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ABSTRACT

The NASA Transiting Exoplanet Survey Satellite (TESS) is observing tens of millions of stars with
time spans ranging from ~ 27 days to about 1 year of continuous observations. This vast amount of data
contains a wealth of information for variability, exoplanet, and stellar astrophysics studies but requires
a number of processing steps before it can be fully utilized. In order to efficiently process all the TESS
data and make it available to the wider scientific community, the TESS Data for Asteroseismology
working group, as part of the TESS Asteroseismic Science Consortium, has created an automated
open-source processing pipeline to produce light curves corrected for systematics from the short- and
long-cadence raw photometry data and to classify these according to stellar variability type. We will
process all stars down to a TESS magnitude of 15. This paper is the next in a series detailing how
the pipeline works. Here, we present our methodology for the automatic variability classification of
TESS photometry using an ensemble of supervised learners that are combined into a metaclassifier.
We successfully validate our method using a carefully constructed labelled sample of Kepler Q9 light
curves with a 27.4 days time span mimicking single-sector TESS observations, on which we obtain

Corresponding author: J. Audenaert

jeroen.audenaert@kuleuven.be



2 AUDENAERT ET AL.

an overall accuracy of 94.9%. We demonstrate that our methodology can successfully classify stars
outside of our labeled sample by applying it to all ~ 167 000 stars observed in Q9 of the Kepler space

mission.

Keywords: Asteroseismology, Machine learning, Supervised classification

1. INTRODUCTION

Understanding stellar variability is important for
many fields of astrophysics. Asteroseismology and stel-
lar astrophysics in general have been revolutionized with
the launch of space missions that delivered (and continue
delivering) months- to years-long high precision, high
cadence, and high-duty cycle brightness measurements
for large numbers of stars. Following the MOST (Walker
et al. 2003), WIRE (Buzasi 2004; Bruntt & Buzasi 2006)
and CoRoT (Auvergne et al. 2009) space missions that
were among the pioneers in the field of “space astero-
seismology” (e.g. Aerts et al. 2010, for historical notes),
Kepler (Borucki et al. 2010) observed around 160,000
stars in 30-minute (long) and 1-minute (short) cadence
intervals for up to four years. After the failure of its
second reaction wheel, the Kepler mission was turned
into the Kepler Second Light (K2; Howell et al. 2014)
mission that observed a large number of stars along the
ecliptic plane during 20 further campaigns, each of about
80 days duration. The TESS mission (Ricker et al. 2015)
was launched in 2018 and is covering almost the entire
sky. With millions of stars observed, it offers many times
the number of targets as Kepler did, but most will be ob-
served for only a fraction of the duration of that mission.
The TESS targets in the Full Frame Images (FFIs) were
observed at 30-minute cadence intervals during its first
2 years while a pre-selected list of targets was observed
at 2-minute cadence. For the first extended mission the
FFI cadence is reduced to 10 minutes, with an addi-
tional 20 sec cadence introduced as well. The observing
periods in a single cycle range from 27.4d up to 352d,
depending on the position on the sky.

Coping with the large volume of data obtained by var-
ious space-missions, and in particular by the currently
operational TESS mission, requires a coordinated ef-
fort. To that end, the TESS Data for Asteroseismology
(T’'DA') coordinated activity has been created within
the TESS Asteroseismic Consortium (TASC?). The ma-
jor task of the T’DA unit is to serve the community
with optimal processing of TESS data (both short ca-
dence and full frame images) for all stars in the sky down
to a TESS magnitude of 15. This includes raw light

L https://tasoc.dk/tda/
2 https:/ /tasoc.dk/

curve extraction, correction of the extracted light curves
for systematics, and their automated classification into
variability classes. Putting it into context, thanks to
the observing strategy of the TESS mission and a high-
level integration of the raw TESS image data into our
pipeline which allows us to handle large amounts of data
quickly and efficiently, we will ultimately produce an
all-sky variability catalogue containing tens of millions
of stars. While being a treasure trove on its own, our
variability catalogue also forms a rich legacy for future
space- and ground-based missions/surveys. The overall
scheme of the T’DA operations is depicted in Fig. 1, and
includes the data processing and classification pipeline
itself as well as the ways our data products are made
available to the community. The steps of the light curves
extraction and their optimal corrections for systematic
effects are described in detail in Handberg et al. (2021)
and Lund et al. (in prep.), respectively.

