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ARTICLE INFO ABSTRACT
Keywords: We propose a BlackBox Counterfactual Explainer, designed to explain image classification models for medical
Explainable Al applications. Classical approaches (e.g., , saliency maps) that assess feature importance do not explain how

Interpretable machine learning
Counterfactual reasoning
Chest X-ray diagnosis

imaging features in important anatomical regions are relevant to the classification decision. Such reasoning
is crucial for transparent decision-making in healthcare applications. Our framework explains the decision
for a target class by gradually exaggerating the semantic effect of the class in a query image. We adopted
a Generative Adversarial Network (GAN) to generate a progressive set of perturbations to a query image,
such that the classification decision changes from its original class to its negation. Our proposed loss function
preserves essential details (e.g., support devices) in the generated images.

We used counterfactual explanations from our framework to audit a classifier trained on a chest X-ray
dataset with multiple labels. Clinical evaluation of model explanations is a challenging task. We proposed
clinically-relevant quantitative metrics such as cardiothoracic ratio and the score of a healthy costophrenic
recess to evaluate our explanations. We used these metrics to quantify the counterfactual changes between the
populations with negative and positive decisions for a diagnosis by the given classifier.

We conducted a human-grounded experiment with diagnostic radiology residents to compare different
styles of explanations (no explanation, saliency map, cycleGAN explanation, and our counterfactual explana-
tion) by evaluating different aspects of explanations: (1) understandability, (2) classifier’s decision justification,
(3) visual quality, (d) identity preservation, and (5) overall helpfulness of an explanation to the users. Our
results show that our counterfactual explanation was the only explanation method that significantly improved
the users’ understanding of the classifier’s decision compared to the no-explanation baseline. Our metrics
established a benchmark for evaluating model explanation methods in medical images. Our explanations
revealed that the classifier relied on clinically relevant radiographic features for its diagnostic decisions, thus
making its decision-making process more transparent to the end-user.

1. Introduction

Machine learning, specifically Deep Learning (DL), is being increas-
ingly used for sensitive applications such as Computer-Aided Diag-
nosis (Hosny et al.,, 2018) and other tasks in the medical imaging
domain (Rajpurkar et al., 2018; Rodriguez-Ruiz et al., 2019). However,
for real-world deployment (Wang et al., 2020), the decision-making
process of these models should be explainable to humans to obtain
their trust in the model (Gastounioti and Kontos, 2020; Jiang et al.,
2018). Explainability is essential for auditing the model (Winkler et al.,
2019), identifying various failure modes (Oakden-Rayner et al., 2020;
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Eaton-Rosen et al., 2018) or hidden biases in the data or the model (Lar-
razabal et al., 2020), and for obtaining new insights from large-scale
studies (Rubin et al., 2018).

With the advancement of DL methods for medical imaging analy-
sis, deep neural networks (DNNs) have achieved near-radiologist per-
formance in multiple image classification tasks (Seah et al., 2021;
Rajpurkar et al., 2017). However, DNNs are criticized for their “black-
box” nature, i.e., they fail to provide a simple explanation as to why
a given input image produces a corresponding output (Tonekaboni
et al.,, 2019). To address this concern, multiple model explanation
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Fig. 1. Counterfactual explanation shows “where” + “what” minimum change must
be made to the input to flip the classification decision. For Pleural Effusion, we can
observe vanishing of the meniscus (red) in counterfactual image as compared to the
query image.

techniques have been proposed that aim to explain the decision-making
process of DNNs (Selvaraju et al., 2017; Cohen et al., 2021). The most
common form of explanation in medical imaging is a class-specific
heatmap overlaid on the input image. It highlights the most relevant
regions (where) for the classification decision (Rajpurkar et al., 2017;
Young et al., 2019). However, the location information alone is insuf-
ficient for applications in medical imaging. Different diagnoses may
affect the same anatomical regions, resulting in similar explanations for
multiple diagnosis, resulting in inconclusive explanations. A thorough
explanation should explain what imaging features are present in those
important locations, and how changing such features modifies the
classification decision.

To address this problem, we propose a novel explanation method
to provide a counterfactual explanation. A counterfactual explanation
is a perturbation of the input image such that the classification deci-
sion is flipped. By comparing, the input image and its corresponding
counterfactual image, the end-users can visualize the difference in im-
portant image features that leads to a change in classification decision.
Fig. 1 shows an example. The input image is predicted as positive
for pleural effusion (PE), while the generated counterfactual image is
negative for PE. The changes are mostly concentrated in the lower lobe
region, which is known to be clinically important for PE (Lababede,
2017). Counterfactual explanation is used to derive a pseudo-heat-map,
highlighting the regions that change the most in the transformation
(difference map in Fig. 1).

We demonstrate the performance of the counterfactual explainer on
a chest X-ray (CXR) dataset. Rather than generating just one counter-
factual image at the end of the prediction spectrum, our explanation
function generates a series of perturbed images that gradually tra-
verse the decision boundary from one extreme (negative decision) to
another (positive decision) for a given target class. We adopted a
conditional Generative Adversarial Network (cGAN) as our explanation
function (Singla et al., 2019). We extend the cGAN to preserve small
or uncommon details during image generation (Bau et al., 2019).
Preserving such details is particularly important in our application, as
the missing information may include support devices that may influ-
ence human users’ perceptions. To this end, we incorporated semantic
segmentation and object detection into our loss function to preserve the
shape of the anatomy and foreign objects during image reconstruction.
We evaluated the quality of our explanations using different quanti-
tative metrics, including clinical measures. Further, we performed a
clinical study with 12 radiology residents to compare the explanations
for the proposed method and the baseline models.

1.1. Related work

Posthoc explanation is a popular approach that aims to improve
human understanding of a pre-trained classifier. Our work broadly
relates to the following posthoc methods:

Feature Attribution methods provide explanation by producing a
saliency map that shows the importance of each input component
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(e.g., pixel) to the classification decision. Gradient-based approaches (Si-
monyan et al., 2013; Springenberg et al., 2015; Bach et al., 2015;
Shrikumar et al., 2017; Sundararajan et al., 2017; Lundberg et al.,
2017; Selvaraju et al., 2017) produce a saliency map by computing
the gradient of the classifier’s output with respect to the input compo-
nents. Such methods are often applied to the medical imaging studies,
e.g, CXR (Rajpurkar et al., 2017), skin imaging (Young et al., 2019),
brain MRI (Eitel and Ritter, 2019) and retinopathy (Sayres et al., 2019).

Perturbation-based methods identify salient regions by directly ma-
nipulating the input image and analyzing the resulting changes in the
classifier’s output. Such methods modify specific pixels or regions in
an input image, either by masking with constant values (Dabkowski
and Gal, 2017) or with random noise, occluding (Zhou et al., 2015),
localized blurring (Fong and Vedaldi, 2017), or in-filling (Chang et al.,
2019). Especially for medical images, such perturbations may introduce
anatomically implausible features or textures. Our proposed method
also generates a perturbation of the query image such that classification
decision is flipped. But in contrast to the above methods, we enforce
consistency between the perturbed data and the real data distribution
to ensure that the perturbations are plausible and visually similar to
the input.

