � sn, xn + sn). Again, by

the maximality of sn,

1

w(In)

Z

T `+(xn,⇠n,sn)\En

|P( f )(y,⌘, t)|2w(y � t, y + t)d yd⌘
d t

t
 �2.

Our goal is to show that

(4.13)

nX

k=1

w(Ik) C��qk f k
q

Lq(w)
.

where C is independent of n. Assuming (4.13) is valid, we now justify the termination of the L2

selection algorithm. If the algorithm terminates after selecting n tents, then

1

w(x � s, x + s)

Z

T `+(x ,⇠,s)\En+1

|P( f )(y,⌘, t)|2w(y � t, y + t)d yd⌘
d t

t
 C�1�2.

holds for all (x ,⇠, s) 2 E∆ and we set Q+ as the collection of (xk,⇠k, sk) for 1  k  n. In the

scenario the algorithm does not terminate after a finite number of steps, set E(1) = E0[
S

k�1 Tk and

Q+,(1) as the collection of selected (xk,⇠k, sk) for k � 1. Note the selected ⇠k form a non-increasing

sequence of elements in the lattice Z2�8 b(es )�1. In the case ⇠k tends to negative infinity, suppose

there is some (x ,⇠, s) 2 X∆ satisfying

(4.14)
1

w(x � s, x + s)

Z

T `+(x ,⇠,s)\E(1)

|P( f )(y,⌘, t)|2w(y � t, y + t)d yd⌘
d t

t
� C�1�2.

As ⇠k ! �1, then ⇠ j < ⇠ for some j which contradicts the selection of T j . Thus, the converse

inequality to (4.14) must hold for all (x ,⇠, s) 2 X∆ and we set Q+ =Q+,(1).

Now suppose ⇠k does not tend to negative infinity and instead stabilizes at some finite ⇠(1).
We restart the algorithm and redefine the selected tents Tk by T(1),k = T (x(1),k,⇠(1),k, s(1),k) and

intervals Ik by I(1),k. Observe in this scenario that the tail of the sequence s(1),k decays to 0. Indeed,

if s(1),k converges to some nonzero s(1) then the tail of Q+,(1) is of the form (x(1),k,⇠(1), s(1)) where

x(1),k is an element in the lattice Z2�4s(1). The corresponding intervals I(1),k therefore eventually

slide towards infinity or negative infinity. By recycling the argument for the a priori bound on s,

such a sequence cannot occur.
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Consider (x ,⇠, s) 2 X∆ where (4.14) holds. As before, there is a maximal frequency ⇠max to

consider for such a point. Given the previous selection of tents, we know ⇠max  ⇠(1). If ⇠max = ⇠(1)
and (x ,⇠max, s) satisfies (4.14) then s > s(1),k for some k by the previous paragraph which contra-

dicts the selection of T(1),k. Therefore, it follows that ⇠max < ⇠(1). Choose a point (x(2),1⇠(2),1, s(2),1)

satisfying (4.14) such that s(2),1 is maximized under the condition ⇠(2),1 = ⇠max. Iterate the selec-

tion algorithm as before to obtain a sequence of tents and intervals

T(2),k = T (x(2),k,⇠(2),k, s(2),k) , and I(2),k = (x(2),k � s(2),k, x(2),k + s(2),k).

The proof of (4.13), to be shown, will naturally extend here to give

1X

k=1

w(I(1),k) +
X

k�1

w(I(2),k) C��qk f k
q

Lq(w)
.

Continue the process as shown above. If we eventually have a sequence of frequencies ⇠(m),k
(m is fixed) which either terminates after finitely many k or ⇠(m),k!�1 then there are no more

(x ,⇠, s) 2 X∆ for which the (now updated) version of (4.14) holds. At worst, we eventually obtain

a double sequence of tents T(m),k where the double summation of w(I(m),k) is O(��qk f k
q

Lq(w)
). In

addition, the sequence of stabilizing points ⇠(k) in this case is strictly decreasing in a discrete lattice

and tending to negative infinity. We finish by setting Q+ as the collection of (x( j),k,⇠( j),k, s( j),k)

where j, k 2 N and E+ as the union of tents T (x( j),k,⇠( j),k, s( j),k). We can therefore conclude that

there are no more points (x ,⇠, s) 2 X∆ such that

1

w(x � s, x + s)

Z

T `+(x ,⇠,s)\E+

|P( f )(y,⌘, t)|2w(y � t, y + t) d yd⌘
d t

t
� C�1�2

and so the L2 algorithm terminates.

