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Hierarchical Amortized GAN for 3D High
Resolution Medical Image Synthesis

Li Sun , Member, IEEE, Junxiang Chen, Yanwu Xu, Mingming Gong , Ke Yu ,
and Kayhan Batmanghelich , Member, IEEE

Abstract—Generative Adversarial Networks (GAN) have
many potential medical imaging applications, including
data augmentation, domain adaptation, and model expla-
nation. Due to the limited memory of Graphical Processing
Units (GPUs), most current 3D GAN models are trained on
low-resolution medical images, these models either cannot
scale to high-resolution or are prone to patchy artifacts. In
this work, we propose a novel end-to-end GAN architecture
that can generate high-resolution 3D images. We achieve
this goal by using different configurations between train-
ing and inference. During training, we adopt a hierarchical
structure that simultaneously generates a low-resolution
version of the image and a randomly selected sub-volume
of the high-resolution image. The hierarchical design has
two advantages: First, the memory demand for training on
high-resolution images is amortized among sub-volumes.
Furthermore, anchoring the high-resolution sub-volumes to
a single low-resolution image ensures anatomical consis-
tency between sub-volumes. During inference, our model
can directly generate full high-resolution images. We also
incorporate an encoder with a similar hierarchical structure
into the model to extract features from the images. Experi-
ments on 3D thorax CT and brain MRI demonstrate that our
approach outperforms state of the art in image generation.
We also demonstrate clinical applications of the proposed
model in data augmentation and clinical-relevant feature
extraction.

Index Terms—3D image synthesis, generative adver-
sarial networks, high resolution.
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I. INTRODUCTION

G ENERATIVE Adversarial Networks (GANs) have suc-
ceeded in generating realistic-looking natural images [1],

[2]. It has shown potential in medical imaging for augmenta-
tion [3], [4], image reconstruction [5] and image-to-image trans-
lation [6], [7]. The prevalence of 3D images in the radiology do-
main renders the real-world application of GANs in the medical
domain even more challenging than the natural image domain.
In this paper, we propose an efficient method for generating and
extracting features from high-resolution volumetric images.

The training procedure of GANs corresponds to a min-max
game between two players: a generator and a discriminator.
While the generator aims to generate realistic-looking images,
the discriminator aims to defeat the generator by recognizing real
from the fake (generated) images. When the field of view (FOV)
is the same, a higher resolution is equivalent to more voxels. In
this way, we use “high-resolution image” and “large-size image”
interchangeably in the paper. In clinical application, radiologists
rely on high-resolution CT to make accurate diagnose deci-
sions [8]. While there are previous works that propose to use 3D
GAN for diverse medical applications [9], [10], the generated
images are limited to the small size of 128× 128× 128 or
below, due to insufficient memory during training.

In this paper, we introduce a Hierarchical Amortized GAN
(HA-GAN) to bridge the gap. Our model adopts different con-
figurations between training and inference phases. In the training
phase, we simultaneously generate a low-resolution image and
a randomly selected sub-volume of the high-resolution image.
Generating sub-volumes amortizes the memory cost of the
high-resolution image and keeps local details of the 3D im-
age. Furthermore, the low-resolution image ensures anatomical
consistency and the global structure of the generated images.
We train the model in an end-to-end fashion while retaining
memory efficiency. The gradients of the parameters, which
are the memory bottleneck, are needed only during training.
Hence, sub-volume selection is no longer needed and the entire
high-resolution volume can be generated during inference. In
addition, we implement an encoder in a similar fashion. The
encoder enables us to extract features from a given image and
prevents the model from mode collapse. We test HA-GAN on
thorax CT and brain MRI datasets. Experiments demonstrate
that our approach outperforms baselines in image generation.
We also present two clinical applications with proposed HA-
GAN, including data augmentation for supervised learning and
clinical-relevant feature extraction. Our code is publicly avail-
able at https://github.com/batmanlab/HA-GAN
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In summary, we make the following contributions:
1) We introduce a novel end-to-end HA-GAN architec-

ture that can generate high-resolution volumetric images
while being memory efficient.

2) We incorporate a memory-efficient encoder with a simi-
lar structure, enabling clinical-relevant feature extraction
from high-resolution 3D images. We show that the en-
coder improves generation quality.

3) We discover that moving along specific directions in
latent space results in explainable anatomical variations
in generated images.

4) We evaluate our method by extensive experiments on dif-
ferent image modalities as well as different anatomy. The
HA-GAN offers significant quantitative and qualitative
improvements over the state-of-the-art.

