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Abstraci—Vehicle automation seeks to enhance road safety and
improve the driving experience, However, a standard system does
not account tor variations in nsers and driving conditions. Cus-
tomizing vehicle antomation based on users’ preferences aims to
improve the nser experience and adoption of the technologies. This
study introduces a systematic paradigm that starts with naturalistic
driving data to identily the driving behaviors and stvles for a cus-
tomized automated lane change system. The driving behaviors are
first extracted using Multivariate Functional Principal Component
Analysis (MFPCA) with minimum prior expert knowledge. The
driving styles are identified by clustering the extracted driving
behaviors. An Inverse Reinforcement Learning (IRL) algorithm is
then used to train the automated lane change system from grouped
demonstrations of the identified driving styles to capture the pref-
erences of a group of drivers with a similar driving style. The
performance of the proposed customized automated lane change
system is compared to (1) a non-customized system trained on
all the sample trips, (2) customized systems built on expert-coded
reward Tonctions, and (3) customized systems trained using a
Generative Adversarial Imitation Learning ( GAIL) algorithm. The
results show that our method outperforms all the other systems with
respect to the prediction aceuracy of the lane change actions. Addi-
tionally, our method gains insights on the representative behaviors
of different driving styles to enable customization of automated
lane change systems.

Index Terms—Customized automated lane change systems,
driving styvle identification, inverse reinforcement learning,
multivariate functional principal component analysis.

I. INTRODUCTION

HE field of vehicle automation is evolving rapidly. Al-
though fully autonomous vehicles are not expected to be
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publicly available for several more years, most vehicles are
equipped with some degree of vehicle automation to assist
in the driving tasks. Vehicles with antomation technologies
promise significant societal benefits, including decreases in car
crashes, injuries and deaths, enhanced mobility, increased road
efficiency, and better utilization of parking and lands [1]. Even
though research has shown substantial potential benefits of
vehicle automation, the acceptance of these technologies is still
not apparent, partly due to the significant increase in the variety
of driving conditions and potential users.

MNon-customized vehicle automation with a moderate driving
style may be too conservative for more aggressive drivers and
too aggressive for more passive drivers [2]. Some systems are
customized to account for users’ preferences using an in-vehicle
interface [3], [4]. However, an effective interface design would
require extensive usability studies with multiple real-world sce-
narios. Another approach is not based on user testing but rather
on observing driving styles based on existing data to capture
driver’s behavior [5].

The purpose of this study is to demonstrate the ability to
customize lane change systems based on namralistic data made
available to the study team from the University of Michigan
Transportation Research Instiute (UMTRI). The system is tar-
geted toward a Society of Automotive Engineers (SAE) Level 2
system. The data provide insights on various driving styles for
multiple drivers; this is an advantage over other models [2], [6]
that focus only on one driver.

The framework consists of three components (see Fig. 1):
a driving style identification method using Multivariate Func-
tional Principal Component Analysis (MFPCA) and clustering
analysis to generate grouped demonstrations for each driving
style; automated lane change systems trained with an Inverse
Reinforcement Learning (IRL) method using the previously
identified driving style demonstrations; and testing and vali-
dation of the proposed framework. We support the existence
of the resulting driving styles with literature from behavioral
psychology, and the interpretability of our driving style identifi-
cation method ensures that the grouped demonstrations capiure
the representative behaviors of each driving style. In addition,
the explicit forms of the reward functions extracted from the
IR1. method provide insights into the resulting behaviors of the
customized automated lane change systems. The testing and
validation highlight the improved action prediction performance
of the proposed framework. In summary, the contributions of this
work are:
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Fig, 1. The overall framework of the proposed method.

1) extraction of driving behaviors from naturalistic data with-
out expert knowledge:

2) identification of driving styles:

3) customization of automated lane change sysltems using
driving styles; and

4) improved prediction accuracy of lane change actions for
unobserved driving segments.

II. RELATED WORK

Customizing a system based on the operator’s capabilities and
limitations is a data-driven approach. The premise of successful
cusiomization is identifying accuraie and appropriate driving
styles with representative driving behaviors using naturalistic
driving data. In this section, we provide an extensive literature
review of driving style identification. We then review the meth-
ods for customized automated lane change systems. The gaps
observed in the literature are discussed in the context of the study
motivation,

A. Driving Style Identification

Driving style is generally defined as the habitual ways drivers
choose to drive [T]. It is crucial to accurately identify driving
styles to help better design customized vehicle automation.
However, driving style refers to all the activities performed by
the driver, which contains many aspects. To date, a uniform
method for quantifying or identifying driving styles has not
been identified. However, qualitative definitions are available
for some driving styles. This includes the actions that fall under
the category of risky driving defined by the National High-
way Traffic Safety Administration (NHTSA): drunk driving,
distracted driving, speeding, frequent brakes, tailgating, efc.
(https:/fwww.nhtsa.gov/risky-driving). Some qualitative criteria
can be transformed into quantitative measurements using contin-
uous sensory data such as speed and distances to the surrounding
vehicles. The speed profile provides information on the fluctu-
ations and peaks related to aggressive or conservative driving
styles [8]. The distance to the surrounding vehicles provides
the behavior related to tailgating and abrupt lane changes. As
long as these patterns are extracted in a reasonable manner, we
can identify an etfective driving style. A survey by Martinez
el al. [9] shows the typical process of recognizing meaningful

driving styles. A figure summarizing the current driving style
identification methods is presented in Section I of the supple-
mentary material.

