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Temporal networks representing a stream of timestamped edges are seemingly ubiquitous in the real-world.

However, the massive size and continuous nature of these networks make them fundamentally challenging

to analyze and leverage for descriptive and predictive modeling tasks. In this work, we propose a general

framework for temporal network sampling with unbiased estimation. We develop online, single-pass sampling

algorithms and unbiased estimators for temporal network sampling. The proposed algorithms enable fast,

accurate, and memory-efficient statistical estimation of temporal network patterns and properties. In addition,

we propose a temporally decaying sampling algorithm with unbiased estimators for studying networks that

evolve in continuous time, where the strength of links is a function of time, and the motif patterns are

temporally-weighted. In contrast to the prior notion of a △𝑡-temporal motif, the proposed formulation and

algorithms for counting temporally weighted motifs are useful for forecasting tasks in networks such as

predicting future links, or a future time-series variable of nodes and links. Finally, extensive experiments on a

variety of temporal networks from different domains demonstrate the effectiveness of the proposed algorithms.

A detailed ablation study is provided to understand the impact of the various components of the proposed

framework.
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1 INTRODUCTION
Networks provide a natural framework to model and analyze complex systems of interacting

entities in various domains (e.g., social, neural, communication, and technological domains) [67, 68].

Most complex networked systems of scientific interest are continuously evolving in time, while

entities interact continuously, and different entities may enter or exit the system at different times.

The accurate modeling and analysis of these complex systems largely depend on the network

representation [41]. Therefore, it is crucial to incorporate both the heterogeneous structural and
temporal information into network representations [69, 75, 81]. By incorporating the temporal
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information alongside the structural information, we obtain time-varying networks, also called

temporal networks [43].
In temporal networks, the nodes represent the entities in the system, and the links represent the

interactions among these entities across time. Unlike static networks, nodes and links in temporal

networks become active at certain times, leading to changes in the network structure over time [53].

Temporal networks have been recently used to model and analyze dynamic and streaming network

data, e.g., to analyze andmodel information propagation [31, 74], epidemics [72], infections [61], user

influence [21, 39], among other applications [69, 81]. However, there are fundamental challenges to

the analysis of temporal networks in real-world applications. One major challenge is the massive

size and streaming characteristics of temporal network data that are generated by interconnected

systems, since all interactions must be stored at any given time (e.g., email communications) [11].

As a result, several algorithms that were studied and designed for static networks that can fit in

memory are becoming computationally intensive [8], due to their struggle to deal with the size and

streaming properties of temporal networks.

One common practice is to aggregate interactions in discrete time windows (time bins) (e.g.,
aggregate all interactions that appear in 1-day or 1-month), these are often called static graph
snapshots [83]. Given a graph snapshot, traditional techniques can be used to study and analyze

the network (e.g., community detection, model learning, node ranking). Unfortunately, there are

multiple challenges with employing these static aggregations. First, the choice of the size and

placement of these time windows may alter the properties of the network and/or introduce a bias

in the description of network dynamics [19, 42, 86, 90]. For example, a small window size will likely

miss important network sub-structures that span multiple windows (e.g., multi-node interactions

such as motifs) [69]. On the other hand, a large window size will likely lose the temporal patterns

in the data [33]. Second, modeling and analyzing bursty network traffic will likely be impacted by

the placement of time windows. Finally, it is costly to consistently and reliably maintain these static

aggregates for real-time applications [8, 11]. For example, it is often difficult to consistently gather

these snapshots of graphs in one place, at one time, in an appropriate format for analysis. Thus,

aggregates of network interactions in discrete time bins may not be an appropriate representation

of temporal networks that evolve on a continuous-time scale [2, 35], and can often lead to errors

and bias the results [69, 83, 90, 94, 97, 98].

Statistical sampling is also common in studying networks, where the goal is to select a representa-
tive sample (i.e., subnetwork) that serves as a proxy for the full network [58]. Sampling algorithms

are fundamental in studying and understanding networks [11, 47, 67]. A sampled network is called

representative, if the characteristics of interest in the full network can be accurately estimated from

the sample. Statistical sampling can provide a versatile framework to model and analyze network

data. For example, when handling big data that cannot fit in memory, collecting data using limited

storage/power electronic devices (e.g., mobile devices, RFID), or when the measurements required

to observe the entire network are costly (e.g., protein interaction networks [85]).

While many network sampling techniques are studied in the context of small static networks

that can fit entirely in memory [47] (e.g., uniform node sampling [85], random walk sampling[52]),

recently there has been a growing interest in sampling techniques for streaming network data

in which temporal networks evolve continuously in time [8–10, 24, 27, 44, 45, 55, 71, 73, 82, 84]

(see [11, 62] for a survey). Most existing methods for sampling streaming network data have focused

on the primary objective of selecting a sample to estimate static network properties (e.g., point
statistics such as global triangle count or clustering coefficient). This poses an interesting and

important question of how representative these samples of the characteristics of temporal networks

that evolve on a continuous-time scale [3], such as the link strength [93], link persistence [25],
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Fig. 1. An illustrative example of streaming temporal networks.

burstiness [16], temporal motifs [48], among others [4, 36, 43, 49, 50]. Although this question is

important, it has thus far not been addressed in the context of streaming and online methods.

In this paper, we introduce an online importance sampling framework that extracts continuous-

time dynamic network samples, in which the strength of a link (i.e., edge between two nodes) can

evolve continuously as a function of time. Our proposed framework samples interactions to include

in the sample based on their importance weight relative to the variable of interest (i.e., link strength),
this enables sampling algorithms to adapt to the topological changes of temporal networks. Also,

our proposed framework allows online and incremental updates, and can run efficiently in a single-

pass over the data stream, where each interaction is observed and processed once upon arrival.

We present an unbiased estimator of the link strength, and extend our formulation to unbiased

estimators of general subgraphs in temporal networks. We also introduce the notion of link-decay
network sampling, in which the strength of a sampled link is allowed to decay exponentially after

the most recent update (i.e., recent interaction). We show unbiased estimators of link strength and

general subgraphs under the link-decay model.

Summary of Contributions: This work makes the following key contributions:

• We propose a general temporal network sampling framework for unbiased estimation of

temporal network statistics. We develop online, single-pass, memory-efficient sampling

algorithms and unbiased estimators.

• We propose a temporally decaying sampling algorithm with unbiased estimators for studying

networks that evolve in continuous time, where the strength of links is a function of time, and

the motif patterns and temporal statistics are temporally weighted accordingly. This temporal

decay model is more useful for real-world applications such as prediction and forecasting in

temporal networks.

• The proposed algorithms enable fast, accurate, and memory-efficient statistical estimation of

temporal network patterns and statistics.

• Experiments on a wide variety of temporal networks demonstrate the effectiveness of the

framework.

2 ONLINE SAMPLING FRAMEWORK
Here, we introduce our proposed online importance sampling framework that extracts continuous-

time dynamic network samples from temporal networks. See Table 1 for a summary of notations.
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Table 1. Summary of notation.

𝐺 Temporal network

𝐸 Set of interaction events

𝐾 Set of Unique Edges (links)

𝐸𝑡 Set of interactions {𝑒𝑠 : 𝑠 ≤ 𝑡}
𝐾𝑡 Set of unique interactions in 𝐸𝑡 arriving by time 𝑡

𝑉𝑡 Set of vertices that appeared in 𝐾𝑡

𝐺 Graph induced by unique edges

𝑁,𝑀 number of nodes 𝑁 = |𝑉 | and edges𝑀 = |𝐾 | in 𝐺
𝐶𝑒,𝑡 Multiplicity (weight) of edge 𝑒 at time 𝑡

𝐶𝑒,𝑡 Estimated multiplicity of edge 𝑒 at time 𝑡

C𝑡 time-dependent adjacency matrix of link strength at time 𝑡

𝐾 Reservoir of sampled edges

𝑚 Number of sampled edges (Sample Size),𝑚 = |𝐾 |
𝛿 Link decay rate

𝜙 Initial weight

𝐶M Weighted count of motif patternM
𝐶M Estimated weighted count of motif patternM
𝑉 (𝑒) Unbiased estimator of variance of edge 𝑒

𝑤 (𝑒) Sampling weight of edge 𝑒

𝑟 (𝑒) Rank of edge 𝑒 in the sample

Overview. We propose an online sampling framework for temporal streaming networks which

seeks to construct continuous-time, fixed-size, dynamic sampled network that can capture the

evolution of the full network as it evolves in time as a stream of edges. Our framework assumes

an input temporal network represented a stream of interactions links at certain times, and each

interaction can be observed and/or processed only once. Sampling algorithms are allowed to store

only𝑚 sampled edges, and can process the stream in a single-pass. If any two vertices interact

at time 𝑡 = 𝜏 , their edge strength increases by 1. Figure 1 shows an illustrative example of how a

continuous-time dynamic network can be formed from a stream of edges, where the edge strength

is a function of the interactions among vertices over time.

2.1 Notation & Problem Definition

Edges, Interactions, and Streaming Temporal Networks. Our framework seeks to construct

a continuous-time sampled network that can capture the characteristics and serve as a proxy of an

input temporal network as it evolves continuously in time. In this paper, we draw an important

distinction between interactions and edges. An interaction (contact) between two entities is an event

that occurred at a certain point in time (e.g., an email, text message, physical contact). On the other

hand, an edge between two entities represents the link or the relationship between them, and the

weight of this edge represents the strength of the relationship (e.g., strength of friendship in social

network [93]). We use𝐺 to denote an input temporal network, where a set of vertices 𝑉 (e.g., users
or entities) are interacting at certain times. Let (𝑖, 𝑗, 𝑡) ∈ 𝐸 denote the interaction event that takes

place at time 𝑡 , where 𝑖, 𝑗 ∈ 𝑉 , 𝐸 is the set of interactions, 𝐸𝑡 is the set of interactions up to time

𝑡 , and 𝐾 is the set of unique edges (𝑒 = (𝑖, 𝑗) ∈ 𝐾) in the temporal network 𝐺 . We assume these

interactions are instantaneous (i.e., the duration of the interaction is negligible), e.g., email, tweet,
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text message, etc. Let 𝐶𝑒 denote the multiplicity (weight) of an edge 𝑒 = (𝑖, 𝑗), with 𝐶𝑒,𝑡 being the
multiplicity of the edge at time 𝑡 , i.e., the number of times the edge appears in interactions up to time

𝑡 . Finally, we define a streaming temporal network 𝐺 as a stream of interactions 𝑒1, . . . , 𝑒𝑡 , . . . , 𝑒𝑇 ,
with 𝑒𝑡 = (𝑖, 𝑗, 𝑡) is the interaction between 𝑖, 𝑗 ∈ 𝑉 at time 𝑡 .