Counterfactual Explanations are a type of contrastive (Dhurandhar
et al,, 2018) explanation that provides a useful way to audit the
classifier and determine causal attributes that lead to the classification
decision (Parafita Martinez and Vitria Marca, 2019; Singla et al., 2021).
Similar to our method, generative models like GANs and variational
autoencoders (VAE) are used to compute interventions that generate
realistic counterfactual explanations (Cohen et al., 2021; Joshi et al.,
2019). Much of this work is limited to simpler image datasets like
MNIST, celebA (Liu et al., 2019; Van Looveren and Klaise, 2019) or
simulated data (Parafita Martinez and Vitria Marca, 2019). For more
complex natural images, previous studies (Chang et al., 2019; Agarwal
and Nguyen, 2020) focused on finding and in-filling salient regions to
generate counterfactual images. In contrast, our explanation function
does not require any re-training for generating explanations for a new
image at inference time. In another line of work (Wang and Vasconce-
los, 2020; Goyal et al., 2019) provide counterfactual explanations that
explain both the predicted and the counter class. Further, researcher
(Narayanaswamy et al., 2020; DeGrave et al., 2020) has used a cycle-
GAN (Zhu et al., 2017) model to perform image-to-image translation
between normal and abnormal images. Such methods are independent
of the classifier. In contrast, our framework uses a classifier consistency
loss to enable image perturbation that is consistent with the classifier.

1.2. Contributions

In this paper, we propose a progressive counterfactual explainer,
that explains the decision of a pre-trained image classifier. Our contri-
butions are summarized as follows:

1. We developed a cGAN-based framework to generate progres-
sively changing perturbations of the query image, such that
classification decision changes from being negative to being
positive for a given target class. We performed a thorough qual-
itative and quantitative evaluation of our explanation function
to audit a classifier trained on a CXR dataset.

2. Our method preserved the anatomical shape and foreign objects
such as support devices across generated images by adding a spe-
cialized reconstruction loss. The loss incorporates context from
semantic segmentation and foreign object detection networks.

3. We proposed quantitative metrics based on clinical definition
of two diseases (cardiomegaly and PE). We are one of the first
methods to use such metrics for quantifying DNN model expla-
nation. Specifically, we used these metrics to quantify statistical
differences between the real images and their corresponding
counterfactual images.
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4. We are one of the first methods to conduct a thorough human-
grounded study to evaluate different counterfactual explanations
for medical imaging task. Specifically, we collected and com-
pared feedback from diagnostic radiology residents, on different
aspects of explanations: (1) understandability, (2) classifier’s de-
cision justification, (3) visual quality, (d) identity preservation,
and (5) overall helpfulness of an explanation to the users.

2. Methodology

We consider a black-box image classifier f, with high prediction
accuracy. We assume that f is a differentiable function and we have
access to its value as well as its gradient with respect to the input
V, f(x). We also assume access to either the training data for f, or an
equivalent dataset with competitive prediction accuracy.

Notation: The classification function is defined as f : R¢Y — RK,
where d is the dimensionality of the image space and K is the num-
ber of classes. The classifier produces point estimates for posterior
probability of class k as P(y,|x) = f(x)[k] € [0, 1].

Explanation function: We aim to explain the decision of function f
for a target class k. We consider visual explanation of the black-box as a
generative process that produces a plausible and realistic perturbation
of the query image x such that the classification decision for class k is
changed to a desired value c. This idea allows us to view ¢ as a “knob”.
By gradually changing the desired output ¢ in range [0, 1], we generate
progressively changing perturbations of the query image x, such that
classification decision changes from being negative to being positive
for a class k.

To achieve this, we propose an explanation function x, £ 7 7 (x0
(X,R) — X. This function takes two arguments: a query image x and the
desired posterior probability ¢ for the target class k. The explanation
function generates a perturbed image x, such that f(x.)[k] ~ c. For
simplicity, we will drop k from subsequent notations. Fig. 2 summarizes
our framework. We design the explanation function to satisfy the
following properties:

(A) Data consistency: x, should resemble data instance from input
space ie., if input space comprises of CXRs, x, should look like a CXR
with minimum artifacts or blurring.

(B) Classifier consistency: x, should produce the desired output
from the classifier f, ie, f(I,(x,¢)~ c.

(C) Context-aware self-consistency: On using the original decision
as the condition, i.e., ¢ = f(x), the explanation function should recon-
struct the query image. We forced this condition for self-consistency as
I,(x, f(x)) = x and for cyclic-consistency as I,(x,, f(x)) = x. Further,
we constrained the explanation function to achieve the aforementioned
reconstructions while preserving anatomical shape and foreign objects
(e.g., pacemaker) in the input image.

Overall objective: Our explanation function I,(x,c¢) is trained end to
end to learn parameters for three networks, an image encoder E(-),
a conditional GAN generator G(-) and a discriminator D(-), to satisfy
the above three properties while minimizing the following objective
function:

min max A an Lecan(D: G) + 4L 1(D.G) + Aree Lree(E. G) 1

where L gay is a conditional GAN-based loss function that enforces
data-consistency, £, enforces classifier consistency through a Kull-
backLeibler (KL) divergence loss and £, is a reconstruction loss that
enforces self-consistency. Hyper-parameters, 4.gan,4, and 4, con-
trols the balance between the terms. In the following sections, we will
discuss each property and the associated loss term in detail.
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Fig. 2. Explanation function Z,(x,¢) for classifier f. Given an input image x, we
generates a perturbation of the input, x, as explanation, such that the posterior
probability, f, changes from its original value, f(x), to a desired value ¢ while satisfying
the three consistency constraints.

2.1. Data consistency

We formulated the explanation function, Z,(x,¢), as an image en-
coder E(-) followed by a conditional GAN (cGAN) (Miyato and Koyama,
2018), with ¢ as the condition. The encoder enables the transformation
of a given image, while the GAN framework generates realistic-looking
transformations as an explanation image. The cGAN is a variant of
GAN that allows the conditional generation of the data by incorporating
extra information as the context. Like GANs, cGAN is composed of two
deep networks, generator G(-) and discriminator D(-). The G, D are
trained adversarially by optimizing the following objective function,

ECGAN(D7 G) = IEx,c~P(x,c) [IOg(D(X7 C))]+
E,.p, c-p, [l0g(1 = D(G(z,0),0))]

where ¢ denotes a condition and z is noise sampled from a uniform

distribution P,. In our formulation, z is the latent representation of the

input image x, learned by the encoder E(-). Finally, the explanation
function is defined as,

(2

1;(x.¢) = G(E®X),¢). 3)

For the discriminator in cGAN, we adapted the loss function from
the Projection GAN (Miyato and Koyama, 2018). The Projection GAN
imposes the following structure on the discriminator loss function:

Legan(D, G)(x,¢) := r(x) + r(c|x), 4)

Here, r(x) is the discriminator logit that evaluates the visual quality
of the generated image. It is the discriminator’s attempt to separate
real images from the fakes images created by the generator. The second
term evaluates the correspondence between the generated image x, and
the condition c.

