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Autonomous vehicles are expected to improve road safety and efficiency in future transportation
systems. A driving simulator study was designed to identify driving styles and the cooperation
between human drivers and other AVs. The study captured driver’s following behavior in a fully
autonomous driving environment at unsignalized intersections. Participants were asked to make a
series of maneuvers (straight through intersection, left turn, and right turn) in two different speed
conditions (30, 40 mph) and two different traffic density conditions (with or without other traffic).
Analysis of Variance showed that drivers had a significantly larger deviation (defined as the area
between two trajectories) during left turn maneuvers when they were traveling at higher speeds.
Moreover, the first turning operation had smaller deviation than the second turning operation.
The findings have implications for the design of driver-assistance guidance systems in future mixed

autonomous and non-autonomous traffic flows.

INTRODUCTION

Studies show that advanced autonomous vehicles
(AVs) can improve road efficiency and safety by
significantly reducing car crashes (Hamid et al., 2017).
However, before the transportation system can reach fully
autonomous driving, there will be a long transition as
market penetration gradually increases. Hence, the
interaction of autonomous and non-autonomous vehicles
on the road will exist for some time.

One advantage of AVs is that they can communicate
their space-time planned routes and vehicle control
information through vehicle-to-vehicle (V2V)
communication technologies. Additionally, they are good
at following the planned trajectories with minimum
deviations and errors. As a result, the AVs can achieve
increased road efficiency and minimize injuries and
fatalities due to crashes (McGehee et al., 2016). However,
the existence of human drivers can negate these
advantages given variations and ability to follow such
planned trajectories. This variation can impact the
effectiveness of driver-assistance systems.

Many tools have been explored to assist human
drivers in cooperating with AVs. An augmented reality
(AR)-based slot reservation system can be designed to
help the drivers visualize the guidance information while
driving through an unsignalized intersection for
connected vehicles. Wang et al. (2020) showed how
guidance can be displayed using colored lanes on the
windshield. Other information that can be presented in
AR can include navigation arrows and bounding boxes for
the scene objects (Liu et al., 2021; Akash et al., 2020).
For route guidance, one can also superimpose a lead
vehicle to help guide the human driver on their route.
Rahmati et al. (2019) showed statistically significant
differences in human driver’s behavior when they follow

another human driver when compared to following an
AV. The human drivers tend to feel more comfortable
following the AV. Moreover, the simulation results
showed the importance of capturing human behavior in
mixed driving environments to improve road efficiency.

The objective of this work is to provide insights on
driver behaviors following a specific trajectory in mixed
autonomous and non-autonomous driving environment
and implications on the design of guidance information to
minimize crash risks. This objective was examined using
a driving simulator study designed to collect driving
trajectories while following a predefined route in a
suburban environment with mixed flows. The findings of
this study reveal significant factors that affect driver
performance in the car-following task and indicate the
necessity of dynamically adapting the driver assistance
systems to the changes in driver behaviors during the
interactions.

METHOD

A driving simulator study was conducted with drivers
from the Seattle, Washington area. The simulator study
was designed to capture driver behaviors while following
a virtual lead vehicle through unsignalized intersections
with autonomous and non-autonomous vehicles.

Participants

There were 32 participants (21 males and 11 females)
between the ages of 19 and 69 years (mean: 32 years old)
who completed the study; 2 additional participant
withdrew due to simulator sickness. The participants
were recruited and screened using an online
questionnaire. The screening tool was used to ensure that



participants had a valid driver’s license for more than two
years, drove at least once per week, and had not
participated in any driving simulator study in the past
six months. The compensation was $40 and each
participant provided their written consent. The study
was approved by the Institutional Review Board (IRB) at
the University of Washington.

Driving Simulator Study Design

A fixed-base National Advanced Driving Simulator
(NADS) miniSim was used for the driving study. The
simulator was equipped with three 48” main view
monitors in a Quarter Cab.

The driving simulator was designed to be a suburban
environment, with two lanes in each direction and a
dedicated left-turn lane for the intersection. The
environment contained simulated commercial buildings,
sidewalks, and restaurants and was always presented as
daytime with clear weather. A lead vehicle was also
included to guide the participant through various
unsignalized intersections.

Figure 1: Sample view from the driving simulator. The
driver is driving through a busy intersection following the
lead vehicle marked with the red box.

Four video recording units were used to capture the
driver’s behavior in real time. During the study, the
participants were instructed to follow a virtual lead
vehicle through five consecutive intersections (three going
straight intersections, one left turn intersection, and one
right turn intersection) while also maintaining a safe
distance between 50 to 200 feet. An example of the
driver’s view is shown in Figure 1. The driver was
instructed to follow the virtual lead vehicle without
stopping for any intersections during the entire drive. To
avoid any risk of collision during the experiment, all
other traffic were AVs equipped with collision avoidance
systems to ensure the safety of the participant’s vehicle.
Three within-subject factors were considered for the

study: traffic density, speed of the lead vehicle, and
operation orders of the left turn and right turn. In
summary, we had a 2 by 3 within subject design with
eight different scenarios. The order of the eight scenarios
was randomized for each participant to minimize any
ordering effect.