We note that the term unique edges refers to the set of relationships that exist among the vertices.

On the other hand, the term interaction refers to an event that occurred at some point in time

between two vertices. As such, interactions can happen more than once between two vertices, while

unique edges represent the existing relationship between two vertices. For example, in Figure 1, the

edge 𝑒 = (𝑣3, 𝑣4) has two interactions that happen at times 𝑡 = 3, 5 respectively. Hence, the strength

of 𝑒 = (𝑣3, 𝑣4) is higher compared to other edges.

Continuous-time Dynamic Network Samples. Consider a set of 𝑁 = |𝑉 | interacting vertices,
with their interactions represented as a streaming temporal network𝐺 , i.e., 𝑒1, . . . , 𝑒𝑡 , . . . , 𝑒𝑇 . Let
C𝑡 be the time-dependent adjacency matrix, whose entries 𝐶𝑖 𝑗,𝑡 ≥ 0 represent the relationship

strength between vertices 𝑖, 𝑗 ∈ 𝑉 at time 𝑡 . The relationship strength is a function of the edge

multiplicity and time. Our framework seeks to construct, maintain, and adapt a continuous-time

dynamic sampled network, represented by the matrix Ĉ𝑡 that serves as unbiased estimator of C𝑡
at any time point 𝑡 , where the expected number of non-zero entries in Ĉ𝑡 is at most𝑚, and𝑚 is

the sample size (i.e., maximum number of sampled edges). Our framework makes the following

assumptions:

• We assume an input temporal network represented a stream of interactions at certain times,

and each interaction can be processed and observed only once.

• Any algorithm can only store𝑚 sampled edges, and is allowed a single-pass over the stream.

• If two vertices interact at time 𝑡 = 𝜏 , their edge strength increases by 1.

2.2 Link-Decay Network Sampling
Here, we introduce a novel online sampling framework that seeks to construct and maintain a

sampled temporal network in which the strength of a link (i.e., relationship between two friends)

can evolve continuously in time. Since the sampled network serves as a proxy of the full temporal

network, the sampled network is expected to capture both the structural and temporal characteristics

of the full temporal network.

Temporal Link-Decay. Assume an input stream of interactions, where interactions are instanta-

neous (e.g., email, text message, and so on). For any pair of vertices 𝑖, 𝑗 ∈ 𝑉 , with a set of interaction

times 𝜏 (1) , 𝜏 (2) , . . . , 𝜏 (𝑇 ) , where 0 < 𝜏 (1) < · · · < 𝜏 (𝑇 ) , and their first interaction time is 𝜏 (1) > 0. Our

goal is to estimate the strength of the link 𝑒 = (𝑖, 𝑗) as a function of time, in which the link strength

may increase or decrease based on the frequency and timings of the interactions. Consider two

models of constructing an adaptive sampled network represented as a time-dependent adjacency

matrix C𝑡 , whose entries represent the link strength 𝐶𝑖 𝑗,𝑡 .

The first model is the no-decay model, in which the link strength does not decrease over time,

i.e.,𝐶𝑖 𝑗,𝜏 (2) = 𝐶𝑖 𝑗,𝜏 (1) + 1. Thus,𝐶𝑖 𝑗,𝑡 is the multiplicity or a function of the frequency of an edge, and

we provide an unbiased estimator for this in Theorem 1. However, the no decay model assumes

the interactions are fixed once happened, taking only the frequency of interactions as the primary

factor in modeling link strength, which could be particularly useful for certain applications, such

as proximity interactions (e.g., link strength for people attending a conference).

The second model is the link-decay model, in which the strength of the link decays exponentially

after the most recent interaction, to capture the temporal evolution of the relationship between

𝑖 and 𝑗 at any time 𝑡 . Let the initial condition of the strength of link (𝑖, 𝑗) be 𝐶𝑖 𝑗,𝑡0 = 0. Then,
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𝐶𝑖 𝑗,𝑡 =
∑𝑇
𝑠=0 𝜃 (𝑡 − 𝜏 (𝑠) ) e−(𝑡−𝜏

(𝑠 ) )/𝛿
, where 𝜃 (𝑡) is the unit step function, and the decay factor 𝛿 > 0.

We formulate the link strength as a stream of events (e.g., signals or pulses), that can be adapted

incrementally in an online fashion, so the strength of link 𝑒 = (𝑖, 𝑗) at time 𝑡 follows the equation,

𝐶𝑒,𝑡 = 𝐶𝑒,𝑡−1 ∗ e−1/𝛿 (1)

And if a new interaction occurred at time 𝑡 , the link strength follows,

𝐶𝑒,𝑡 = 𝐶𝑒,𝑡−1 ∗ e−1/𝛿 + 1 (2)

Our approach discounts the contributions of interactions to the time-dependent link strength as a

function of the interaction age, while adapting the sampling weight of the link to its non-discounted

multiplicity. This allows us to preferentially retain the relatively small proportion of highly active

links, while the capability to temporally weight motif and subgraphs resides in the estimator.

This is distinct from previous approaches for temporal sampling in which the retention sampling

probability for single items were, e.g., exponentially discounted according to age, without regard to

item frequencies as a criterion for retention; see [28].

We formulate an unbiased estimator for the link-decayed strength as a function of the link

multiplicity in Section 4 (see Theorem 3). All the proposed estimators can be computed and updated

efficiently in a single-pass streaming fashion using Algorithm 1. In addition to exponential decay,

the unbiased estimators generalize and can be easily extended to other decay functions, such as

polynomial decay. Note that in this paper, we use the term link-decay to refer to exponential

link-decay.

Link decay has major advantages in network modeling that we discuss next. First, it allows us to

utilize both the frequency and timings of interactions in modeling link strength. Second, it is more

realistic, allowing us to avoid any potential bias that may result from partitioning interactions

into time windows. Link decay is also flexible, by tuning the decay factor 𝛿 , we can determine the

degree at which the strength of the link ages (i.e., the half-life of a link 𝑡1/2 = 𝛿 ln 2). We also note

that the link decay model and the unbiased estimator in Theorem 3 can generalize to allow more

flexibility, by tuning the decay parameter on the network-level, the node-level, or the link-level, to

allow different temporal scales at different levels of granularity.

Temporally Weighted Motifs. We showcase our formulation of estimated link strength by esti-

mating the counts of motif frequencies in continuous time. We introduce the notion of temporally
weighted motifs in Definition 1. Temporally weighted motifs are more meaningful and useful for

practical applications especially related to prediction and forecasting where links and motifs that

occur more recently as well as more frequently are more important than those occurring in the

distant past.

Definition 1. (Temporally Weighted Motif) A temporally weighted network motif M is a
small induced subgraph pattern with 𝑛 vertices, and𝑚 edges, such that 𝐶M is the time-dependent
frequency of M and is subject to temporal decay, and 𝐶M,𝑡 =

∑
ℎ∈𝐻𝑡

∏
𝑒∈ℎ𝐶𝑒,𝑡 , where 𝐻𝑡 is the set of

observed subgraphs isomorphic to M at time 𝑡 , and 𝐶𝑒,𝑡 is the link strength.

In general, motifs represent small subgraph patterns and the motif counts were shown to reveal

fundamental characteristics and design principles of complex networked systems [12, 13, 17, 63],

as well as improve the accuracy of machine learning models [14, 78]. While prior work focused

on aggregating interactions in time windows and analyze the aggregated graph snapshots [75, 81,

88], others have focused on aggregating motifs in △𝑡 time bins, and defined motif duration [56].

These approaches rely on judicious partitioning of interactions in time bins, and would certainly

suffer from the limitations discussed earlier in Section 1. Time partitioning may obfuscate or

dilute temporal and structural information, leading to biased results. Here, we define instead a

temporal weight or strength for any observed motif, which is a function of the strength of the links
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participating in the motif itself. Similar to the link strength, the motif weight is subject to time decay.

This formulation can also generalize to models of higher-order link decay (i.e., decaying hyperedges
in hypergraphs), we defer this to future work. The definition in 1 can be computed incrementally in

an online fashion, and subject to approximation via sampling and unbiased estimators. We establish

our sampling methodology in Algorithm 1 (see line 39) and unbiased estimators of subgraphs in

Section 4 (see Theorem 1).

3 PROPOSED ALGORITHM
In this paper, we propose an online sampling framework for temporal streaming networks which

seeks to construct continuous-time, fixed-size, dynamic sampled network that can capture the

evolution of the full network as it evolves in time. Our proposed framework establishes a number of

properties that we discuss next. We formally state our algorithm, called Online-TNS, in Algorithm 1.

Setup and Key Intuition. The general intuition of the proposed algorithm in Algorithm 1, is to

maintain a dynamic rank-based reservoir sample 𝐾 of a fixed-size𝑚 [9, 29, 91], from a temporal

network represented as stream of interactions, where edges can appear repeatedly. And,𝑚 = |𝐾 |
is the maximum possible number of sampled edges. When a new interaction 𝑒𝑡 = (𝑖, 𝑗, 𝑡) arrives
(line 3), if the edge 𝑒 = (𝑖, 𝑗) has been sampled before (i.e., 𝑒 = (𝑖, 𝑗) ∈ 𝐾), then we only need to

update the edge sampling parameters (in lines 8–11) and the edge strength (line 7). However, if the

edge is new (i.e., 𝑒 = (𝑖, 𝑗) ∉ 𝐾), then the new edge is added provisionally to the sample (line 19),

and one of the𝑚 + 1 edges in 𝐾 gets discarded (lines 21 and 23).