II. RELATED WORK

In the following, we review the works related to GANs for
medical images, memory-efficient 3D GAN and representation
learning in generative models.

A. GANs for Medical Imaging

In recent years, researchers have developed GAN-based mod-
els for medical images. These models are applied to solve
various problems, including image synthesis [11], data aug-
mentation [12], modality/style transformation [13], and model
explanation [14]. However, most of these methods concentrate
on generating 2D medical images. In this paper, we focus on
solving a more challenging problem, i.e., generating 3D images.

With the prevalence of 3D imaging in medical applications,
3D GAN models have become a popular research topic. Shan et
al. [15] proposed a 3D conditional GAN model for low-dose CT
denoising. Kudo et al. [16] proposed a 3D GAN model for CT
image super-resolution. Jin et al. [17] propose an auto-encoding
GAN for generating 3D brain MRI images. Cirillo et al. [9]
proposed to use a 3D model conditioned on multi-channel 3D
Brain MR images to generate tumor masks for segmentation.
While these methods can generate realistic-looking 3D MRI or
CT images, the generated images are limited to the small size of
128× 128× 128 or below, due to insufficient memory during
training. In contrast, our HA-GAN is a memory-efficient model
and can generate 3D images with a size of 256× 256× 256.

B. Memory-Efficient GANs

Some works are proposed to reduce the memory demand of
high-resolution 3D image generation. In order to address the
memory challenge, some works adopt slice-wise [7] or patch-
wise [10] generation approach. Unfortunately, these methods
may introduce artifacts at the intersection between patches/slices
because they are generated independently. To remedy this prob-
lem, Uzunova et al. [18] propose a multi-scale approach that
uses a GAN model to generate a low-resolution version of the
image first. An additional GAN model is used to generate higher
resolution patches of images conditioned on the previously gen-
erated patches of lower resolution images. However, this method
is still patch-based; the generation of local patches is unaware of
the global structure, potentially leading to spatial inconsistency.

In addition, the model is not trained in an end-to-end manner,
which makes it challenging to incorporate an encoder that learns
the latent representations for the entire images. In comparison,
our proposed HA-GAN is global structure-aware and can be
trained end-to-end. This allows HA-GAN to be associated with
an encoder.

C. Representation Learning in Generative Models

Several existing generative models are fused with an en-
coder [2], [19], [20], which learns meaningful representations
for images. These methods are based on the belief that a good
generative model that reconstructs realistic data will automat-
ically learn a meaningful representation of it [21]. A genera-
tive model with an encoder can be regarded as a compression
algorithm [22]. Hence, the model is less likely to suffer from
mode collapse because the decoder is required to reconstruct
all samples in the dataset, which is impossible if mode col-
lapse happens such that only limited varieties of samples are
generated [2]. Variational autoencoder (VAE) [19] uses an en-
coder to compress data into a latent space, and a decoder is
used to reconstruct the data using the encoded representation.
BiGAN [20] learns a bidirectional mapping between data space
and latent space. α-GAN [2] introduces not only an encoder
to the GAN model, but also learns a disentangled representa-
tion by implementing a code discriminator, which forces the
distribution of the code to be indistinguishable from that of
random noise. Variational auto-encoder GAN (VAE-GAN) [23]
adds an adversarial loss to the variational evidence lower bound
objective. Despite their success, the methods mentioned above
can analyze 2D images or low-resolution 3D images, which
are less memory intensive for training an encoder. In con-
trast, our proposed HA-GAN is memory efficient and can be
used to encode and generate high-resolution 3D images during
inference.

D. Our Previous Work

Sun et al. [24] first proposed to utilize hierarchical amortized
GAN for high resolution 3D medical image generation. The
current work presents several extensions compared to the pre-
liminary version: 1) We incorporate a memory-efficient encoder
into our model, enabling clinical-relevant feature extraction
from high-resolution 3D images. We also show that the encoder
improves generation quality. 2) We perform two new clinical
applications, including characterizing the severity of COPD,
and data augmentation for supervised learning. 3) We discover
that moving along specific directions in latent space results
in explainable anatomical variations in generated images. 4)
We perform cross-validation evaluation and statistical tests for
comparison of generated image quality with baseline methods
to improve the adequacy of performance evaluation. We also
conduct ablation studies to validate the contribution of proposed
components.

III. METHOD

We first review Generative Adversarial Networks (GANs) in
Section III-A. Then, we introduce our method in Section III-B,
followed by the introduction of the encoder in Section III-C.
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TABLE I
IMPORTANT NOTATIONS IN THIS PAPER

We conclude this section with the optimization scheme in
Section III-D and the implementation details in Section III-E.
The notations used are summarized in Table I.