It remains to prove the weighted estimate (4.13). Note the proof follows similar steps as in the

L1 treatment in Section 4.4.1. For convenience of notation let

T ⇤
k
= T `+(xk,⇠k, sk) \ Ek for k � 1

with E1 = E0. We first note the well separation of the partial tents T ⇤
k
.

Claim 4. The collection of partial tents {T ⇤
k
} is well-separated in the sense of (3.11) with separation

constants ↵= 1, � = 2�6 b, and B = 28 max(C1, C2)b
�1 in terms of Θ = (C1, C2, b).

To verify the claim, consider (y,⌘, t) 2 T ⇤
j

and (y 0,⌘0, t 0) 2 T ⇤
k

such that Bt 0 < t. Assuming

|⌘�⌘0| 2�6 bt 0�1, it follows from (y 0,⌘0, t 0) being in the upper lacunary part of Tk that ⇠ j > ⇠k.

⇠ j � ⇠k = (⌘�⌘
0)� (⌘� ⇠ j) + (⌘

0 � ⇠k)

� �2�6 bt 0�1 � C2 t�1 + bt 0�1 � (1� 2�6 � 2�8)bt 0�1 > 0

This means tent T j was selected prior to Tk so (y 0,⌘0, t 0) 62 T j by the selection process. Furthermore,

observe that t 0 < t < s j and

⌘0 � ⇠ j = (⌘
0 �⌘) + (⌘� ⇠ j)

�
2�7 b+ C2B�1

�
(t 0)�1  C2(t

0)�1

with similar work showing ⌘0 � ⇠ j � �C1(t
0)�1. As (y 0,⌘0, t 0) 62 T j , we then require

|y 0 � x j |> s j � t 0 > s j � t

which verifies Claim 4.
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As in the L1 selection argument, application of the three grids trick (see Remark 3) means it

suffices to show

(4.15)
X

k

w(Jk) C��qk f k
q

Lq(w)

where all Jk are dyadic intervals in the standard grid D0, 1/3 shifted grid D1, or 2/3 shifted grid

D2 such that Ik ⇢ Jk and 3|Ik|  |Jk|  6|Ik|. We may assume without loss of generality that all Jk

belong to the standard dyadic grid.

As before, let N(x) be the counting function over the selected intervals Jk and NI(x) be the

counting function N restricted to Jk contained in interval I . We need the following analogue of

Lemma 6, and the rest of the proof for the L2 portion (with respect to upper half of tents) is exactly

the same as the L1 portion in Section 4.4.1.

Lemma 8. Fix a dyadic interval I , ↵> 0, and integer n� 0. Let �I (x) be as defined in (1.10). Then

�kNIk
1/q

L1(w)
.n,↵ kNIk

↵
1k f �

n
I kLq(w).

Proof. As before, we may assume without loss of generality that N = NI (freeing up the notation

of interval I) and set n= 0.

Let S be the following square function

S(F)(u) :=

 
X

k:Jk

Z

T ⇤
k

|F(y,⌘, t)|21|y�u|<t d yd⌘
d t

t

!1/2

, u 2 R.

Appealing to the doubling property of w and the selection criteria for the tents Tk,

�2
X

k

w(Jk).
X

k

Z

T ⇤
k

|P( f )(y,⌘, t)|2w(y � t, y + t) d yd⌘
d t

t
= kS(P( f ))k2

L2(w)
.

We note that if (y,⌘, t) 2 T (xk,⇠k, sk) and |y � u| < t then u 2 (y � t, y + t) ⇢ (xk � sk, xk + sk).

Therefore supp(SF) ⇢
S

k:Jk
Jk. Consequently, by an application of Hölder’s inequality,

�kNk
1/q

L1(w)
. kS(P( f ))kLq(w).