Importance sampling weights and rank variables. Algorithm 1 preferentially selects edges

to include in the sample based on their importance weight relative to the variable of interest

(e.g., relationship strength, topological features), then adapts their weights to allow edges to

gain importance during stream processing. To achieve this, each arriving edge 𝑒 is assigned an

initial weight𝑤 (𝑒) on arrival and an iid uniform𝑈 (0, 1] random variable 𝑢 (𝑒). Then, Algorithm 1

computes and continuously updates a rank variable for each sampled edge 𝑟 (𝑒) = 𝑤 (𝑒)/𝑢 (𝑒)
(see line 17 and line 10). This rank variable quantifies the importance/priority of the edge to

remain in the sample. To keep a fixed sample size, the𝑚 + 1 edge with minimum rank is always

discarded (lines 21 and 23). The algorithm also maintains a sample threshold 𝑧∗ which is the

maximum discarded rank (line 22). Thus, the inclusion probability of an edge 𝑒 in the sample is:

P(𝑒 ∈ 𝐾) = P(𝑟 (𝑒) > 𝑧∗) = P(𝑢 (𝑒) < 𝑤 (𝑒)/𝑧∗) = min{1,𝑤 (𝑒)/𝑧∗}. Our mathematical formulation

in Section 4 allows the edge sampling weight to increase when more interactions are observed

(line 9). Thus, edges can gain more importance or rank that reflects the relationship strength as it

evolves continuously in time. This setup will support network models that focus on capturing the

relationship strength in temporal networks [43, 64].

Unbiased estimation of link strength. We use a procedure called update-edge-strength

(line 25 of Algorithm 1) to dynamically maintain an unbiased estimate (see Theorem 1) of the edge

strength as it evolves continuously in time. The procedure in line 25 of Algorithm 1 also maintains

an unbiased estimate of the variance of the edge strength following Theorem 2. Note the strength

of an edge 𝑒 is a function of the edge multiplicity𝐶𝑒 (the number of interactions 𝑒𝑡 where 𝑒𝑡 = 𝑒). If

a link-decaying model is required, the procedure called update-edge-decay can be used instead of

update-edge-strength to estimate the link-decayed strength (see line 32 of Algorithm 1). We

prove that our estimated link-decaying weight is unbiased in Theorem 3.

Unbiased estimation of subgraph counts. Given a motif patternM of interest (e.g., triangles,
or small cliques), the procedure called Subgraph-Estimation in line 39 of Algorithm 1 is used to

update an unbiased estimate of the count of all occurrences of the motifM at any time 𝑡 . Theorem 1
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Algorithm 1 Online Temporal Network Sampling (Online-TNS)

INPUT: Sample size𝑚, Motif pattern M, initial weight 𝜙

OUTPUT: Estimated network C𝑡 , Estimated motif count𝐶M
1 procedure Online-TNS(𝑚)

2 𝐾 = ∅; 𝑧∗= 0;𝐶M = 0 ⊲ Initialize edge sample & threshold

3 while (new interaction 𝑒𝑡 = (𝑖, 𝑗, 𝑡 )) do
4 𝑒 = (𝑖, 𝑗)
5 Subgraph-Estimation(𝑒) ⊲ Update Estimated Motif

6 if (𝑒 ∈ 𝐾 ) then ⊲ Edge exists in 𝐾

7 update-edge-strength(𝑒) ⊲ Update Edge Strength

8 𝐶 (𝑒) = 𝐶 (𝑒) + 1 ⊲ Increment edge multiplicity

9 𝑤 (𝑒) = 𝑤 (𝑒) + 1 ⊲ Adapt importance weight

10 𝑟 (𝑒) = 𝑤 (𝑒)/𝑢 (𝑒) ⊲ Adapt edge rank

11 𝜏 (𝑒) = 𝑡 ⊲ Last Interaction Time

12 else
13 //Initialize parameters for new edge

14 𝑝 (𝑒) = 1; 𝐶 (𝑒) = 1;𝑉 (𝑒) = 0;

15 𝑢 (𝑒) = Uniform (0, 1] ⊲ Initialize Uniform r.v.

16 𝑤 (𝑒) = 𝜙 ⊲ Initialize edge weight

17 𝑟 (𝑒) = 𝑤 (𝑒)/𝑢 (𝑒) ⊲ Compute edge rank

18 𝜏 (𝑒) = 𝑡
19 𝐾 = 𝐾 ∪ {𝑒 } ⊲ Provisionally include 𝑒 in sample

20 if ( |𝐾 | >𝑚) then
21 𝑒∗ = argmin

𝑒′∈𝐾 𝑟 (𝑒
′) ⊲ Find edge with min rank

22 𝑧∗ = max{𝑧∗, 𝑟 (𝑒∗) } ⊲ Update threshold

23 remove 𝑒∗ from 𝐾

24 delete {𝑤 (𝑒∗),𝑢 (𝑒∗), 𝑝 (𝑒∗),𝐶 (𝑒∗),𝑉 (𝑒∗) }

25 procedure update-edge-strength(𝑒)
26 // Function to estimate edge strength (No-decay)

27 if (𝑧∗ > 0) then
28 𝑞 = min{1, 𝑤 (𝑒)/(𝑧∗𝑝 (𝑒)) }
29 𝐶 (𝑒) = 𝐶 (𝑒)/𝑞 ⊲ Estimate edge strength

30 𝑉 (𝑒) = 𝑉 (𝑒)/𝑞 + (1 − 𝑞) ∗𝐶 (𝑒)2
31 𝑝 (𝑒) = 𝑝 (𝑒) ∗ 𝑞

32 procedure update-edge-decay(𝑒)
33 // Function to estimate edge strength (Link-decay)

34 if (𝑧∗ > 0) then
35 𝑞 = min{1, 𝑤 (𝑒)/(𝑧∗𝑝 (𝑒)) }
36 𝐶 (𝑒) = e

−𝛿 (𝑡−𝜏 (𝑒 ) ) ∗𝐶 (𝑒)/𝑞 ⊲ Estimate link strength

37 𝑉 (𝑒) = 𝑉 (𝑒)/𝑞 + (1 − 𝑞) ∗𝐶 (𝑒)2
38 𝑝 (𝑒) = 𝑝 (𝑒) ∗ 𝑞

39 procedure Subgraph-Estimation(𝑒)
40 //Set of Subgraphs isomorphic to M and completed by 𝑒

41 𝐻 = {ℎ ⊂ 𝐾 ∪ {𝑒 } : ℎ ∋ 𝑒,ℎ � M}
42 for ℎ ∈ 𝐻 do
43 for 𝑗 ∈ ℎ \ 𝑒 do
44 update-edge-strength(𝑗 ) ⊲ Update other edges

45 //Increment estimated count of motif M
46 𝐶M = 𝐶M + ∏

𝑗∈ℎ\{𝑒}𝐶 ( 𝑗)

is used to establish the unbiased estimator of the count of general subgraphs. The unbiased estimator

of subgraph counts also applies in the case of link decay, and gives rise to temporally decayed

(weighted) motifs.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: August 2018.



Online Sampling of Temporal Networks 1:9

Computational Efficiency and complexity. All the algorithms and estimators can run in a

single-pass on the stream of interactions, where each interaction can be observed and processed

once (see Alg 1). The main reservoir sample is implemented as a heap data structure (min-heap)

with a hash table to allow efficient updates. The estimator of edge strength can be updated in

constant time𝑂 (1). Also, retrieving the edge with minimum rank can be done in constant time𝑂 (1).
Any updates to the sampling weights and rank variables can be executed in a worst-case time of

𝑂 (log(𝑚)) (i.e., since it will trigger a bubble-up or bubble-down heap operations). For any incoming

edge 𝑒 = (𝑖, 𝑗), subgraph estimators can be efficiently computed if a hash table or bloom filter is

used for storing and looping over the sampled neighborhood of the sampled vertex with minimum

degree and querying the hash table of the other sampled vertex. For example, if we seek to estimate

triangle counts, then line 41 in Algorithm 1 can be implemented in 𝑂 (𝑚𝑖𝑛{deg(𝑖), deg( 𝑗)}).

4 ADAPTIVE UNBIASED ESTIMATION
In this section, we theoretically show and discuss our formulation of unbiased estimators for

temporal networks, that we use in Algorithm 1.

Edge Multiplicities. We consider a temporal network 𝐺 = (𝑉 , 𝐸) comprising interactions 𝐸

between vertex pairs of 𝑉 . Each interaction can be viewed as a representative of an edge set 𝐾

comprising the unique elements of 𝐸. We will write𝐺 = (𝑉 , 𝐾) as the graph induced by 𝐾 . Thus the

stream of interactions can also be regarded as a stream {𝑒𝑡 : 𝑡 ∈ [|𝐸 |]} of non-unique edges from 𝐾 .

Let 𝐾𝑡 denote the unique edges in {𝑒𝑠 : 𝑠 ≤ 𝑡} and have arrived by time 𝑡 . Also, let 𝐺𝑡 = (𝑉𝑡 , 𝐾𝑡 ) be
the induced graph, where𝑉𝑡 is the subset of vertices that appeared in 𝐾𝑡 . The multiplicity𝐶𝑒,𝑡 of an

edge 𝑒 ∈ 𝐾𝑡 is the number of times it occurs in 𝐸𝑡 = {𝑒𝑠 : 𝑠 ≤ 𝑡}, i.e., 𝐶𝑒,𝑡 = |{𝑠 ≤ 𝑡 : 𝑒𝑠 = 𝑒}|. The
multiplicity 𝐶 𝐽 ,𝑡 of 𝐽 ⊂ 𝐾𝑡 is the number of distinct ordered interaction subsets 𝐽̃ = {𝑒𝑖1 , . . . , 𝑒𝑖 | 𝐽 | }
with 𝑖 𝑗 ≤ 𝑡 , such that 𝐽̃ is a permutation of 𝐽 . Hence𝐶 𝐽 ,𝑡 =

∏
𝑒∈𝐽 𝐶𝑒,𝑡 . Given a classH of subgraphs

of 𝐺 , we wish to estimate for each 𝑡 the total multiplicity 𝐻𝑡 =
∑
𝐽 ∈H 𝐶 𝐽 ,𝑡 of subgraphs from H

that are present in the first 𝑡 arrivals.

