
Invited: Accelerator Design with Decoupled Hardware
Customizations: Benefits and Challenges

Debjit Pal1*, Yi-Hsiang Lai4, Shaojie Xiang1, Niansong Zhang1, Hongzheng Chen1, Jeremy Casas2,

Pasquale Cocchini2, Zhenkun Yang2, Jin Yang2, Louis-Noël Pouchet3, Zhiru Zhang1*
1Cornell University, 2Strategic CAD Labs, Intel Corporation,3Colorado State University,4Amazon Web Services, Inc.

*{debjit.pal,zhiruz}@cornell.edu

ABSTRACT

The past decade has witnessed increasing adoption of high-level

synthesis (HLS) to implement specialized hardware accelerators tar-

geting either FPGAs or ASICs. However, current HLS programming

models entangle algorithm specifications with hardware customiza-

tion techniques, which lowers both the productivity and portability

of the accelerator design. To tackle this problem, recent efforts such

as HeteroCL propose to decouple algorithm definition from essen-

tial hardware customization techniques in compute, data type, and

memory, increasing productivity, portability, and performance.

While the decoupling of the algorithm and customizations pro-

vides benefits to the compilation/synthesis process, they also cre-

ate new hurdles for the programmers to productively debug and

validate the correctness of the optimized design. In this work, us-

ing HeteroCL and realistic machine learning applications as case

studies, we first explain the key advantages of the decoupled pro-

gramming model brought to a programmer to rapidly develop high-

performance accelerators. Using the same case studies, we will

further show how seemingly benign usage of the customization

primitives can lead to new challenges to verification. We will then

outline the research opportunities and discuss some of our recent

efforts as the first step to enable a robust and viable verification

solution in the future.

1 INTRODUCTION

Targeted specialization of functionality in hardware has become

unarguably the best means to achieve improved compute perfor-

mance and energy efficiency for a plethora of emerging applica-

tions. Unfortunately, it is a very unproductive practice to design

and implement special-purpose accelerators using the conventional

RTL methodology. For this reason, both academia and industry are

seeing increasing use of HLS to automatically generate hardware

accelerators from software programs [6, 8]. However, more wide-

spread adoption of HLS is currently held back by its deficiencies in

the quality of results (QoR) and ease of programming.

Programming high-performance hardware accelerators with

HLS tools requires a deep understanding of hardware details and is

a significant departure from traditional software programming. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’22, July 10ś14, 2022, San Francisco, CA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9142-9/22/07. . . $15.00
https://doi.org/10.1145/3489517.3530681

particular, current HLS programming models entangle algorithm

specifications with hardware customization techniques. This ap-

proach has several limitations: (1) To achieve good QoRs, HLS

programmers need to considerably restructure the source program

to guide the HLS tool to realize specialized architectures such as

data reuse buffers and systolic arrays; (2) Programmers are fur-

thermore required to use various vendor-specific data types and

pragmas [25], reducing the portability of accelerators across target

hardware; (3) Existing HLS programming models fail to capture

the interdependence among different hardware customization tech-

niques, thus weakening the support of user-guided or automatic

design space exploration (DSE).

One promising direction in modern language designs for het-

erogeneous computing is to apply the principle of separation of

concerns. This principle refers to the decoupling of algorithm and

performance optimization for enhanced modularity, composability,

productivity, and performance. Halide is the first domain-specific

language (DSL) to propose such decoupling for image processing

applications [16]. TVM builds on Halide to support decoupled

customization for machine learning applications [4]. Inspired by

Halide and TVM, HeteroCL [9], T2S-Tensor [18], and SuSy [10]

also separate algorithm definition from hardware customizations,

aiming to make accelerator designs much more productive, per-

formant, and portable. In the rest of this paper, we discuss how

HeteroCL, an open-source Python-based programming abstraction

for accelerator-rich computing that fully decouples the algorithm

from hardware customization, increases the productivity of accel-

erator designs using two realistic case studies. We further outline

several research challenges and opportunities that are worth pur-

suing to enable productive and pervasive hardware specialization.