Driving behaviors are typically captured using continuous
sensory data from the vehicles. For example, speed profiles are
collected over time and can, therefore, be examined using time
series analysis methods [10]-[13]. Speed profiles can also be
examined using Functional Data Analysis (FDA). As compared
to time series analysis methods, FDA does not require the data
points to be evenly spaced and can model both temporal and
spatial trends present in the data. In the past, FDA was attempted
by [14] to examing the drivers’ speed profiles in naturalistic
driving data collected on rural two-lane curves. The results
provide insights on driver behaviors for the individual road
segments of different curvatures.

Once driving behaviors are successfully identified as con-
structed features, we can use supervised or unsupervised learn-
ing to distinguish the different driving styles. Supervised learn-
ing requires labeling the observations in the training dataset in
advance [15]-[19]. Since naturalistic driving data is fairly noisy,
the labeling process would be inaccurate and biased by expert
knowledge and personal judgments about the driving styles. The
subjective labels can lead to underfitting or overfitting certain
driving styles. Unsupervised learning, on the other hand, can
assign each observation to a cluster based on the measured
distances among the observations [20]-[23]. Although it does
not require extra effort to label the data, it might generate
latent driving styles that were not previously known. For this
reason, some manual identification or naming convention will
be needed after the groups (or styles) are determined. There-
tore, an ideal driving style identification method will need to
include (1) automated feature extraction without complicated
feature engineering and (2) selection using prior assumplions
and interpretable clusters with minimum expert knowledge.

B. Customization in Automated Lane Change Systems

Personalization and customization have similar meanings
and are sometimes used interchangeably. In this paper, cus-
tomization refers to the adaptation of automation technologies
to driving styles, whereas personalization captures the detailed
individual preferences in driving tasks. Hence, we adopt the
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former term in our study but review the literature related to both
in terms of vehicle antomation.

The primary approach for designing a customized vehicle
automation system is leamning from demonstrations [5]. Here,
the demonstrations refer to the operation data collected from
the driving tasks. The widely adopted method is to observe
human driving tasks and learn the behaviors using Inverse Rein-
forcement Learning (IRL) [24] or Imitation Learning (IL) [25].
[26]. Multiple studies adopted variants of these methods for
personalized vehicle automation [27]-[30].

For automated lane change systems, Butakov ef al. [2] devel-
oped a method for modeling individual driver behaviors during
lane changes. They used a sinusoidal lane change kinematic
maodel and a Gaussian Mixture Model (GMM) to adjust the pa-
rameters to fit individual driving styles. However, the framework
was validated on only three participants with 717 lane changes.
The relatively high number of lane change behaviors for each
participant may be inefficient when applied to new users, and the
limited number of participants can compromise the evaluation
of the proposed method. In another study, Vallon el al [6]
proposed a data-driven classifier to predict the moment a lane
change initiation occurs while also considering the preferences
of the driver. This decision logic was then integrated into a model
predictive control framework for lane change control. However,
the limited number of participanis impacts the validity of the
model.

In another study, Zhu ef al. [31] proposed a Personalized Lane-
Change Waming System based on three components: surround-
ing vehicle information, the predicted safety distance based on
the driving style, and a lane change feasibility judgment system.
However, these modules were rule-based decision-making sys-
tems that did not learn or adapt to changes in the driver behaviors.
Another recent work constructed a customized lane-change as-
sistance system using deep learning and spatial-temporal mod-
eling [8]. The results on real-world driving data showed that
the lane-change model is capable of learning latent features and
achieved better performance than the current system. However,
stacking three sophisticated black-box algorithms weakened the
interpretability of the model, and the reasoning process for
the action became unclear to the user. Iln a very recent study,
Huang et al. [3] identified the user's preferences using the fuzzy
linguistic preference relation method, including measurements
on driving safety, ride comfort, vehicle stability. However, the
preferences need to be collected interactively with the passen-
gers using a touch screen rather than passively identified from
naturalistic driving data.

M. METHODS

Customized antomated lane change systems are built using
a two-step method. The first step identifies the driving styles
with representative behaviors from naturalistic driving data by
clustering the driving trips into different groups. The second step
customizes the automated lane change systems to the identified
driving styles by applying the IRL method to the clustered trips
{demonstrations). The IRL algorithm leams the latent prefer-
ences and objectives in the form of reward functions from the
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demonstrations. The reward functions encode the underlying in-
tents in the lane change tasks, which ensures better performance
than directly imitating the lane change behaviors. To achieve
task-level decision making for lane changes using IRL, we need
sequential lane change demonstrations for each driving style.
Therefore, it is essential to identify the appropriate driving styles
at the trip-level.

A. Driving Style Identification Method

The current gaps in driving style identification (as discussed
in Section I1-A) are addressed using MFPCA and cluster anal-
ysis. Naturalistic driving data is modeled as functional data to
characterize the driver’s behavior at the trip level. Such model-
ing can be used to identify the underlying patterns behind the
driver behaviors and requires less prior knowledge and effort to
calculate the characteristic features. These features are then used
as inputs to identify the most relevant clusters for all the trips that
lead to improved interpretability of the clustered driving styles.
Finally, each cluster is labeled with an appropriate driving style
based on similar behaviors,

1) Multivariate Functional Principal Component Analysis:
The namralistic driving data are collected continuously over
time. Functional Data Analysis (FDA) is a collection of effective
methods for analyzing functional data. It considers each indi-
vidual datum as a function and does not impose any particular
assumptions on the independence of the different values within
a functional datum [32]. It aims to detect the important patierns
and explain the reasons behind the variations in the data [33].
These characteristics make FDA an appropriate method o ex-
tract features from naturalistic driving data.