A. Background

Generative Adversarial Networks (GANs) [1] is widely used
to generate realistic-looking images. The training procedure
of GANs corresponds to a two-player game that involves a
generator G and a discriminator D. In the game, while G aims
to generate realistic-looking images, D tries to discriminate real
images from the images synthesized byG. TheD andG compete
with each other. Let PX denote the underlying data distribution,
and PZ denote the distribution of the random noise Z. Then the
objective of GAN is formulated as below:

min
G

max
D

E
X∼PX

[logD(X)] + E
Z∼PZ

[log(1−D(G(Z)))]. (1)

B. The Hierarchical Structure

Generator: Our generator has two branches that generate the
low-resolution image X̂L and a randomly selected sub-volume
of the high-resolution image X̂H

r , where r represents the index
for the starting slice of the sub-volume. The two branches share
initial layers GA and after they branch off:

X̂L = GL(GA(Z)︸ ︷︷ ︸
A

), (2)

X̂H
r = GH(SL(GA(Z); r)︸ ︷︷ ︸

Ar

), (3)

where GA(·), GL(·) and GH(·) denote the common, low-
resolution and high-resolution blocks of the generator, respec-
tively. SL(·, r) is a selector function that returns the sub-volume
of input image starting at slice r, where the superscript L
indicates that the selection is made at low resolution. The output
of this function is fed into GH(·), which lifts the input to the
high resolution. We use A and Ar as short-hand notation for
GA(Z) and SL(GA(Z); r), respectively. We let Z ∼ N (0, I)
be the input random noise vector. We let r be the randomly
selected index for the starting slice that is drawn from a uniform
distribution, denoted as r ∼ U ; i.e., each slice is selected with the
same probability. Therefore, the randomly selected sub-volumes
can be overlapping, which can better cover the junctions between
sub-volumes than non-overlapping sub-volume selection. The
schematic of the proposed method is shown in Fig. 1. Note that
X̂H

r depends on a corresponding sub-volume of A, which is Ar.
Therefore, we feed Ar rather than complete A into GH during
training, making the model memory-efficient.

Discriminator: Similarly, we define two discriminators DH

and DL to distinguish a real high-resolution sub-volume XH
r

and a low-resolution imageXL from the fake ones, respectively.
DH makes sure that the local details in the high-resolution sub-
volume look realistic. At the same time, DL ensures the proper
global structure is preserved. Since we feed a sub-volumes
SH(XH ; r) rather than the entire imageXH intoDH , the mem-
ory cost of the model is reduced. The location of the sub-volume
r is also fed into DH to help it distinguish sub-volumes from
different locations.

There are two GAN losses LH
GAN and LL

GAN for high and
low resolutions respectively:

LH
GAN (GA, GH , DH) = min

GH ,GA
max
DH

E
r∼U

[
E

X∼PX

[logDH(SH(XH ; r), r)]

+ E
Z∼PZ

[log(1−DH(X̂H
r , r)]

]
,

(4)

LL
GAN (GL, GA, DL) = min

GL,GA
max
DL

E
X∼PX

[logDL(XL)]

+ E
z∼PZ

[log(1−DL(X̂L)]. (5)

Note that the sampler SH(·; r) in (3) and SL(·; r) in (4) are
synchronized, such that r corresponds to the indices for the same
percentile of slices in the high- and low-resolution.

Inference: The memory space needed to store gradient is the
main bottleneck for 3D GANs models; however, the gradient is
not needed during inference. Therefore, we can directly generate
the high-resolution image by feedingZ intoGA andGH sequen-
tially, i.e., X̂H(Z) = GH(GA(Z))). Note that to generate the
entire image during inference, we directly feed the complete
feature maps A = GA(Z) rather than its sub-volume Ar into
the convolutional network GH .

C. Incorporating the Encoder

We also adopt a hierarchical structure for the encoder,
by defining two encoders EH(·) and EG(·) encoding
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Fig. 1. Left: The architecture of HA-GAN (encoder is hidden here to improve clarity). At the training time, instead of directly generating high-
resolution full volume, our generator contains two branches for high-resolution sub-volume and low-resolution full volume generation, respectively.
The two branches share the common block GA. A sub-volume selector is used to select a part of the intermediate feature for the sub-volume
generation. Right: The schematic of the hierarchical encoder trained with two reconstruction losses, one on the high-resolution sub-volume level
(upper right) and another one on the low-resolution full volume level (lower right). The meanings of the notations used can be found in Table I. The
model adopts 3D architecture with details presented in Supplementary Material.

the high-resolution sub-volume and the entire image
respectively. We partition the high-resolution image XH

into a set of V non-overlapping sub-volumes, i.e., XH =
concat({SH(XH , Tv)}Vv=1), where concat represent con-
catenation, SH(·) represents the selector function that returns
a sub-volume of a high-resolution image, and Tv represents the
corresponding starting indices for the non-overlapping partition.