This paper is the next in a series of the T’DA papers
and concerns the automated stellar variability classifica-
tion. This component within the T’DA pipeline struc-
ture is highlighted by the red dashed box in Fig. 1, while
the classification scheme itself is depicted in Fig. 2. It
comprises two major steps: (i) “top-level classification”
that is based solely on the information encoded in the
light curves themselves; and (ii) “second-level classifica-
tion” that involves using extra information, such as Gaia
parallaxes, photometric colours, etc. This latter classi-
fication step also involves using unsupervised methods
for variability classification that help us identify poten-
tial misclassifications and to search for new (sub-)groups
of variable stars within our predefined general variabil-
ity classes, and will be the subject of a separate future
study. The final result is a variability catalog of the
whole sky down to a magnitude of 15, containing all the
tens of millions of stars observed by TESS. The creation
of this large catalog is only possible thanks to the efforts
of the entire T'DA team contributing to the pipeline de-
velopment.

Automated variability classification based on light
curves (and frequency spectra) resulted from large-scale
surveys such as the Hipparcos mission®, Optical Grav-

3 https://www.cosmos.esa.int /web /hipparcos
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Figure 1. The overall structure of the full T’DA pipeline, with modules given as rectangular boxes, data products as ellipses,
and “TASOC” and “MAST” indicate the databases hosting the data products. Dashed lines between modules indicate that an
iteration might take place. The part enclosed by the red dashed line indicates the pipeline component described in this paper.
The “photometry” part of the pipeline is described in Handberg et al. (2021), while the “correction” is detailed in Lund et al.

(in prep.).

itational Lensing Experiment (OGLE?®), All Sky Au-
tomated Survey (ASAS®), Sloan Digital Sky Survey
(SDSSY), etc. The classifications varied in scale from
general ones, e.g. Wyrzykowski & Belokurov (2008;
OGLE), Pojmanski (2002; ASAS), Ball et al. (2006;
SDSS) and Eyer & Grenon (1998; Hipparcos), to those
focused on specific types of stars, e.g. Aerts et al. (1998)
and Waelkens et al. (1998) from Hipparcos. Deboss-
cher et al. (2007), Sarro et al. (2009), and Debosscher
et al. (2011) presented an automated classification of
light curves of variable stars in a supervised manner,
employing Gaussian Mixtures and Bayesian Networks
to classify OGLE, CoRoT, and Kepler Quarter 1 (Q1)
data. Richards et al. (2011) also used a feature-based
approach in combination with a Random Forest to clas-
sify variable stars in the OGLE and Hipparcos datasets.
More recently, Kim & Bailer-Jones (2016) and Arm-
strong et al. (2016) respectively used a Random Forest,
and Self-Organizing Maps (SOM) in combination with

4 http://ogle.astrouw.edu.pl/
5 http://www.astrouw.edu.pl/asas/
6 https://www.sdss.org

a Random Forest, to perform classification of variable
stars in the ASAS, MACHO (MAssive Compact Halo
Objects), LINEAR (Lincoln Near-Earth Asteroid Re-
search), and K2 (Campgains 0-4) surveys. Naul et al.
(2018) took a hybrid approach and reverted to auto-
mated feature learning by means of an unsupervised au-
toencoder in order to capture the stellar variability, and
then subsequently used the latent layer as input into a
Random Forest. Jamal & Bloom (2020) extended this
approach by making a comprehensive analysis of neural
architectures suited for light curve classification. Unsu-
pervised light curve classification is much less prevalent
in the literature with a few application examples being
by Eyer & Blake (2005), Valenzuela & Pichara (2018)
and Modak et al. (2018). Other notable large-scale vari-
ability studies include the work by Gaia Collaboration
et al. (2016, 2019) for the Gaia mission.

