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Temporal networks representing a stream of timestamped edges are seemingly ubiquitous in the real-world.
However, the massive size and continuous nature of these networks make them fundamentally challenging
to analyze and leverage for descriptive and predictive modeling tasks. In this work, we propose a general
framework for temporal network sampling with unbiased estimation. We develop online, single-pass sampling
algorithms and unbiased estimators for temporal network sampling. The proposed algorithms enable fast,
accurate, and memory-efficient statistical estimation of temporal network patterns and properties. In addition,
we propose a temporally decaying sampling algorithm with unbiased estimators for studying networks that
evolve in continuous time, where the strength of links is a function of time, and the motif patterns are
temporally-weighted. In contrast to the prior notion of a At-temporal motif, the proposed formulation and
algorithms for counting temporally weighted motifs are useful for forecasting tasks in networks such as
predicting future links, or a future time-series variable of nodes and links. Finally, extensive experiments on a
variety of temporal networks from different domains demonstrate the effectiveness of the proposed algorithms.
A detailed ablation study is provided to understand the impact of the various components of the proposed
framework.
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1 INTRODUCTION

Networks provide a natural framework to model and analyze complex systems of interacting
entities in various domains (e.g., social, neural, communication, and technological domains) [67, 68].
Most complex networked systems of scientific interest are continuously evolving in time, while
entities interact continuously, and different entities may enter or exit the system at different times.
The accurate modeling and analysis of these complex systems largely depend on the network
representation [41]. Therefore, it is crucial to incorporate both the heterogeneous structural and
temporal information into network representations [69, 75, 81]. By incorporating the temporal
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information alongside the structural information, we obtain time-varying networks, also called
temporal networks [43].

In temporal networks, the nodes represent the entities in the system, and the links represent the
interactions among these entities across time. Unlike static networks, nodes and links in temporal
networks become active at certain times, leading to changes in the network structure over time [53].
Temporal networks have been recently used to model and analyze dynamic and streaming network
data, e.g., to analyze and model information propagation [31, 74], epidemics [72], infections [61], user
influence [21, 39], among other applications [69, 81]. However, there are fundamental challenges to
the analysis of temporal networks in real-world applications. One major challenge is the massive
size and streaming characteristics of temporal network data that are generated by interconnected
systems, since all interactions must be stored at any given time (e.g., email communications) [11].
As a result, several algorithms that were studied and designed for static networks that can fit in
memory are becoming computationally intensive [8], due to their struggle to deal with the size and
streaming properties of temporal networks.

One common practice is to aggregate interactions in discrete time windows (time bins) (e.g.,
aggregate all interactions that appear in 1-day or 1-month), these are often called static graph
snapshots [83]. Given a graph snapshot, traditional techniques can be used to study and analyze
the network (e.g., community detection, model learning, node ranking). Unfortunately, there are
multiple challenges with employing these static aggregations. First, the choice of the size and
placement of these time windows may alter the properties of the network and/or introduce a bias
in the description of network dynamics [19, 42, 86, 90]. For example, a small window size will likely
miss important network sub-structures that span multiple windows (e.g., multi-node interactions
such as motifs) [69]. On the other hand, a large window size will likely lose the temporal patterns
in the data [33]. Second, modeling and analyzing bursty network traffic will likely be impacted by
the placement of time windows. Finally, it is costly to consistently and reliably maintain these static
aggregates for real-time applications [8, 11]. For example, it is often difficult to consistently gather
these snapshots of graphs in one place, at one time, in an appropriate format for analysis. Thus,
aggregates of network interactions in discrete time bins may not be an appropriate representation
of temporal networks that evolve on a continuous-time scale [2, 35], and can often lead to errors
and bias the results [69, 83, 90, 94, 97, 98].

Statistical sampling is also common in studying networks, where the goal is to select a representa-
tive sample (i.e., subnetwork) that serves as a proxy for the full network [58]. Sampling algorithms
are fundamental in studying and understanding networks [11, 47, 67]. A sampled network is called
representative, if the characteristics of interest in the full network can be accurately estimated from
the sample. Statistical sampling can provide a versatile framework to model and analyze network
data. For example, when handling big data that cannot fit in memory, collecting data using limited
storage/power electronic devices (e.g., mobile devices, RFID), or when the measurements required
to observe the entire network are costly (e.g., protein interaction networks [85]).

While many network sampling techniques are studied in the context of small static networks
that can fit entirely in memory [47] (e.g., uniform node sampling [85], random walk sampling[52]),
recently there has been a growing interest in sampling techniques for streaming network data
in which temporal networks evolve continuously in time [8-10, 24, 27, 44, 45, 55, 71, 73, 82, 84]
(see [11, 62] for a survey). Most existing methods for sampling streaming network data have focused
on the primary objective of selecting a sample to estimate static network properties (e.g., point
statistics such as global triangle count or clustering coefficient). This poses an interesting and
important question of how representative these samples of the characteristics of temporal networks
that evolve on a continuous-time scale [3], such as the link strength [93], link persistence [25],

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 1. Publication date: August 2018.



Online Sampling of Temporal Networks 1:3
ONOEORORORONONO
Stream 1 2 3 4 5 7 8 10
f Ed
O ONONONONONONO

Continuous-time
Dynamic Network

Fig. 1. An illustrative example of streaming temporal networks.

burstiness [16], temporal motifs [48], among others [4, 36, 43, 49, 50]. Although this question is
important, it has thus far not been addressed in the context of streaming and online methods.

In this paper, we introduce an online importance sampling framework that extracts continuous-
time dynamic network samples, in which the strength of a link (i.e., edge between two nodes) can
evolve continuously as a function of time. Our proposed framework samples interactions to include
in the sample based on their importance weight relative to the variable of interest (i.e., link strength),
this enables sampling algorithms to adapt to the topological changes of temporal networks. Also,
our proposed framework allows online and incremental updates, and can run efficiently in a single-
pass over the data stream, where each interaction is observed and processed once upon arrival.
We present an unbiased estimator of the link strength, and extend our formulation to unbiased
estimators of general subgraphs in temporal networks. We also introduce the notion of link-decay
network sampling, in which the strength of a sampled link is allowed to decay exponentially after
the most recent update (i.e., recent interaction). We show unbiased estimators of link strength and
general subgraphs under the link-decay model.

Summary of Contributions: This work makes the following key contributions:

e We propose a general temporal network sampling framework for unbiased estimation of
temporal network statistics. We develop online, single-pass, memory-efficient sampling
algorithms and unbiased estimators.

e We propose a temporally decaying sampling algorithm with unbiased estimators for studying
networks that evolve in continuous time, where the strength of links is a function of time, and
the motif patterns and temporal statistics are temporally weighted accordingly. This temporal
decay model is more useful for real-world applications such as prediction and forecasting in
temporal networks.

e The proposed algorithms enable fast, accurate, and memory-efficient statistical estimation of
temporal network patterns and statistics.

e Experiments on a wide variety of temporal networks demonstrate the effectiveness of the
framework.

2 ONLINE SAMPLING FRAMEWORK

Here, we introduce our proposed online importance sampling framework that extracts continuous-
time dynamic network samples from temporal networks. See Table 1 for a summary of notations.
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Table 1. Summary of notation.

