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Abstract— The trend in sustainable transportation
systems has led to an increase in the number of plug-in
electric vehicles (PEVs). However, a major issue associated
with widespread PEV deployment is the potential adverse
impact of vehicle charging on the power grid. One way to
address increase in demand from PEVs and avoid
aggravated peak loads is through vehicle-to-grid (V2G)
applications. This study develops an online optimization
model for scheduling the centralized charging and
discharging of a significant number of PEVs in a smart
parking lot. The optimization problem is formulated using
a rolling horizon method with objectives to meet the
requirements of the electric vehicle owners while
considering grid and aggregator needs. Finally, the model
is used in a simulated problem to demonstrate the optimal
solution.
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I. INTRODUCTION

Plug-in electric vehicles (PEVs) including plug-in hybrid
electric vehicles (PHEVs) and battery electric vehicles (BEVs)
are expected to revolutionize personal transportation as they
become more affordable and as more consumers make the
transition away from conventional vehicles that depend on
fossil fuels. However, the connection of a large number of
PEVs to the electrical grid presents both opportunities and
challenges. The large increase in demand that will accompany
the transition to electric transportation can cause the power
infrastructure to become overburdened leading to issues of
reliability. Modern power grids are large and complex systems
that prove challenging to manage [1]. Therefore, widespread
adoption of PEVs can add to complications in managing
interdependencies of this critical infrastructure. For instance,
charging significant numbers of PEVs concurrently poses
risks of overburdening the power grid [2]. Furthermore, the
successful deployment of electric vehicles depends, to a great
extent, on the affordability, availability and quality of the
associated services that a country’s critical infrastructure can
provide [3]. Grid modernization, including smart grids and
microgrids [4], can better leverage the benefits of PEVs.

This work was partially funded by the National Science Foundation
award #1711767, the Office of the Vice President for Research at the
University of South Carolina and the Office of Sponsored Awards and
Research Support at the University of South Carolina Upstate.

Through vehicle-to-grid (V2G), the increase in demand
caused by PEVs can be controlled to avoid excessive peak
loads [5]. In a V2G system, PEV batteries can be used for
load management by storing excess electricity from the grid
when needed and delivering electricity back to the grid when
needed. A concern about V2G is the impact of frequent
charging and discharging on the battery of participating PEVs
[6]. Therefore, it is necessary to account for PEV battery wear
in V2G optimization studies.

Strategies have been proposed for optimizing electric
vehicle charging and discharging in vehicle-to-grid (V2G)
systems [7-12]. Reference [11] presented a probabilistic unit
commitment model for optimal scheduling of wind power,
load forecasts and plug-in electric vehicles in a microgrid to
enable power grid operators with optimal day ahead planning.
Reference [12] modeled different aspects of PEVs using
geographic information system and a mathematical algorithm
based on genetic algorithms. The study minimized the cost of
charging station installation and improved their geographic
distribution.

Many of the existing studies on the optimization of
electric vehicles in V2G systems focus on the technical and
economic potential of V2G systems and/or on the benefits to
the power grid. Uncertainties related to PEV owners have
been mostly ignored. In this paper, an online model for
optimal scheduling of the charging and discharging of PEVs
in a centralized V2G system is developed. In this online
problem, the state of PEVs and consumer preferences are
unknown until the vehicles arrive at the V2G system. This
model is based on the rolling horizon method and accounts for
PEV driver needs and PEV battery life.

II. METHODOLOGY

This study considers a centralized V2G system connected
to a smart grid where PEVs charge and discharge their
batteries depending on the needs of the driver and the
electrical grid. The system is managed by an aggregator,
which acts as a central controller and middleman between the
grid and the PEVs. The study is based on rolling horizon
method [13, 14]. The rolling horizon method, decomposes
scheduling problems with longer periods into simpler sub-
problems with shorter periods [14]. As a result, the complexity



of the original problem is reduced. This study employs a
forward rolling horizon approach which begins the
optimization process from the first period.

The optimization problem considers four main factors
including a) minimizing the cost of charging PEV batteries b)
maximizing the earnings from discharging PEVs c) ensuring
that PEVs reach their desired state of charge (SOC) at
departure time where possible and d) considering battery life
in scheduling the charging and discharging of vehicles. This
paper considers two scenarios, a non-V2G scenario and a V2G
scenario.

III. PROBLEM FORMULATION

In the non-V2G or business as usual scenario, vehicles
begin charging once they enter the V2G system. They
continue to charge until they reach their desired SOC. No
discharging occurs in this scenario. In the V2G scenario, the
charging and discharging schedule of PEVs are determined by
the aggregator based on PEV driver needs as well as the
electrical grid needs. In addition, the V2G scenario considers
the age of the vehicle and incorporates a switching constraint
similar to ref [8, 15].

In this study, the electricity available for charging and
discharging are defined in terms of electricity units. An
electricity unit is defined as the maximum amount of power
that is available for charging a vehicle during a given time slot
or the maximum amount that can be discharged back to the
grid by a vehicle during each period. The objective function
for the V2G scenario is given in (1) below. The schedule for
the PEVs is achieved by minimizing the sum of the cost of
charging and the penalty assigned to unfulfilled electricity
units minus the earning from discharging. The goal is to meet
PEV driver needs where possible while taking into account
electrical grid needs.
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Where i and t represent the indexes for PEV and time
respectively. y;, represents a binary variable which indicates
whether a PEV is being discharged or not at time ¢. Therefore,
v = 1 signifies that a vehicle is discharging and y;; = 0
indicates that a vehicle is idle. Similarly, x;, is a binary
variable that indicates if a PEV is being charged in time t. p,

and ¢, are price of discharging at time t and the cost of
charging at time t, respectively. pzis a cost incurred as a

penalty due to unfulfilled electricity units and z; refers to the
number of unfulfilled electricity units, which is the number of
electricity units below the desired SOC at time of departure.
Since no discharging occurs in the non-V2G or business as
usual scenario, the term Y., .; Vi * Py is zero.