Here, we present a method for the supervised classi-
fication of light curves into broad variability classes as
depicted by the blue boxes in Fig. 2 (“top-level classi-
fication”). We discuss the feature engineering and the
collection of the training set, including a detailed de-
scription of each variability class, in Sections 2 and 3,
respectively. Our individual classifiers are described in
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Figure 2. Graphical representation of the TASC classification scheme that encompasses two major stages: “Level 17 is the most
general, largely light curve based classification, while “Level 2” stands for a detailed classification based on external features,
such as parallaxes, colours, effective temperatures, etc. Rather than only relying on supervised learning, we also make use of

unsupervised learning algorithms in Level 2.

Section 4 while their testing and validation is presented
in Section 5. The individual classifiers form the basis
for the metaclassifier that is tested and validated in Sec-
tion 6 and is ultimately applied to the truncated 27.4-
d segment Kepler Q9 data to mimick the single sector
TESS case (Section 7). We close the paper with the dis-
cussion, conclusions, and an outline of future prospects
in Section 8.

2. CLASSIFICATION FEATURES

The optimally extracted and corrected light curves
are subject to parameterization; a step that is often re-
ferred to as feature engineering. The T’DA classification
pipeline provides the means for an automated feature
extraction that is tuned to the needs of the individual
classification algorithms (cf. Sect. 4). Two main types

of features are extracted and used in the process: (i)
Fourier-based features and (ii) time-domain features.

2.1. Fourier-based features

An efficient way of extracting periodic signals from a
time series of data is to take its Fourier transform. We
employ the Lomb-Scargle periodogram method (Lomb
1976; Scargle 1982) to represent input light curves
in the Fourier domain and perform classical iterative
prewhitening (see e.g., Roberts et al. 1987; Brown et al.
1991; Kjeldsen et al. 1995; Montgomery & Odonoghue
1999; Degroote et al. 2009; Antoci et al. 2019) to extract
individual frequencies with their corresponding ampli-
tudes and phases. In this process, stellar flux is repre-
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Table 1. Overview of classification features employed by the individual algorithms.

Algorithm/Feature SLOSH RFGC SORTING-HAT GBGC | Notes
PDS X Power density spectrum.
fi, J ffa) X X Frequencies and their harmonics.
Aij Amplitudes.
ﬁ—ﬁ, ‘:—ﬁ X Amplitude ratios.
dij X Phases.
¢i1 — P11,1 = 2,3 X Phase differences.
FliPer (Fp)(b) Mean power in a given frequency range
F,07,7,20,50 X 0.7, 7, 20, 50uHz onwards.
SOM._loc X Location on the trained self-organizing maps.
¢_p2p-98 X Point-to-point difference, 981, percentile,
p2p-98 X ¢ refers to the phase-folded light curve.
¢_p2p_-mean X Mean of the point-to-point difference,
p2p_mean X ¢ refers to the phase-folded light curve.
¢_range X Range of phase-folded light curve.
Dy X Number of zero-crossings in a light curve.
p? X Coherency parameter.
ngd) X Variability index.
skewness(®) b X Light curve skewness.
MAD(® x x Median absolute deviation.
Res® X Range of the cumulative sum of the fluxes.
o2 X Variance.
swe) X Shapiro-Wilk test for normality.
kurt®™ X Kurtosis.
varrat® X Variance ratio.
SH X Number of significant harmonics of f;.
FR X Flux ratio.
h(zx) X Differential entropy.
MSE Multiscale entropy
MSE avg,std,max,pow X mean, standard deviation, max and power.

@) € [1,6] and j € [1,10]; the number of frequencies and harmonics used is algorithm-dependent
(®) F,, t, = PDS[f — fmax] — Pn, where P,, is the photon noise computed by considering the averaged power at high frequencies (Bugnet

et al. 2018).

(©) skewness is defined by skew = 32, where m, =
M2

% >0 (xzi —Z)" is the ry, moment about the mean

(@ variability index 7. is computed as ratio of the mean square of successive differences to the variance of the data points

(©) MAD = median(| X ; — median(Xp)|), where X stands for the whole time series while the subscript 4 refers to a single data point in
the time series X

® cumulative sum of the fluxes is defined by S; = Si_1 + (z: — T),4 € [1, N], where T is the mean flux

® SW — TPy aseiy)?