G Temporal network
E Set of interaction events
K Set of Unique Edges (links)
E; Set of interactions {es : s < t}
K; Set of unique interactions in E; arriving by time ¢
Vi Set of vertices that appeared in K;
G Graph induced by unique edges
N,M number of nodes N = |V| and edges M = |K| in G
Ce,t Multiplicity (weight) of edge e at time ¢
Ce,t Estimated multiplicity of edge e at time ¢
C; time-dependent adjacency matrix of link strength at time #
K Reservoir of sampled edges
m Number of sampled edges (Sample Size), m = |E|
6 Link decay rate
0] Initial weight
Cm Weighted count of motif pattern M
c M Estimated weighted count of motif pattern M
V(e) Unbiased estimator of variance of edge e
w(e) Sampling weight of edge e
r(e) Rank of edge e in the sample

Overview. We propose an online sampling framework for temporal streaming networks which
seeks to construct continuous-time, fixed-size, dynamic sampled network that can capture the
evolution of the full network as it evolves in time as a stream of edges. Our framework assumes
an input temporal network represented a stream of interactions links at certain times, and each
interaction can be observed and/or processed only once. Sampling algorithms are allowed to store
only m sampled edges, and can process the stream in a single-pass. If any two vertices interact
at time t = 7, their edge strength increases by 1. Figure 1 shows an illustrative example of how a
continuous-time dynamic network can be formed from a stream of edges, where the edge strength
is a function of the interactions among vertices over time.

2.1 Notation & Problem Definition

Edges, Interactions, and Streaming Temporal Networks. Our framework seeks to construct
a continuous-time sampled network that can capture the characteristics and serve as a proxy of an
input temporal network as it evolves continuously in time. In this paper, we draw an important
distinction between interactions and edges. An interaction (contact) between two entities is an event
that occurred at a certain point in time (e.g., an email, text message, physical contact). On the other
hand, an edge between two entities represents the link or the relationship between them, and the
weight of this edge represents the strength of the relationship (e.g., strength of friendship in social
network [93]). We use G to denote an input temporal network, where a set of vertices V (e.g., users
or entities) are interacting at certain times. Let (i, j, t) € E denote the interaction event that takes
place at time t, where i, j € V, E is the set of interactions, E; is the set of interactions up to time
t, and K is the set of unique edges (e = (i, j) € K) in the temporal network G. We assume these
interactions are instantaneous (i.e., the duration of the interaction is negligible), e.g., email, tweet,
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text message, etc. Let C, denote the multiplicity (weight) of an edge e = (i, j), with C,; being the
multiplicity of the edge at time ¢, i.e., the number of times the edge appears in interactions up to time
t. Finally, we define a streaming temporal network G as a stream of interactions ey, ..., ée;,. .., er,
with e; = (i, j, t) is the interaction between i, j € V at time ¢.

We note that the term unique edges refers to the set of relationships that exist among the vertices.
On the other hand, the term interaction refers to an event that occurred at some point in time
between two vertices. As such, interactions can happen more than once between two vertices, while
unique edges represent the existing relationship between two vertices. For example, in Figure 1, the
edge e = (v3,v4) has two interactions that happen at times ¢ = 3, 5 respectively. Hence, the strength
of e = (vs,v4) is higher compared to other edges.

Continuous-time Dynamic Network Samples. Consider a set of N = |V| interacting vertices,
with their interactions represented as a streaming temporal network G, i.e., ej,..., €, ..., er. Let
C; be the time-dependent adjacency matrix, whose entries C;j; > 0 represent the relationship
strength between vertices i, j € V at time ¢. The relationship strength is a function of the edge
multiplicity and time. Our framework seeks to construct, maintain, and adapt a continuous-time
dynamic sampled network, represented by the matrix C, that serves as unbiased estimator of C,
at any time point #, where the expected number of non-zero entries in C, is at most m, and m is
the sample size (i.e., maximum number of sampled edges). Our framework makes the following
assumptions:

e We assume an input temporal network represented a stream of interactions at certain times,
and each interaction can be processed and observed only once.

e Any algorithm can only store m sampled edges, and is allowed a single-pass over the stream.

o If two vertices interact at time t = 7, their edge strength increases by 1.

2.2 Link-Decay Network Sampling

Here, we introduce a novel online sampling framework that seeks to construct and maintain a
sampled temporal network in which the strength of a link (i.e., relationship between two friends)
can evolve continuously in time. Since the sampled network serves as a proxy of the full temporal
network, the sampled network is expected to capture both the structural and temporal characteristics
of the full temporal network.

Temporal Link-Decay. Assume an input stream of interactions, where interactions are instanta-
neous (e.g., email, text message, and so on). For any pair of vertices i, j € V, with a set of interaction
times 7V, 7@, .. 1M where 0 < 1V < -+ < 71 and their first interaction time is (! > 0. Our
goal is to estimate the strength of the link e = (i, j) as a function of time, in which the link strength
may increase or decrease based on the frequency and timings of the interactions. Consider two
models of constructing an adaptive sampled network represented as a time-dependent adjacency
matrix C;, whose entries represent the link strength C;; ;.

The first model is the no-decay model, in which the link strength does not decrease over time,
ie, C; o = C; oo+ 1 Thus, C;j; is the multiplicity or a function of the frequency of an edge, and
we provide an unbiased estimator for this in Theorem 1. However, the no decay model assumes
the interactions are fixed once happened, taking only the frequency of interactions as the primary
factor in modeling link strength, which could be particularly useful for certain applications, such
as proximity interactions (e.g., link strength for people attending a conference).

The second model is the link-decay model, in which the strength of the link decays exponentially
after the most recent interaction, to capture the temporal evolution of the relationship between
i and j at any time t. Let the initial condition of the strength of link (i, j) be C;j;, = 0. Then,
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Cijt = Zsto 0t — 7)) e_(t_f(s))/‘s, where 6(t) is the unit step function, and the decay factor § > 0.
We formulate the link strength as a stream of events (e.g., signals or pulses), that can be adapted
incrementally in an online fashion, so the strength of link e = (i, j) at time ¢ follows the equation,

Ce,t = Ce,t—l * 6_1/5 (1)
And if a new interaction occurred at time ¢, the link strength follows,
Cer = Cep-1 e 041 2)

Our approach discounts the contributions of interactions to the time-dependent link strength as a
function of the interaction age, while adapting the sampling weight of the link to its non-discounted
multiplicity. This allows us to preferentially retain the relatively small proportion of highly active
links, while the capability to temporally weight motif and subgraphs resides in the estimator.
This is distinct from previous approaches for temporal sampling in which the retention sampling
probability for single items were, e.g., exponentially discounted according to age, without regard to
item frequencies as a criterion for retention; see [28].

We formulate an unbiased estimator for the link-decayed strength as a function of the link
multiplicity in Section 4 (see Theorem 3). All the proposed estimators can be computed and updated
efficiently in a single-pass streaming fashion using Algorithm 1. In addition to exponential decay,
the unbiased estimators generalize and can be easily extended to other decay functions, such as
polynomial decay. Note that in this paper, we use the term link-decay to refer to exponential
link-decay.

Link decay has major advantages in network modeling that we discuss next. First, it allows us to
utilize both the frequency and timings of interactions in modeling link strength. Second, it is more
realistic, allowing us to avoid any potential bias that may result from partitioning interactions
into time windows. Link decay is also flexible, by tuning the decay factor §, we can determine the
degree at which the strength of the link ages (i.e., the half-life of a link t;,, = §In 2). We also note
that the link decay model and the unbiased estimator in Theorem 3 can generalize to allow more
flexibility, by tuning the decay parameter on the network-level, the node-level, or the link-level, to
allow different temporal scales at different levels of granularity.

Temporally Weighted Motifs. We showcase our formulation of estimated link strength by esti-
mating the counts of motif frequencies in continuous time. We introduce the notion of temporally
weighted motifs in Definition 1. Temporally weighted motifs are more meaningful and useful for
practical applications especially related to prediction and forecasting where links and motifs that
occur more recently as well as more frequently are more important than those occurring in the
distant past.