To represent the condition, the discriminator learns an embedding
matrix V with N rows, where N is the number of conditions. The
condition is encoded as an N-dimensional one-hot vector which is mul-
tiplied by the embedding-matrix to extract the condition-embedding.
When ¢ = n, the conditional embedding is given as the nth row of the
embedding-matrix (v,). The projection is computed as the dot product
of the condition-embedding and the features extracted from the fake
image,

Lgan(D: G)(x, ) 1= r(x) + V] ¢(x), (5)

where, n is the current class for the conditional generation and ¢ is
the feature extractor.
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In our use-case, the condition c is the desired posterior probability
from the classification function f. ¢ is a continuous variable with
values in range [0, 1]. Projection-cGAN requires the condition to be a
discrete variable, to be mapped to the embedding matrix V. Hence, we
discretize the range [0, 1] into N bins, where each bin is one condition.
One can view change from f(x) to ¢ as changing the bin index from the
current value C(f(x)) to C(c) where C(-) returns the bin index.

2.2. Classifier consistency

Ideally, cGAN should generate a series of smoothly transformed
images as we change condition ¢ in range [0, 1]. These images, when
processed by the classifier f should also smoothly change the classifica-
tion prediction between [0, 1]. To enforce this, rather than considering
bin-index C(c) as a scalar, we consider it as an ordinal-categorical
variable, ie., C(¢;) < C(c,) when ¢; < c¢,. Specifically, rather than
checking one condition that desired bin-index is equal to some value
n, C(c) = n, we check n — 1 conditions that desired bin-index is greater
than all bin-index which are less than n i.e., C(¢c) > iVi € [1,n) (Frank
and Hall, 2001).

We adapted Eq. (5) to account for a categorical variable as the
condition, by modifying the second term to support ordinal multi-class
regression. The modified loss function is as follows:

r(c =n|x) := Z vITqS(x), (6)
i<n

Along with conditional loss for the discriminator, we need ad-
ditional regularization for the generator to ensure that the actual
classifier’s outcome, ie., f(x.), is very similar to the condition c¢. To
ensure this compatibility with f, we further constrain the generator
to minimize the KullbackLeibler (KL) divergence that encourages the
classifier’s score for x, to be similar to c. Our final condition-aware loss
is as follows,

L (D, G) :=r(c|x) + Dx(f(x)I[©), 7)

Here, the first term evaluates a conditional probability associated with
the generated image given the condition ¢ and is a function of both
G and D. The second term minimize the KL divergence between the
posterior probability for new image f(x.) and the desired prediction
distribution c. It influences only the G. Please note, the term r(x) is not
appearing in Eq. (7) as it is independent of c.

2.3. Context-aware self consistency

A valid explanation image is a small modification of the input
image, and should preserve the inputs’ identity i.e., patient-specific
information such as the shape of the anatomy or any foreign objects
(FO) if present. While images generated by GAN are shown to be
realistic looking (Karras et al., 2019), GAN with an encoder may ignore
small or uncommon details in the input image (Bau et al., 2019).
To preserve such details, we propose a context-aware reconstruction
loss (CARL) that exploits extra information from the input domain to
refine the reconstruction results. This additional information comes as
semantic segmentation and detection of any FO present in the input
image. The CARL is defined as,

, S;x) @ lIx —x'I; ,
Lree(%,X") = ; ZS—/(X) + D (0(x) || O")). (8

Here, S(-) is a pre-trained semantic segmentation network that
produces a label map for different regions in the input domain. We used
a U-Net architecture for segmentation network as shown in Fig. 3.a.
Rather than minimizing a distance such as ¢ over the entire image,
we minimize the reconstruction loss for each segmentation label ().
Such a loss heavily penalizes differences in small regions to enforce
local consistency.
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Fig. 3. (a) A domain-aware self-reconstruction loss with pre-trained semantic segmen-
tation S(x) and object detection O(x) networks. (b) The self and cyclic reconstruction
should retain maximum information from x.

O(x) is a pre-trained object detector that, given an input image x,
outputs a number of bounding boxes called region of interests (ROIs).
For each bounding box, it outputs 2-d coordinates in the image where
the box is located and an associated probability of presence of an object.
Using the input image x, we obtain the ROIs and associated O(x), which
is a probability vector, stating probability of finding an object in each
ROL. For reconstructed image x’, we reuse the ROIs obtained from
image x and computed the associated probabilities for the reconstructed
image as O(x’). Next, we used KL divergence to quantify the difference
between probability vectors as Dgy (O(x) || O(x")), in Eq. (8).

Finally, we used the CAR loss to enforce two essential properties of
the explanation function (see Fig. 3.b):

1. If ¢ = f(x), the self-reconstructed image should resemble the
input image.

2. For ¢ # f(x), applying a reverse perturbation on the expla-
nation image x. should recover the initial image ie, x =
I,(Is(x,0), f(x)).

We enforce these two properties by the following loss,

Lrec(E, G) = Lrec(X, Tp(X, f(X)) + Lyec(X, Lp(Tf(X,0), f(X))). ©)]

where L..(-) is defined in Eq. (8). We minimize this loss only while
reconstructing the input image (either by performing self or cyclic
reconstruction). Please note, the classifier f and support networks S(-)
and O(-) remained fixed during training.

3. Implementation and evaluation
3.1. Dataset
We performed our experiments on MIMIC-CXR (Johnson et al.,

2019) dataset consisting of 377 K CXR images from 65 K patients. The
dataset provides image-level labels for the presence of 14 observations,
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namely, enlarged cardiomediastinum, cardiomegaly, lung-lesion, lung-
opacity, edema, consolidation, pneumonia, atelectasis, pneumothorax,
pleural effusion, pleural other, fracture, support devices and no-finding.

3.2. Implementation details

Classification model: We consider classification model that take
as input a single-view chest radiograph and output the probability of
each of the 14 observations. Following the prior work on diagnosis
classification (Irvin et al., 2019), we used DenseNet-121 (Huang et al.,
2016) architecture for the classifier. We use the Adam optimizer with
default g-parameters of g, = 0.9, f, = 0.999 and learning rate 1 X
10~* which is fixed for the duration of the training. We used a batch
size of 16 images and train for 3 epochs, saving checkpoints every 4800
iterations.

The classifier is trained on 198 K (~80%) frontal view CXR from
51 K patients and is test on a held-out set of 50 K images from 12 K
non-overlapping patients. The images are resized to 256 x 256 and are
pre-processed using a standard pipeline involving cropping, re-scaling,
and intensity normalization. Our classification model achieved an AUC-
ROC of 0.87 for Cardiomegaly, 0.95 for pleural effusion, and 0.91 for
edema. These results are comparable to performance of the published
model (Irvin et al., 2019).