S @D
for a detailed description)

M) kurtosis is defined by kurt = Z—% — 3, where m, = % > (zi —Z)" is the ry, moment about the mean T

where x(;) are the ordered fluxes, T the mean flux and a; the generated constants (see Shapiro & Wilk (1965)

J
i=1

O varrat = (02,51 — 02ines)/O2nit, Where 02,05 = A?, A the amplitude and j the number of harmonics
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sented as
X(t)=C+ > (ai;sin (27 f;jt) + by cos (27 fijt)) .
i=1 j=1

(1)
with C representing the mean value of flux, n and m
are the number of extracted frequencies f; and their har-
monic terms, and a;; and b;; are the Fourier coefficients.
The coefficients are converted into time-translation in-
variant frequency amplitude (A4;;) and phases (¢;;) (see
e.g., Bracewell 1986; Aerts et al. 2010).

Iterative prewhitening assumes obtaining and sub-
tracting the optimal fit for the frequency f; and its
m harmonic terms from the flux X (¢), and repeating
the procedure until n frequencies are extracted from the
data. The total number of extracted frequencies varies
between individual time series and is determined by a
significance criterion. This criterion can be based on an
amplitude signal-to-noise or on a threshold calculated
in the Fourier domain, as in e.g. Pépics et al. (2012).
Such an approach prevents the extraction of spurious
frequencies which are the residual signal from the pre-
ceding prewhitening steps. We refer the reader to Van
Reeth et al. (2015a) and Antoci et al. (2019) for a de-
tailed discussion on the method. The obtained set of fre-
quencies, amplitudes, and phases form a basis for calcu-
lation of the Fourier-based classification features whose
overview is provided in Table 1. In Fig. 3 we show as
an example the ability of Fourier attributes f; and fs to
separate the different classes. It is clear from this that
the dSct/bCep class is the most well separated, followed
by the gDor/SPB class. The latter does have a small
but non-neglegible overlap with contactEB/spots stars.
In general we see a good structure in the distribution,
but it is far from perfect. In order to obtain good clas-
sifications they are therefore complemented with other
Fourier and non-Fourier attributes.

The Fourier-based feature selection assumes periodic
signals as a good representation of the light curve. This
is however not particularly suitable for stars that exhibit
either stochastic variability or no variability within the
detection limit of an instrument. For that reason, some
of our individual algorithms work with image-like fea-
tures where the power density spectrum (PDS) is repre-
sented as an image. The PDS is the dominant frequency
analysis method for stochastically excited oscillations
(Hekker & Christensen-Dalsgaard 2017; Garcia & Ballot
2019). The multiclass solar-like oscillation shape hunter
algorithm (multiSLOSH, see Sect. 4.1 for details) there-
fore performs image recognition on the PDS of variable
stars.

2.2. Time-domain features

« aperiodic
constant .

« contactEB/spots |
102{ - dSct/bCep ]
- transit/eclipse
gDor/spB
RRLyr/Ceph
solar

10t

loglf(uHzZ)]

aemqge o
.
2
o,

10°

10T 100 10 102
loglfi(uHz)]

Figure 3. Scatter plot of the full training set for log(f1)
and log(f2) colored per variability class in our classification
scheme as defined in Table 2.

Other classification features are extracted directly
from the time series and are statistical measures of the
distribution of data points in the time series. Some of
those are well-known, general statistics features (e.g.,
skewness and variance). Below we provide a short de-
scription of features that are less intuitive and hence
require a certain level of insight. All time-domain fea-
tures are listed in Table 1 with the reference to classifiers
that use them.

The zero-crossings parameter is computed from the
“clipped” time series Zj ; defined as

1 fX,;>0
Ty = " (2)
0 if Xp,; <0,

where X}, ; stands for the input time series comprising
N data points and with a mean of zero, and k for the
k*™® order difference (see next paragraph). The number
of zero-crossings Dy, is then computed directly from the
“clipped” time-series and is given by

N
Dy = Z (Zii — Zri1)”. (3)
i—2

We normalize the number of zero-crossings to the to-
tal number of points N in the light curve to account
for a possibly different length of the time series for the
individual targets. Setting k& = 0 gives the number of
zero-crossings in the original light curve while £ > 0
refers to the number of zero-crossings in the time series
of higher-order differences. The kth order differences is
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defined by
Xii = Xp—1i — Xp—1,i-1- (4)

For example, the 15 order differences X ; is given by the
point-to-point differences in the original time series X,
the 27 order differences X, is given by the point-to-
point differences in the time series X, and so on (Kus-
zlewicz et al. 2020; Kedem & Slud 1981; Kedem & Slud
1982; Bae et al. 1996).