DEFINITION 1. (TEMPORALLY WEIGHTED MOTIF) A temporally weighted network motif M is a
small induced subgraph pattern with n vertices, and m edges, such that Cpq is the time-dependent
frequency of M and is subject to temporal decay, and Cprs = Ypep, [1een Ce,r» where Hy is the set of
observed subgraphs isomorphic to M at time t, and C,; is the link strength.

In general, motifs represent small subgraph patterns and the motif counts were shown to reveal
fundamental characteristics and design principles of complex networked systems [12, 13, 17, 63],
as well as improve the accuracy of machine learning models [14, 78]. While prior work focused
on aggregating interactions in time windows and analyze the aggregated graph snapshots [75, 81,
88], others have focused on aggregating motifs in At time bins, and defined motif duration [56].
These approaches rely on judicious partitioning of interactions in time bins, and would certainly
suffer from the limitations discussed earlier in Section 1. Time partitioning may obfuscate or
dilute temporal and structural information, leading to biased results. Here, we define instead a
temporal weight or strength for any observed motif, which is a function of the strength of the links
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participating in the motif itself. Similar to the link strength, the motif weight is subject to time decay.
This formulation can also generalize to models of higher-order link decay (i.e., decaying hyperedges
in hypergraphs), we defer this to future work. The definition in 1 can be computed incrementally in
an online fashion, and subject to approximation via sampling and unbiased estimators. We establish
our sampling methodology in Algorithm 1 (see line 39) and unbiased estimators of subgraphs in
Section 4 (see Theorem 1).

3 PROPOSED ALGORITHM

In this paper, we propose an online sampling framework for temporal streaming networks which
seeks to construct continuous-time, fixed-size, dynamic sampled network that can capture the
evolution of the full network as it evolves in time. Our proposed framework establishes a number of
properties that we discuss next. We formally state our algorithm, called ONLINE-TNS, in Algorithm 1.

Setup and Key Intuition. The general intuition of the proposed algorithm in Algorithm 1, is to
maintain a dynamic rank-based reservoir sample K of a fixed-size m [9, 29, 91], from a temporal
network represented as stream of interactions, where edges can appear repeatedly. And, m = |K|
is the maximum possible number of sampled edges. When a new interaction e; = (i, j, t) arrives
(line 3), if the edge e = (i, j) has been sampled before (i.e., e = (i, j) € E), then we only need to
update the edge sampling parameters (in lines 8-11) and the edge strength (line 7). However, if the
edge is new (i.e,e = (i,j) ¢ K), then the new edge is added provisionally to the sample (line 19),
and one of the m + 1 edges in K gets discarded (lines 21 and 23).

Importance sampling weights and rank variables. Algorithm 1 preferentially selects edges
to include in the sample based on their importance weight relative to the variable of interest
(e.g., relationship strength, topological features), then adapts their weights to allow edges to
gain importance during stream processing. To achieve this, each arriving edge e is assigned an
initial weight w(e) on arrival and an iid uniform U (0, 1] random variable u(e). Then, Algorithm 1
computes and continuously updates a rank variable for each sampled edge r(e) = w(e)/u(e)
(see line 17 and line 10). This rank variable quantifies the importance/priority of the edge to
remain in the sample. To keep a fixed sample size, the m + 1 edge with minimum rank is always
discarded (lines 21 and 23). The algorithm also maintains a sample threshold z* which is the
maximum discarded rank (line 22). Thus, the inclusion probability of an edge e in the sample is:
P(e € I?) =P(r(e) > z*) = P(u(e) < w(e)/z*) = min{1, w(e)/z"}. Our mathematical formulation
in Section 4 allows the edge sampling weight to increase when more interactions are observed
(line 9). Thus, edges can gain more importance or rank that reflects the relationship strength as it
evolves continuously in time. This setup will support network models that focus on capturing the
relationship strength in temporal networks [43, 64].

Unbiased estimation of link strength. We use a procedure called UPDATE-EDGE-STRENGTH
(line 25 of Algorithm 1) to dynamically maintain an unbiased estimate (see Theorem 1) of the edge
strength as it evolves continuously in time. The procedure in line 25 of Algorithm 1 also maintains
an unbiased estimate of the variance of the edge strength following Theorem 2. Note the strength
of an edge e is a function of the edge multiplicity C, (the number of interactions e; where e; = ¢). If
a link-decaying model is required, the procedure called UPDATE-EDGE-DECAY can be used instead of
UPDATE-EDGE-STRENGTH to estimate the link-decayed strength (see line 32 of Algorithm 1). We
prove that our estimated link-decaying weight is unbiased in Theorem 3.

Unbiased estimation of subgraph counts. Given a motif pattern M of interest (e.g., triangles,
or small cliques), the procedure called SUBGRAPH-ESTIMATION in line 39 of Algorithm 1 is used to
update an unbiased estimate of the count of all occurrences of the motif M at any time t. Theorem 1
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Algorithm 1 Online Temporal Network Sampling (Online-TNS)

INPUT: Sample size m, Motif pattern M, initial weight ¢
OUTPUT: Estimated network C;, Estimated motif count C

1

procedure ONLINE-TNS(m)

2 K= 0; z" = 0; EM =0 v Initialize edge sample & threshold
3 while (new interaction e; = (i, j, ¢)) do
4 e=(iJ)
5 SUBGRAPH-ESTIMATION(e) > Update Estimated Motif
6 if (e € E) then > Edge exists in K
7 UPDATE-EDGE-STRENGTH(e) > Update Edge Strength
8 5(8) = 6(6) +1 > Increment edge multiplicity
9 w(e) = w(e) +1 > Adapt importance weight
10 r(e) = w(e)/u(e) > Adapt edge rank
11 (e) =t > Last Interaction Time
12 else
13 //Initialize parameters for new edge
14 ple)=1; C(e) = 1; V(e) = 0;
15 u(e) = Uniform (0,1] > Initialize Uniform r.v.
16 w(e) =¢ > Initialize edge weight
17 r(e) = w(e)/u(e) > Compute edge rank
18 (e) =t
19 K=Ku {e} > Provisionally include e in sample
20 if (|K| > m) then
21 e* =arg min,, r(e’) > Find edge with min rank
22 z* = max{z*,r(e*)} > Update threshold
23 remove e* from K ~
24 delete {w(e*),u(e*),p(e*),C(e*),V(e*)}
25 procedure UPDATE-EDGE-STRENGTH(€)
26 // Function to estimate edge strength (No-decay)
27 if (z* > 0) then
2 q=min{1, w(@)/('p(2)}
29 E(E) = 5(?) /q > Estimate edge strength
30 V(@) =V(@/q+(1-q) =C(@)?
31 pe)=p(e) xq
32 procedure UPDATE-EDGE-DECAY(€)
33 // Function to estimate edge strength (Link-decay)
34 if (z* > 0) then
35 g =min{1, w(e)/(z"p(e))}
36 6(5) = e 0(-7(2) é(a/q > Estimate link strength
37 V(@) =V(@/q+(1-q) =C(@)?
38 pe)=p(e) xq
39 procedure SUBGRAPH-ESTIMATION(E)
40 //Set of Subgraphs isomorphic to M and completed by e
41 H={hcKU{é}:h3eh= M}
42 for h € H do
43 for j € h\edo
44 UPDATE-EDGE-STRENGTH(j) > Update other edges
45 //Increment estimated count of motif M
46 Cm =Cpm + [Tjen\z C(J)

is used to establish the unbiased estimator of the count of general subgraphs. The unbiased estimator
of subgraph counts also applies in the case of link decay, and gives rise to temporally decayed
(weighted) motifs.
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Computational Efficiency and complexity. All the algorithms and estimators can run in a
single-pass on the stream of interactions, where each interaction can be observed and processed
once (see Alg 1). The main reservoir sample is implemented as a heap data structure (min-heap)
with a hash table to allow efficient updates. The estimator of edge strength can be updated in
constant time O(1). Also, retrieving the edge with minimum rank can be done in constant time O(1).
Any updates to the sampling weights and rank variables can be executed in a worst-case time of
O(log(m)) (i.e. since it will trigger a bubble-up or bubble-down heap operations). For any incoming
edge e = (i, j), subgraph estimators can be efficiently computed if a hash table or bloom filter is
used for storing and looping over the sampled neighborhood of the sampled vertex with minimum
degree and querying the hash table of the other sampled vertex. For example, if we seek to estimate
triangle counts, then line 41 in Algorithm 1 can be implemented in O(min{deg(i), deg(j)}).