Specifically, we use the Basis Expansion model to represent
the functional data:

K

z(t) =Y esei(t) = B(t) e

i=1

0y

where x(t) is a single measurement in a continuum ¢, $({) is
a basis system, and ¢ is the coefficient vector. Commonly-used
basis systems include Fourier, B-spline, and Polynomial. How-
ever, they require us to define parameters, such as knots and
orders, in advance. To address this issue, Functional Principal
Component Analysis (FPCA) represents functional data in the
most parsimonious way by using the eigenfunction basis to
explain most of the variation. As the name suggests, FPCA is
a variation of the traditional PCA in a functional basis system
instead of a coordinate system.

An extension of univariate FPCA to the multivariate case is
used to examine multiple dimensions of the sensory data (i.e.,
speed and relative locations of the surrounding vehicles). Happ
and Greven [34] provide an algorithm to estimate the multi-
variate Principal Components (PCs) based on their univariate
counterparts using the following steps.

1) Calculate the PC functions and scores using the
Karhunen—Loéve decomposition on the covariance sur-
face.

2) Estimate the joint covariance matrix by combining all the
PC scores into one large matrix.
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3) Find the eigenvectors and eigenvalues of the estimated

joint covariance matrix.

4y Calculate the estimated multivariate PC functions and

scores by adjusting the univariate PC functions and scores
from step 1 using the eigenvectors and eigenvalues esti-
mated in step 3.

2) Clustering Analysis: A k-means clustering algorithm is
applied to the scores of the functional PCs. The k-means al-
gorithm computes the centroid of each cluster iteratively and
updates the assignment of each observation. While converging
to stable assignments, B-means finds the clusters thal minimize
the within-cluster variances. There have been previous attempts
to implement k-means clustering on functional PCs scores, and
results confirm the effectiveness of the method [35]. Driving
style identification is achieved once each observation is assigned
to an appropriate cluster.

B. Customized Automated Lane Change System

The driving style identification step clusters the driving trips
into different driving styles. In the second step, we leverage the
grouped driving demonstrations generated by the previous step
and adapt a data-driven method to customize the automated lane
change systems. Each customized system is trained separately
trom the driving demonstrations.

The vehicle automation system can be regarded as an intel-
ligent agent that can be trained using Reinforcement Learning
(RL). RL provides the learning ability to make sequential deci-
sions in order to improve the agent’s experience through interac-
tions with its environment instead of explicit programming. This
is achieved by maximizing the expected cumulative reward of the
agent’s actions, where the environment is typically modeled as
a Markov Decision Process (MDP). An MDP is defined by four
components: aset of states S, a set of actions A, a reward R, and a
state transition probability P. The state is a collection of variables
that characterize the system (agent and its environment) at any
point in time, and the action is the decision made by the agent to
transition from one state to the next to maximize the cumulative
reward over a given time horizon. Here, the state is characterized
by the variables that affect lane change decisions such as the
speed of the ego car and its distance to the surrounding vehicles.

RL has been shown to be immensely successful in a wide
variety of applications. However, unlike most other applications,
no specific reward signals are directly generated from the driving
tasks in our study. We therefore used an Inverse Reinforcement
learning (IRL) algorithm to extract the specific form of the
reward function.

The TRL algorithm can enhance the interpretability of the
policy and behaviors, but can also lead to degeneracy and multi-
optimality. In other words, it is not easy to choose the optimal
reward function without some premise. To address this issue, we
consider the Maximum Entropy Inverse Reinforcement learning
iMaxEnt IRL) [36]. There are a few definitions introduced by
the MaxEnt IRL algorithm:

o (= {(s1,m),(82,0a2), (83,a3),...}isademonstrated tra-

jectory, where s; and a; are the state and action at time
instant i, respectively.
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* < R¥ is the reward function parameters. The reward
function is modeled as r(s) = f(s, #).
* P(() is the probability of observing the trajectory (.
* P(s) is the probability of visiting the state s, also called
state visitation frequency.
* () is the reward of a trajectory ¢.
The probability of a trajectory demonstrated by the expert (in
our case, the human driver) has (o be exponentially greater for
larger rewards as compared to smaller rewards. Mathematically,

(2)

The MaxEnt IRL algorithm solves for optimal #* by maximizing
the likelihood of the demonstrated trajectories,

P{{) x ey

g = ﬂ'rgm;?‘x‘[‘m]
1
N m“'é‘xﬁg R(Cp) — lﬁggﬁﬁfﬂ_ 3)
n

Here, M is the number of demonstrated trajectories, {p is the
observed trajectory from demonstration, and { is any trajectory
that can be observed from the task. Since the above objective
function is convex, an optimal solution is obtained using any
gradient descent based method.

The MaxEnt IRL algorithm handles expert suboptimality
and stochasticity by operating on the distribution over possible
trajectories. The reward function is estimated using any form
of function approximation. In our work, the driving task is
complex and nonlinear functions are needed to approximale
the reward. Hence, we adopt Maximum Entropy Deep Inverse
Reinforcement Learning {DeeplRL) [37], which uses a neural
network to approximate the reward function. Since the gradients
are computed efficiently using back-propagation for neural net-
works, the optimal reward function parameter #* is obtained by
gradient descent-based algorithms.

IV, NaTURATLISTIC DRIVING DATA

The dataset used for this study comes from the UMTRI
Safety Pilot Model Deployment {SPMD) naturalistic driving
data [38]. The data collection period was from August 2012
to June 2017. This dataset is a part of the Connected Vehicle
Safety Pilot Program, a research initiative that features real-
world implementation of connected vehicle safety technologies,
applications, and systems using everyday drivers. SPMD data
includes approximately 3000 vehicles (some with more than one
driver) equipped with vehicle-to-vehicle (V2V) communication
in real-world conditions at a test site with diverse traffic [38].