2 DECOUPLING ALGORITHM FROM
HARDWARE CUSTOMIZATIONS

In this section, we first introduce HeteroCL’s decoupled program-

ming model. Then, we outline how the programming model in-

creases the productivity and performance of hardware accelerators

using two case studies.

2.1 HeteroCL Accelerator Programming Model

HeteroCL is a multi-paradigm programming framework targeting

accelerator-rich heterogeneous architectures. It is composed of a

Python-based DSL and an automated compilation flow that maps

the input algorithm into efficient accelerators. Similar to Halide [16]

and TVM [4], HeteroCL separates an algorithm specification from

a temporal compute schedule. Unlike the previous approaches that

Invited: Accelerator Design with Decoupled Hardware Customizations: Benefits and Challenges DAC ’22, July 10ś14, 2022, San Francisco, CA, USA

def algorithm(image, offset):

r = hcl.reduce_axis(0, 3)

c = hcl.reduce_axis(0, 3)

out = hcl.compute((8, 8), lambda y, x:

hcl.sum(image[offset[y,x,r,c]] * W[r, c],

axis=[r, c]))

return out

vImg = # run-time values of image

vOff = # run-time values of offset

s = hcl.create_schedule([image, offset], deform_conv)

p = hcl.profile(s, [vImg, vOff])

if p.stencils is not None:

for stencil in p.stencils:

s.reuse_at(stencil.tensor, stencil.stage,

stencil.axis, stencil.info)

try:

s.reuse_at(image, s[out], out.x)

hcl.profile(s, [vImg, vOff])

except hcl.ReuseError as e:

print(e)

Validate Recommend

+

Figure 3: Example of trace-based profiling.

operations without worrying about implementation details of com-

plex tensor operations. Second, the same HeteroCL executable spec-

ification was repurposed to derive a high-performance hardware

implementation using decoupled customizations. Finally, the declar-

ative programming, imperative programming, and the decoupled

customizations together generated HLS code whose performance

is similar to the original VTA with significantly fewer lines of code.

3 CHALLENGES AND OPPORTUNITIES

It is clear that with decoupled customizations, we can improve

productivity, performance, and portability. However, there remain

multiple challenges and opportunities with respect to the correct-

ness verification of decoupled customizations and integration. In

the following sections, we discuss two challenges and opportuni-

ties.

3.1 Automated Generation and Validation of
Customization Primitives

The current HeteroCL compiler relies on user-specified customiza-

tion primitives for optimizing the input program. To achieve high

QoR, programmers need to have in-depth knowledge of the tar-

get accelerators, which creates a high threshold for most software

programmers. Take memory customization as an example. Since

programmers are more used to implicit memory orchestration such

as caches on CPUs, it is non-trivial for them to explicitly design and

manage custom memory hierarchy on FPGAs. Although HeteroCL

provides customization primitives such as .reuse_at() to simplify

the optimization process, it is still difficult for programmers to tell

how and where to apply such a primitive. Even worse, the mis-

application of primitives may worsen the performance or end up

with incorrect results. Therefore, there is an urgent need for tech-

niques that resolve the above challenges by providing programmers

recommendations and validations.

AutoTVM [5] and FlexTensor [24] leverage template-based meth-

ods to search the optimal parameters for the schedule for TVM.

Ansor [23] and Halide’s AutoScheduler [1] employ a template-free

approach to directly generate schedule sequences from different

primitive combinations. However, the above approaches only work

for programs with static behaviors that are known at compile-time

targeting CPUs or GPUs. There are also considerable number of

works to automate DSE for HLS. Most of the existing effort develop

different kinds of heuristics to automatically insert HLS pragmas

into C/C++ programs [19]. For example, by leveraging graph learn-

ing models, a recent HLS DSE framework can make accurate QoR

1 Conv2D = lambda Image, Filter: hcl.compute((N, M), lambda x, y:

2 hcl.sum(Image[x+r, y+c] * Filter[r, c], axis=[r, c]))