4 ADAPTIVE UNBIASED ESTIMATION

In this section, we theoretically show and discuss our formulation of unbiased estimators for
temporal networks, that we use in Algorithm 1.

Edge Multiplicities. We consider a temporal network G = (V,E) comprising interactions E
between vertex pairs of V. Each interaction can be viewed as a representative of an edge set K
comprising the unique elements of E. We will write G = (V,K) as the graph induced by K. Thus the
stream of interactions can also be regarded as a stream {e; : t € [|E|]} of non-unique edges from K.
Let K; denote the unique edges in {es : s < t} and have arrived by time ¢. Also, let G, = (Vi,K;) be
the induced graph, where V; is the subset of vertices that appeared in K;. The multiplicity C,; of an
edge e € K; is the number of times it occurs in E; = {es : s < t},1e.,Cey = [{s <t : €5 = e}|. The
multiplicity Cj; of J C K; is the number of distinct ordered interaction subsets J= {eis ey}
with i; < ¢, such that J is a permutation of J. Hence C 7.t = [leej Ce,r- Given a class H of subgraphs
of G, we wish to estimate for each ¢ the total multiplicity H; = };cq/ Cy,; of subgraphs from H
that are present in the first t arrivals.

Sampling Edges and Estimating Edge Multiplicities. We record edge arrivals by the indicators
cer = 1if e; = e and zero otherwise, and hence C,; = };51 Cey- I?t will denote the sample set of
unique edges after arrival ¢ has been processed. We maintain an estimator @J of C,; for each
ee€ E,. Implicitly C‘;t =0ife¢ I?t.

The algorithm proceeds as follows. If the arriving edge e; ¢ I?t_l then e, is provisionally included
in the sample, forming E[ = Et U{e;}, and we set (’i,tj = C¢,+ = 1. The new edge is assigned a random
variable u,, distributed IID in (0, 1]. A weight w;, is specified for each edge i € Et’ as described
below, from which the edge time-dependent priority at time t is r;; = w;,/u;. If |Et'| > m, the edge
d; = argmin, _ R Tit of minimum priority is discarded, and the estimates 51-,, of the surviving edges

iek, = Et’ \ {d;} undergo inverse probability normalization through division by the conditional
probability g;; of retention in K;; see (Equation 6). If the arriving edge is already in the reservoir
e; € E,_l then we increment its multiplicity @[,t = Ee,,t—l + 1 and no sampling is needed, i.e.,
K = Kpy.

Unbiased Estimation of Edge Multiplicities. Let Q denote the (random) set of times at which
the sampling step takes place, i.e., such that the arriving edge e; is not currently in the reservoir
e, ¢ K, and |Et,1| =m.Fort € Q' = Q\ {min Q}, let w(t) = max{[0,¢) N Q} denote the next
most recent time at which the sampling step took place. For t € Q’, the sample counts present in
the reservoir accrue unit increments from arrivals e, (;)+1, . - -, &1 until the sampling step takes
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place at time ¢. For t € Q, anedge i € Ew(t) is selected into I?t if and only if r; ; exceeds the smallest
priority of all other elements of K7, i.e.,
Fipg > zip = min rj; (3)
JeK\{i}
Hence by recurrence, i € I?, only if u; < ming{w;s/z;s} where s takes values over

{ai(t)"">w(w(t))!w(t)> t} (4)

where o;(t) is the most recent time at which edge i was sampled into the reservoir.

This motivates the definition below where p.; is the edge selection probability conditional on

the thresholds z;, and g, is the conditional probability for sampling for each increment of time.

Let t, denote the time of first arrival of edge e. For t € Q, define p., through the iteration
min{1, we,/z:} if t = min Q

Per = : : (5)

min{pe o (1), We,r/2:}  otherwise

where z; = min, _g, re, for t € Q, in the unrestricted minimum priority over edges in K/. Note
t

thatz;, =z, ifi € f(} Then Ee,, is defined by the iteration @J =0fort <t,and

C = I(u; < wi,/z;
Cer = (Ce,t—l + ce’t) M ©
Ge,t
where
1 ift ¢ Q
et =\ Pet ifte Qande =¢; @)

Det/Pew(ry otherwise
For J ¢ V, let t; = minj¢; t;, i.e,, the earliest time at which any instance of an edge in J has
arrived. Let J; = {j € J : t; < t}, ie, the edges in J whose first instance has arrived by t. Note in
our model these are deterministic. The proof of the following Theorem and others in this paper are
detailed in Section A.

Theorem 1 (Unbiased Estimation).

(i) E[Cey] = Cey forall t > 0.
(ii) For each J ¢ V and t > t; then [}, (Ce,r — Ce) : t > t7} has expectation 0.

(iii) E[Hee] é\e,t] = Hee] Ce, for t > max;jey t;.

Estimating Subgraph Multiplicities. Theorem 1 tells us for a subgraph J C K, that [, az,t
is an unbiased estimator of the multiplicity [[.c; Ce: of subgraphs formed by distinct set of
interactions isomorphic to J. Now let h € Hjy, the set of subgraphs of G, that are isomorphic
to M at time t. We partition the set of interactions in E; that represent h according to the time
of last arrival. Thus it is evident that Cp(; = >, Cf&{s where Cj&{s = ZheHS(O) Ch\{e,),s Where

HS(O) ={h € K, : h 3 e; : h = M}, meaning, for each interaction e, we consider subgraphs h of K
congruent to M and containing e, and compute the multiplicity of the h with e; removed, i.e., not
counting any isomorphic sets of interactions in which the e = e, arrived previously, thus avoiding

over-counting. It follows by linearity that C Mt = Ds<r 5(0) | is an unbiased estimator of C

where Cf\(i[)s .= ZheH(O) Ch\{es} s—1. Thus for each arrival e; we estimate Cj; just prior to sampling

of e; by C],, = H]q\{et} C] ¢—1. For each | C H; we increment a running total ofMt by this amount;
see line 46 in Algorithm 1.
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Edge Multiplicity Variance Estimation. We now discuss the unbiased estimator of the variance
Var(Ce).

Theorem 2 (Unbiased Variance Estimator).

Suppose Ve,t_l is an unbiased estimator of Var(@,t_l) that can be computed from information on
the first t — 1 arrivals. Then

Ver = Cor(1= qes) + (e < Wer/20)Ver-1/qes (8)
is a unbiased estimator of Var(é\e)t) that can be computed from information on the first ¢ arrivals.

The computational condition expresses the property that Ve,t can be computed immediately
when e € K;. The relation (Equation 8) defines an iteration for estimating the variance Var(C,) for
any t following a time s € Q at which edge ¢ was sampled into K, such that e remained in the
reservoir at least until ¢. The unbiased variance estimate Ve,s takes the value 1/p, s — 1 at time s of
selection into the reservoir. In practice Ve,t only needs to be updated at ¢ € Q, i.e., when some edge
is sampled into the reservoir, since g.; = 1 when t ¢ Q.