Fig. 2 shows the layout of the test site and the location of the
roadside equipment used in data collection. There were five data
acquisition systems that worked cooperatively to record four
sets of data: contextual (e.g., weather, lighting), driving (from a
vehicle’s data acquisition system (DAS)), basic safety messages
(BSM), and data from roadside equipment (R5E). The SPMD
data contains more than four terabytes of raw data. We used the
publicly available data, which covered a 7-month period from
October 2012 to April 2013 (https://catalog.data.gov/sv/dataset/
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Fig. 2. Safety pilot model deployment site plan in Ann Arbor, Michigan.
Maodified from [38]. Note: Red circles denote the approximate starting (17 and
ending (2) locations of the trips for the highway segment of interest (red solid
line).

satety-pilot-model-deployment-data). This dataset does not in-
clude any personal identifiers and is exempt from additional TRB
review. The original IRB process is described in [38].

The road environment varied from low-speed urban roads to
high-speed freeways. For our analysis, a segment of the freeway
driving route was selected. It starts on location 1 and ends on
location 2 (shown in red in Fig. 2). The trips in the counter-
clockwise direction were also selected for the same freeway
segment, which starts on location 2 and ends on location 1. The
selected route is approximately 7 kilometers with 3.5 minutes of
travel time. Note that the selected segment has a junction from
LU.S. Route 23 to U.5. Route 14 in the elbow transition part.
Specifically, we filtered the trips based on the GPS coordinates
from the DAS to select the road segments of interest. We then
extracted four variables for analysis: (1) speed of the ego car, (2)
distance to the vehicle in front, and (3) average distances to the
vehicles on the left and (4) the right. Previous studies have shown
that these features reflect the driving behaviors and significantly
affect the lane change decisions [8], [39]. As a result, a total of
105 trips, including 46 in the clockwise direction and 5% in the
counterclockwise direction, were selected for further analysis.

V. REsuLTS

The experiments were carried out on a MAC Big Sur version
1.6 Operating System using R programming language version
3.6.1 and Python version 2.7. A 2.6 GHz Intel Core i7 quad-
core processor with 16 GB 2133 MHz LPDDR3 RAM was
used. R packages mipca [40] and other supportive packages
were employed for implementing MFPCA. Python packages
Theano [41] and numpy [42] were used for implementing IRL
algorithm.

A. Driving Style Identification

Four variables from the naturalistic driving data were selected
to identify the driving styles. The speed profiles provided data

9265

alunclicn
E - m *{:.u,«\ —
| ™

= "ﬁ. .

gt

o oo o0 Moo 4o 500 0000

Distance Dviven [m)
Fig. 3. The effect of functional PC 2 on the average speed profile. FPC 2

explains 21.1% of the variability in the clockwise direction. Note: The solid
line denotes the average driving profile of all the wips (coefficient=32.2). A
coefficient grester than 32.2 will move the speed profile closer to the “+7 line;
otherwise, the profile is closer to the == line. More specifically, the “+” and
=" lines are generated by adding or subtracting two standard deviation of the
functional PC from the average speed profile, respectively.

on speeding, and changes in speed over time (i.e., accelera-
tion/deceleration). The distances to the surrounding vehicles
were used to identify aggressive driving behaviors (e.g., tail-
gating and abrupt lane changes). We then applied the MFPCA
method to extract the driving behaviors.

For the clockwise direction, the top four FPCs are able to
explain 92.3% of the total variability. The distances to the
surrounding vehicles were missing in many observations. Hence,
most of the variability came from the speed profile, and only a
small amount was from the distance to the vehicles in front.
The functional PC 2 is shown in Fig. 3. The corresponding
coefficient of the average speed profile for this functional PC
is 32.2. Theretore, a coefficient greater than 32.2 indicates that
the trip has a lower than average speed and faster deceleration
than average trips; otherwise, the trip has the opposite behavior.
Similarly, other driving behaviors can be revealed for the other
functional PCs:

1) Functional PC 1: Variability is observed before entering
the junction segment. A coefficient larger than the average
speed profile for FPC1 indicates that the driver tends to
have a greater than average speed and faster than average
deceleration before entering the junction.

2) Functional PC 2: Variability is observed at the long open
road after the junction. A coefficient larger than the aver-
age speed profile for FPC2 (in this case 32.2) corresponds
to lower than average speed and larger than average dis-
tance to the vehicle in front.

3) Functional PC 3: Variability is spotted when entering the
freeway. A coefficient larger than the average speed profile
for FPC3 means the driver has a slower than average speed
and prefers larger than average distance to the vehicle in
front.

4) Functional PC 4: Variability is observed before entering
the junction segment. A coefficient larger than the average
speed profile for FPC4 denotes greater speeding behavior
on the open road before entering the junction segment.

We also applied k-means clustering on the extracted MEF-
PCA scores. The silhouette analysis showed that three clusters
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Fig. 4. Three clusters for the clockwise direction: each cluster is depicted by
its mean speed and the corresponding 95% confidence interval.

provided the largest average silhouette coefficient (0.56) among
clusters varying from two to six. This is consistent with studies
from traffic psychology [43], [44] that show three broad cate-
gories of driving styles: aggressive, neutral, and conservative.

We visualized the three resulting clusters using the speed
profile in Fig. 4 since it encodes the most variability in the
data. The clusters are labeled as aggressive trips, neutral trips,
and conservative trips. The aggressive trips tend to have higher
speeds, faster accelerations, and a small distance to the front
vehicles on the open road after and in the junction segments.
The conservative trips demonstrate the opposite behaviors, and
the neutral trips lie between the two extremes.