Sampling Edges and Estimating Edge Multiplicities.We record edge arrivals by the indicators

𝑐𝑒,𝑡 = 1 if 𝑒𝑡 = 𝑒 and zero otherwise, and hence 𝐶𝑒,𝑡 =
∑
𝑡 ≥1 𝑐𝑒,𝑡 . 𝐾𝑡 will denote the sample set of

unique edges after arrival 𝑡 has been processed. We maintain an estimator 𝐶𝑒,𝑡 of 𝐶𝑒,𝑡 for each

𝑒 ∈ 𝐾𝑡 . Implicitly 𝐶𝑒,𝑡 = 0 if 𝑒 ∉ 𝐾𝑡 .

The algorithm proceeds as follows. If the arriving edge 𝑒𝑡 ∉ 𝐾𝑡−1 then 𝑒𝑡 is provisionally included

in the sample, forming𝐾 ′
𝑡 = 𝐾𝑡∪{𝑒𝑡 }, and we set𝐶𝑒𝑡 ,𝑡 = 𝑐𝑒𝑡 ,𝑡 = 1. The new edge is assigned a random

variable 𝑢𝑒𝑡 distributed IID in (0, 1]. A weight 𝑤𝑖,𝑡 is specified for each edge 𝑖 ∈ 𝐾 ′
𝑡 as described

below, from which the edge time-dependent priority at time 𝑡 is 𝑟𝑖,𝑡 = 𝑤𝑖,𝑡/𝑢𝑖 . If |𝐾 ′
𝑡 | > 𝑚, the edge

𝑑𝑡 = argmin
𝑖∈𝐾 ′

𝑡
𝑟𝑖,𝑡 of minimum priority is discarded, and the estimates 𝐶𝑖,𝑡 of the surviving edges

𝑖 ∈ 𝐾𝑡 = 𝐾 ′
𝑡 \ {𝑑𝑡 } undergo inverse probability normalization through division by the conditional

probability 𝑞𝑖,𝑡 of retention in 𝐾𝑡 ; see (Equation 6). If the arriving edge is already in the reservoir

𝑒𝑡 ∈ 𝐾𝑡−1 then we increment its multiplicity 𝐶𝑒𝑡 ,𝑡 = 𝐶𝑒𝑡 ,𝑡−1 + 1 and no sampling is needed, i.e.,

𝐾𝑡 = 𝐾𝑡−1.

Unbiased Estimation of Edge Multiplicities. Let Ω denote the (random) set of times at which

the sampling step takes place, i.e., such that the arriving edge 𝑒𝑡 is not currently in the reservoir

𝑒𝑡 ∉ 𝐾𝑡−1 and |𝐾𝑡−1 | = 𝑚. For 𝑡 ∈ Ω′ = Ω \ {minΩ}, let 𝜔 (𝑡) = max{[0, 𝑡) ∩ Ω} denote the next
most recent time at which the sampling step took place. For 𝑡 ∈ Ω′

, the sample counts present in

the reservoir accrue unit increments from arrivals 𝑒𝜔 (𝑡 )+1, . . . , 𝑒𝑡−1 until the sampling step takes
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place at time 𝑡 . For 𝑡 ∈ Ω, an edge 𝑖 ∈ 𝐾𝜔 (𝑡 ) is selected into 𝐾𝑡 if and only if 𝑟𝑖,𝑡 exceeds the smallest

priority of all other elements of 𝐾 ′
𝑡 , i.e.,

𝑟𝑖,𝑡 > 𝑧𝑖,𝑡 := min

𝑗 ∈𝐾 ′
𝑡 \{𝑖 }

𝑟 𝑗,𝑡 (3)

Hence by recurrence, 𝑖 ∈ 𝐾𝑡 only if 𝑢𝑖 < min𝑠 {𝑤𝑖,𝑠/𝑧𝑖,𝑠 } where 𝑠 takes values over
{𝛼𝑖 (𝑡), . . . , 𝜔 (𝜔 (𝑡)), 𝜔 (𝑡), 𝑡} (4)

where 𝛼𝑖 (𝑡) is the most recent time at which edge 𝑖 was sampled into the reservoir.

This motivates the definition below where 𝑝𝑒,𝑡 is the edge selection probability conditional on

the thresholds 𝑧𝑡 , and 𝑞𝑒,𝑡 is the conditional probability for sampling for each increment of time.

Let 𝑡𝑒 denote the time of first arrival of edge 𝑒 . For 𝑡 ∈ Ω, define 𝑝𝑒,𝑡 through the iteration

𝑝𝑒,𝑡 =

{
min{1,𝑤𝑒,𝑡/𝑧𝑡 } if 𝑡 = minΩ
min{𝑝𝑒,𝜔 (𝑡 ) ,𝑤𝑒,𝑡/𝑧𝑡 } otherwise

(5)

where 𝑧𝑡 = min
𝑒∈𝐾 ′

𝑡
𝑟𝑒,𝑡 for 𝑡 ∈ Ω𝑡 in the unrestricted minimum priority over edges in 𝐾 ′

𝑡 . Note

that 𝑧𝑖,𝑡 = 𝑧𝑡 if 𝑖 ∈ 𝐾𝑡 . Then 𝐶𝑒,𝑡 is defined by the iteration 𝐶𝑒,𝑡 = 0 for 𝑡 < 𝑡𝑒 and

𝐶𝑒,𝑡 =

(
𝐶𝑒,𝑡−1 + 𝑐𝑒,𝑡

) 𝐼 (𝑢𝑖 < 𝑤𝑖,𝑡/𝑧𝑖,𝑡 )
𝑞𝑒,𝑡

(6)

where

𝑞𝑒,𝑡 =


1 if 𝑡 ∉ Ω
𝑝𝑒,𝑡 if 𝑡 ∈ Ω and 𝑒 = 𝑒𝑡
𝑝𝑒,𝑡/𝑝𝑒,𝜔 (𝑡 ) otherwise

(7)

For 𝐽 ⊂ 𝑉 , let 𝑡 𝐽 = min𝑗 ∈𝐽 𝑡 𝑗 , i.e., the earliest time at which any instance of an edge in 𝐽 has

arrived. Let 𝐽𝑡 = { 𝑗 ∈ 𝐽 : 𝑡 𝑗 ≤ 𝑡}, i.e., the edges in 𝐽 whose first instance has arrived by 𝑡 . Note in

our model these are deterministic. The proof of the following Theorem and others in this paper are

detailed in Section A.

Theorem 1 (Unbiased Estimation).

(i) E[𝐶𝑒,𝑡 ] = 𝐶𝑒,𝑡 for all 𝑡 ≥ 0.

(ii) For each 𝐽 ⊂ 𝑉 and 𝑡 ≥ 𝑡 𝐽 then
∏
𝑒∈𝐽𝑡 (𝐶𝑒,𝑡 −𝐶𝑒,𝑡 ) : 𝑡 ≥ 𝑡 𝐽 } has expectation 0.

(iii) E[∏𝑒∈𝐽 𝐶𝑒,𝑡 ] =
∏
𝑒∈𝐽 𝐶𝑒,𝑡 for 𝑡 ≥ max𝑗 ∈𝐽 𝑡 𝑗 .

Estimating Subgraph Multiplicities. Theorem 1 tells us for a subgraph 𝐽 ⊂ 𝐾𝑡 , that
∏
𝑒∈𝐽 𝐶𝑒,𝑡

is an unbiased estimator of the multiplicity

∏
𝑒∈𝐽 𝐶𝑒,𝑡 of subgraphs formed by distinct set of

interactions isomorphic to 𝐽 . Now let ℎ ∈ 𝐻𝑡 , the set of subgraphs of 𝐺𝑡 that are isomorphic

to M at time 𝑡 . We partition the set of interactions in 𝐸𝑡 that represent ℎ according to the time

of last arrival. Thus it is evident that 𝐶M,𝑡 =
∑
𝑠≤𝑡 𝐶

(0)
M,𝑠

where 𝐶
(0)
M,𝑠

=
∑
ℎ∈𝐻 (0)

𝑠
𝐶ℎ\{𝑒𝑠 },𝑠 where

𝐻
(0)
𝑠 = {ℎ ∈ 𝐾𝑠 : ℎ ∋ 𝑒𝑠 : ℎ � 𝑀}, meaning, for each interaction 𝑒𝑠 , we consider subgraphs ℎ of 𝐾𝑠

congruent to M and containing 𝑒𝑠 , and compute the multiplicity of the ℎ with 𝑒𝑠 removed, i.e., not

counting any isomorphic sets of interactions in which the 𝑒 = 𝑒𝑠 arrived previously, thus avoiding

over-counting. It follows by linearity that 𝐶M,𝑡 =
∑
𝑠≤𝑡 𝐶

(0)
M,𝑠−1 is an unbiased estimator of 𝐶M,𝑡

where 𝐶
(0)
M,𝑠−1 =

∑
ℎ∈𝐻 (0)

𝑠
𝐶ℎ\{𝑒𝑠 },𝑠−1. Thus for each arrival 𝑒𝑡 we estimate 𝐶 𝐽 ,𝑡 just prior to sampling

of 𝑒𝑡 by𝐶 𝐽 ,𝑡 =
∏

𝑗 ∈𝐽 \{𝑒𝑡 }𝐶 𝑗,𝑡−1. For each 𝐽 ⊂ 𝐻𝑡 we increment a running total of𝑀𝑡 by this amount;

see line 46 in Algorithm 1.
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Edge Multiplicity Variance Estimation.We now discuss the unbiased estimator of the variance

Var(𝐶𝑒,𝑡 ).