We use Âv to denote the sub-volume-level feature maps for
the v-th sub-volume, i.e., Âv = EH(SH(XH ;Tv)). To gener-
ate the image-level representation Ẑ, we first summarize all
sub-volume representation for the image through concatenation,
such that Â = concat({Av}Vv=1). Then we feed Â into the
encoder EG(·) to generate the image-level representation Ẑ,
i.e., Ẑ = EG(Â)

In order to obtain optimal EH and EG, we introduce the
following objective functions:

LH
recon(E

H) = min
EH

E
X∼PX ,r∈U

∥∥∥SH(XH ; r)−GH(Âr)
∥∥∥
1
,

(6)

LG
recon(E

G) = min
EG

E
X∼PX

[∥∥∥XL −GL(GA(Ẑ))
∥∥∥
1

+ E
r∼U

[∥∥∥SH(XH ; r)−GH(SL(GA(Ẑ); r))
∥∥∥
1

]]
.

(7)

Equation (6) ensures a randomly selected high-resolution sub-
volume SH(XH ; r) can be reconstructed. (7) enforces both the
low-resolution image XL and a random selected SH(XH ; r)
can be reconstructed given Ẑ. Note that in (6), the sub-volume
is reconstructed from the intermediate feature maps Âv; while
in the second term in (7), the sub-volume is reconstructed from
the latent representations Ẑ. In these equations, we use "1 loss
for reconstruction because it tends to generate sharper result

Fig. 2. Inference with the hierarchical generator and encoder. Since
the memory demand is lower at inference time, we directly forward
input through the high-resolution branch for full image generation and
encoding.

compared to "2 loss [25]. The structure of the encoders are
illustrated in Fig. 1.

When optimizing for (6), we only update EH while keeping
all other parameters fixed. Similarly, when optimizing for (7),
we only update EG. We empirically find that this optimization
strategy is memory-efficient and leads to better performance.

Inference: In the inference phase, we can get the la-
tent code Ẑ by feeding the sub-volumes of XH into
EH , concatenating the output sub-volume feature maps
into Â and then feeding the results into EG, i.e., Ẑ =
EG(concat({EH(SH(XH ;Tv))}Vv=1)). The idea is illus-
trated at the bottom of Fig. 2.

D. Overall Model

The model is trained in an end-to-end fashion. The overall
loss function is defined as:

L = LH
GAN (GH , GA, DH) + LL

GAN (GL, GA, DL)

+ λ1LH
recon(E

H) + λ2LG
recon(E

G), (8)

where λ1 and λ2 control the trade-off between the GANs losses
and the reconstruction losses. The optimizations for generator
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(GH , GL and GA), discriminator (DH , DL), and encoder (EH ,
EG) are altered per iteration.

During training, we sample noise from Gaussian distribution
and pass it through the generator to create randomly synthesized
images for minimizing the adversarial loss. We also sample real
images and pass it through the encoder, followed by the generator
to create reconstructed images for minimizing the reconstruction
loss. Our overall optimization balances between the losses to
learn parameters for the encoder, generator, and discriminator
in end-to-end training.

E. Implementation Details

We train the proposed HA-GAN for 80000 iterations, the
training and validation curves can be found in Supplementary
Material. We let the learning rate for generator, encoder, and dis-
criminator be 1× 10−4, 1× 10−4, and 4× 10−4, respectively.
We also set β1 = 0 and β2 = 0.999 for the Adam optimizer. The
batch size is set as 4. We let the size of the XL be 643. The size
of the randomly selected sub-volume SH(XH ; r) is defined to
be 32× 2562, where r is randomly selected on the batch level.
We let feature maps A have 64 channels with a size of 643.
The dimension of the latent variable Z is chosen to be 1,024.
The trade-off hyper-parameters λ1 and λ2 are set to be 5. The
experiments are performed on two NVIDIA Titan Xp GPUs,
each with 12 GB GPU memory. The detailed architecture can
be found in Supplementary Material.