The coherency parameter ¥2 is a measure of the coher-
ence (or stochasticity) of the signal in a time series and
is computed from the zero-crossings of the higher-order
differences in the time series. It is given by

5

2
pr=y Beo ) 6

k=0 2

where Ay gives the rate of change (i.e. in-
crements) of the number of zero-crossings in the
time series of higher-order differences and ¢, =
(0.167,0.066,0.038,0.025,0.018) are the increments
computed from simulated time series of white noise
(Kuszlewicz et al. 2020).

The flux ratio is the ratio of the sum of squared residu-
als of the fluxes either brighter or fainter than the mean
flux (Kim & Bailer-Jones 2016) and is meant to capture
eclipse-like variability. It is defined as

R N L7 ©)
7 > =iz —T)?
where T is the mean flux of the light curve and z; and
x; the fluxes respectively brighter or fainter than the
mean flux. For sinusoidal light curves the ratio is close
to unity, while for light curves with eclipses the steep
flux gradients cause it to be larger than unity.

The differential entropy is an extension of the Shannon
Entropy (Shannon 1948) into the continuous domain. It
is a measure of the average uncertainty of a variable,
and thus a quantification of its unpredictability. The
Shannon entropy H (z) of a discrete random variable x
is defined as

n
H(z) = = p(x:)logp(x;) = —Eflogp(x,)],  (7)
i=1
where F is the expected value.

We use the differential entropy because, although the
light curves are not continuous, they can typically take
on a large range of values, causing the number of dis-
crete states to equal the number of samples. This could
distort the calculation in the discrete case, so we there-
fore opted to use the differential entropy. As an alter-
native we could have opted to use a binned version of

the Shannon entropy. The differential entropy h(x) of a
continuous random variable x is defined as

W) = — / () log (p(2) ) de. (8)

where p(z) is the density function.

The entropy h(z) can be calculated for a light curve
or power density spectrum, where in the latter case it
essentially becomes the spectral entropy. Although both
are strongly correlated, they complement each other
in specific areas. The calculations of h(x) are done
with the Python-based Non-parametric Entropy Esti-
mation Toolbox (NPEET)7, which uses the Kozachenko-
Leonenko estimate (Kozachenko & Leonenko 1987) to
calculate the differential entropy as defined in Kraskov
et al. (2004).

The sample entropy (Richman & Moorman 2000) is a
different type of entropy metric that evaluates the com-
plexity of a time series. The Sample entropy Sg of a
signal is defined as

A_ . Sy
Sg(m,N,r) lnB In Zﬁ;mn?"‘l 9)
where m is the number of consecutive data points or the
embedding dimension, r the tolerance, N the number of
data points and n; the number of vectors close to a basis
vector, i.e. dlu™,ul"] <r.

In practice we calculate the sample entropy by first
identifying all unique sequences consisting of m consec-
utive data points, where each data point is written as
x; +r, with r a tolerance margin usually set to a factor
of 0.15 of the time series standard deviation. We then
count how many times a sequence or template vector of
length m occurs and subsequently extend the template
vector to length m 4+ 1 and count how many times that
occurs. The calculations are repeated for each of the
next m and m + 1 template vector to determine the ra-
tio between the total number of m and m+1 component
templates, A and B respectively in Eq. (9). The sample
entropy is the natural logarithm of this ratio and rep-
resents the probability that a sequence matching each
other for the first m data points also match for the next
m + 1 data points.