Theorem 2 (Unbiased Variance Estimator).
Suppose 𝑉𝑒,𝑡−1 is an unbiased estimator of Var(𝐶𝑒,𝑡−1) that can be computed from information on

the first 𝑡 − 1 arrivals. Then

𝑉𝑒,𝑡 = 𝐶
2

𝑒,𝑡 (1 − 𝑞𝑒,𝑡 ) + 𝐼 (𝑢𝑒 < 𝑤𝑒,𝑡/𝑧𝑡 )𝑉𝑒,𝑡−1/𝑞𝑒,𝑡 (8)

is a unbiased estimator of Var(𝐶𝑒,𝑡 ) that can be computed from information on the first 𝑡 arrivals.

The computational condition expresses the property that 𝑉𝑒,𝑡 can be computed immediately

when 𝑒 ∈ 𝐾𝑡 . The relation (Equation 8) defines an iteration for estimating the variance Var(𝐶𝑡 ) for
any 𝑡 following a time 𝑠 ∈ Ω at which edge 𝑒 was sampled into 𝐾𝑠 , such that 𝑒 remained in the

reservoir at least until 𝑡 . The unbiased variance estimate 𝑉𝑒,𝑠 takes the value 1/𝑝𝑒,𝑠 − 1 at time 𝑠 of

selection into the reservoir. In practice 𝑉𝑒,𝑡 only needs to be updated at 𝑡 ∈ Ω, i.e., when some edge

is sampled into the reservoir, since 𝑞𝑒,𝑡 = 1 when 𝑡 ∉ Ω.

Estimation and Variance for Link-Decay Model.
The link-delay model adapts (Sec.2.2) through

𝐶𝛿
𝑘,𝑡

=

(
𝐶𝛿
𝑘,𝑡−1𝑒

−1/𝛿 + 𝑐𝑘,𝑡
) 𝐼 (𝑢𝑘 < 𝑤𝑘,𝑡/𝑧𝑡 )

𝑞𝑘,𝑡
(9)

which exponentially discounts the contribution from the previous time slot.

Theorem 3 (Unbiased Estimation with Link Decay).

(i) 𝐶𝛿
𝑘,𝑡

is an unbiased estimator of 𝐶𝛿
𝑘,𝑡

(ii) Replacing 𝐶𝑘,𝑡 with 𝐶
𝛿
𝑘,𝑡

in the iteration yields an unbiased estimator 𝑉 𝛿
𝑘,𝑡

of Var(𝐶𝛿
𝑘,𝑡
)

5 EXPERIMENTS
We perform extensive experiments on a wide variety of temporal networks from different domains.

The temporal network data used in our experiments is shown in Table 2. We discuss baseline

comparisons in Section 5.1, and perform a detailed ablation study that shows the contributions

of the different components and design choices of Algorithm 1 in Section 5.2. The experiments

systematically investigate the effectiveness of the framework for estimating temporal link strength
(Section 5.2), temporally weighted motifs using the decay model (Section 5.2), and temporal network
statistics (Section 5.3). We use sample fractions 𝑝 = {0.10, 0.20, 0.30, 0.40, 0.50} and all experiments

are the average of five different runs, similar to the setup in prior work [54].

5.1 Comparison to Published Baselines
In Table 3, we compare Algorithm 1 to the state-of-the-art methods for multi-graph streams (in

which edges can appear more than once in the stream), Triest sampling [84], reservoir sampling [91],

and MultiWMascot [54] for the estimation of link strength (with no-decay). Note that both Triest

and reservoir sampling methods sample edges separately, and multiple occurrences of an edge (𝑢, 𝑣)
may appear in the final sample. On the other hand, our proposed Algorithm 1 and MultiWMascot

incrementally update the overall estimate of link strength of an edge (𝑢, 𝑣), and stores an edge only

once with its estimator. This leads to more space-efficient samples. However, while MultiWMascot

maintains the edge estimators, it is still uses a single uniform probability 𝑝 for sampling any of the

edges.
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Table 2. Temporal network data [76]. Note |𝐾 | is the number of static edges (not including multiplicities);
|𝐸 |= number of temporal edges; and 𝐶max= maximum edge weight.

Temporal Network |𝑉 | |𝐾 | |𝐸 | days 𝐶max

sx-stackoverflow 2.6M 28.1M 47.9M 2774.3 1.04k

ia-facebook-wall-wosn 46k 183k 877k 1591.0 1.3k

wiki-talk 1.1M 2.8M 7.8M 2320.4 1.6k

bitcoin 24.5M 86.1M 129.2M 1811.7 72.6k

CollegeMsg 1.9k 14k 60k 193.7 184

ia-retweet-pol 18k 48k 61k 48.8 79

ia-prosper-loans 89k 3.3M 3.4M 2142.0 15

comm-linux-reply 26k 155k 1.0M 2921.6 1.9k

email-dnc 1.9k 4.4k 39k 982.3 634

ia-enron-email 87k 297k 1.1M 16217.5 1.4k

ia-contacts-dublin 11k 45k 416k 80.4 345

fb-forum 899 7.0k 34k 164.5 171

ia-contacts-hyper09 113 2.2k 21k 2.5 1.3k

SFHH-conf-sensor 403 9.6k 70k 1.3 1.2k

sx-superuser 192k 715k 1.4M 2773.3 139

sx-askubuntu 157k 456k 964k 2613.8 215

sx-mathoverflow 25k 188k 507k 2350.3 325

Table 3. Baseline Comparison: Relative spectral norm (i.e., ∥C − Ĉ∥2/∥C∥2) for sampling fraction 𝑝 = 0.1,
comparison between Online-TNS (Alg 1), Triest sampling [84], Reservoir sampling [91], and MultiWMascot
sampling [54].

Temporal Network Online-TNS Triest Reservoir MultiWMascot

CollegeMsg 0.0558 0.2304 0.2212 0.1990

ia-retweet-pol 0.1800 0.4103 0.4091 0.3973

ia-contacts-dublin 0.0215 0.1926 0.1937 0.1855

wiki-talk 0.1020 0.2554 0.2347 0.2343

fb-forum 0.0390 0.1900 0.1912 0.2052

sx-mathoverflow 0.0668 0.1767 0.1764 0.1584

sx-stackoverflow 0.0992 0.2114 0.2036 0.2045

We observe that both Triest and reservoir sampling were unable to produce a reasonable estimate

with 59% − 83% accuracy, while MultiWMascot performed slightly better with an accuracy of

60%−84%. Algorithm 1 produced more accurate estimates with 82%−97% accuracy, with an average

of 20% gain in accuracy compared to the baselines. Figure 2 shows the distribution of the top-k

edges (𝑘 = 10 million) and compares the exact link strength with the estimated link strength for

the four sampling algorithms, Online-TNS (Alg. 1), Triest, reservoir sampling, and MultiWMascot.

Notably, Online-TNS not only accurately estimates the strength of the link but also captures the

correct order of the links compared to the baselines.

5.2 Ablation Study
Our proposed framework is flexible and generic with various components and design choices. To

help understand the contributions of themajor components, we performed a thorough set of ablation

study experiments. Our framework (in Algorithm 1) consists of two major components: Adaptive

sampling and estimation (uniform vs adaptive sampling weights), and Link-decay models (no-decay
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Fig. 2. Baseline comparison with Triest, reservoir sampling, and MultiWMascot sampling. Temporal link
strength (No-decay) estimated distribution vs exact distribution for top-k links . Results are shown for
sampling fraction 𝑝 = 0.1.

Sa
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ts

Link Strength Estimator

No decay Temporal decay

Uniform

𝑤 (𝑒) = 𝜙

𝐶 (𝑒) using Line 25

𝑤 (𝑒) = 𝜙

𝐶 (𝑒) using Line 32

Adaptive

if 𝑒 ∈ 𝐾
𝑤 (𝑒) = 𝑤 (𝑒) + 1

else𝑤 (𝑒) = 𝜙

𝐶 (𝑒) using Line 25

if 𝑒 ∈ 𝐾
𝑤 (𝑒) = 𝑤 (𝑒) + 1

else𝑤 (𝑒) = 𝜙

𝐶 (𝑒) using Line 32

Table 4. Online-TNS Framework Main Components (see Algorithm 1).

vs exponential decay). We summarize these components and design choices in Table 4. Our first

ablation study experiment investigates the impact of sampling weights on the estimation accuracy.

We explore two variants of Algorithm 1, (a) Adaptive: using Algorithm 1 with adaptive/importance

sampling weights, where the sampling weights/ranks adapt to allow edges to gain importance

during stream processing. (b) Uniform: using Algorithm 1 with fixed uniform sampling weights,

where the sampling weights/ranks are uniform and assigned at the first time of sampling, and

fixed during the rest of the streaming process. For variant (a), we use the exact procedure in

Algorithm 1. For variant (b), we omit Lines 9 and 10 from Algorithm 1. Note that for both variants,

the established estimators in Section 4 are unbiased. We compare performance of the two variants

for the estimation of link strength and temporally weighted motif counts.

Estimation of Temporal Link Strength. Link strength is one of the most fundamental properties

of temporal networks [93]. Therefore, estimating it in an online fashion is clearly important. Results

using Alg. 1 with adaptive sampling weights and unbiased estimators (see Section 4) for temporal

link strength estimation are provided in Figures 3 and 4 (top row) for the no-decay and link-decay

models respectively. We show the distribution of the top-k edges (𝑘 = 10 million) and compare the
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Fig. 3. Temporal link strength (No-decay) estimated distribution vs exact distribution for top-k links . Results
are shown for sampling fraction 𝑝 = 0.1. (Top) Results for Online-TNS Algorithm with adaptive sampling
weights 1. (Bottom) Results for Online-TNS Algorithm with uniform sampling weights.
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Fig. 4. Temporal decay link strength estimated distribution vs exact distribution for top-k links . Results
are shown for sampling fraction 𝑝 = 0.1. (Top) Results for Online-TNS Algorithm with adaptive sampling
weights 1. (Bottom) Results for Online-TNS Algorithm with uniform sampling weights.

exact link strength with the estimated link strength. Notably our approach not only accurately

estimates the strength of the link but also captures the correct order of the links (top-links ordered by

their strength from high to low). From Figures 3 and 4 (top row), we observe the exact and estimated

link strengths for the top-k edges to be nearly indistinguishable from one another. We also compare

to Alg. 1 with uniform sampling weights, i.e., Online-TNS (Unif), in which edges are assigned

uniform sampling weights at the sampling time, and fixed for the rest of the streaming process,

results are shown in Figures 3 and 4 (bottom row). While the estimated link strengths from Online-

TNS with adaptive weights are nearly identical to the exact link strengths, estimated distributions

from uniform sampling weights are significantly worse. Unlike uniform sampling weights where

the weights remain constant, using the adaptive sampling weights helps the algorithm to adapt to

the changing topology of the streaming network, which leads to favoring the retention of edges

with higher strength.
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Table 5. No-decay Results: Relative spectral norm (i.e., ∥C − Ĉ∥2/∥C∥2) for sampling fraction 𝑝 = 0.1,
comparison between adaptive sampling weights (Alg. 1) and uniform sampling weights.