Estimation and Variance for Link-Decay Model.
The link-delay model adapts (Sec.2.2) through

~ 5 - I(ug < wice/21)
G, = (le,t—le e 4 ck,t) T S 9)
N3

which exponentially discounts the contribution from the previous time slot.
Theorem 3 (Unbiased Estimation with Link Decay).

(1) C,f , is an unbiased estimator of Cl‘z .

(ii) Replacing Ek,t with 51(3 , in the iteration yields an unbiased estimator Vk‘? , of Var(é\]‘i .

5 EXPERIMENTS

We perform extensive experiments on a wide variety of temporal networks from different domains.
The temporal network data used in our experiments is shown in Table 2. We discuss baseline
comparisons in Section 5.1, and perform a detailed ablation study that shows the contributions
of the different components and design choices of Algorithm 1 in Section 5.2. The experiments
systematically investigate the effectiveness of the framework for estimating temporal link strength
(Section 5.2), temporally weighted motifs using the decay model (Section 5.2), and temporal network
statistics (Section 5.3). We use sample fractions p = {0.10, 0.20, 0.30, 0.40,0.50} and all experiments
are the average of five different runs, similar to the setup in prior work [54].

5.1 Comparison to Published Baselines

In Table 3, we compare Algorithm 1 to the state-of-the-art methods for multi-graph streams (in
which edges can appear more than once in the stream), Triest sampling [84], reservoir sampling [91],
and MultiWMascot [54] for the estimation of link strength (with no-decay). Note that both Triest
and reservoir sampling methods sample edges separately, and multiple occurrences of an edge (u, v)
may appear in the final sample. On the other hand, our proposed Algorithm 1 and MultiWMascot
incrementally update the overall estimate of link strength of an edge (u, v), and stores an edge only
once with its estimator. This leads to more space-efficient samples. However, while MultiWMascot
maintains the edge estimators, it is still uses a single uniform probability p for sampling any of the

edges.
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Table 2. Temporal network data [76]. Note |K| is the number of static edges (not including multiplicities);
|E|= number of temporal edges; and Cpax= maximum edge weight.

TEMPORAL NETWORK V] K| |E| days Crax

sx-stackoverflow 2.6M 28.1IM 479M 27743 1.04k
ia-facebook-wall-wosn 46k 183k 877k  1591.0 1.3k
wiki-talk  1.1M  2.8M 7.8M 23204 1.6k

bitcoin 24.5M 86.1IM 129.2M  1811.7 72.6k

CollegeMsg 1.9k 14k 60k 1937 184
ia-retweet-pol 18k 48k 61k 48.8 79
ia-prosper-loans 89%k 33M  34M  2142.0 15
comm-linux-reply 26k 155k 1.0M 29216 1.9k
email-dnc 19k 4.4k 39k 982.3 634
ia-enron-email 87k 297k 1.IM 16217.5 1.4k
ia-contacts-dublin 11k 45k 416k 80.4 345
fb-forum 899 7.0k 34k 164.5 171
ia-contacts-hyper09 113 2.2k 21k 25 13k
SFHH-conf-sensor 403 9.6k 70k 1.3 1.2k
sx-superuser 192k 715k 14M 27733 139
sx-askubuntu 157k 456k 964k  2613.8 215
sx-mathoverflow 25k 188k 507k 23503 325

Table 3. Baseline Comparison: Relative spectral norm (i.e., ||C — 6||2/||C||2) for sampling fraction p = 0.1,
comparison between Online-TNS (Alg 1), Triest sampling [84], Reservoir sampling [91], and MultiWMascot
sampling [54].

TEMPORAL NETWORK Online-TNS Triest Reservoir MultiWMascot
CollegeMsg 0.0558 0.2304 0.2212 0.1990
ia-retweet-pol 0.1800 0.4103 0.4091 0.3973
ia-contacts-dublin 0.0215 0.1926 0.1937 0.1855
wiki-talk 0.1020 0.2554 0.2347 0.2343
fb-forum 0.0390 0.1900 0.1912 0.2052
sx-mathoverflow 0.0668 0.1767 0.1764 0.1584
sx-stackoverflow 0.0992 0.2114 0.2036 0.2045

We observe that both Triest and reservoir sampling were unable to produce a reasonable estimate
with 59% — 83% accuracy, while MultiWMascot performed slightly better with an accuracy of
60% — 84%. Algorithm 1 produced more accurate estimates with 82% — 97% accuracy, with an average
of 20% gain in accuracy compared to the baselines. Figure 2 shows the distribution of the top-k
edges (k = 10 million) and compares the exact link strength with the estimated link strength for
the four sampling algorithms, Online-TNS (Alg. 1), Triest, reservoir sampling, and MultiWMascot.
Notably, Online-TNS not only accurately estimates the strength of the link but also captures the
correct order of the links compared to the baselines.

5.2 Ablation Study

Our proposed framework is flexible and generic with various components and design choices. To
help understand the contributions of the major components, we performed a thorough set of ablation
study experiments. Our framework (in Algorithm 1) consists of two major components: Adaptive
sampling and estimation (uniform vs adaptive sampling weights), and Link-decay models (no-decay
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Fig. 2. Baseline comparison with Triest, reservoir sampling, and MultiWMascot sampling. Temporal link
strength (No-decay) estimated distribution vs exact distribution for top-k links . Results are shown for
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Table 4. Online-TNS Framework Main Components (see Algorithm 1).

vs exponential decay). We summarize these components and design choices in Table 4. Our first
ablation study experiment investigates the impact of sampling weights on the estimation accuracy.
We explore two variants of Algorithm 1, (a) Adaptive: using Algorithm 1 with adaptive/importance
sampling weights, where the sampling weights/ranks adapt to allow edges to gain importance
during stream processing. (b) Uniform: using Algorithm 1 with fixed uniform sampling weights,
where the sampling weights/ranks are uniform and assigned at the first time of sampling, and
fixed during the rest of the streaming process. For variant (a), we use the exact procedure in
Algorithm 1. For variant (b), we omit Lines 9 and 10 from Algorithm 1. Note that for both variants,
the established estimators in Section 4 are unbiased. We compare performance of the two variants
for the estimation of link strength and temporally weighted motif counts.

Estimation of Temporal Link Strength. Link strength is one of the most fundamental properties
of temporal networks [93]. Therefore, estimating it in an online fashion is clearly important. Results
using Alg. 1 with adaptive sampling weights and unbiased estimators (see Section 4) for temporal
link strength estimation are provided in Figures 3 and 4 (top row) for the no-decay and link-decay
models respectively. We show the distribution of the top-k edges (k = 10 million) and compare the
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exact link strength with the estimated link strength. Notably our approach not only accurately
estimates the strength of the link but also captures the correct order of the links (top-links ordered by
their strength from high to low). From Figures 3 and 4 (top row), we observe the exact and estimated
link strengths for the top-k edges to be nearly indistinguishable from one another. We also compare
to Alg. 1 with uniform sampling weights, i.e., Online-TNS (Unif), in which edges are assigned
uniform sampling weights at the sampling time, and fixed for the rest of the streaming process,
results are shown in Figures 3 and 4 (bottom row). While the estimated link strengths from Online-
TNS with adaptive weights are nearly identical to the exact link strengths, estimated distributions
from uniform sampling weights are significantly worse. Unlike uniform sampling weights where
the weights remain constant, using the adaptive sampling weights helps the algorithm to adapt to
the changing topology of the streaming network, which leads to favoring the retention of edges

with higher strength.
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Table 5. No-decay Results: Relative spectral norm (i.e., ||C — 6||2/||C||2) for sampling fraction p = 0.1,
comparison between adaptive sampling weights (Alg. 1) and uniform sampling weights.