Some key constraints for the model include the following:

ZiXie S Cpy vt (2)

A key energy constraint in this study is capacity of the
smart parking lot cp;, which is the power available to the
parking lot from the electric utility. Another energy constraint
is the battery capacity (mci) of each vehicle expressed in
electricity units. Equation (2) specifies that the electricity
available for charging PEVs in the system at any given point
in time cannot exceed the maximum electricity allocated to the
parking lot cp, during that time. Equation (2) ensures that the
load of all the PEVs in the system at any given time slot does
not exceed the maximum capacity of the parking lot cp,, during
that time.

The constraint in (3) imposes a limit on the number of
times a vehicle battery can be switched. Here, a switch is
considered a change from one state to another. Three states
including charging discharging and neutral are considered. A
change from charging to neutral or discharging to neutral in
either direction is counted as one switch.

Zi Sit < ms; vVt (3)

Where Sj is the number of switching as described above
and ms; is the maximum switching which is assigned based on
the age of the battery. There are three categories of battery age
inluding new, intermediate, and old. The older the battery the
less switching is permitted.

In addition, a constraint is introduced to specify that at any
given time t for each PEV i, the sum of electricity units due to
charging and discharging as well as unfulfilled units during a
PEV’s presence in the system equals the difference between
the desired state of charge u; and the initial state of charge
isoc; of that PEV.

IV. RESULTS AND DISCUSSION

A. Simulation Considerations

This study considers a V2G parking lot with 750 PEVs.
Five 24-hour periods are considered and then the results of
simulation over 5 days are averaged. Each 24-hour day is
divided into 30-minute periods resulting in a total of 48 periods
per day.

A level 2 charging rate of 3.3 kW/hour resulting in fixed
electricity units of 1.65 kWh per 30-minute period is
considered. The cost of charging and discharging vary
throughout the day and are highest during peak periods and
lowest during off-peak periods or periods of lower demand.

Fig. 1 shows the arrival time of PEVs in the parking lot
averaged over a five-day period. As Fig. 1 shows, vehicles
begin to arrive at the 5:30 am time slot or the 11" period and
continue to arrive till the 48™ period which is the final period of
the day. Once a PEV arrives in the V2G system, the
aggregator determines the optimal schedule for charging and
discharging the vehicle. All vehicles must depart the smart
parking lot by the end of the 48" period
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Fig. 1. Average arrival distribution of PEVs

B. Simulation Results

The results in Fig. 2 show the charging and discharging
pattern of the non-V2G and V2G scenarios averaged over 5
days in comparison to the capacity of the parking lot (i.e., the
electricity available to the parking lot). The business-as-usual
or non-V2G scenario follows the arrival distribution pattern
more closely than the V2G scenario because the PEVs in the
non-V2G scenario begin charging once they arrive in the
system and continue to charge where possible until they reach
the desired SOC. As Fig. 2 illustrates, the total electricity units
used for charging at any point cannot exceed the electricity
capacity of the parking. It can also be observed that the
electricity units used for charging reduces and eventually drops
to zero during periods where the capacity is low. This period of
low capacity corresponds to the period of peak electricity
demand where electricity cost is highest. In the non-V2G
scenario, the cost of charging is not considered in determining
vehicles’ charging schedule due to the previously mentioned
requirement to begin charging vehicles once they arrive in the
system till their desired SOC is met if there is available
capacity.
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Fig. 2. Charging distribution for V2G and non-V2G scenarios

Fig. 3 illustrates a major distinction between the V2G and
the non-V2G model variations, which is the fact that while
discharging occurs in the V2G scenario, this is not the case in
the non-V2G scenarios. As a result, the electricity units due to
discharging for the non-V2G scenario is zero for the entire
study period. In contrast to the charging behavior depicted in
Fig. 2, it can be observed in Fig. 3 that the discharging for the
V2G scenario peaks during periods of low capacity, which
occur during peak electricity demand and when the price for
discharging is highest. This behavior can be attributed to the
objective function which aims to maximize earnings from
discharging.
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Fig. 3. Discharging distribution for V2G and non-V2G scenarios.

Fig. 4 shows the objective function averaged over five
days. This objective function is based on (1) and aims to
minimize the cost of V2G participation, which is the sum of
the cost of charging and the penalty cost for unfulfilled
electricity units minus the earnings from discharging vehicles.
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Fig. 4. Average objective function values for V2G and non-V2G
scenarios

As can be seen in Fig. 4, the scenario that does not involve

V2G has a significantly higher objective function value



compared to the V2G model variation. Since the non-V2G
model variation does not involve V2@, there is no way to
offset the cost of charging the PEVs. In addition, the vehicles
in the non-V2G scenario are charged if the vehicles have
unfulfilled electricity units and there is available capacity in
the V2G parking lot. However, in the V2G scenario, the cost
of charging is reduced by the payment the customer receives
from discharging their vehicles. Therefore, the V2G scenario
results in a significantly lower objective function value.
Furthermore, the V2G model variation considers battery age
and degradation by reducing the participation of vehicles with
older batteries in V2G activities.

V. CONCLUSIONS

This paper describes an online optimization model for
scheduling the charging and discharging of PEVs in a
centralized V2G system. The model aims to meet PEV
drivers’ needs where possible while considering grid needs
and constraints as well as PEV battery age. The results of the
study show that the cost associated with participation in the
V2G scenario is significantly less than in the non-V2G
scenario due to the ability to offset the cost of charging with
earnings from discharging.
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