Temporal Network Adaptive (Alg. 1) Uniform

ia-facebook-wall 0.0090 0.3976

sx-stackoverflow 0.0992 0.4360

wiki-talk 0.1020 0.4272

comm-linux-reply 0.0041 0.1978

fb-forum 0.0390 0.2640

ia-enron-email 0.0098 0.4080

SFHH-conf-sensor 0.0090 0.2770

ia-contacts-hyper 0.0034 0.0529

Table 6. Link-decay Results: Relative spectral norm (i.e., ∥C − Ĉ∥2/∥C∥2) for sampling fraction 𝑝 = 0.1,
comparison between adaptive sampling weights (Alg. 1) and uniform sampling weights.

Temporal Network Adaptive (Alg. 1) Uniform

CollegeMsg 0.0797 0.0819

ia-retweet-pol 0.1451 0.2723

ia-contacts-dublin 0.0058 0.1624

ia-facebook-wall 0.0335 0.0914

ia-contacts-hyper 0.0009 0.0511

SFHH-conf-sensor 0.0034 0.2283

email-dnc 0.0143 0.1506

In Tables 5 and 6, we show the relative spectral norm for online-TNS with adaptive and uniform

sampling weights for no-decay and link-decay models respectively. The relative spectral norm is

defined as ∥C−Ĉ∥2/∥C∥2, whereC is the exact time-dependent adjacency matrix of the input graph,

whose entries represent the link strength, Ĉ is the average estimated time-dependent adjacency

matrix (estimated from the sample), and ∥C∥2 is the spectral norm of C. The spectral norm ∥C− Ĉ∥2
is widely used for matrix approximations [1]. ∥C − Ĉ∥2 measures the strongest linear trend of C
not captured by the estimate Ĉ. The results show Online-TNS with adaptive sampling weights

significantly outperforms the variant using uniform sampling weights, and captures the linear

trend and structure of the data better, with an average 20% improvement over the uniform sampling

weights. We also measured the error using relative Frobenius norm (i.e., ∥C − Ĉ∥𝐹 /∥C∥𝐹 ) and
observed similar conclusions.

Temporally Weighted Motif Estimation. Recall that our formulation of temporal motif differs

from previous work in that instead of counting motifs that occur within some time period 𝛿 ,

our formulation focuses on counting temporally weighted motifs where the motifs are weighted

such that motifs that occur more recent and contain active links are assigned larger weight than

those occurring in the distant past. This formulation is clearly more useful and important, since it

can capture the evolution of the network and relationships at a continuous-time scale. Also, this

formulation would be useful for many practical applications involving prediction and forecasting

since it appropriately accounts for temporal statistics (in this case, motifs) that occur more recently,

which are by definition more predictive of some future event. In Table 7, we show results for
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Table 7. Results for temporally weighted motif count estimation. Online TNS with adaptive weights compared
to online TNS with uniform weights. Relative error for triangle counts are reported using 𝑝 = 0.1.

Without Decay With Decay

Temporal Network Exact Adaptive Uniform Exact Adaptive Uniform

sx-stackoverflow 15B 0 0.0133 168M 0.00004 0.0006

ia-facebook-wall 435M 0.0004 0.0605 9.9M 0.0004 0.0247

wiki-talk 12B 0.0003 0.0171 394M 0.0001 0.0022

CollegeMsg 6.2M 0.0148 0.0545 2.0M 0.0003 0.0277

ia-retweet-pol 380k 0.0236 0.0341 147k 0.0001 0.0247

ia-prosper-loans 1.4M 0.0056 0.0078 232k 0.0067 0.0048

comm-linux-reply 148B 0 0.0055 242M 0.00003 0.000024

email-dnc 483M 0 0.0004 251M 0.00006 0.0097

ia-enron-email 14B 0 0.0726 329M 0.0003 0.0034

ia-contacts-dublin 382M 0.00005 0.00008 381M 0 0.0001

fb-forum 3.3M 0.0036 0.1761 763k 0.0067 0.0137

ia-contacts-hyper09 93M 0 0.00041 88M 0 0.00086

SFHH-conf-sensor 622M 0 0.0665 604M 0.0002 0.0434

sx-superuser 83M 0.0072 0.0137 2.1M 0.0013 0.0016

sx-askubuntu 71M 0.0035 0.0077 2.7M 0.0069 0.0135

sx-mathoverflow 269M 0.0008 0.0688 2.8M 0.0004 0.0003

estimating the temporally weighted motif counts. For brevity, we only show results for triangle

motifs (both decay and no-decay models), but the proposed framework and unbiased estimators in

Algorithm 1 and Section 4 generalize to any network motifs of larger size. For these results, we set

the decay factor 𝛿 to 30 days. Notably, all of the temporally decayed motif count estimates have a

relative error that is less than 0.03 as shown in Table 7 (Adaptive). Nevertheless, this demonstrates

that our efficient temporal sampling framework is able to leverage accurate estimators for even the

smallest sample sizes. Table 7 also shows results of Algorithm 1 with uniform sampling weights.

Overall, we observe that Online-TNS with adaptive sampling weights generally outperforms Online-

TNS with uniform sampling weights. We conjecture that Online-TNS with adaptive sampling is

general and would be useful in various applications beyond the scope of this paper. In particular, for

applications that require importance sampling with the ability to combine both topology (e.g., edge
multiplicity, temporal strength, subgraphs) and auxiliary information (e.g., node/edge attributes
and features). We will explore these applications in future work.

Sensitivity Analysis of the Decay Factor. We now study the impact of the choice of the decay

factor 𝛿 on the quality of the estimates. When we choose the value for the mean lifetime 𝛿 , it is more

intuitive to think about the half-life 𝜂1/2 of an edge. The half-life of an edge gives the amount of

time for an edge to lose half of its weight/strength in the absence of new interactions. Given 𝛿 > 0,

the half-life of an edge is defined as 𝜂1/2 = 𝛿 ln 2. As such the choice of 𝛿 is crucial to filter-out

and down-weight the old activity in continuously evolving networks. When the half-life is short

(i.e., the mean lifetime 𝛿 is short), the interactions result in weak links among nodes, where the

link strength dies off quickly unless the interactions occur more frequently and sustainably among

the nodes. On the other hand, when the half-life is long (i.e., 𝛿 is long), links are able to build a

momentum and strengthen from interactions that otherwise occurred too far in time. In Figure 5,

we show the estimated link strengths obtained using Online-TNS with adaptive weights for two
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different decay factors 𝛿 = 1-day and 𝛿 = 7-days. Clearly, the range and scale of the link strength

is much higher when 𝛿 is long. In addition, we also observe that the estimated distributions of

link strengths for the top-k edges are nearly indistinguishable from the exact distributions. This is

due to the unbiasedness property of the proposed estimators, as the unbiasedness property holds

regardless the choice of the decay parameter 𝛿 . In Table 8, we provide the temporally weighted

motif count estimation obtained using Online TNS (Alg 1) with adaptive weights and different decay

𝛿 parameters. Clearly, the relative error is small for 𝛿 values, which is a result of the unbiasedness

property of the proposed estimators.

Table 8. Sensitivity analysis of the decay factor 𝛿 . Results for temporally weighted motif count estimation.
Relative error reported using 𝑝 = 0.1 for triangle counts using Online TNS (Alg 1) with adaptive weights and
different decay 𝛿 parameters.

Decay Factor 𝛿

Temporal Network 1-day 1-week 1-month

CollegeMsg 0.002 0.003 0.0003

ia-retweet-pol 0.074 0.023 0.0001

ia-contacts-dublin 0.00003 0 0

ia-facebook-wall 0.0091 0.0011 0.0004

email-dnc 0.00004 0.00005 0.00006
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Fig. 5. Temporal link strength estimated distribution vs exact distribution for top-k links. Results are shown
for sampling fraction 𝑝 = 0.2. (Top: Red) Results for Online-TNS Algorithm 1 with adaptive sampling weights
and decay factor 𝛿 = 1 day. (Bottom: Green) Results for Online-TNS Algorithm 1 with adaptive sampling
weights 1 and decay factor 𝛿 = 7 days.
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Table 9. Results for estimating temporal burstiness. For each temporal network, we show the estimated
burstiness using different sampling probabilities (first row) compared to the exact. The relative error |𝐵−𝐵 |/𝐵
of the estimates is also shown.

Sampling Fraction

Temporal Network 0.1 0.2 0.3 0.4 0.5 Exact

wiki-talk 0.6196 0.6208 0.6208 0.6207 0.6206 0.6206

(error) 0.0017 0.0003 0.0003 <0.0001 <0.0001

ia-facebook-wall-wosn 0.4482 0.4534 0.4535 0.4535 0.4535 0.4535

(error) 0.0116 0.0002 <10−5 <10−5 <10−5

bitcoin 0.7738 0.7642 0.7606 0.7586 0.7579 0.7576

(error) 0.0214 0.0087 0.0040 0.0013 0.0004

sx-stackoverflow 0.6517 0.6712 0.6808 0.6863 0.6891 0.6898

(error) 0.0552 0.0269 0.0130 0.0050 0.0010

5.3 Estimation of Temporal Statistics
While the proposed framework can be used to obtain unbiased estimates of arbitrary temporal

network statistics, we focus in this section on two important temporal properties and their distribu-

tions including burstiness [16] and temporal link persistence [25]. For a survey of other important

temporal network statistics that are applicable for estimation using the framework, see [43].