Segmentation network: Semantic segmentation network S(-) is
a 2D U-Net (Ronneberger et al., 2015) that marks the lung and the
heart contour in a CXR. In the absence of ground truth lung and
heart segmentation on the MIMIC-CXR dataset, we pre-trained the
segmentation network trained on 385 CXRs from Japanese Society of
Radiological Technology (JSRT) (van Ginneken et al., 2006) and Mont-
gomery (Jaeger et al., 2014) datasets. The pre-trained segmentation
network is used in our explanation function to enforce CARL loss and
to compute Cardio Thoracic Ratio (CTR). Please refer SM-Sec 6.6 for
details on segmentation network.

Object detector: We trained a Fast Region-based CNN (Ren et al.,
2015) network as object detector O(-). We trained three independent
detectors for three use-cases: detecting foreign objects (FO) such as
pacemakers and hardware, detecting healthy costophrenic (CP) recess
and detecting blunt CP recess.

For constructing a training dataset for this object detection, we
first collect candidate CXRs for each object by parsing the radiology
reports associated with the CXR to find positive mention for “blunting
of the costophrenic angle” for blunt CP recess, and “lungs are clear” for
healthy CP recess. For each object, we manually collect bounding box
annotations for 300 candidate CXRs.

Explanation Function: Our explanation function is implemented
using TensorFlow version 2.0 and is trained on NVIDID P100 GPU.
Before training the explanation function, we assume access to the pre-
trained classification function, that we aim to explain. We also assume
access to pre-trained segmentation and object detection networks, that
are used to enforce CARL loss.

In cGAN, we adapted a ResNet (He et al., 2016) architecture for the
encoder, generator, and discriminator networks. For optimization, we
used Adam optimizer (Kingma and Ba, 2015), with hyper-parameters
set to « = 0.0002, 8, = 0,8, = 0.9 and updated the discriminator five
times per one update of the generator, and the encoder.

In our experiments, we train three independent explanation func-
tions, for explaining classifier’s decision for three class labels; car-
diomegaly, pleural effusion (PE), and edema. For training, we divide
f(x) €[0,1] into N = 10 equally-sized bins and trained the cGAN with
10 conditions. To construct the training-set for the explanation func-
tion, we randomly sample images from the test-set of the classifier such
that each condition (bin-index) have 2500-3000 images. Similarly, we
created a non-overlapping (unique subjects) evaluation dataset, of 20 K
images for the explanation function. We created one such dataset for
each class label.
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3.3. Evaluation

For evaluating the explanations, we randomly sample two groups
of real images from the test set of the explanation function (1) a real-
negative group defined as X" = {x; f(x) < 0.2}. It consists of real
CXR that are predicted as negative by the classifier f for a target
class k. (2) A real-positive group defined as X? = {x; f(x) > 0.8}. For
X", we generated a counterfactual group by setting condition ¢ = 1.0
as, X, 7 = {I;(x,c = )vx € X"}. Similarly for X7, we derived a
counterfactual group as X" = {I,(x,c = 0)Vx € X”}. We create one
such dataset for each target class k. Combining the two groups, our set
of real images is X = X" U X and corresponding set of counterfactual
explanations is X, = &, 7 U X27". All the results are computed on this
evaluation dataset.

We employ several metrics to quantify different aspects of a valid
counterfactual explanation.

Frechet Inception Distance (FID) score: FID score quantifies the
visual similarity between the real images and the synthetic counterfac-
tuals. It computes the distance between the activation distributions as
follow,

1
FID(X, Xo) = [y — I+ Tr(Z, + 2y, — 2 5 )2), (10)

where y’s and X’s are mean and covariance of the activation vectors
derived from the penultimate layer of a Inception v3 network (Heusel
et al., 2017) pre-trained on MIMIC-CXR dataset.

Counterfactual Validity (CV) score: CV score (Mothilal et al.,
2020) is defined as the fraction of counterfactual explanations that
successfully flipped the classification decision i.e., if the input image
is negative, then the explanation is predicted as positive for the target
class. CV score is computed as,
vy = LW = 7> 0 an

B
where, 7 is the margin between the two prediction distributions. We
used 7 = 0.8 in our experiments.

Foreign Object Preservation (FOP) score: FOP score is the frac-
tion of the real images, with successful detection of FO, in which FO
was also detected in the corresponding explanation image x..
1(0(x,) > 0.5)

1]
where, O(x) is the probability of finding a FO in image x as predicted
by a pre-trained object detector. O(x) > 0.5Vx € X ie., we consider
images with positive detection of FO in set X.

Next, we define two clinical metrics to quantify the counterfactual
changes that leads to the flipping of the classifier’s decision. Pre-
cisely, we translated the clinical definition of cardiomegaly and pleural
effusion into metrics that can be computed using a CXR.

Cardio Thoracic Ratio (CTR): We used CTR as the clinical metric
to quantify cardiomegaly. CTR is the ratio of the cardiac diameter to
the maximum internal diameter of the thoracic cavity. A CTR ratio
greater than 0.5 indicates cardiomegaly (Mensah et al., 2015; Centurion
et al.,, 2017; Dimopoulos et al.,, 2013). We followed the approach
in (Chamveha et al.,, 2020) to calculate CTR from a CXR. We use
the pre-trained segmentation network .S(-) to mark the heart and lung
region. We calculated heart diameter as the distance between the
leftmost and rightmost points from the lung centerline on the heart
segmentation. The thoracic diameter is the horizontal distance between
the widest points on the lung mask.

Score for detecting a healthy Costophrenic recess (SCP): We
first identify CP recess in a CXR and then classify it as healthy or
blunt to quantify pleural effusion. The fluid accumulation in CP recess
may lead to the diaphragm’s flattening and the associated blunting
of the angle between the chest wall and the diaphragm arc, called
costophrenic angle (CPA). The blunt CPA is an indication of pleural
effusion (Maduskar et al., 2013, 2016; Lababede, 2017). Marking the

FOP(X, X,) = 12)
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Fig. 4. Qualitative comparison of the counterfactual explanations generated for two classification tasks, cardiomegaly (first row) and pleural effusion (PE) (last row). The bottom
labels are the classifier’s predictions for the specific task. For the input image in first column, our model generates a series of images x, as explanations by gradually changing ¢
in range [0,1]. The last column presented a pixel-wise difference map between the explanations at the two extreme ends ie., with condition ¢ = 0 (negative decision) and with
condition ¢ =1 (positive decision). The heatmap highlights the regions that changed the most during the transformation. For cardiomegaly, we show the heart border in yellow.
For PE, we showed the results of an object detector as a bounding-box (BB) over the healthy (blue) and blunt (red) CP recess regions. The number on the top-right of the blue-BB

is the Score for detecting a healthy CP recess (SCP). The number on red-BB is 1-SCP.

CPA angle on a CXR requires expert supervision, while annotating the
CP region with a bounding box is a much simpler task (see SM-FIg. 15).
We learned an object detector to identify healthy or blunt CP recess in
the CXRs and used SCP as our evaluation metric.