TEMPORAL NETWORK  Adaptive (Alg. 1)  Uniform

ia-facebook-wall 0.0090 0.3976
sx-stackoverflow 0.0992 0.4360
wiki-talk 0.1020 0.4272
comme-linux-reply 0.0041 0.1978
fb-forum 0.0390 0.2640
ia-enron-email 0.0098 0.4080
SFHH-conf-sensor 0.0090 0.2770
ia-contacts-hyper 0.0034 0.0529

Table 6. Link-decay Results: Relative spectral norm (i.e., ||C — 6||2/||C||2) for sampling fraction p = 0.1,
comparison between adaptive sampling weights (Alg. 1) and uniform sampling weights.

TEMPORAL NETWORK  Adaptive (Alg. 1)  Uniform

CollegeMsg 0.0797 0.0819
ia-retweet-pol 0.1451 0.2723
ia-contacts-dublin 0.0058 0.1624
ia-facebook-wall 0.0335 0.0914
ia-contacts-hyper 0.0009 0.0511
SFHH-conf-sensor 0.0034 0.2283
email-dnc 0.0143 0.1506

In Tables 5 and 6, we show the relative spectral norm for online-TNS with adaptive and uniform
sampling weights for no-decay and link-decay models respectively. The relative spectral norm is
defined as ||C— 6||2 /1IC||2, where C is the exact time-dependent adjacency matrix of the input graph,
whose entries represent the link strength, C is the average estimated time-dependent adjacency
matrix (estimated from the sample), and ||C||, is the spectral norm of C. The spectral norm ||C — 6”2
is widely used for matrix approximations [1]. ||C — 6|| 2 measures the strongest linear trend of C
not captured by the estimate C. The results show Online-TNS with adaptive sampling weights
significantly outperforms the variant using uniform sampling weights, and captures the linear
trend and structure of the data better, with an average 20% improvement over the uniform sampling
weights. We also measured the error using relative Frobenius norm (i.e., ||C — 6||F/||C||F) and
observed similar conclusions.

Temporally Weighted Motif Estimation. Recall that our formulation of temporal motif differs
from previous work in that instead of counting motifs that occur within some time period 6,
our formulation focuses on counting temporally weighted motifs where the motifs are weighted
such that motifs that occur more recent and contain active links are assigned larger weight than
those occurring in the distant past. This formulation is clearly more useful and important, since it
can capture the evolution of the network and relationships at a continuous-time scale. Also, this
formulation would be useful for many practical applications involving prediction and forecasting
since it appropriately accounts for temporal statistics (in this case, motifs) that occur more recently,
which are by definition more predictive of some future event. In Table 7, we show results for
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Table 7. Results for temporally weighted motif count estimation. Online TNS with adaptive weights compared
to online TNS with uniform weights. Relative error for triangle counts are reported using p = 0.1.

WitHoUT DECAY WitH DECAY

TEMPORAL NETWORK  Exact Adaptive Uniform Exact Adaptive Uniform
sx-stackoverflow 15B 0 0.0133 168M 0.00004 0.0006
ia-facebook-wall  435M 0.0004 0.0605 9.9M 0.0004 0.0247
wiki-talk  12B 0.0003 0.0171 394M 0.0001 0.0022
CollegeMsg  6.2M 0.0148 0.0545 2.0M 0.0003 0.0277
ia-retweet-pol 380k 0.0236 0.0341 147k 0.0001 0.0247
ia-prosper-loans  1.4M 0.0056 0.0078 232k 0.0067 0.0048

comm-linux-reply  148B 0 0.0055 242M 0.00003 0.000024
email-dnc  483M 0 0.0004 251M 0.00006 0.0097
ia-enron-email 14B 0 0.0726 329M 0.0003 0.0034
ia-contacts-dublin  382M 0.00005 0.00008 381M 0 0.0001
fb-forum 3.3M 0.0036 0.1761 763k 0.0067 0.0137
ia-contacts-hyper09 93M 0 0.00041 88M 0 0.00086

SFHH-conf-sensor  622M 0 0.0665 604M 0.0002 0.0434
sx-superuser 83M 0.0072 0.0137 2.1IM 0.0013 0.0016
sx-askubuntu  71M 0.0035 0.0077 2.TM 0.0069 0.0135
sx-mathoverflow 269M 0.0008 0.0688 2.8M 0.0004 0.0003

estimating the temporally weighted motif counts. For brevity, we only show results for triangle
motifs (both decay and no-decay models), but the proposed framework and unbiased estimators in
Algorithm 1 and Section 4 generalize to any network motifs of larger size. For these results, we set
the decay factor § to 30 days. Notably, all of the temporally decayed motif count estimates have a
relative error that is less than 0.03 as shown in Table 7 (Adaptive). Nevertheless, this demonstrates
that our efficient temporal sampling framework is able to leverage accurate estimators for even the
smallest sample sizes. Table 7 also shows results of Algorithm 1 with uniform sampling weights.
Overall, we observe that Online-TNS with adaptive sampling weights generally outperforms Online-
TNS with uniform sampling weights. We conjecture that Online-TNS with adaptive sampling is
general and would be useful in various applications beyond the scope of this paper. In particular, for
applications that require importance sampling with the ability to combine both topology (e.g., edge
multiplicity, temporal strength, subgraphs) and auxiliary information (e.g., node/edge attributes
and features). We will explore these applications in future work.

Sensitivity Analysis of the Decay Factor. We now study the impact of the choice of the decay
factor § on the quality of the estimates. When we choose the value for the mean lifetime &, it is more
intuitive to think about the half-life 77;/, of an edge. The half-life of an edge gives the amount of
time for an edge to lose half of its weight/strength in the absence of new interactions. Given § > 0,
the half-life of an edge is defined as 171/, = §In 2. As such the choice of § is crucial to filter-out
and down-weight the old activity in continuously evolving networks. When the half-life is short
(i.e., the mean lifetime § is short), the interactions result in weak links among nodes, where the
link strength dies off quickly unless the interactions occur more frequently and sustainably among
the nodes. On the other hand, when the half-life is long (i.e., d is long), links are able to build a
momentum and strengthen from interactions that otherwise occurred too far in time. In Figure 5,
we show the estimated link strengths obtained using Online-TNS with adaptive weights for two
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different decay factors § = 1-day and § = 7-days. Clearly, the range and scale of the link strength
is much higher when § is long. In addition, we also observe that the estimated distributions of
link strengths for the top-k edges are nearly indistinguishable from the exact distributions. This is
due to the unbiasedness property of the proposed estimators, as the unbiasedness property holds
regardless the choice of the decay parameter §. In Table 8, we provide the temporally weighted
motif count estimation obtained using Online TNS (Alg 1) with adaptive weights and different decay
§ parameters. Clearly, the relative error is small for § values, which is a result of the unbiasedness
property of the proposed estimators.

Table 8. Sensitivity analysis of the decay factor 6. Results for temporally weighted motif count estimation.
Relative error reported using p = 0.1 for triangle counts using Online TNS (Alg 1) with adaptive weights and
different decay § parameters.

DecAy FACTOR &

TEMPORAL NETWORK 1-day 1-week 1-month
CollegeMsg 0.002 0.003 0.0003
ia-retweet-pol 0.074 0.023 0.0001
ia-contacts-dublin 0.00003 0 0
ia-facebook-wall 0.0091 0.0011 0.0004
email-dnc 0.00004 0.00005 0.00006
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Fig. 5. Temporal link strength estimated distribution vs exact distribution for top-k links. Results are shown
for sampling fraction p = 0.2. (Top: Red) Results for Online-TNS Algorithm 1 with adaptive sampling weights
and decay factor § = 1 day. (Bottom: Green) Results for Online-TNS Algorithm 1 with adaptive sampling
weights 1 and decay factor § = 7 days.
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Table 9. Results for estimating temporal burstiness. For each temporal network, we show the estimated
burstiness using different sampling probabilities (first row) compared to the exact. The relative error |B-B|/B
of the estimates is also shown.