Burstiness. Burstiness 𝐵 is widely used to characterize the link activity in temporal networks [43].

Burstiness is computed using the mean 𝜇 and standard deviation 𝜎 of the distribution of same-edge

inter-contact times collected from all links, i.e., 𝐵 = (𝜎 − 𝜇)/(𝜎 + 𝜇). The inter-contact time is

the elapsed time between two subsequent same-edge interactions (i.e., time between two text

messages from the same pair of friends). Burstiness measures the deviation of relationship activity

from a Poisson process. In Table 9, we use the proposed framework to estimate burstiness (i.e.,
computed using the sampled network). We show the estimated burstiness for sampling fraction

𝑝 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. In addition, we also provide the relative error of the estimates across

the different sampling fractions. From Table 9, we observe the relative errors are small and the

estimates are shown to converge as the sampling fraction 𝑝 increases. In Figure 6, we show the

exact and estimated distribution of inter-contact times for sampling fractions 𝑝 = 0.1 (top row)

and 𝑝 = 0.2 (bottom row). We observe that the estimated distribution from the sample accurately

captures the exact distribution.

Temporal Link Persistence. The persistence of an edge measures the lifetime of relationships,

and is computed as the elapsed time between the first interaction and the last interaction of the

same edge [43]. Let 𝐿 denote the average link persistence (or lifetime) computed over all edges in

the full (sampled) network defined as 𝐿 = 1

|𝐾 |
∑

(𝑖, 𝑗) ∈𝐾 𝜏
(last)
𝑖 𝑗

− 𝜏 (first)
𝑖 𝑗

. Relative error of estimated

link persistence is shown in Table 10. In Figure 7, we show the exact and estimated distribution

(i.e., computed using the sampled network) of link persistence scores for sampling fractions 𝑝 = 0.1

(top row) and 𝑝 = 0.2 (bottom row). We observe that the estimated distributions from the sampled

network across all graphs accurately captures the exact distribution (for both burstiness and

persistence). We also note that the proposed algorithm Alg 1 can also handle labeled graphs (with

vertex/edge categorical variables), where the estimators are computed separately for each possible

label combination in a stratified fashion.
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Table 10. Estimation results for temporal persistence. For each temporal network, we report relative error
|𝐿−𝐿 |/𝐿 of the estimates using different sampling fractions.

Sampling Fraction

Temporal Network 0.1 0.2 0.3 0.4 0.5

wiki-talk 0.1380 0.0412 0.0112 0.0009 <10−6

ia-facebook-wall-wosn 0.1232 0.0023 <10−7 <10−7 <10−7

sx-stackoverflow 0.1718 0.0794 0.0357 0.0119 0.0016

bitcoin 0.1056 0.0207 0.0023 0.0020 0.0024
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Fig. 6. Estimation results for the distribution of inter-contact times compared to the exact distribution. Results
are shown for 𝑝 = 0.1 (top) and 𝑝 = 0.2 (bottom).
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Fig. 7. Estimation results for the distribution of link persistence scores compared to the exact distribution.
Results are shown for 𝑝 = 0.1 (top) and 𝑝 = 0.2 (bottom).
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6 RELATEDWORK
Sampling algorithms are fundamental in studying and understanding networks [11, 47, 67, 91],

where the goal is to collect a representative sample that capture the characteristics of the full

network. Network sampling has been widely studied in the context of small static networks that

can fit entirely in memory [47]. For instance, there is uniform node sampling [85], random walk

sampling[52], edge sampling [11], among others [15, 56]. More recently, there has been a growing

interest in sampling techniques for streaming network data in which temporal networks evolve

continuously in time [6–10, 27, 44, 45, 54, 55, 71, 82, 84, 95]. For seminal surveys on the topic,

see [11, 62].

However, most existing methods for sampling streaming network data have focused on the

primary objective of selecting a sample to estimate static network properties, e.g., point statistics
such as global triangle count or clustering coefficient [9]. As such, it is unclear how representative

these samples are for temporal network statistics such as the link strength [93], link persistence [25],

burstiness [16], temporal motifs [48], among others [43]. Despite the fundamental importance of

this question, it has not been addressed in the context of streaming and online methods.

Some of the recent work on stream sampling focused on multi-graph streams [54, 84, 91], where

edges may appear multiple times in the stream. However, most of these methods (e.g., Triest,

reservoir sampling) mainly sample edges separately, thus, multiple occurrences of an edge (𝑢, 𝑣)
may appear in the final sample, which allocates more space. In addition, the recent work in [54]

uses a uniform sampling probability to sample the edges, and stores an edge only once with its

estimator. On the other hand, our proposed Algorithm 1 adaptively samples edges with probabilities

proportional to their link strength, and incrementally updates the overall estimate of link strength

of an edge (𝑢, 𝑣), and stores an edge only once with its estimator. This leads to more space-efficient

and accurate samples.

There has been one recent work for sampling temporal motifs [56]. However, their work focused

on a different problem based on counting motifs in temporal networks that form within some time

△𝑡 [48]. More specifically, their approach uses judicious partitioning of interactions in time bins,

which can obfuscate or dilute temporal and structural information. In this paper, we formulate

instead the notion of a temporally weighted motif based on the temporal network link decay model.

We argue that this formulation is more meaningful and useful for practical applications especially

related to prediction and forecasting where links and motifs that occur more recently are more

important than those occurring in the distant past. In addition to the difference in problem, that

work does not focus on streaming nor the online setting since the entire graph is loaded into

memory.

The temporally decaying model of temporal networks is useful for many important predictive

modeling and forecasting tasks including classification [75, 81], link prediction [20, 22, 23, 30, 34,

65, 66, 92, 96], influence modeling [39], regression [38], and anomaly detection [5, 79]. Despite

the practical importance of the temporal link decaying model, our work is the first to propose

network sampling and unbiased estimation algorithms for this setting. Therefore, the proposed

temporal decay sampling and unbiased estimation methods bring new opportunities for many real-

world applications that involve prediction and forecasting from temporal networks representing a

sequence of timestamped edges. This includes recommendation [18, 30], influence modeling [39],

visitor stitching [78], etc.

Moreover, there has been a lot of research on deriving new and important temporal network

statistics and properties that appropriately characterize the temporal network [43]. Other recent

work has focused on extending node ranking and importance measures to dynamic networks

such as Katz [40] and eigenvector centrality [89]. These centrality measures use a sequence of
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static snapshot graphs to compute an importance or node centrality score of nodes. Since the

proposed temporal sampling framework is general and can be used to estimate a time-dependent

representation of the temporal network, it can be used to obtain unbiased estimates of these recent

dynamic node centrality measures.

The proposed temporal network sampling framework can also be leveraged for estimation of

node embeddings [80] including both community-based (proximity) and role-based structural

node embeddings [14, 77]. More recently, there has been a surge in activity for developing node

embedding and graph representation learning methods for temporal networks. There have been

embedding methods proposed for both continuous-time dynamic networks consisting of a stream

of timestamped edges [51, 57, 69] as well as discrete-time dynamic networks where the actual edge

stream is approximated with a sequence of static snapshot graphs [59, 70, 79, 87, 88]. All of these

works may benefit from the proposed framework as it estimates a time-dependent representation of

the temporal network that can be used as input to any of these methods for learning time-dependent

node embeddings.

In the context of accumulating sample based counts of repeated objects, Sticky Sampling [60] and

counting Samples [37] have been proposed, together with Sample and Hold [32] in the context of

network measurement, along with adaptive versions for fixed size reservoirs [26, 46]. Our approach

differs from these methods in many ways and provide the following advantages. First, the cost

of updating the sample is much cheaper compared to these methods. Second, the discard step is

computationally cheaper being 𝑂 (1) to pick the minimum priority element. Third, our approach

provides unbiased estimators not only for single links, but also for link-product counts for temporal

motifs through Theorem 1(iii).

7 CONCLUSION
This work proposed a novel general framework for online sampling and unbiased estimation of

temporal networks. The framework gives rise to online single-pass streaming sampling algorithms

for estimating arbitrary temporal network statistics. We also proposed a temporal decay sampling

algorithm for estimating statistics based on the temporal decay model that assumes the strength

of links evolve as a function of time, and the temporal statistics and temporal motif patterns are

temporally weighted accordingly. To the best of our knowledge, this work is the first to propose

sampling and unbiased estimation algorithms for this setting, which is fundamentally important for

practical applications involving prediction and forecasting from temporal networks. The proposed

framework and temporal network sampling algorithms that arise from it, enable fast, accurate, and

memory-efficient statistical estimation of temporal network patterns and properties. Finally, the

experiments demonstrated the effectiveness of the proposed approach for unbiased estimation of

temporal network statistics. Other graph properties such as page rank, degree distribution, and

centrality would be suitable for future extensions of the proposed framework.
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A PROOFS OF THEOREMS
Proof of Theorem 1. Although (i) is special case of (ii), we prove (i) first then extend to (ii). We

establish that

E[𝐶𝑒,𝑡 |𝐶𝑒,𝑡−1, 𝑄] −𝐶𝑒,𝑡 = 𝐶𝑒,𝑡−1 −𝐶𝑒,𝑡−1 (10)

for all members𝑄 of set of disjoint events whose union is identically true. Since𝐶𝑒,𝑡𝑒−1 = 𝐶𝑒,𝑡𝑒−1 = 0

we then conclude that E[𝐶𝑒,𝑡 ] = 𝐶𝑒,𝑡 . For 𝑡𝑒 ≤ 𝑠 ≤ 𝑠 ′, let 𝐴 (1)
𝑒 (𝑠) = {𝑒 ∉ 𝐾𝑠−1} (note 𝐴 (1)

𝑒 (𝑡𝑒 )
is identically true), let 𝐴

(2)
𝑒 (𝑠, 𝑠 ′) denote the event {𝑒 ∈ 𝐾𝑠 . . . , 𝐾𝑠′}, i.e., that 𝑒 is in sample at all

times in [𝑠, 𝑠 ′]. Then 𝐴 (1)
𝑒 (𝑠)𝐴 (2)

𝑒 (𝑠, 𝑡 − 1) is the event that 𝑒 was sampled at time 𝑠 ≤ 𝑡 − 1 and has

remained in the reservoir up to and including time 𝑡 − 1. For each 𝑡 ≥ 𝑡𝑒 the union of the collection

of events formed by {𝐴 (1)
𝑒 (𝑠)𝐴 (2)

𝑒 (𝑠, 𝑡 − 1) : 𝑠 ∈ [𝑡𝑒 , 𝑡 − 1]}, and 𝐴 (1)
𝑒 (𝑡) is identically true.