4. Experiments and results

We performed four sets of experiments on CXR dataset:

(1) In Section 4.1, we evaluated the validity of our counterfactual
explanations and compared them against xGEM (Joshi et al., 2018) and
CycleGAN (Narayanaswamy et al., 2020; DeGrave et al., 2020).

(2) In Section 4.2, we compared against the saliency-based methods
to provide post-hoc model explanation.

(3) In Section 4.3, we associate the counterfactual changes in our
explanation with the clinical definitions of two diagnosis, cardiomegaly
and pleural effusion.

(4) In Section 4.4, we present a clinical study that collects subjec-
tive feedback from radiology residents on three different explanation
approaches, saliency maps, cycleGAN and ours.

4.1. Validity of counterfactual explanations

A valid counterfactual explanation resembles the query image while
having perceivable differences that achieves an opposite classification
decision as compared to the query image from the classifier. In Fig. 4,
we present qualitative examples of counterfactual explanations from
our method and compared them against those obtained from xGEM and
CycleGAN.

4.1.1. Classifier consistency

In Fig. 4, we observe that the explanation images gradually flip
their decision f(x.) (bottom label) as we go from left to right. Table 1
summarizes our results on CV score metric. A high CV score for our
model confirms that the condition used in cGAN is successfully met and
the generated explanations are successfully flipping the classification
decision and hence, are consistent with the classifier.

On the other hand, cycleGAN achieves a CV score of about 50%,
thus creating valid counterfactual images only half of the times. In a
deployment scenario, a counterfactual explanation that fails to flip the
classification decision would be rejected as an invalid, and hence half
of the explanations provided by cycleGAN would be rejected.
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The counterfactual validity (CV) score is the fraction of explanations that have an opposite prediction compared to the input
image. The FID score quantifies the visual appearance of the explanations. We have normalized the FID scores with respect

to the best method (cycleGAN).

Cardiomegaly Pleural effusion Edema
Ours xGEM CycleGAN Ours xGEM CycleGAN Ours xGEM CycleGAN
Counterfactual validity score
CV(X, X,) 091 0.91 0.43 0.97 0.97 0.49 0.98 0.66 0.57
FID score
Negative group: FID(X", X.”") 4.3 12.5 1 3.7 9.2 1 1.9 5.0 1
Positive group: FID(X?, X7~") 2.4 5.6 1 3.4 10.1 1 1.3 3.5 1

Cardiomegaly Pleural Effusion Edema

Counterfactual prediction

fx)+46
Desired prediction

f(x)+46

Desired prediction

fx)+46
Desired prediction

Fig. 5. The plot of condition, ¢ (desired prediction), against actual response of the
classifier on generated explanations, f(x.). Each line represents a set of input images
with prediction f(x) in a given range. Plots for XxGEM and cycleGAN are shown in
SM-Fig. 18.

Our formulation constraints the condition ¢ to vary linearly with
the actual prediction f(x,) i.e., if we increase ¢ in range [0,1] then
the cGAN should create an image x, such that condition ¢ is met and
the actual prediction f(x.) should also increase. Further, consider a
scenario when ¢ = 1.0. The expected behavior is f(x._;() = 1.0 and
also, f(Xez10) > f(Xezp9) > f(Xe—gg) > -+ > 0, where different x, are
generated using same x but different conditions.

To verify this behavior, we group images in the test-set of the
explanation function, into five non-overlapping groups based on their
original prediction f(x). Next, for each image, we created 10 expla-
nation images by discretizing the range [0, 1] into 10 bins. In Fig. 5,
we represented each input group as a line and plotted the average
response of the classifier i.e.,, f(x.) for explanations generated with a
same condition ¢. The positive slope of the line-plot, parallel to y = x
line confirms that starting from images with low f(x), our model creates
fake images such that f(x.) is high and vice-versa.

4.1.2. Visual quality

Qualitatively, the counterfactual explanations generated by our
method look visually similar to the query image (see Fig. 4). Table 1
reports the FID score for our method and compares them against xGEM
and cycleGAN. Our approach achieved a lower FID score as compared
to xGEM. xGEM has very high FID score, thus creating counterfactual
images that are very different from the query image and hence are
unsuitable for deployment. CycleGAN achieved the least FID score, thus
generating the most realistic images as explanations.

4.1.3. Identity preservation

Ideally, a counterfactual explanation should differ in semantic fea-
tures associated with the target task while retaining unique properties
of the input, such as foreign objects (FOs). FO provide critical infor-
mation to identify the patient in an X-ray. The disappearance of FO in
explanation images may create confusion that explanation images show
a different patient.

In this experiment, we quantify the strength of our revised CARL loss
in preserving FO in explanation images compared to an image-level ¢,
reconstruction loss. In Table 2, we report the results on the FOP score
metric. Our model with CARL obtained a higher FOP score. The FO

Table 2

The foreign object preservation (FOP) score for our model with and with-
out the context-aware reconstruction loss (CARL). FOP score depends on
the performance of FO detector.

Foreign object (FO) FOP score

Ours with CARL Ours with 7,
Pacemaker 0.52 0.40
Hardware 0.63 0.32

Generated explanation Generated explanation
w/o CARL

Real Images with CARL

s
e

Fig. 6. Fidelity of generated images with respect to preserving FO.

detector network has an accuracy of 80%. Fig. 6 presents examples of
counterfactual explanations generated by our model with and without
the CARL. Our results confirm that CARL is an improvement over ¢,
reconstruction loss. We further provide a detailed ablation study over
different components of our loss in SM-Sec.6.13.

4.2. Comparison with saliency maps

Popular existing approaches for post-hoc model explanation in-
cludes explaining using a saliency-map (Pasa et al., 2019; Irvin et al.,
2019). To compare against such methods, we approximated a saliency
map as a pixel-wise difference map between the explanations at the
two extreme ends i.e., with condition ¢ = 0 (negative decision) and
with condition ¢ = 1 (positive decision). For proper comparison, we
normalized the absolute values of the saliency maps in the range [0, 1].

In clinical setting, multiple diagnosis may affect the same anatomi-
cal region. In this case, the saliency map may highlight same regions as
important for multiple target tasks. Fig. 8 is showing one such example.
Our method not only provides a saliency map, but also counterfactual
images to demonstrate how image features in those relevant regions
should be modify to change the classification decision.

Quantitatively evaluation: In this experiment, we quantitatively com-
pare different methods for generating saliency maps, to show that
important regions identified by these methods are actually relevant
for classification decision. Specifically, we used the deletion evaluation
metric (Petsiuk et al., 2018; Samek et al., 2017). For each image in
set XP, we derived saliency maps using different methods. We used
the saliency information to sort the pixels based on their importance.
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Fig. 7. Quantitative comparison of our method against gradient-based methods. Mean
area under the deletion curve (AUDC), plotted as a function of the fraction of removed
pixels. A low AUDC shows a sharp drop in prediction accuracy as more pixels are
deleted.