It remains to control the Lq(w) norm of this square function. Our main idea here is to cover

(y� t, y+ t) using a (shifted) dyadic interval I comparable to (y� t, y+ t) via the three grids trick

and pass to (shifted) square functions over these grids. More precisely, the interval I will belong

to either the classical grid D0 or one of the shifted grids D1, D2 mentioned prior. We may bound

S(F)(u)

2X

j=0

S j(F)(u)

where S j(F) is a square function over grid D j . Namely, for each grid D j we may define for some

C > 1 (sufficiently large absolute constant)

S j(F)(u) =

✓X

k:Jk

Z

T ⇤
k

|F(y,⌘, t)|2
X

I2D j :t/C|I |C t

1I (y)1I (u) d yd⌘
d t

t

◆1/2

.

Fix j. Standard estimates show

kS j(P( f ))kLq(w) . |
�
S j(P( f ))

�]
kLq(w)
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where (·)] is the dyadic sharp maximal function, with intervals from the grid D j . Now, for each

dyadic J 2D j , we then let

↵(u) =

✓X

k:Ik

Z

T ⇤
k

|P( f )(y,⌘, t)|2
X

I2Dj :C
�1 t|I |C t , J⇢I

1I (y)1I (u) d yd⌘
d t

t

◆1/2

.

Note that ↵(u) is constant over u 2 J , which we now refer to as ↵J (despite its dependence on j).

For each u 2 J ,

|S j

�
P( f )

�
(u)�↵J |

✓X

k:Jk

Z

T ⇤
k

|P( f )(y,⌘, t)|2
X

I2Dj :C
�1 t|I |C t , I⇢J

1I (y)1I (u) d yd⌘
d t

t

◆1/2

.

✓X

k:Ik

Z

T ⇤
k

|P( f )(y,⌘, t)|21|y�u|=O(t)1t=O(|J |) d yd⌘
d t

t

◆1/2

thus using Lebesgue theory we have

1

|J |

Z

J

|S j

�
P( f )

�
(u)�↵J |.

✓
1

|J |

X

k:Jk

Z

T ⇤
k

|P( f )(y,⌘, t)|21(y�t,y+t)⇢CJ d yd⌘d t

◆1/2

where C > 0 is sufficiently large. Recall (y � t, y + t) ⇢ CJ is equivalent to 0 < t  C |J |/2 and

|y � cJ | < C |J |/2 � t. By Remark 1, T ⇤
k
\ {(y � t, y + t) ⇢ CJ} is a subset of tent T 0

k
with top

interval I 0
k
= Ik\CJ . Note the collection of partial tents T ⇤

k
\{(y� t, y+ t) ⇢ CJ} in T 0

k
is still well

separated with same separation constants as Claim 4.

Let fJ = f �N
CJ for some large constant N . Using Lemma 3 with |P( f )(y,⌘, t)|= |h fJ ,��N

CJ
�y,⌘,ti|

and |P( f )(y,⌘, t)| � for all points in T ⇤
k
\ {(y � t, y + t) ⇢ CJ}, we have

Z

J

��S j(P( f ))(u)�↵J

�� du . k fJk2 +
⇥
�kNk

1/2

L1(CJ)

⇤s
k fJk

1�s
2

. |J |1/2 inf
x2J

M2( f )(x) + |J |
1/2�s inf

x2J

⇥
M(N)(x)

⇤s/2
inf
x2J

⇥
M2( f )(x)

⇤1�s

and so

(4.16)
�
S j(P( f ))

�]
(x). M2( f )(x) +�

s
⇥
M(N)(x)

⇤s/2⇥
M2( f )(x)

⇤1�s
.

Combining (4.16) and the fact w 2 Aq/2,

kS j(P( f ))kLq(w) . k f kLq(w) +�
skNk

s/2

Lq/2(w)
k f k1�s

Lq(w)

. k f kLq(w) +�
skNk

( s
q )(

q
2�1)

1 kNk
s/q

L1(w)
k f k1�s

Lq(w)

Summing over j = 0,1, 2 we obtain

�kNk
1/q

L1(w)
. k f kLq(w) +�

skNk
( s

q )(
q
2�1)

1 kNk
s/q

L1(w)
k f k1�s

Lq(w)

and we get by rearrangement

�kNk
1/q

L1(w)
. kNk

s
1�s (

1
2�

1
q )

1 k f kLq(w).

We obtain the desired result for the n = 0 case by choosing s 2 (0, 1) sufficiently small. For

the case n � 1, consider the mollified wave packet e�y,⌘,t = �
�n
I �y,⌘,t and apply work above to

P( f )(y,⌘, t) = h f �n
I , e�y,⌘,ti. ⇤
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