The same analysis steps were conducted for the counterclock-
wise direction. The top four functional PCs explained 86.1% of
the total variability. The same issue with missing values in the
distances to the surrounding vehicles was observed. The top four
FPCs represented the following behaviors:

1) Functional PC 1: Variahility is observed when leaving
the highway. A coefficient larger than the average speed
profile for FPC1 indicates that the driver tends to have a
relatively high speed when leaving the highway.

2) Functional PC 2: Variability is observed before the junc-
tion segment. A coefficient larger than the average speed
profile for FPC2 denotes fast speed, rapid deceleration,
and small distance to the vehicle in front.

3) Functional PC 3: Variability is spotted on the long open
road after the junction segment. A coefficient larger than
the average speed profile for FPC3 indicates speeding
behavior in the long open road after the junction.

4) Functional PC 4: Variability is spotted in the open road
after the junction. A coefficient larger than the average
speed profile for FPC4 indicates that the driver is braking
first after the junction, but accelerating fast thereafter.
Otherwise, the driver accelerates fast at first, but then slows
down.

Fig. 5 summarizes the speed profiles of the three clusters iden-
tified by the k-means clustering method for the counterclockwise
direction trips. Since the conservative group contains a small
number of trips, its confidence intervals are wider than the other
two groups.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 9, SEFTEMBER 2022
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In summary, out of 105 total trips, 27 are classified as ag-
gressive, 56 as neutral, and 22 as conservative. These behaviors,
as revealed by the spatial and temporal characteristics of the
driving trips using MFPCA, match the qualitative description
of the corresponding driving styles discussed in Section 11-A.
Previous studies have also shown that these factors significantly
impact lane change decision making [39], [45]. Therefore, the
results confirm that our driving style identification method is
able to extract representative driver behaviors, and clustering
analysis successfully separates the different driving styles with
minimal feature engineering and prior knowledge about the
driving styles.

B. Customized Automated Lane Change Systems

We customized the automated lane change systems using
the TRL method, wherein three separate systems were trained
on the clusters generated by the driving style identification
method. Specifically, three reward functions were learned from
the clustered demonstrations to capture the preferences of the
different driving styles. Accordingly, the lane change systems
followed the optimal (stochastic) policies corresponding to the
reward functions to adapt or customize to the different driving
styles.

The lane change system is considered one of the most chal-
lenging vehicle automation problems, since it involves both
longitudinal and lateral vehicle control, and requires constant
monitoring of the surroundings. For this reason, we selected the
same four feamres for the IRL method: the speed of the ego
vehicle, the distance to the lead vehicle, the average distance to
the right vehicles, and the average distance to the left vehicles.

The IR1L. algorithm is computationally expensive in recover-
ing reward functions and stochastic policies. The surrounding
vehicle information has a high percentage of missing values
due to noisy and impertect naturalistic driving data. Therefore,
we discretize the continuous stale space into a discrele stale
space. Each continuous variable is discretized into four levels
based on the first, second, and third quantile values along with an
additional level to encode either missing information or no car
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TABLET
[MSCRETIZATION OF THE CONTINUOUS VARIABLES: SPEED, FORWARD
[MSTANCE, LEFT DISTANCE, AND RIGHT DNSTANCE

Var. Mames Speed Forward Dhst.  Lef Dist Right Dist.
Slow No Car Mo Info Mo Info
_ Medium WVery Small Yery Small  Very Small
List of Levels Fast Sma]_] Sma.]_] Sma]_]
Very Fast Medium Medium Medinm
Large Large Large

Narte; The *Mo Info” level comesponds (oo situation with no car or no lane information,

in a given direction. The detailed numerical intervals for each
level are provided in Table VIIT of the supplementary material.
As a result, the state space contains 500 (4 = 5 x 5 x 5) distinct
states and 19(4 + 5 + 5 + 5) feature variables (see Table I). The
action space comprises three actions: staying in the current lane,
changing to the right lane, or changing to the left lane.

The transition probability is obtained by taking the maxirmum
likelihood estimate of the transition matrix [46]. However, not
all states are guaranteed to be observed in the demonstrated
trajectories. To account states with no observations, we adopt the
common e-greedy (e = 0.1) algorithm to get a trade-off between
exploration and exploitation. The experiments are carried out
using a Feed-forward Neural Network (FNN) with two hidden
layers of 30 hidden units in each layer. We select the discount
factor as 0.9, and the learning rate as (0.01. The reward values are
normalized to a continuous scale between — 1 and 1. The results
are presented for the recovered reward functions and stochastic
policies. The optimal policies are recovered using approximate
value iteration in each update of the reward function.

Summary statistics of the reward functions for four represen-
tative driving scenarios are shown in Table I1. We selected these
scenarios to demonstrate the interpretability and effectiveness of
the IRL method. In the first three scenarios, we fix the ego vehicle
speed and the distance to the forward vehicle, and show the
summary statistics as a result of varying the other two variables
{average distance to the left vehicles and right vehicles). When
the ego vehicle is slow and there is no lead vehicle, the aggressive
drivers have the least number of non-negative reward values and
the conservative drivers have the most number of such values.
The reward values for the neutral drivers lie in between those for
the aggressive and conservative drivers. Moreover, the conserva-
tive drivers have the largest minimum, median, and mean reward
values, which means that they are more comfortable staying in
this scenario as compared to the other two driving groups.