(a) Conditioning on 𝐴 (1)
𝑒 (𝑡). On 𝐴 (1)

𝑒 (𝑡), 𝑒𝑡 ≠ 𝑒 implies 𝐶𝑒,𝑡 = 𝐶𝑒,𝑡−1 = 0 = 𝐶𝑒,𝑡 −𝐶𝑒,𝑡−1. On the

other hand 𝑒𝑡 = 𝑒 implies 𝑡 ∈ Ω since the arriving edge 𝑒 is not in the current sample. Further

conditioning on 𝑧𝑒,𝑡 = min
𝑗 ∈𝐾𝑗,𝑡−1 𝑟 𝑗,𝑡−1 then (6) tells us

P[𝑒 ∈ 𝐾𝑡 |𝐴 (1)
𝑒 (𝑡), 𝑧𝑒,𝑡 ] = P[𝑢𝑒 < 𝑤𝑒,𝑡/𝑧𝑒,𝑡 ] = 𝑝𝑒,𝑡 (11)

and hence regardless of 𝑧𝑒,𝑡 we have

E[𝐶𝑒,𝑡 |𝐶𝑒,𝑡−1, 𝐴 (1)
𝑒 (𝑡), 𝑧𝑒,𝑡 ] = 𝐶𝑒,𝑡−1 +𝐶𝑒,𝑡 −𝐶𝑒,𝑡−1 (12)

(b) Conditioning on 𝐴 (1)
𝑒 (𝑠)𝐴 (2)

𝑒 (𝑠, 𝑡 − 1) any 𝑠 ∈ [𝑡𝑒 , 𝑡 − 1]. Under this condition 𝑒 ∈ 𝐾𝑡−1 and if

furthermore 𝑒𝑡 ∈ 𝐾𝑡−1 then 𝑡 ∉ Ω and the first line in (6) holds. Suppose instead 𝑒𝑡 ∉ 𝐾𝑡−1 so that

𝑡 ∈ Ω. Let Z𝑒 (𝑠, 𝑡) = {𝑧𝑒,𝑠′ : 𝑠 ′ ∈ [𝑠, 𝑡] ∩ Ω}. Observing that

P[𝐴 (2)
𝑒 (𝑠, 𝑡) |𝐴 (1)

𝑒 (𝑠),Z𝑒 (𝑠, 𝑡)] = P[
⋂

𝑠′∈[𝑠,𝑡 ]∩Ω
{𝑢𝑒 <

𝑤𝑒,𝑠′

𝑧𝑒,𝑠′
}] = 𝑝𝑒,𝑡

then

P[𝑒 ∈ 𝐾𝑡 |𝐴 (2)
𝑒 (𝑡 − 1, 𝑠)𝐴 (1)

𝑒 (𝑠),Z𝑒 (𝑠, 𝑡)] =
P[𝐴 (2)

𝑒 (𝑠, 𝑡) |𝐴 (1)
𝑒 (𝑠),Z𝑒 (𝑠, 𝑡)]

P[𝐴 (2)
𝑒 (𝑠, 𝑡 − 1) |𝐴 (1)

𝑒 (𝑠),Z𝑒 (𝑠, 𝑡 − 1)]
=

𝑝𝑒,𝑡

𝑝𝑒,𝜔 (𝑡 )
= 𝑞𝑒,𝑡

(13)

and hence

E[𝐶𝑒,𝑡 |𝐶𝑒,𝑡−1, 𝐴 (1)
𝑒 (𝑠),Z𝑒 (𝑠, 𝑡)] = 𝐶𝑒,𝑡−1 (14)

independently of the conditions on the LHS of (14). As noted above, 𝑒 ∈ 𝐾𝑡−1 when 𝐴 (2)
𝑒 (𝑠, 𝑡 − 1) is

true in which case 𝐶𝑒,𝑡 = 𝐶𝑒,𝑡−1 and we recover (10).

(ii) The proof employs a conditioning argument that generalizes a the property of Priority

Sampling, namely, that inverse probability estimators of item samples are independent when
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conditioned on the priorities of other items; see [29]. Our generalization establishes that link-

product form estimators of subgraph multiplicities are unbiased. Let 𝑧 𝐽 ,𝑡 = min
𝑗 ∈𝐾 ′

𝑡 \𝐽𝑡
𝑟 𝑗,𝑡 . Then

𝐽𝑡 ⊂ 𝐾𝑡 iff 𝑢𝑖 ≤ 𝑤𝑖,𝑡/𝑧 𝐽 ,𝑡 for all 𝑖 ∈ 𝐽𝑡 , in which case 𝑧 𝐽 ,𝑡 = 𝑧 𝑗,𝑡 for all 𝑗 ∈ 𝐽𝑡 . A sufficient condition

for Theorem 1(ii) is that

E[
∏
𝑗 ∈𝐽𝑡

(
𝐶 𝑗,𝑡 −𝐶 𝑗,𝑡

)
|𝑧 𝐽 ,𝑡 , 𝐽𝑡−1 ⊂ 𝐾𝑡−1] = 0 (15)

Since 𝐶 𝑗,𝑡 =

(
𝐶 𝑗,𝑡−1 + 𝑐 𝑗,𝑡

)
𝐼 (𝑢 𝑗 < 𝑤 𝑗,𝑡/𝑧 𝑗,𝑡 )/𝑞 𝑗,𝑡 , then conditioning on 𝑧 𝐽 ,𝑡 and {𝐽𝑡−1 ⊂ 𝐾𝑡−1} fixes

𝐶 𝑗,𝑡−1, 𝑧 𝑗,𝑡 and 𝑞 𝑗,𝑡 for 𝑗 ∈ 𝐽𝑡 . If we can show furthermore that the {𝑢 𝑗 : 𝑗 ∈ 𝐽𝑡 } are independent
under the same conditioning, then the conditional expectation (15) will factorize over 𝑗 ∈ 𝐽𝑡 (the
expectation and product may be interchanged) and the result follows from (i).

We establish conditional independence by an inductive argument. Denote Z𝑡 = {𝑧 𝐽 ,𝑠 : 𝑠 ∈
[𝑡 𝐽 , 𝑡] ∩ Ω} and assume conditional on 𝑍 𝐽 ,𝑡−1, 𝐽𝑡−1 ⊂ 𝐾𝑡 that the 𝑢 𝑗 : 𝑗 ∈ 𝐽𝑡−1 and mutually

independent with each uniformly distributed on (0, 𝑝 𝑗,𝑡−1). Note the weights𝑤𝑖,𝑡 : 𝑖 ∈ 𝐽𝑡 determined

by 𝐽𝑡−1 ⊂ 𝐾𝑡 since arrivals are non-random. Further conditioning on 𝐽𝑡 ∈ 𝐾𝑡 result in each 𝑖 being

uniform on (0,min{𝑝𝑖,𝑡−1,𝑤𝑖,𝑡/𝑧 𝐽 ,𝑡 }] = (0, 𝑝𝑖,𝑡 ] so completing the induction. The property is trivial

at the time 𝑡𝑖 of first arrival of each edge. The form (iii) then follows inductively on the size of the

subgraph 𝐽 on expanding the product and taking expectations. ■

Proof of Theorem 2. Here we specify 𝑉𝑒,𝑡 being commutable from the first 𝑡 arrivals to mean

that it is F𝑡 -measurable, where F𝑡 is set of random variables {𝑢𝑒𝑡 : 𝑡 ∈ Ω} generated up to time 𝑡 .

By the Law of Total Variance

Var(𝐶𝑒,𝑡 ) = E[Var(𝐶𝑒,𝑡 ) |F𝑡−1] + Var(E[𝐶𝑒,𝑡 |F𝑡−1]) (16)

= E[
(
𝐶𝑒,𝑡−1 + 𝑐𝑒,𝑡

𝑞𝑒,𝑡

)
2

Var(𝐼 (𝐵𝑒 (𝑧𝑡 )) |F𝑡−1] + Var(𝐶𝑒,𝑡−1 + 𝑐𝑒,𝑡 ) (17)

= E[
(
𝐶𝑒,𝑡−1 + 𝑐𝑒,𝑡

𝑞𝑒,𝑡

)
2

𝑞𝑡 (1 − 𝑞𝑡 )] + Var(𝐶𝑒,𝑡−1) (18)

Since𝑉𝑒,𝑡 :=

(
𝐶𝑒,𝑡−1+𝑐𝑒,𝑡

𝑞𝑒,𝑡

)2
𝑞𝑡 (1 − 𝑞𝑡 ) is F𝑡−1=measurable, then𝑉𝑒,𝑡 𝐼 (𝐵𝑒 (𝑧𝑡 ))/𝑞𝑒,𝑡 is F𝑡 -measurable,

and

E[ 𝐼 (𝐵𝑒 (𝑧𝑡 ))
𝑞𝑒,𝑡

𝑉𝑒,𝑡 ] = E[E[
𝐼 (𝐵𝑒 (𝑧𝑡 ))
𝑞𝑒,𝑡

|F𝑒,𝑡 ]𝑉𝑒,𝑡 ] = E[𝑉𝑒,𝑡 ] (19)

and similarly by assumption on 𝑉𝑒,𝑡−1,

E[ 𝐼 (𝐵𝑒 (𝑧𝑡 ))
𝑞𝑒,𝑡

𝑉𝑒,𝑡−1] = E[𝑉𝑒,𝑡−1] = Var(𝐶𝑒,𝑡−1) (20)

■

Proof of Theorem 3. (i) follows by linearity of expectation, while (ii) follows by substitution

in (8). ■
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