SAMPLING FRACTION

TEMPORAL NETWORK 0.1 0.2 0.3 0.4 0.5 Exact

wiki-talk  0.6196  0.6208  0.6208 0.6207 0.6206  0.6206
(error)  0.0017  0.0003 0.0003 <0.0001 <0.0001

ia-facebook-wall-wosn ~ 0.4482  0.4534  0.4535 0.4535 0.4535  0.4535
(error)  0.0116  0.0002 <107 <1073 <107

bitcoin  0.7738  0.7642  0.7606 0.7586 0.7579  0.7576
(error)  0.0214  0.0087  0.0040 0.0013 0.0004

sx-stackoverflow  0.6517 0.6712  0.6808 0.6863 0.6891  0.6898
(error)  0.0552  0.0269  0.0130 0.0050 0.0010

5.3 Estimation of Temporal Statistics

While the proposed framework can be used to obtain unbiased estimates of arbitrary temporal
network statistics, we focus in this section on two important temporal properties and their distribu-
tions including burstiness [16] and temporal link persistence [25]. For a survey of other important
temporal network statistics that are applicable for estimation using the framework, see [43].

Burstiness. Burstiness B is widely used to characterize the link activity in temporal networks [43].
Burstiness is computed using the mean p and standard deviation o of the distribution of same-edge
inter-contact times collected from all links, i.e., B = (¢ — p)/(o + p). The inter-contact time is
the elapsed time between two subsequent same-edge interactions (i.e., time between two text
messages from the same pair of friends). Burstiness measures the deviation of relationship activity
from a Poisson process. In Table 9, we use the proposed framework to estimate burstiness (i.e.,
computed using the sampled network). We show the estimated burstiness for sampling fraction
p € {0.1,0.2,0.3,0.4,0.5}. In addition, we also provide the relative error of the estimates across
the different sampling fractions. From Table 9, we observe the relative errors are small and the
estimates are shown to converge as the sampling fraction p increases. In Figure 6, we show the
exact and estimated distribution of inter-contact times for sampling fractions p = 0.1 (top row)
and p = 0.2 (bottom row). We observe that the estimated distribution from the sample accurately
captures the exact distribution.

Temporal Link Persistence. The persistence of an edge measures the lifetime of relationships,
and is computed as the elapsed time between the first interaction and the last interaction of the
same edge [43]. Let L denote the average link persistence (or lifetime) computed over all edges in
the full (sampled) network defined as L = ﬁ Y(ij)eK Ti(}“t) - rl.(f“t) . Relative error of estimated
link persistence is shown in Table 10. In Figure 7, we show the exact and estimated distribution
(i.e., computed using the sampled network) of link persistence scores for sampling fractions p = 0.1
(top row) and p = 0.2 (bottom row). We observe that the estimated distributions from the sampled
network across all graphs accurately captures the exact distribution (for both burstiness and
persistence). We also note that the proposed algorithm Alg 1 can also handle labeled graphs (with
vertex/edge categorical variables), where the estimators are computed separately for each possible
label combination in a stratified fashion.
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Table 10. Estimation results for temporal persistence. For each temporal network, we report relative error
IL-L|/L of the estimates using different sampling fractions.

SAMPLING FRACTION

TEMPORAL NETWORK 0.1 0.2 0.3 0.4 0.5

wiki-talk 0.1380 0.0412 0.0112 0.0009 <107°
ia-facebook-wall-wosn 0.1232 0.0023 <1077 <1077 <1077
sx-stackoverflow 0.1718 0.0794 0.0357 0.0119 0.0016
bitcoin 0.1056 0.0207 0.0023 0.0020 0.0024
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Fig. 6. Estimation results for the distribution of inter-contact times compared to the exact distribution. Results
are shown for p = 0.1 (top) and p = 0.2 (bottom).
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Fig. 7. Estimation results for the distribution of link persistence scores compared to the exact distribution.
Results are shown for p = 0.1 (top) and p = 0.2 (bottom).
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6 RELATED WORK

Sampling algorithms are fundamental in studying and understanding networks [11, 47, 67, 91],
where the goal is to collect a representative sample that capture the characteristics of the full
network. Network sampling has been widely studied in the context of small static networks that
can fit entirely in memory [47]. For instance, there is uniform node sampling [85], random walk
sampling[52], edge sampling [11], among others [15, 56]. More recently, there has been a growing
interest in sampling techniques for streaming network data in which temporal networks evolve
continuously in time [6-10, 27, 44, 45, 54, 55, 71, 82, 84, 95]. For seminal surveys on the topic,
see [11, 62].

However, most existing methods for sampling streaming network data have focused on the
primary objective of selecting a sample to estimate static network properties, e.g., point statistics
such as global triangle count or clustering coefficient [9]. As such, it is unclear how representative
these samples are for temporal network statistics such as the link strength [93], link persistence [25],
burstiness [16], temporal motifs [48], among others [43]. Despite the fundamental importance of
this question, it has not been addressed in the context of streaming and online methods.

Some of the recent work on stream sampling focused on multi-graph streams [54, 84, 91], where
edges may appear multiple times in the stream. However, most of these methods (e.g., Triest,
reservoir sampling) mainly sample edges separately, thus, multiple occurrences of an edge (u,v)
may appear in the final sample, which allocates more space. In addition, the recent work in [54]
uses a uniform sampling probability to sample the edges, and stores an edge only once with its
estimator. On the other hand, our proposed Algorithm 1 adaptively samples edges with probabilities
proportional to their link strength, and incrementally updates the overall estimate of link strength
of an edge (u, v), and stores an edge only once with its estimator. This leads to more space-efficient
and accurate samples.

There has been one recent work for sampling temporal motifs [56]. However, their work focused
on a different problem based on counting motifs in temporal networks that form within some time
At [48]. More specifically, their approach uses judicious partitioning of interactions in time bins,
which can obfuscate or dilute temporal and structural information. In this paper, we formulate
instead the notion of a temporally weighted motif based on the temporal network link decay model.
We argue that this formulation is more meaningful and useful for practical applications especially
related to prediction and forecasting where links and motifs that occur more recently are more
important than those occurring in the distant past. In addition to the difference in problem, that
work does not focus on streaming nor the online setting since the entire graph is loaded into
memory.

The temporally decaying model of temporal networks is useful for many important predictive
modeling and forecasting tasks including classification [75, 81], link prediction [20, 22, 23, 30, 34,
65, 66, 92, 96], influence modeling [39], regression [38], and anomaly detection [5, 79]. Despite
the practical importance of the temporal link decaying model, our work is the first to propose
network sampling and unbiased estimation algorithms for this setting. Therefore, the proposed
temporal decay sampling and unbiased estimation methods bring new opportunities for many real-
world applications that involve prediction and forecasting from temporal networks representing a
sequence of timestamped edges. This includes recommendation [18, 30], influence modeling [39],
visitor stitching [78], etc.

Moreover, there has been a lot of research on deriving new and important temporal network
statistics and properties that appropriately characterize the temporal network [43]. Other recent
work has focused on extending node ranking and importance measures to dynamic networks
such as Katz [40] and eigenvector centrality [89]. These centrality measures use a sequence of
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static snapshot graphs to compute an importance or node centrality score of nodes. Since the
proposed temporal sampling framework is general and can be used to estimate a time-dependent
representation of the temporal network, it can be used to obtain unbiased estimates of these recent
dynamic node centrality measures.