On the other hand, the scenario with fast ego vehicle speed and
very small forward distance is preterred by the aggressive driver
group. Likewise, the scenario with the medium ego vehicle speed
and large forward distance is preferred by the neutral driver
group. We also fixed the average distance to the right vehicles
and left vehicles as medium, and examined the reward values
of the other two variables. In this scenario, the neatral drivers
have the largest minimum, median, mean, and maximum reward
values. Thus, we observe that the optimal policies obtained by
the learned reward function facilitate model interpretability.

The recovered policies are used to validate the proposed IRL
method by comparing the behaviors associated with the ditferent
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driving styles. Tables 111, IV, V present the stochastic policy cal-
culated for aggressive drivers, neutral drivers, and conservative
drivers based on the recovered reward functions, respectively.
The results show that the aggressive drivers prefer to switch
lanes in more than half of the scenarios. The optimal actions
would still maximize safety by choosing actions with the highest
probabilities. For example, although the probability of changing
to left or right lanes in the small distance scenarios is 0.286 for
agpressive drivers (see Table I11), the optimal action is to stay in
the current lane since it has the highest probability of 0.429,
Alternatively, the conservative drivers are quile comfortable
traveling at a low speed in the current lane even when there
is no lead vehicle. Finally, the neutral drivers prefer to stay in
the current lane for most scenarios, but are willing to switch to
other lanes in a few cases. To better demonstrate the performance
of the recovered optimal policies, additional policy tables are
provided for a second scenario of fast driving speed and a very
small distance to the lead vehicle in the supplementary material.

C. Performance Evaluation

The performance of the proposed customized automated lane
change system is compared to (1) a non-customized system
trained on all the sample trips, (2) customized systems built
on expert-coded reward functions, and (3) customized sys-
tems trained using a Generative Adversarial Imitation Learning
(GAIL) algorithm.

The non-customized system is expected to have an average
driving style across all the sample trips. The optimal policy is
trained using the same IRL. method on all the trips. Specifically,
we design three expert-coded reward functions, one for each
driving style group, using an approach similar to An erf al. [47]
and Hoel er al. [48]. Their primary approach is to balance the
efficiency and safety of automated lane change systems. To
maximize safety, the reward function is purposely coded to give
a large negative reward if the vehicle lands in a collision or
near-collision state. We define the near-collision state as being
very close to the surrounding vehicles and use similar reward
values (i.e., —35, —10, and —20 for aggressive, neutral, and con-
servative drivers, respectively). An additional negative reward
is designated if the system tries to choose an action that results
in a near-collision state (i.e., —1.5, —3, and —6, respectively).
In terms of efficiency, a positive reward is given such that it is
proportional to either the driving distance or the average speed
between two consecutive actions. Since we discretize speed into
4 levels and the data is recorded at 10 Hz, we assign the same
positive reward for any particular speed level in each of three
driving styles, i.e., 1, 3, 5 and 7 for slow, medium, fast and very
fast speed, respectively.

Compared to the learned reward function using IRL., the
experi-coded reward depends much less on the state levels. Tt
assigns the same reward value for every near-collision state.
However, the learned reward function distingnishes between the
different near-collision states. For instance, if the distance from
the vehicle on the right is very small, but the distance from the
vehicle on the left is large, the reward value is positive, whereas
the expert-coded reward function generates negative values.
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TABLE T
SUMMARY STATISTICS OF THE REWARD VALUES IN FOUR EXAMPLE SCENARIOS

Scenarios (variable: level)  Driving Style | Non-negative portion*  Min Median  Mean Max sD
Speed: Slow Aggressive 12725 0418 -0004 0043 1 0.273
Ppe m_d Dist.: Mo Car MNeutral 15125 0,059 0074 D048 0308 0255
i Conservative 21725 0014 0210 285 1 0.318
Soeed: Fast Agpressive #25 -I00T 0037 -hid 0403 00l
Fpe m-d Dist.: Very Small Meutral TL5 0260 0046 A48 0158 OLDBOD
B Conservative 525 0343 0074 Ah120 0293 0472
] i Agpressive 11735 0087 0018 0044 053 0165
ppeed: M Neutral 18025 0279 0069 0065 0357 0128
-+ Large Conservative 1025 -h489 0079 07T 0320 0.203
L . Agpressive e D137 -0.048 000 0IZ8T 0114
Rﬁfﬁéi-%ﬁ Neutral 8116 0008 -0.048 0009 0326 0109
' Conservative e 0324 -0.146 129 0180 0118

Note: *Mon-negative values indicate that the driver is more likely to stay in the scenario. Bold represents the larpest value for a particular scenario
and driving style.
TABLE 1Ml TABLE WV
STOCHASTIC POLICY OF THE AGGRESSIVE DRIVERS FOR SLOW DRIVING STOCHASTIC POLICY OF THE CONSERVATIVE DRIVERS FOR SLOW DRIVING
WITHOUT ANY LEAD CAR WITHOUT ANY LEAD CAR