3 A = Conv2D(I, FA); B = Conv2D(A, FB); s = hcl.create_schedule()

4 s.to(A, s[B]).reuse_at(B.axis[0]) # streaming and reuse buffer

5 s[B].reorder(B.axis[1], B.axis[0]) # reorder outermost loops

(a) HeteroCL code snippet

Conv2D

1 2 3

5 6 7

9 10 11

I FA

Conv2D

FB

4

8

12

13 14 15 16

A

A

Write order of A

Read order of A

(b) Correct read-write access

Conv2D

1 2 3

5 6 7

9 10 11

I FA

Conv2D

FB

4

8

12

13 14 15 16

A

A

Write order of A

Read order of A

(c) Wrong read-write access

Figure 4: A buggy HeteroCL example ś the RAW data depen-

dency between two Conv2D kernels is violated after applying data

streaming and loop reordering customization.

prediction and achieve better performance [17]. While these works

have considerable compute pattern optimizations, there are limited

automation for data reuse and date access optimization.

We further propose a run-time trace-based profiling technique

that provides automated validation and recommendation for appli-

cation -specific hardware customization on FPGAs. Figure 3 shows

an example of using the trace-based profiling techniques for validat-

ing and recommending data reuse by introducing a new primitive

.profile() to HeteroCL. With decoupled customizations, pro-

grammers do not need to modify the algorithm specification (i.e.,

the orange box). In addition, they can validate the specified data

reuse primitives in combination (i.e., the left blue box) and/or im-

prove the QoR by applying the recommended primitives generated

from the profiling results (i.e., the right blue box). Moreover, with

the trace-based technique, we can handle both regular and irregular

data access patterns for memory customization.

3.2 Formal Verification of Decoupled
Customizations

Although the decoupled hardware customizations in HeteroCL pro-

vide a multitude of benefits to the compilation/synthesis process

they also create newhurdles for programmers to productively debug

and validate the correctness of the transformed design. Figure 4a

shows a HeteroCL design where the output from one convolution

kernel is streamed to another (typically implemented by a FIFO in

hardware). Such inter-kernel data streaming imposes a RAW depen-

dency on FIFO for the correctness of the final result. We use .to()

(L4) to specify data streaming and .reuse_at() (L4) to create a

reuse buffer for the second convolution at the receiving end of the

stream. One can easily break the design by (only) applying a loop

reordering primitive (L6) to the second convolution of Figure 4a.

As shown in Figure 4b, the write (→) and read (→) accesses of the

streaming FIFO are in-order before applying the reorder primitive.

However, after applying .reorder() to second convolution, the

DAC ’22, July 10ś14, 2022, San Francisco, CA, USA Pal, et al.

write (→) and read (→) access orders of the streaming FIFO dis-

agree as shown in Figure 4b, thereby violating RAW dependency.

A seemingly benign usage of .reorder() breaks the correctness

of the kernel functionality. While software simulation may show

erroneous outputs, it is nontrivial to pinpoint the bug as the loop

nests are implicit in declarative programming. Additionally, if the

compiler incorrectly infers the size of the reuse buffer, the error

may not manifest until the time-consuming hardware emulation is

invoked. This would be particularly hard to debug by a programmer

at the source level. Hence, we argue that there is an urgent need

to develop new techniques and tools to automatically verify the

correctness of the decoupled customizations specified in a modern

DSL like HeteroCL. Specifically, the tool shall verify (1) the validity

of a given sequence of decoupled customization primitives, and (2)

the semantics equivalence between the original and transformed

code after the compiler implements the specified customizations.

Proving the correctness of an optimizing compiler is an extremely

hard task, as illustrated with the CompCert project [12]. Translation

validation [22] is also difficult to deploy. A decoupled approach,

where the validity of primitives is checked quickly by static analysis,

independently of a later and more costly phase of validation of the

generated code, can enable more efficient verification. There is a

large class of programs typically candidates for acceleration that

can be accurately represented using polyhedral compilation [15].