IV. EXPERIMENTS

We evaluate the proposed model’s performance in image syn-
thesis, and demonstrate two clinical applications with HA-GAN:
data augmentation and clinical-relevant feature extraction. We
also explore the semantic meaning of the latent variable. We
perform 5-fold cross-validation for the image synthesis experi-
ments. We compare our method with baseline methods, includ-
ing WGAN [26], VAE-GAN [23], α-GAN [27], Progressive
GAN [28], 3D StyleGAN 2 [29] and CCE-GAN [30].

A. Datasets

The experiments are conducted on two large-scale 3D
datasets, including the COPDGene dataset [31] and the GSP
dataset [32]. Both are publicly available and details about image
acquisition are presented in Supplementary Material.

COPDGene Dataset: We use 3D thorax computerized tomog-
raphy (CT) images of 9,276 subjects from COPDGene dataset
in our study. Only full inspiration scans are used in our study.
We trim blank axial slices with all-zero values and resize the
images to 2563. The Hounsfield units of the CT images have
been calibrated and air density correction has been applied. The
Hounsfield Units (HU) are mapped to the intensity window of
[−1024, 600] and normalized to [−1, 1].

GSP Dataset: We use 3D Brain magnetic resonance images
(MRIs) of 3,538 subjects from the Brain Genomics Superstruct
Project (GSP) [32] in our experiments. The FreeSurfer pack-
age [33] is used to remove the non-brain region in the images,
bias-field correction, intensity normalization, affine registration
to Talairach space, and resampling to 1 mm3 isotropic resolu-
tion. We trim the blank axial slices with all-zero values and

rescale the images into 2563. The intensity value is clipped at
top 0.1% quantile to remove outliers, and then normalized into
[−1, 1].

B. Image Synthesis

We examine whether the synthetic images are realistic-
looking quantitatively and qualitatively, where synthetic images
are generated by feeding random noise into the generator.

1) Quantitative Evaluation: If the synthetic images are
realistic-looking, then the synthetic images’ distribution should
be indistinguishable from that of the real images. Therefore, we
can quantitatively evaluate the quality of the synthetic images
by Fréchet Inception Distance (FID) [34], Maximum Mean
Discrepancy (MMD) [35] and Inception Score (IS) [36]. Lower
values of FID/MMD and higher values of IS indicate that
the distributions of generated images are closer to real ones,
implying more realistic-looking synthetic images. We evaluate
the synthesis quality at two resolutions: 1283 and 2563. Due
to memory limitations, the baseline models can only be trained
with the size of 1283 at most. To make a fair comparison with our
model (HA-GAN), we apply trilinear interpolation to upsample
the synthetic images of baseline models to 2563. We adopt a 3D
ResNet model pre-trained on 3D medical images [37] to extract
features for computing FID and MMD. Note the scale of FID
relies on the feature extraction model. Thus our FID values are
not comparable to FID value calculated on 2D images, which is
based on feature extracted using model pre-trained on ImageNet.
For the IS scores, following the practice of [29], we measure the
Inception Scores on the middle slices on axial, coronal, and
sagittal planes of the generated 3D images and report averaged
performance. As shown in Table II and Table III, HA-GAN
achieves lower FID and MMD as well as higher IS than the
baselines, which implies that HA-GAN generates more realistic
images. We found that at the resolution of 1283, HA-GAN still
outperforms the baseline models, but the lead has been smaller
compared with the result at the resolution of 2563. In addition,
we performed statistical tests on the evaluation results at 2563

resolution between methods. More specifically, we performed
two-sample t-tests (one-tailed) between HA-GAN and each of
the baseline methods. At a significance level of 0.05, HA-GAN
achieves significantly higher performance than baseline methods
for both datasets.

2) Ablation Study: We perform three ablation studies to val-
idate the contribution of each of the proposed components.
The experiments are performed at 2563 resolution. Shown in
Table IV, we found that adding a low-resolution branch can
help improve results, since it can help the model learn the
global structure. Adding an encoder can also help improve
performance, since it can help stabilize the training. For the
deterministic r experiments, we make the sub-volume selector
to use a set of deterministic values of r (equal interval between
them) rather than the randomly sampled r currently used. From
the results, we can see that randomly sampled r outperforms
deterministic r.