Study Procedure

Upon arrival to the lab, the participants were
screened again for eligibility to participate in the study.
After the final screening, consent forms that explained
the basic information and potential risks of the study
were given to the participants. Once written consent was
obtained, a driving history questionnaire and a
demographic questionnaire were completed. The main
driving part started with a tutorial session to let the
participants become familiar with the operations of the
driving simulator. After familiarization, the main study
started. There were eight drives, each lasting
approximately five minutes, for a total of 45 minutes in
the simulator. Once the simulator was complete, the
participants were asked to complete a wellness
questionnaire to make sure no potential physical and
mental harm had occurred during the study. In total, the
entire study took approximately one hour to complete.

Independent Variables

Traffic density (within subject). The participants
encountered high (with traffic) and low traffic (without
traffic) density at each intersection. This independent
variable promoted understanding of the effect of other
AVs on the participant’s behavior. The with-traffic
scenario is designed to have competing traffic within the
intersections. The trajectories of AVs and the
participant’s vehicle have overlap but no potential crash
risk. That said, as long as the driver is following the
given trajectories according to the instructions, there was
no risk of collision. The without-traffic scenario included
only the lead vehicle and the participant’s vehicle. We
expect the existence of the other AVs will affect driver
behaviors while following given trajectories, especially in
dense traffic conditions.

Speed of the lead vehicle (within subject). The speed
of the lead vehicle included two levels: 30 and 40 mph.
The two levels were chosen based on the standard speed
limit for a two-lane suburban environment. The speed of
the lead vehicle helped in understanding the variations in
driver behavior for following different speeds.

Operation orders (within subject). We used different
orders of turning operations to reduce the ordering effects
of left turns and right turns. The two levels included:

e Order 1: straight, left-turn, straight, right-turn,
straight



e Order 2: straight, right-turn, straight, left-turn,
straight

The two orders of the operations were randomized in
each participant’s study scenarios.

Dependent Variables

Trajectory deviation. Two dependent variables are
considered separately: trajectory deviations of left turns
and right turns. The trajectory deviation of the human
driver was computed as the area between the lead vehicle
trajectory and the participant trajectory. To estimate the
area between two curves, the trapezoidal rule was used to
approximate the definite integral of the area of deviation.

Data Analysis

Data visualization was used to examine potential
behaviors during the car following task. We then
conducted two models, both were 2 (traffic density) x 2
(speed limit) x 2 (operation order) fixed effects analysis
of variance (ANOVA). The outcome of interests were the
trajectory deviation for left turn and right turn
respectively. A Box-Cox transformation of trajectory
deviation was applied in order to satisfy the assumptions
of normality. The coefficients for each independent
variable were then estimated using fitted linear regression
models. Significance was assessed at o = 0.05.

All data processing, visualization and analysis is
performed on a macOS Monterey version 12.1 using
python 3.7 with statsmodels v0.13.1.

RESULTS

Data Visualization

The data visualization shows that participants
performed well when following the lead vehicle while
going straight. There is no significant deviation of the
participant trajectories from the lead vehicle trajectories.
However, a significant deviation was observed when
making left-turn and right-turns at intersections. Figure
2 shows the visualization of the turning trajectories of
both lead vehicles and participants. Figure 2a shows that
drivers tend to make narrower left turns than the lead
vehicles. However, for right turns, the drivers tend to
make wider turns than the trajectories given by the lead
vehicles from Figure 2b.

(a) Left turns. (b) Right turns.

Figure 2: Trajectories of the lead (red curve) and
participants’ vehicles (gray) for all tested conditions.

Since the significant deviations occur in right-turn
and left-turn intersections, the dependent variables,
trajectory deviations, are only calculated for the
right-turn and left-turn scenarios. The following analysis
is performed to understand the driver behaviors in
turning operations in the intersections.

Analysis of Variance (ANOVA)

We performed two ANOVAs on the Box-Cox
transformation of trajectory deviation of left turns and
right turns, respectively. For the left-turn scenario, the
ANOVA result confirms that the trajectory deviation was
significantly different across the different order of the
turning operations (F(1,163)=32.48, p < 0.001). Also,
the trajectory deviation of left turns was significantly
different across different speeds of the lead vehicle
(F(1,163)=5.59, p < 0.01). However, the effect of traffic
density on trajectory deviation of the left turns was not
significant (F(1,163)=1.66, p = 0.19).

In the right-turn scenario, the ANOVA showed that
the trajectory deviation was significantly different across
the different order of the turning operations (F(1,
163)=149.00, p < 0.001). However, the effect of traffic
density and the speed of the virtual lead vehicle on
trajectory deviation of the left turns was not significant
(F(1, 163)=0.37, p = 0.54 and F(1,163)=0.06, p=0.81,
respectively).