A large class of numerical computations with regular control flow

such as dense linear algebra including tensor computations, image

processing algorithms, n-dimensional convolutions, etc. can be

exactly represented and analyzed in the polyhedral model (the affine

dialect [11]), or over-approximated to it otherwise [3]. This enables

the use of powerful and exact static analyses for data and control-

flow dependences [7], and complex static and dynamic analyses

for advanced program equivalence [2]. Many customizations can

be expressed as loop transformations in the imperative form. It is

therefore possible to formulate validity conditions for HeteroCL

customizations directly in the polyhedral representation enabling

real-time user feedback on the legality of customization during

development. It also paves the way for automated techniques to

generate legal customization sequences, inspired from results on

legal transformation sets for loop-based programs [14].

4 CONCLUSION

In this paper, we have discussed the shortcomings of the HLS pro-

gramming model, which seriously hinder its widespread adoption

in designing high-performance hardware accelerators. We also dis-

cuss how emerging programming model like HeteroCL addresses

those shortcomings and increases the productivity and performance

of hardware accelerators using two realistic case studies. We outline

various research challenges and opportunities that these new pro-

gramming models present. Finally, we conclude with some of our

recent efforts as initial steps to address those research challenges.

ACKNOWLEDGEMENTS

This research is supported in part by CRISP, one of six centers

in JUMP, a Semiconductor Research Corporation program spon-

sored by DARPA, NSF Awards #1750399, #1909661, NSF/Intel CAPA

Awards #1723715, and research gifts from AMD Xilinx and Intel.

REFERENCES
[1] A. Adams, K. Ma, L. Anderson, R. Baghdadi, T.-M. Li, M. Gharbi, B. Steiner, and

S. e. a. Johnson. Learning to Optimize Halide with Tree Search and Random
Programs. ACM Trans. on Graphics (TOG), 2019.

[2] W. Bao, S. Krishnamoorthy, and L.-N. e. a. Pouchet. PolyCheck: Dynamic Verifi-
cation of Iteration Space Transformations on Affine Programs. ACM SIGPLAN
Symp. on Principles of Programming Languages (POPL), 2016.

[3] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul. The Polyhe-
dral Model is More Widely Applicable than You Think. Int’l Conf. on Compiler
Construction (CC), 2010.

[4] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen, L. Wang, Y. Hu,
L. Ceze, C. Guestrin, and A. Krishnamurthy. TVM: An Automated End-to-End
Optimizing Compiler for Deep Learning. USENIX Conf. on Operating Systems
Design and Implementation (OSDI), 2018.

[5] T. Chen, L. Zheng, E. Yan, Z. Jiang, T. Moreau, L. Ceze, C. Guestrin, and A. Krish-
namurthy. Learning to Optimize Tensor Programs. Int’l Conference on Neural
Information Processing Systems (NeurIPS), 2018.

[6] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. High-
Level Synthesis for FPGAs: From Prototyping to Deployment. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2011.

[7] P. Feautrier. Dataflow Analysis of Array and Scalar References. Int’l Journal of
Parallel Program (JPP), 1991.

[8] Y. Lai, E. Ustun, S. Xiang, Z. Fang, H. Rong, and Z. Zhang. Programming and
Synthesis for Software-defined FPGA Acceleration: Status and Future Prospects.
ACM Trans. on Reconfigurable Technology and Systems (TRETS), 2021.

[9] Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong, and Z. Zhang. Hete-
roCL: A Multi-paradigm Programming Infrastructure for Software-defined Re-
configurable Computing. Int’l Symp. on Field-Programmable Gate Arrays (FPGA),
2019.

[10] Y.-H. Lai, H. Rong, S. Zheng,W. Zhang, X. Cui, Y. Jia, J.Wang, B. Sullivan, Z. Zhang,
Y. Liang, et al. SuSy: A Programming Model for Productive Construction of High-
Performance Systolic Arrays on FPGAs. Int’l Conf. on Computer-Aided Design
(ICCAD), 2020.