3) Qualitative Evaluation: To qualitatively analyze the
results, we show some samples of synthetic images in Fig. 3.
The figure illustrates that HA-GAN generates sharper images
than the baselines.
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TABLE II
EVALUATION FOR IMAGE SYNTHESIS ON COPDGENE DATASET

TABLE III
EVALUATION FOR IMAGE SYNTHESIS ON GSP DATASET

TABLE IV
RESULTS OF ABLATION STUDY

Fig. 3. Randomly generated images by different models and the real images. The figure illustrates that HA-GAN generates sharper images than
the baselines.
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Fig. 4. Comparison of the embedding of different models. We em-
bed the features extracted from synthesized images into 2-dimensional
space with MDS. The ellipses are fitted to scatters of each model for
better visualization. The figures show that the embedding region of
HA-GAN has the most overlapping with real images, compared to the
baselines.

To examine the diversity and authenticity of generated images,
we embed the synthetic and real images into the latent space. If
the synthetic images are indistinguishable from the real images,
then we expect that the synthetic and real images occupy the
same region in the embedding space. Following the practice
of [27], we first use a pretrained 3D medical ResNet model [37]
to extract features for 512 synthetic images by each method. As a
reference, we also extract features for the real image samples us-
ing the same ResNet model. Then we conduct MDS to embed the
exacted features into 2-dimensional space for both COPDGene
and GSP datasets. The results are visualized in Fig. 4(a) and
4(b), respectively. To avoid cluttering dots, we only visualize
four representative baseline methods. In both figures, we fit an
ellipse for the embedding of each model with the least square. In
the figures, we observe that synthetic images by HA-GAN better
overlap with real images, compared with the baselines. This
implies that HA-GAN generates more realistic-looking images
than the baselines.

C. Data Augmentation for Supervised Learning

In this experiment, we used the synthesized samples from HA-
GAN to augment the training dataset for a supervised learning
task. Previous work [38] has shown that GAN-generated samples
improve the diversity of the training dataset, resulting in a better
discriminative performance of the classifier. Motivated by their
results, we designed our experiment with the following three
steps: First, we extended our HA-GAN architecture to enable
conditional image generation and trained a class-conditional
variant of HA-GAN. Next, we used trained HA-GAN to generate
new images with class labels. Finally, we combined the original
training dataset and GAN-generated images to train a multi-class
classifier, and evaluate the performance on the test set. We
demonstrate our experiment on the COPDGene dataset using
the GOLD score as a multi-class label. The GOLD score is a
5-class categorical variable ranging from 0–4.

We made two modifications to the original HA-GAN architec-
ture to enable class-conditional image generation: 1) We updated
the generator module GA(X; c) to take a one-hot code c ∼ pc
as input, along with latent variable Z ∼ N (0, I). c represents
the target class for the conditional image generation. 2) We
updated the discriminator to output two probability distributions,
one over the binary real/fake classification (same as original
HA-GAN), and another over the multi-class classification of
class labels P (C|X). Thus, the discriminator also acts as an
auxiliary classifier for the class labels [39]. A schematic of
the modified model can be found in Supplementary Material. In
addition, two new terms are added to the original HA-GAN loss
function for conditional generation:

LH
class(G

H , GA, DH) = E[logP (C = c|XH
r )]

+ E[logP (C = c|X̂H
r )]

LL
class(G

L, GA, DL) = E[logP (C = c|XL)]

+ E[logP (C = c|X̂L)] (9)

For comparison, we trained a class-conditional variant of
α-GAN on COPDGene dataset. The same two modifications
discussed above are incorporated into the originalα-GAN model
for conditional generation. We use a 3D CNN (implementation
details are included in Supplementary Material Table VIII) as
the classification model. We randomly sampled 80% of subjects
as training set and the rest are used as test set. We use an
image size of 1283 for this experiment. We divided 80% of the
subjects into training set, while the rest are included in a test set.
For creating the augmented training set, we combine randomly
generated images from class-conditioned GAN (20%) with the
real images in the training set (80%). The proportion of different
GOLD classes for generated images is the same as the original
dataset. We train two classifiers on the original training set and
the GAN-augmented training set for 20 epochs respectively, and
evaluated their performance on a held-out test set of real images.

Table V shows the results on COPDGene dataset. Classifier
trained with GAN augmented data performed better than the
baseline model which trains on training set only consisted of
real images. Augmentation with HA-GAN can further improve
performance compared to α-GAN.
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TABLE V
EVALUATION RESULT FOR GAN-BASED DATA AUGMENTATION

TABLE VI
R2 FOR PREDICTING CLINICAL-RELEVANT MEASUREMENTS

We do not include the results of WGAN and Progressive GAN, because they do not
incorporate an encoder.