Next, we gradually removed top x% of important pixels by selectively
impainting the removed region based on its surroundings. We processed
the resulting image through the classifier and measure the output
probability. We repeated this process while gradually increasing the
fraction of removed pixels.

For each image, we plotted the updated classification probability
as a function of the fraction of removed pixels, to obtain the deletion
curve and measure its area under the deletion curve (AUDC). A sharp
decline in classification probability shows that the removed pixels were
actually important for classification decision. A sharp decline results in
smaller AUDC, and demonstrates the high sensitivity of the classifier
in the salient regions. In Fig. 7, we reported the mean and standard
deviation of the AUDC metric over the set 7. Our method achieved
the lowest AUDC, confirming the high sensitivity of the classifier in
the salient regions identified by our method.

4.3. Disease-specific evaluation

In this experiment, we demonstrated the clinical relevance of our ex-
planations. We defined two clinical metrics, cardiothoracic ratio (CTR)
for cardiomegaly and score of the normal costophrenic recess (SCP) for
pleural effusion. We used these metrics to quantify the counterfactual
changes between normal (negative diagnosis) and abnormal (positive
diagnosis) populations, as identified by the given classifier. If the
change in classification decision is associated with the corresponding
change in clinical-metric, we can conclude that the classifier considers
clinically relevant information in its diagnosis prediction.

We conducted a paired t-test to determine the effect of counterfac-
tual perturbation on the clinical metric for the respective diagnosis.
To perform the test, we considered the two groups of real images
X" and X? and their corresponding counterfactual groups X, ” and
XI™" respectively. In Fig. 9, we showed the distribution of differences
in CTR for cardiomegaly and SCP for PE in a pair-wise comparison
between real images and their respective counterfactuals. Patients with
cardiomegaly have higher CTR as compared to normal subjects. Con-
sistent with clinical knowledge, in Fig. 9, we observe a negative mean
difference for CTR(X") - CTR(XC";’p) (a p-value of < 0.0001) and a
positive mean difference for CTR(X?) - CTR(X” f) (with a p-value of <
0.0001). The low p-value in the dependent t-test statistics supports the
alternate hypothesis that the difference in the two groups is statistically
significant, and this difference is unlikely to be caused by sampling
error or by chance.

By design, the object detector assigns a high SCP to a healthy
CP recess with no evidence of blunting CPW. Consistent with our
expectation, we observe a positive mean difference for SCP(X") -
SCP(X. ™) (with a p-value of < 0.0001) and a negative mean difference
for SCP(X?) - SCP(X?™") (with a p-value of < 0.0001). A low p-value
confirmed the statistically significant difference in SCP for real images
and their corresponding counterfactuals.
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4.4. Human evaluation

We conducted a human-grounded experiment with diagnostic ra-
diology residents to compare different styles of explanations (no ex-
planation, saliency map, cycleGAN explanation, and our counterfactual
explanation) by evaluating different aspects of explanations: (1) under-
standability, (2) classifier’s decision justification, (3) visual quality, (d)
identity preservation, and (5) overall helpfulness of an explanation to
the users.

Our results show that our counterfactual explanation was the only
explanation method that significantly improved the users’ understand-
ing of the classifier’s decision compared to the no-explanation baseline.
In addition, our counterfactual explanation had a significantly higher
classifier’s decision justification than the cycleGAN explanation, indi-
cating that the participants found a good evidence for the classifier’s de-
cision more frequently in our counterfactual explanation as compared
to cycleGAN explanation.

Further, cycleGan explanation performed better in terms of visual
quality and identity preservation. However, at times the cycleGAN
explanations were identical to the query image, thus providing incon-
clusive explanations. Overall the participants found our explanation
method the most helpful method in understanding the assessment made
by the Al system in comparison to other explanation methods. Below,
we describe the design of the study, the data analysis methods, along
with the results of the experiment in detail.

4.4.1. Experiment design

We conducted an online survey experiment with 12 diagnostic radi-
ology residents. Participants first reviewed an instruction script, which
described the Al system developed to provide an autonomous diagnosis
for CXR findings such as cardiomegaly. The study comprised of the
radiologists evaluating six CXR images which were presented in random
order to them. For selecting these six CXR, we first, divided the test-set
of the explanation function for cardiomegaly into three groups, positive
(f(x) € [0.8, 1.0]), mild (f(x) € [0.4,0.6]) and negative (f(x) € [0.0,0.2]).
Next, we randomly selected two CXR images from each group. The
six CXR images were anonymized as part of the MIMIC-CXR dataset
protocol. For each image, we had the same procedure consisted of a
diagnosis tasks, followed by four explanation conditions, and ended by
a final evaluation question between the explanation conditions. Further
details of the study design are includes in SM-Section 6.1.

Diagnosis: For each CXR image, we first asked a participant to
provide their diagnosis for cardiomegaly. This question ensures that
the participants carefully consider the imaging features that helped
them diagnose. Subsequently, the participants were presented with the
classifier’s decision and were asked to provide feedback on whether
they agreed.

Explanation Conditions: Next, the study provides the classifier’s de-
cision with the following explanation conditions:

1. No explanation (Baseline): This condition simply provides the
classifier decision without any explanation, and is used as the
control condition.

2. Saliency map: A heat map overlaid on the query CXR, highlight-
ing essential regions for the classifier’s decision.

3. CycleGAN explanation: A video loop over two CXR images,
corresponding to the query CXR transformation with a negative
and a positive decision for cardiomegaly.

4. Our counterfactual explanation: A video showing a series of
CXR images gradually changing the classifier’s decision from
negative to positive.

Please note that after showing the baseline condition, we provided
the other explanation conditions in random order to avoid any learning
or biasing effects.

Evaluation metrics: Given the classifier’s decision and corresponding
explanation, we consider the following metrics to compare different
explanation conditions:



S. Singla et al.

Input
Image elRP

Pleural Effusion Cardiomegaly

A

Gradient-based Saliency Maps
Grad CAM Integrated Gradients

Medical Image Analysis 84 (2023) 102721

Difference Map (Ours)
Positive | Negative — Positive |
decision

Negative
decision

Fig. 8. Comparison of our method against different gradient-based methods. A: Input image; B: Saliency maps from existing works; C: Our simulation of saliency map as difference
map between the normal and abnormal explanation images. More examples are shown in SM-Fig. 21.
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Fig. 9. Box plots to show distributions of pairwise differences in clinical metrics, CTR for cardiomegaly and the Score of normal CP recess (SCP) for pleural effusion, before (real)
and after (counterfactual) our generative counterfactual creation process. The mean value corresponds to the average causal effect of the clinical-metric on the target task. The low
p-values for the dependent t-test statistics confirm the statistically significant difference in the distributions of metrics for real and counterfactual images. The mean and standard

deviation for the statistic tests are summarized in SM-Table 8.