The proposed temporal network sampling framework can also be leveraged for estimation of
node embeddings [80] including both community-based (proximity) and role-based structural
node embeddings [14, 77]. More recently, there has been a surge in activity for developing node
embedding and graph representation learning methods for temporal networks. There have been
embedding methods proposed for both continuous-time dynamic networks consisting of a stream
of timestamped edges [51, 57, 69] as well as discrete-time dynamic networks where the actual edge
stream is approximated with a sequence of static snapshot graphs [59, 70, 79, 87, 88]. All of these
works may benefit from the proposed framework as it estimates a time-dependent representation of
the temporal network that can be used as input to any of these methods for learning time-dependent
node embeddings.

In the context of accumulating sample based counts of repeated objects, Sticky Sampling [60] and
counting Samples [37] have been proposed, together with Sample and Hold [32] in the context of
network measurement, along with adaptive versions for fixed size reservoirs [26, 46]. Our approach
differs from these methods in many ways and provide the following advantages. First, the cost
of updating the sample is much cheaper compared to these methods. Second, the discard step is
computationally cheaper being O(1) to pick the minimum priority element. Third, our approach
provides unbiased estimators not only for single links, but also for link-product counts for temporal
motifs through Theorem 1(iii).

7 CONCLUSION

This work proposed a novel general framework for online sampling and unbiased estimation of
temporal networks. The framework gives rise to online single-pass streaming sampling algorithms
for estimating arbitrary temporal network statistics. We also proposed a temporal decay sampling
algorithm for estimating statistics based on the temporal decay model that assumes the strength
of links evolve as a function of time, and the temporal statistics and temporal motif patterns are
temporally weighted accordingly. To the best of our knowledge, this work is the first to propose
sampling and unbiased estimation algorithms for this setting, which is fundamentally important for
practical applications involving prediction and forecasting from temporal networks. The proposed
framework and temporal network sampling algorithms that arise from it, enable fast, accurate, and
memory-efficient statistical estimation of temporal network patterns and properties. Finally, the
experiments demonstrated the effectiveness of the proposed approach for unbiased estimation of
temporal network statistics. Other graph properties such as page rank, degree distribution, and
centrality would be suitable for future extensions of the proposed framework.
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A  PROOFS OF THEOREMS

Proor oF THEOREM 1. Although (i) is special case of (ii), we prove (i) first then extend to (ii). We
establish that L R

E[Ce,t|ce,t—1s Q] - Ce,t = Ce,t—l - Ce,t—l (10)

for all members Q of set of disjoint events whose union is identically true. Since 58,%_1 =Cet,-1=0
we then conclude that E[C‘\e,t] = Ceys. Fort, < s < s, let Agl) (s) = {e ¢ Es_l} (note Agl)(te)
is identically true), let Aff) (s,s”) denote the event {e € I?s .. ,Esr}, i.e., that e is in sample at all
times in [s, s’]. Then A,(el) (s)Agz) (s,t — 1) is the event that e was sampled at time s < ¢ — 1 and has
remained in the reservoir up to and including time ¢ — 1. For each t > t, the union of the collection
of events formed by {Agl) (s)Aéz) (s,t—1): s € [te,t—1]}, and Agl) (t) is identically true.

(a) Conditioning on Agl)(t). On Aél)(t), e; # e implies @J = 58,[_1 =0=0C,t —Cet-1. On the
other hand e; = e implies t € Q since the arriving edge e is not in the current sample. Further
conditioning on z,; = min rj+-1 then (6) tells us

€Ki
Ple € KilAL (1), zes] = Plue < Wer/2es] = pes (11)
and hence regardless of z.; we have
E[Ce|Cer-1, AL (1), 2et] = Com1 + Cer = Cert (12)

(b) Condztzonmg on A(l) (s)A(z) (s,t — 1) anys € [t,, t — 1]. Under this condition e € Et 1 and if
furthermore e; € Kt 1 then t ¢ Q and the first line in (6) holds. Suppose instead e; ¢ Kt 1 so that
t e Q.Let Z.(s,t) = {zes : 5" € [s,t] N Q}. Observing that

LA (s, DIAL (s), Ze(s, D] = ﬂ {tte < =] = pe
s'e[s,t]NQ e,s
then
PIAL (5, 1AV (), Zo(s, )] e

Ple € KA (t - 1,9)AM (s), Ze(s.1)] = _ _
PIAD (5,1 = DIAD (5), Ze(s,t = 1)]  Pewln)
(13)

E[CetlCor-1, AL (8), Ze(5, )] = Comn (14)
independently of the conditions on the LHS of (14). As noted above, e € K;_ when Aff) (s,t—1)1is
true in which case C.; = C,;—1 and we recover (10).

(ii) The proof employs a conditioning argument that generalizes a the property of Priority
Sampling, namely, that inverse probability estimators of item samples are independent when

and hence
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conditioned on the priorities of other items; see [29]. Our generalization establishes that link-
product form estimators of subgraph multiplicities are unbiased. Let z;, = min ey, Tit Then

t
Jt € Ky iffu; < wis/zy, foralli € J;, in which case zj; = z;, for all j € J;. A sufficient condition
for Theorem 1(ii) is that

E[I—[ (5j,t - Cj,t) |z, J-1 C K] =0 (15)
JE

Since 5j,t = (@,t_l + cj,t) I(uj < wj:/zj+)/q): then conditioning on z;, and {J;—; C I?t_l} fixes

Cji-1,zj; and q; for j € J;. If we can show furthermore that the {u; : j € J;} are independent
under the same conditioning, then the conditional expectation (15) will factorize over j € J; (the
expectation and product may be interchanged) and the result follows from (i).

We establish conditional independence by an inductive argument. Denote Z; = {zjs : s €
[t;,t] N Q} and assume conditional on Zj; 4, J;-1 C I?t that the u; : j € J;-; and mutually
independent with each uniformly distributed on (0, pj;—1). Note the weights w;; : i € J; determined
by Ji-1 C I?t since arrivals are non-random. Further conditioning on J; € Et result in each i being
uniform on (0, min{p; ;—1, wi+/2z5+}] = (0, p;+] so completing the induction. The property is trivial
at the time ¢; of first arrival of each edge. The form (iii) then follows inductively on the size of the
subgraph J on expanding the product and taking expectations. ]

Proor oF THEOREM 2. Here we specify Ve,t being commutable from the first ¢ arrivals to mean
that it is ;-measurable, where 7; is set of random variables {u,, : t € Q} generated up to time ¢.
By the Law of Total Variance

Var(Cos) = E[Var(Cer)|Fi-1] + Var(E[Ce,|Fi-1]) (16)
—~ 2
Cer_1+cCe ~
= B[ q— Var(I(Be(z:))|Fi-1] + Var(Ce,—1 + ce) (17)
et
5 2
1+c —~
= E[(ql—) q:(1 = )] + Var(Ces-1) (18)
et
— = 2 ~
Since V,; := (%) q:(1 - q;) is F;_1=measurable, then V, ;I(B.(z;))/qe is F;-measurable,
and 1(B(2) 1B (1))
z;)) ~ z ~ —
E[——"Ve] = B[E[————=|Fe|Veu] = B[ V] (19)
Ge,t Ge,t
and similarly by assumption on XZ,t_l,
I(Be(z4)) = —~ ~
BT, 1) = B[Figer] = Var(Caren) (20)
et
[ |

Proor or THEOREM 3. (i) follows by linearity of expectation, while (ii) follows by substitution
in (8). |
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