D. Clinical-Relevant Feature Extraction

In this section, we evaluate the encoded latent variables from
real images to predict clinical-relevant measurements. This task
evaluates how much information about the disease severity is
preserved in the encoded latent features.

We select two respiratory measurements and one CT-based
measurement of emphysema to measure disease severity. For
respiratory measurements, we use percent predicted values of
Forced Expiratory Volume in one second (FEV1pp) and its ratio
with Forced vital capacity (FVC) (FEV1/FVC). Given extracted
features, we train a Ridge regression model with λ = 1× 10−4

to predict the logarithm of each of the measurements. We report
the R2 scores on held-out test data. Table VI shows that HA-
GAN achieves higher R2 than the baselines. The results imply
that HA-GAN preserves more information about the disease
severity than baselines.

E. Exploring the Latent Space

This section investigates whether change along a certain di-
rection in the latent space corresponds to semantic meanings. We
segment the lung regions in the thorax CT images using Chest
Image Platform (CIP) [40], and segment the bone tissues via
thresholding. The detailed thresholding criteria can be found in
Supplementary Material. Next, we train linear regression models
that predict the total volume of the different tissues/regions with
the encoded latent representations Z for each image, optimizing
with least square. The learned parameter vector for each class
represents the latent direction. Then, we manipulate the latent
variable along the direction corresponding to the learned param-
eters of linear models and generate the images by feeding the
resulted latent representations into the generator. More specifi-
cally, first a reference latent variable is randomly sampled, then
the latent variable is moved along the latent direction learned
until the target volume is reached, which is predicted by the linear
regression model. As shown in Fig. 5, for thorax CT images, we
identify directions in latent space corresponding to the volume of
lung and bone respectively. When we go along these directions
in latent space, we can observe the change of volumes for these
tissues.

Fig. 5. Latent space exploration on thorax CT images. The figure re-
ports synthetic images generated by changing the latent code in two
different directions, corresponding to the lung and bone volume respec-
tively. The number shown below each slice indicates the percentage of
the volume of interest that occupies the volume of lung region of the
synthetic image. The segmentation masks are plotted in green.

Fig. 6. Results of memory usage test. Note that HA-GAN is the only
model that can generate images sized 2563 without memory overflow
on high-end GPU with 16 GB VRAM.

F. Memory Efficiency

In this section, we compare the memory efficiency of HA-
GAN with baselines. We measure the GPU memory usage at the
training time for all models under different resolutions, including
323, 643, 1283, and 2563. The results are shown in Fig. 6. Note
that the experiments are performed on the same GPU (Tesla
V100 with 16 GB memory), and we set the batch size to 2. The
HA-GAN consumes much less memory than baseline models
under different resolutions. In addition, HA-GAN is the only
model that can generate images of sizes 2563. All other models
exhaust the entire memory of GPU; thus, the memory demand
cannot be measured. In order to investigate where the memory
efficiency comes from, we report the number of parameters for
HA-GAN at different resolutions in Table VII. We found that as
the resolution increases, the number of parameters only increases
marginally, which is expected as the model only requires a few
more layers as resolution increases.

In addition, we compare the computational efficiency of our
HA-GAN model with baseline models. More specifically, we
measure the number of iterations per second during training.
One NVIDIA Tesla V100 GPU is used for each model and we
set the batch size as 2. The comparison is performed under the
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TABLE VII
NUMBER OF MODEL PARAMETERS AND MEMORY USAGE UNDER DIFFERENT

RESOLUTIONS

TABLE VIII
TRAINING SPEED (ITER/S) FOR DIFFERENT MODELS (HIGHER IS BETTER)

1283 resolution where all models can fit in memory. The result
is shown in Table VIII. Our HA-GAN is more computationally
efficient than the baselines.

V. DISCUSSION

As shown quantitatively in Table II and Table III, HA-GAN
achieves lower FID and MMD, as well as higher IS. This implies
that our model generates more realistic images. This is further
confirmed by the synthetic images shown in Fig. 3, where
HA-GAN generates sharper images compared to other methods.
We found that our method outperforms baseline methods at both
the resolution of 1283 and 2563, but the lead is larger at 2563

resolution than 1283. Based on the results, we believe that the
sharp generation results come from both the model itself and its
ability to directly generate images at 2563 without interpolation
upsampling. For the baseline models, we found that α-GAN
and WGAN have similar performance, and VAE-GAN tends
to generate blurry images. WGAN is essentially the α-GAN
without the encoder. Based on qualitative examples shown in
Fig. 3, it can generate sharper images compared to α-GAN and
Progressive GAN. However, it also generates more artifacts.
According to the quantitative analysis shown in Table II, overall
the generation quality of α-GAN is comparable with WGAN.
Although our proposed HA-GAN achieves the highest quality
comparing to the baseline models, we admit that there is still
a gap between HA-GAN generated images and real images.
We also note that in order to achieve optimal performance for
HA-GAN, most of blank axial slices of training images need
to be removed, because empty sub-volume may confuse the
model. There are several directions that may further improve the
performance, including using a pretrained segmentation network
to regularize the generated images, etc. We hope that our method
establishes a strong baseline that can be pushed further by future
work.