1. Understandability: For each explanation condition, the study
included a question to measure whether the end-user understood
the classifier’s decision, when explanation was provided. The
participants were asked to rate agreement with “I understand how
the Al system made the above assessment for Cardiomegaly”.

2. Classifier’s decision justification: Human user’s may perceive
explanations as the reason for the classifier’s decision. For the cy-
cleGAN and our counterfactual explanation conditions, we quan-
tify whether the provided explanation were actually related to
the classification task by measuring the participants’ agreement
with “The changes in the video are related to Cardiomegaly”.

3. Visual quality: The study quantifies the proximity between
the explanation images and the query CXR by measuring the
participants’ agreement with “Images in the video look like a chest
X-ray.”.

4. Identity preservation: The study also measures the extent to
which participants think the explanation images correspond to
the same subject as the query CXR by measuring the participants’
agreement with “Images in the video look like the chest X-ray from
a given subject”.

5. Helpfulness: For each CXR image, we asked the participants to
select the most helpful explanation condition in understanding
the classifier’s decision, “Which explanation helped you the most
in understanding the assessment made by the Al system?”. This
evaluation metric directly compares the different explanation
conditions.

All metrics, but the helpfulness metric were evaluated for agreement
on a 5-point Likert scale, where one means “strongly disagree” and five
means “strongly agree”.

Free-form Response: After each question, we also asked the partici-
pants a free-form question: “Please explain your selection in a few words.”
We used answers to these questions to triangulate our findings and com-
plement our quantitative metrics by understanding our participants’
thought-processes and reasoning.

Participants. Our participants include 12 diagnostic radiology res-
idents who have completed medical school and have been in the
residency program for one or more years. On average, the participants
finished the survey in 40 min and were paid $100 for their participation
in the study.

4.4.2. Data analysis

For each evaluation metric, the study asked the same question to
the participants while showing them different explanations. For each
question, we gather 72 responses (6 - number of CXR images x 12 -
number of participants).

For the understandability and helpfulness metrics, we conducted a
one-way ANOVA test to determine if there is a statistically significant
difference between the mean metric scores for the four explanation
conditions. Specifically, we built a one-way ANOVA with the metric
as our dependent variable and analyzed agreement rating as the inde-
pendent variable. If we found a significant difference in the ANOVA
method, we ran Tukey’s Honestly Significant Difference (HSD) posthoc
test to perform a pair-wise comparison between different explanation
conditions.
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Fig. 10. Comparing the evaluation metrics of understandability, classifier’s decision
justification, visual quality, and identity preservation across the different explanation
conditions.

We measured the classifier’s decision justification, visual quality
and identity preservation metrics only for the cycleGAN and our coun-
terfactual explanations. We conducted paired t-tests to compare these
evaluation metrics between these two explanation conditions. We also
qualitatively analyzed the participants’ free-form responses to find
themes and patterns in their responses.

4.4.3. Results

Fig. 10 shows the mean score for the evaluation metrics of un-
derstandability, classifier’s decision justification, visual quality, and
identity preservation among the different explanation conditions. Be-
low, we report the statistical analysis for these results, followed by
analysis of the participants’ free-form responses to understand the
reasons behind these results.

Understandability: The results show that our counterfactual expla-
nation was the most understandable explanation to the participants.
A one-way ANOVA revealed that there was a statistically significant
difference in the understandability metric between at least two expla-
nation conditions (F(3, 284) = [3.39], p = 0.019). The Tukey post-hoc
test showed that the understandability metric for our counterfactual
explanation was significantly higher than the no-explanation baseline
(p = 0.018). However, there was no statistically significant difference
in mean scores between other pairs of explanations (refer to Table 3,
“Understandability” column). This finding indicates that providing our
counterfactual explanations along with the classifier’s decision made
the algorithm most understandable to our clinical participants, while
other explanation conditions, saliency map and cycleGAN failed to
achieve significant difference from no-explanation baseline on the un-
derstandability metric. Next, we use responses from free-text question
to supplement our findings.

For the no-explanation baseline, the primary reason for poor under-
standing was the absence of explanation (n = 30), (e.g., they stated that
“there is no indication as to how the AI made this decision”). Interestingly,
many responses (n = 23) either associated their high understanding
with the correct classification decision i.e., participants understood the
decision as the decision is correct (“I agree, it is small and normal”)
or they assumed the Al-system is using similar reasoning as them to
arrive at its decision (“I assume the Al is just measuring the width of the
heart compared to the thorax”, “Assume the AI measured the CT ratio and
diagnosed accordingly.”).

Participants’ mostly found saliency maps to be correct but incom-
plete (n = 23), (“Unclear how assessment can be made without including
additional regions”). Specifically, for cardiomegaly, the saliency maps
were highlighting parts of the heart and not its border (“Not sure how
it gauges not looking at the border”) or thoracic diameter (‘“thoracic
diameter cannot be assessed using highlighted regions of heat map”’). We
observe a similar result in Fig. 8, where the heatmap focuses on the
heart but not its border. Further, some participants expressed a concern
that they didn’t understand how relevant regions were used to derive

10
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the decision (“i understand where it examined but not how that means
definite cardiomegaly”).

For cycleGAN explanation, the primary reason for poor understand-
ing was the minimal perceptible changes between the negative and
positive images (n = 3), (“There is no change in the video”.). In contrast,
many participant’s explicitly reported an improved understanding of
the classifier’s decision in the presence of our counterfactual explana-
tions (n = 33), (“I think the Al looking at the borders makes sense”., “i can
better understand what the Al is picking up on with the progression video™).

Classifier’s decision justification: Our counterfactual explanation
(M = 3.46; SD = 1.12) achieved a positive mean difference of 0.63
on this metric as compared to cycleGAN (M = 2.83; SD = 1.33), with
t(71) = 3.55 and p < 0.001. This result indicates that the partici-
pants found a good evidence for the predicted class (cardiomegaly),
much frequently in our counterfactual explanations as compared to
cycleGAN.

Most responses (n = 25) explicitly mentioned visualizing changes
related to cardiomegaly such as an enlarged heart in our explanation
video as compared to cycleGAN (n = 17). In cycleGAN, many reported
that changes in the explanation video was not perceptible (n = 23).
Further, the participants reported changes in density, windowing level
or other attributes which were not related to cardiomegaly (“Decreasing
the density does not impact how I assess for cardiomegaly”., “they could
be or just secondary to windowing the radiograph”). Such responses were
observed in both cycleGAN (n = 17) and our explanation (n = 17).
This indicates that the classifier may have associated such secondary
information (short-cuts) with cardiomegaly diagnosis. A more in-depth
analysis is required to quantify the classifiers’ behavior.

Visual quality and identity preservation: We observe a negative mean
difference of 0.31 and 0.37 between our and cycleGAN explanation
methods in visual quality and identity preservation metrics, respec-
tively. The mean score for visual quality was higher for cycleGAN
(M = 4.55; SD = 0.71) as compared to our method (M = 4.24;
SD = 0.80) with t(71) = 3.49 and p < 0.001. Similarly, the mean
score for identity preservation was also higher for cycleGAN (M = 4.51;
SD = 0.56) as compared to our method (M = 4.14; SD = 0.78) with
t(71) = 3.96 and p < 0.001.