The coefficients for each independent variable were
then estimated using the linear regression model. The left
turn model (Table 1) confirmed that the lead vehicle
speed was significantly affected by the trajectory
deviation (p = 0.012), with higher speeds resulting in
larger deviations in trajectory. Interestingly, if
participants performed the left turn before the right turn
(order effect), a decrease in the trajectory deviation for
the left turns (p < 0.001) was observed.



Table 1: Linear regression model for left turn deviation as
the dependent variable.

coefficient ¢ P > |t
Intercept 0.32 11.967 <0.001
Traffic density (High) 0.03 1.29 0.198
Lead vehicle speed (40mph)  0.07 2.54 0.012
Operation orders (Left first) -0.03 -6.95 <0.001

For the right-turn scenario (Table 2), only the order
of the operations significantly affected the trajectory
deviations (p < 0.001). If the driver performs the left
turn before the right turn, it will increase the deviation in
right turns. All other independent variables were
statistically insignificant in predicting the deviations of
the right-turn trajectories.

Table 2: Linear regression model for right turn deviation
as the dependent variable.

coeflicient ¢ P > |t]
Intercept 0.07 2.75 0.007
Traffic density (High) -0.01 -0.32  0.746
Lead vehicle speed (40mph)  0.02 0.64  0.521
Operation orders (Left first) 0.30 12.87  <0.001
DISCUSSION

This study used a driving simulator to examine
driver behaviors in mixed autonomous and
non-autonomous flows under various traffic conditions in
unsignalized intersections. We focused on turning
operations because previous studies have shown that
significant variations are observed for these operations at
intersections (Dias et al., 2020; Alhajyaseen et al., 2013).
Therefore, successfully modeling the turning trajectories
and trajectory variations in the intersections are crucial
for AVs to react the maneuvers of human-driven vehicles
and plan their trajectories to minimize the risk of
collision accordingly.

There are various factors that can impact a human
drivers likelihood to deviate from a planned route. In this
study, we examined the impact of traffic density and
speed of lead vehicle. The results of the ANOVA and the
linear regression model showed that only the speed of the
lead vehicle had a significant effect on the trajectory
deviation of left turns. The participants tend to deviate
more from the given trajectories in left turns when the
lead vehicles were traveling at higher speeds. However,

right turn behaviors are not significantly affected by the
speeds of the virtual lead vehicles. The drivers tend to
slow down more during right turn operations, which
required a sharper turning radius. On the other hand,
the drivers can perform the left turns at a higher speed
and wider trajectories. This result indicates the guidance
system should account for the larger deviations from the
given left-turn trajectories if driving in high-speed
conditions.

The order of the turning operations also affected
deviations in the turning operations. The first turning
operation leads to a smaller deviation from the given
trajectory, and the second turning operation was
associated with a significantly larger deviation.
Therefore, the coordination system should adapt to the
changes in driver behaviors when planning the routes for
all traffic to avoid a potential collision.

It was surprising to observe that traffic density did
not have a significant effect on the trajectory deviations
for both left and right turns. Studies have shown that
traffic density can impact the ability to control vehicle
speed and situational awareness in manual driving
context (Heenan et al., 2014), and affect the take-over
times and quality in highly automated driving context
(Gold et al., 2016).

That said, the drivers were able to maintain high
performance in the car-following task even in dense traffic
with many AVs. The existence of other AVs will not
significantly affect the trajectory deviation in the turning
operations.

The findings of this study provide insights and
implications on designing guidance systems to assist
human drivers in communicating and collaborating with
other AVs in mixed traffic flows. The study focused on
unsignalized intersections, which are considered a critical
task for the safe driving of the AVs (Zyner et al., 2018).
For that reason, the vehicle’s operation at these
intersections are of great interest as the number of AVs
and vehicles with automated systems increases on the
road. Autonomous and automated vehicles can provide
higher throughput and lower wait time in the
intersections. However, systematically analyzing the
unsignalized intersections with mixed flows is a
challenging topic since it involves analyzing and
predicting drivers behavior and intentions in such
intersections (G. Li et al., 2019), control and optimization
of connected vehicles (Bian et al., 2019), and vehicle
interactions using game theory (N. Li et al., 2018).

There are some study limitations, which may impact
the generalizability of our findings. This study was
conducted during the peak of the pandemic, which
impacted subject recruitment. For that reason, the
number of males and females in our study was not
balanced.



The study does provide some insights on trajectory
behavior at unsignalized intersection and for mixed flow
traffic. This has implications for future systems that seek
to provide guidance for the human operator. Future
studies could also consider the possibility of augmenting
information on guidance from a virtual lead vehicle
displayed on the windshield. This could be beneficial in
situations where the driver’s visibility of the road is
impaired. There would need to be further research to
understand whether these augmented displays can safely
guide the human operator as well as the likelihood that
the human operator will adhere to the recommended
guidance.
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