For the ablation studies, first we found that adding a low-
resolution branch can help improve results, we think it’s because
the low-resolution branch can help the model learn the global
structure. Second, we observe in Table IV that HA-GAN with
encoder outperforms the version without encoder in terms of
image synthesis quality. The reconstruction loss in the objective
function ensures that the reconstructed images are voxel-wise
consistent with the original images. This term can encourage

the generator to represent all data and not collapse, improving
the performance of the generator in terms of image synthesis.
Finally, using randomly selected r leads to randomly selected
locations of sub-volumes. In this way, the junctions between
sub-volumes can be better covered.

The embedding shown in Fig. 4(a) and Fig. 4(b) reveals that
the distribution of the synthetic images by HA-GAN is more
consistent with the real images, compared to all baselines. The
scatters of WGAN/α-GAN show compressed support of real
data distribution, which suggests that samples of WGAN (cyan)
and α-GAN (green) have lower diversity than the real images.
We think one reason is that the models only learn few attributes
of samples in the dataset. To be more specific, the models learn
an overly simplified distribution, so the generated images are of
lower diversity. The HA-GAN model we proposed has an en-
coder module, which encourages different latent codes to map to
different outputs, improving the diversity of generated samples.
A portion of scatters of Progressive GAN (blue) and StyleGAN2
(purple) lay outside of real data distribution (red), which sug-
gests that some generated images may contain artifacts.

In clinical applications, high-resolution CT can help radiol-
ogists make reliable diagnose decisions, including pulmonary
eosinophilic granuloma, lymphangiomyomatosis, and emphy-
sema [8]. High-resolution CT is especially beneficial in imaging
tasks in which small anatomy and pathologic structure is the
target, such as in-stent stenosis, lung nodules, coronary calcifi-
cation, and temporal bones [41]. There are previous works that
propose to use 3D GAN for diverse clinical applications [9],
[10]. For instance, synthesized images can be used for data
anonymization which enables privacy-preserving data sharing
between institutions [42]. However, the generated images are
limited to the small size of 128× 128× 128 or below, due
to insufficient memory during training. In most clinical CT
applications, image matrix size of 512× 512 or larger is used
for in-plane direction [41]. Our proposed HA-GAN bridges
the gap between them and serve as a plug-and-play module to
improve performance for many GAN-based medical imaging
applications.

We demonstrate two clinical applications in our paper: data
augmentation and clinical-relevant feature extraction. For data
augmentation, the results in Table V show that samples generated
by HA-GAN can help the training of classification model. While
samples generated by α-GAN can also help the training, the
performance gain is smaller. We think one reason is that samples
generated by HA-GAN are more realistic, also shown in Table II
and Table III. GAN can learn a rich prior from existing medical
imaging datasets, and the generated samples can help classifiers
to achieve better performance.

For the experiment of feature extraction, we encode the full
image into a flat variable to extract meaningful and compact fea-
ture representation for downstream clinical feature prediction.
Table VI shows that HA-GAN can better extract clinical-relevant
features from the images, comparing to VAE-GAN and α-GAN.
Some clinical-relevant information might be hidden in specific
details in the medical images, and can only be observed under
high resolution. VAE-GAN andα-GAN can only process lower-
resolution images of 1283. We speculate that the high-resolution
information leveraged by HA-GAN helps it learn better repre-
sentations.
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From Table VII, we found that as the output resolution in-
creases, the total number of model parameters does not increase
much, but as the multiplier factor increases, the memory usage
increases drastically. Therefore, we believe that the memory
efficiency mainly comes from the sub-volume scheme rather
than model parameters.

VI. CONCLUSION

In this work, we develop a hierarchical GAN model that can
generate 3D high-resolution images. Experiments on 3D thorax
CT and brain MRI show that HA-GAN achieves state-of-the-art
performance in image synthesis and clinical applications. Our
method enables various real-world medical imaging applications
that rely on high-resolution image generation and analysis.
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