Most of the responses (n = 69) agreed that the CycleGAN expla-
nation were marked as highly similar to the query CXR image. These
results are consistent with our earlier results, that cycleGAN has better
visual quality with a lower FID score (see Table 1). However, in some re-
sponses, the participants pointed out that the explanation images were
almost identical to the query image (“There’s virtually no differences.
This is within the spectrum of a repeat chest X-ray for instance”.). An
explanation image identical to the query image provides no information
about the classifier’s decision. Further, similar looking CXR will also
result in similar classification decision, and hence will fail to flip the
classification decision. As a result, we also observed a lower agreement
in the classifier consistency metric and a lower counterfactual validity
score in Table 1 for cycleGAN.

Helpfulness: In our concluding question, “Which explanation helped
you the most in understanding the assessment made by the AI system?”,
57% of the responses selected our counterfactual explanation as the
most helpful method. A one-way ANOVA revealed that there was a
statistically significant difference in the helpfulness metric between at
least two explanation conditions (F(3, 284) = [21.5], p < 0.0001).
In pair-wise Tukey’s HSD posthoc test, we found that the mean use-
fulness metric for our counterfactual explanations was significantly
different from all the rest explanation conditions(p < 0.0001). Table 3
(“Helpfulness” column) summarizes these results.

These results indicates that the participant’s selected our coun-
terfactual explanations as the most helpful form of explanation for
understanding the classifier’s decision.
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Table 3

Results for one-way ANOVA for understandability metric, followed by Tukey’s HSD
post-hoc test between different levels of agreement. Note that the mean value for E4
(our counterfactual explanation) is the highest, indicating that our explanations helped
users the most in understanding the classifier’s decision.

Understandability Helpfulness
F(3, 284) = 3.39 F(3, 284) = 21.5
p<0.05 p < 0.001
Explanation method P Explanation method P
E1 (No explanation) E2 El E2
M = 3.14 E3 M = 0.05 E3
SD = 1.39 E4 SD = 0.23 E4
E2 (Saliency Map) El E2 El
M = 3.31 E3 M = 0.18 E3
SD = 1.13 E4 SD = 0.39 E4
E3 (CycleGAN) El E3 El
M = 3.24 E2 M = 0.16 E2
SD = 1.19 E4 SD = 0.37 E4
E4 (Our counterfactual E1l E4 El
explanation) M = 3.72 E2 M = 0.24 E2
SD = 0.97 E3 SD = 0.42 E3

*p < 0.05.

¥k p < 0.0001.

5. Discussion and conclusion

We provided a BlackBox Counterfactual Explainer, designed to ex-
plain image classification models for medical applications. Our frame-
work explains the decision by gradually transforming the input image
to its counterfactual, such that the classifier’s prediction is flipped.
We have formulated and evaluated our framework on three properties
of a valid counterfactual transformation: data consistency, classifier
consistency, and self-consistency. Our results in Section 4.1 showed that
our framework adheres to all three properties.

Comparison with xGEM and cycleGAN: Our model creates visually
appealing explanations that produce a desired outcome from the clas-
sification model while retaining maximum patient-specific information.
In comparison, both xGEM and cycleGAN failed on at least one essential
property. XGEM model fails to create realistic images with a high FID
score. Furthermore, the cycleGAN model fails to flip the classifier’s
decision with a low CV score (~50%).

Further, we present a thorough comparison between cycleGAN and
our explanation in a human evaluation study. The clinical experts’
expressed high agreement that explanation images from cycleGAN were
of high quality and they resembles the query CXR. But at the same time,
users found the explanation images to be too similar to query CXR,
and the cycleGAN explanations failed to provide the counterfactual
reasoning for the decision.

In comparison, our explanation were most helpful in understanding
the classification decision. Though the users reported inconsistencies
in the visual appearance, but the overall sentiment looks positive and
they selected our method as their preferred explanation method for
improved understandability.

Clinical relevance of the explanations: From a clinical perspective, we
demonstrated that the counterfactual changes associated with normal
(negative) or abnormal (positive) classification decisions are also asso-
ciated with corresponding changes in disease-specific metrics such as
CTR and SCP. In our clinical study, multiple radiologist reported using
CTR as the metric to diagnose cardiomegaly. As radiologist annotations
are expensive, and it is not efficient to perform human evaluation on a
large test set, our results with CTR calculations provides a quantitative
way t evaluate difference in real and counterfactual populations.

We acknowledge that our GAN-generated counterfactual explana-
tions may have missing details such as small wires. In our extended
experiments, we found that the foreign objects such as pacemaker have
minimal importance in the classification decision (see SM-Sec. 6.10.1).
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We attempted to improve the preservation of such information through
our revised context-aware reconstruction loss (CARL). However, even
with CARL, the FO preservation score is not perfect. A possible reason
for this gap is the limited capacity of the object detector used to
calculate the FOP score. Training a highly accurate FO detector is
outside the scope of this study.

Further, a resolution of 256 x 256 for counterfactually generated
images is smaller than a standard CXR. Small resolution limits the
evaluation for fine details by both the algorithm and the interpreter.
Our formulation of cGAN uses conditional-batch normalization (cBN)
to encapsulate condition information while generating images. For effi-
cient cBN, the mini-batches should be class-balanced. To accommodate
high-resolution images with smaller batch sizes, we must decrease the
number of conditions to ensure class-balanced batches. Fewer condi-
tions resulted in a coarse transformation with abrupt changes across
explanation images. In our experiments, we selected the largest N,
which created a class-balanced batch that fits in GPU memory and
resulted in stable cGAN training. However, with the advent of larger-
memory GPUs, we intend to apply our methods to higher resolution
images in future work; and assess how that impacts interpretation by
clinicians.

To conclude, this study uses counterfactual explanations as a way
to audit a given black-box classifier and evaluate whether the radio-
graphic features used by that classifier have any clinical relevance.
In particular, the proposed model did well in explaining the decision
for cardiomegaly and pleural effusions and was corroborated by an
experienced radiology resident physician. By providing visual expla-
nations for deep learning decisions, radiologists better understand the
causes of its decision-making. This is essential to lessen physicians’
concerns regarding the “BlackBox” nature by an algorithm and build
needed trust for incorporation into everyday clinical workflow. As an
increasing amount of artificial intelligence algorithms offer the promise
of everyday utility, counterfactually generated images are a promising
conduit to building trust among diagnostic radiologists.

By providing counterfactual explanations, our work opens up many
ideas for future work. Our framework showed that valid counterfactuals
can be learned using an adversarial generative process that is regular-
ized by the classification model. However, counterfactual reasoning is
incomplete without a causal structure and explicitly modeling of the
interventions. An interesting next step should explore incorporating
or discovering plausible causal structures and creating explanations
grounded with them.
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