[11] C. Lattner, J. A. Pienaar, M. Amini, U. Bondhugula, R. Riddle, A. Cohen, T. Shpeis-
man, A. Davis, N. Vasilache, and O. Zinenko. MLIR: A Compiler Infrastructure
for the End of Moore’s Law. arXiv, 2020.

[12] X. Leroy. Formal Verification of a Realistic Compiler. Commun. ACM, 2009.
[13] T. Moreau, T. Chen, Z. Jiang, L. Ceze, C. Guestrin, and A. Krishnamurthy. VTA:

An Open Hardware-Software Stack for Deep Learning. CoRR, 2018.
[14] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, P. Sadayappan,

and N. Vasilache. Loop Transformations: Convexity, Pruning and Optimization.
ACM SIGPLAN Symp. on Principles of Programming Languages (POPL), 2011.

[15] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong. Polyhedral-BasedData Reuse
Optimization for Configurable Computing. Int’l Symp. on Field-Programmable
Gate Arrays (FPGA), 2013.

[16] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe.
Halide: A Language and Compiler for Optimizing Parallelism, Locality, and
Recomputation in Image Processing Pipelines. ACM SIGPLAN Notices, 2013.

[17] A. Sohrabizadeh, Y. Bai, Y. Sun, and J. Cong. Automated Accelerator Optimization
Aided by Graph Neural Networks. Design Automation Conf. (DAC), 2022.

[18] N. Srivastava, H. Rong, P. Barua, G. Feng, H. Cao, Z. Zhang, D. Albonesi,
V. Sarkar, W. Chen, P. Petersen, et al. T2S-Tensor: Productively Generating
High-performance Spatial Hardware for Dense Tensor Computations. IEEE Symp.
on Field Programmable Custom Computing Machines (FCCM), 2019.

[19] Q. Sun, T. Chen, S. Liu, J. Miao, J. Chen, H. Yu, and B. Yu. Correlated Multi-
objective Multi-fidelity Optimization for HLS Directives Design. Design, Automa-
tion, and Test in Europe (DATE), 2021.

[20] S. Xiang, Y. Lai, Y. Zhou, H. Chen, N. Zhang, D. Pal, and Z. Zhang. HeteroFlow: An
Accelerator Programming Model with Decoupled Data Placement for Software-
Defined FPGAs. Int’l Symp. on Field-Programmable Gate Arrays (FPGA), 2022.

[21] K. Zhan, J. Guo, B. Song, W. Zhang, and Z. Bao. UltraNet: An FPGA-based
Object Detection for the DAC-SDC 2020. https://github.com/heheda365/ultra_net.
Accessed: June 23, 2022.

[22] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic. Formalizing the LLVM
Intermediate Representation for Verified Program Transformations. ACM SIG-
PLAN Symp. on Principles of Programming Languages (POPL), 2012.

[23] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali, Y. Wang, J. Yang, D. Zhuo,
K. Sen, J. E. Gonzalez, and I. Stoica. Ansor: Generating High-Performance Tensor
Programs for Deep Learning. OSDI, 2020.

[24] S. Zheng, Y. Liang, S. Wang, R. Chen, and K. Sheng. FlexTensor: An Automatic
Schedule Exploration and Optimization Framework for Tensor Computation on
Heterogeneous System. Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

[25] Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. Srivastava, H. Jin, J. Featherston, Y.-H. Lai,
G. Liu, G. A. Velasquez, W. Wang, and Z. Zhang. Rosetta: A Realistic High-Level
Synthesis Benchmark Suite for Software Programmable FPGAs. Int’l Symp. on
Field-Programmable Gate Arrays (FPGA), 2018.

	Abstract
	1 Introduction
	2 Decoupling Algorithm from Hardware Customizations
	2.1 HeteroCL Accelerator Programming Model
	2.2 Case Studies

	3 Challenges and Opportunities
	3.1 Automated Generation and Validation of Customization Primitives
	3.2 Formal Verification of Decoupled Customizations

	4 Conclusion
	References