Dist oLk Vohioks | Diet 4o Right Vabicks PeokahiBy of Acton

in Curreel Lacs  Changs b Aght Lars T ol Lafl L

T R LT e —— L. —
inGurent Lo © Lo Grargs to Lt Lane

B infn B info Q4TE 0.5 ot P ik P vk 0B} 03z undd
Mo infn ey amral LAk 0424 naz P ik ‘aty aeal 0428 LELL omr
Mo info Sl 2433 0.8 a3 Pl ik Smal 0.5 oz o
B infn Mebesd i 026 0288 ‘0452 P vl P [E-5] 0245 0233
Mo infn o286 0,718 nnia Ma ik Largn 01584 LER) kel
ey m el Mo infp =T 0. 04 ‘Wary Bral Ha ke [ECH nns ma
Wary 8 mall ey 8 mall 428 0285 0 256 ‘ary smal ‘ary smal 0881 075 DLISE
ary armal St a8 0,383 0352 Wary amal Smal 0.508 0247 amr
ery srrad M aEs 0,171 nara iy wmal Msdum [E"TH [E]] [
ery smal Lorge 133 0433 nax ory snsel L 0509 025 035
= o nfy 0273 08y 0097 Smal M ik 0473 0014 o
Gmmt ery amal G480 [ [ Simal ary amal (3 [T anz
Sl Sl 047 0265 0266 Smal Smal 0.7 0924 oi2e
Sl Wb i Lkl 0.527 0327 Srmall Pbdiimi 0.70% 048 Q146
Hmal Lorgs 036 0253 oan Smal Largn 0.7 noazn a1
bl i Mo info 03s 0288 03 Pobrchiim P ik a.TE 0.8 il -]
= ery amal a%s 0518 eI [ Vary amal 0415 02 [T
Ao wm L=l L2k 0.ors nom Pacham Smal 0403 0 2 i)
Mo i Mobud i AT 14 038 Pebrchiim M QABT 0w Lkl
[ Large 042 [T [ [ Lasg [ 0153 0153
Large mo nin [T [ [P Large Ho ik 0E7 04z [TH
Lage ery amal 485 0357 0357 Largm Vary amal 0405 [T ams
Loge Sl nan naz 02 Largn smal [ [(F1F] [FiF]
Lorga Mesdium [T 0355 0255 Largo Wadum 0ET7 0962 [
Aarge Large 4118 0,085 o Lrgm Largm 0888 nnsa ekt
Note: Blue shade denotes the optimal action. Note: Bloe shade denotes the optimal action.
TABLE IV
STOCHASTIC FGLTC"I’%FTI-IE NEUTE.&I!_EE;J\CEiﬁFCmSU]W DRIVING I..-ﬂﬁ“}'. we implemenl.ed a GA[L algonthm b lea.lTl ﬂ]ﬂ DP_
timal policies from the demonstrated driving styles. The GAIL
algorithm used in this study was adopted by Ho and Ermon [25
Dot 1oLah Varkcoe. Dint. 1 Fight Vaniios ———— Pty gas E:j < be equi F] the M E IRL algorith L r]’
I T — T o and was shown to equiva e!ﬂ tothe Max nT., algorithm for
o ik Vary smal 0.400 [ET] 0.2 a specific form of the discriminator loss function [49]. However,
e ks Srriall 0798 LR ] 043 - . . .. s .
o s Medum DT oz pes  this GAIL algorithm is a form of imitation learning that learns
e e e e e L#  the optimal policies directly from the demonstrations without
e L :; — - any specific form of the reward functions.
U_ﬂ!ll'l'll - . -
ery amal Merhum 0147 1) 1230 For brevity, we only present the stochastic policy of the con-
Q.57 A s N .
P - — . e servative drivers in Table V1, where we fix the ego car speed to be
e iy sl o = 2= slow and do not have any lead vehicle. A significant difference
Sl Mechiim: [E7] o343 1267 is observed between the optimal policies for the expert-coded
Ermall Laorge 378 0 add :ATT . .
vasm Mo i nsr 143 n and IRL methods. Table V suggests that the optimal policy for
— sy gt . it 2. the IRL method is to always stay in the current lane. However,
C Mechum T et St the optimal policy for the expert-coded reward function shows
Mesom Lirga [T [ 0.141 . .
Lange Ho nase o 1141 some unexpected behaviors. For example, it tries to change to the
Largn Wary small oz i) ol " . 1
Larga St .50 o) 0z right lane even though there is already a very small distance to the
Lange Medum arin [T 141 : : ses
= T e e i vehicles on the right. Additionally, there are several states that

Note: Blue shade denotes the optimal action.

have an equal probability of changing to the right and left lanes.
It suggests the agent is not learning useful information from the
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TABLE V1
STOCHASTIC POLICY OF THE CONSERVATIVE DRIVERS USING THE
EXPERT-CODED REWARD FUNCTION FOR SLOW DRIVING
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TABLE VI
PREDICTION ACCURACY FOR UNORSERVED TRIPS

WITHOUT ANY LEAD CaR e Prediction Ac %)
ods appressive  neutral | conservative
Proukity of Acticn Non—customized .54 6533 60.20
Dist o Left vishicles  Diat 4o Right Yehicies. -
- SIEY I Cument Lane | Chargs 10 Aight Lice: | Ghange i Lish L ane Customized using expeni-coded rewards 52 aLAT 744
::x ::‘:M “ﬂu T - Customnized using GAIL w075 6842 0T
Mo it : 2 o Customized using 1RL [oar method) REEE 052 8540
Mo i Modium 0.05 0.05 ] . o . .
Mo i Larga 1 o o Note: The customized systems are tested for the cornesponding trips with the same driving
Wery smal Pl ik -] 0.8 0.8 FI}'IC
Very wmal ey amal [ [ [E]
Very mmal Gemal [ [ [E]
ey sl el cliam <] 0.5 0.5
falry smet e . o %2 In summary, our proposed method is capable of accurately pre-
Sl Vary smad o 1 o dicting the driver actions for all the different driving styles, with
Sl Sermll 1 L] 1] s s s .
— Frev— ; g o best predictive power for the conservative drivers and largest
Small Large 1 [] [} ; ; :
fue oy e — = improvement for the aggressive drivers.
M ium iy smal [=] 1 4]
b iy Sevaall i L] 1]
[T Mo [Ty 0188 0488 V1. CONCLUSION
Mestium Large 1 [} [}
Larga P i 1 L] L] 3 " o P H
— Ve o : o o In th1s paper, we propose a two-step meﬂ:md for building
Large Smal haee a0 s customized automated lane change systems directly from nat-
Largs flediam P e
[Larpe Largs 831 0.033 oy wralistic driving data. Tn the first step, our proposed method

Nate; Blue shade denobes the optimal action,

expert-coded reward function. Lastly, most probabilities in the
table are 0, 0.5, or 1, which means the optimal policy is not able
to capture the stochasticity in the actions.

The policy tables for the aggressive and neutral drivers are
provided in Section II of the supplementary material. For the
aggressive policy recovered from the expert-coded reward func-
tion, there are more lane change actions than for the slow speed
and no lead vehicle scenario, and most probabilities are not
simply 0, 0.5 and 1 as compared to the policy table for the
conservative drivers. However, a significant proportion of the
scenarios (8/18) still assigns equal probabilities for changes to
the right and left lanes. In comparison, the aggressive policy
recovered from the learned reward function has a substantially
smaller proportion of scenarios (4/14) that are unable to distin-
guish between the changes to the right and left lanes. Overall,
the neutral policy shows comparable behaviors for the expert-
coded and learned reward functions. However, a few problematic
actions are observed in the policy of the expert-coded reward
function. For example, in the slow speed and no lead vehicle
scenario, if the left distance is large and right distance is very
small, the optimal actions of the experi-coded reward and the
learned reward are to change to the right lane and left lane,
respectively. To summarize, our method maximizes safety and
yields more reasonable driving behaviors.

Finally, we test the prediction accuracy of the actions of
all the four systems on the unobserved trips of other highway
segments for the same set of drivers identified by our driving
style identification method. We have 368, 398, and 229 shorter
trips for aggressive, neutral, and conservative drivers, respec-
tively. The results are shown in Table VI1. Our proposed method
outperforms the other three systems in the three categories of the
testing trips. More specifically, our customized automated lane
change system with an aggressive driving style improved the
prediction accuracy by 81.6%, 141.9% and 21.5%, respectively.

applies MFPCA for automated feature extraction and clustering
analysis to identify driving styles. Our approach is able to reveal
three distinct styles: aggressive, neutral, and conservative. The
aggressive drivers tend (o have the highest speed and smallest
distance to the lead vehicles in open roads and the fastest
acceleration when leaving the junction segment. On the other
hand, the conservative drivers tend to decelerate very fast when
entering the junction segment and maintain the lowest speed
on the whole freeway segment and largest distance to the lead
vehicles. Lastly, the neutral drivers have a smooth transition
of speed when entering and leaving the junction segment. As
for the open roads, the neutral drivers travel at speeds that
are not as fast as the aggressive drivers but also not as slow
as the conservative drivers, Our method, therefore, addresses
the challenges of identifying driving styles quantitatively using
driving behaviors. It also simplifies the interpretability of the
results from unsupervised learning. In other words, minimal
expert knowledge are needed to interpret the driving styles,
which reduce excessive and potentially biased labeling efforts.

In the second step, we apply the IRL. method to build cus-
tomized lane change systems for each driving style. From the
extracted optimal policies and reward functions, we observe that
agpressive drivers prefer faster speeds, stay closer to the lead
vehicles, and change lanes more frequently when compared to
the neutral and conservative drivers. The neutral drivers prefer
moderate speeds and do not stay too close or too far from the
surrounding vehicles. They also adapt their speeds and locations
by executing lane changes as required by their current situations.
Lastly, the conservative drivers tend to minimize the number of
lane changes by continuing in their current lanes and staying far
away from the surrounding vehicles.

The performance of the customized lane change systems
on unobserved trips was examined and compared to a non-
customized system and two other customized systems. The
results show the effectiveness of our proposed method and
confirm that the learned reward function is more useful than
its expert-coded counterpart. Our two-step method leveraged a
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clustering-based method to capture the behaviors of multiple
drivers. Moreover, we improved the performance on real-world
unobserved driving trips by using noisy naturalistic driving data
instead of limited samples from a controlled driving environ-
ment. The value of using a two-step method is demonstrated
through the computed rewards, which connects the identified
driving styles in step one with the driving behaviors from the
optimal stochastic policies in step two.

There are limitations of the proposed method. First, the nat-
uralistic driving data can exhibit different driving behaviors for
cerlain scenarios that are all within the safety threshold. For
example, if an aggressive driver has to merge into one lane from
a four-lane road, they need to take action regardless of their
preferred driving style. This limitation can generate irrational
behaviors in the training set, which will affect the reward values
and optimal policies. However, the highest probabilities of the
reasonable behavior (stay in the current lane) in the training set
can, however, maximize safety when implementing the policy in
future testing of the proposed systems. Second, the naturalistic
driving data is purely observational and lacks experimental con-
trol. For this reason, some state transitions or stale-action pairs
may not be observed in the data. This exploration deficiency
compromises the model performance. Third, the computational
cost of the IRL method can be huge for long trajectories.

Future studies can consider more realistic and complex sce-
narios that better account for the continuous state and action
spaces. A more robust method may also have to be considered
to overcome the irrational behaviors observed in the training
sel. Mevertheless, in general, our approach is promising for
customizing automated lane change systems to driving styles.
While the data used in this study does not provide examples of
all driving situations, we can expand on this approach to learn
other meaningful driving behaviors.
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