The Multiscale entropy (MSE; Costa et al. 2005) takes
advantage of the fact that stellar variability is active
on multiple time scales. Rather than calculating one
entropy metric for the full series, we calculate the en-
tropy at each time scale, allowing us to capture the full
complexity. More specifically, we first coarse-grain the

7 https://github.com/gregversteeg/NPEET
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Figure 4. Examples of the Multiscale Entropy (MSE) curves for 10 random samples per variability class in our classification

scheme as defined in Table 2.

signal and then calculate the sample entropy for each
of these new signals. This allows the MSE to assign
minimum values to both deterministic/predictable sig-
nals and random/unpredictable signals. Given a time
series x1,...T;,...TN, the coarse-graining is achieved by
dividing the time-series into non-overlapping windows
of length 7. Each element z; in this new time series is
then calculated as

1 & N
af== > om, 1<j<—,
T i=(j—1)7+1 T

(10)

where 7 is the window length, N the time series length
and j the index after coarse-graining.

For 7 = 1, the time series {7} is simply the original
series. For each coarse-grained time series we then cal-
culate the sample entropy given by Eq. (9) and plot it
as a factor of the scale. The different types of complex-
ity will then be represented by different types of MSE
curves. In general we can say that 1) if for most val-
ues of 7 the entropy is higher for one signal than for
another, that signal is considered more complex, and 2)
that a monotonic decrease of the entropy curve indicates
that the signal only contains information on the short-
est time scale. This monotonic decrease is exactly what
we notice in the case of uncorrelated random signals (i.e.

white noise in constant stars), as they only contain infor-
mation on the shortest time scale, while in other signals
information is often present across multiple time scales.

In order to obtain consistent Sample Entropy values
it is suggested to have 200 data points per window at
the minimum (Busa & van Emmerik 2016). Given that
the shortest light curves observed by the TESS nominal
mission will have a time span of ~27.4 days, consist-
ing of slightly over 1300 data points, we set Ty, = 10.
This means that for the majority of the coarse-grained
time series we have more than 200 data points, where at
the smallest window length, i.e. when the scaling fac-
tor reaches 10, we have around 130 data points, which
is still acceptable in terms of stability. We also did ex-
periments with 7,4, = 20, and those provided good
results as well. Fig. 4 shows the MSE curves for ten
random samples per variability class. The figure illus-
trates the MSE’s separating capacity, in particular for
constant stars, solar-like oscillators and gDor/SPB stars.
Due to complexity associated with implementation of
the full curves, we parametrize MSE through its max-
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Table 2. Description of the training set.

Class label Type Size
aperiodic (Sect. 3.1) Aperiodic stars 830
contactEB/spots (Sect. 3.2) Contact  binaries 2260

and rotational
variables

6 Sct and B Cep 772
stars

dSct/bCep (Sect. 3.3)

transit/eclipse (Sect. 3.4)
gDor/SPB (Sect. 3.5)

Eclipsing binaries 974
v Doradus and SPB 630

stars
RRLyr/Ceph (Sect. 3.6) RR Lyraes and 62
Cepheids
solar (Sect. 3.7) Solar-like pulsators 1800
constant (Sect. 3.8) Constant stars 1000

imum, mean, standard deviation and power®, and use
these as classification features.

Lastly, the random forest general classification algo-
rithm (RFGC, see Sect. 4.2 for details) employs the loca-
tion of a star on the self-organising map (SOM; Kohonen
1990) as one of the features in its classification scheme.
The SOM location is obtained by comparing light curve
shapes after folding them on the dominant extracted pe-
riod, essentially grouping similar shapes into clusters.

3. VARIABILITY CLASSES & TRAINING SET

The scientific needs of the TESS Asteroseismic Con-
sortium drive the selection of the main variability classes
(schematically represented in Fig. 2) and hence our se-
lection of the training set. Below we provide a short
description of each of the variability classes listed in Ta-
ble 2 alongside the selection criteria that were used to
select stars into the respective classes. We made sure to,
where possible, maintain a balanced distribution across
the different classes, while still incorporating more stars
for those classes for which larger known samples exist.
For all but one (constant, see below for details) vari-
ability classes, we make use of the latest Kepler data
release 257 (Thompson et al. 2016), specifically the first
27.4 days of the Q9 PDCSAP data. Our choice of the
27.4 days total time base is dictated by the length of the
majority of TESS data — two full orbits of the satellite
around the Earth. The choice of the total length of the
light curve and building the training set from white-
light space-based Kepler photometric data enables a

8 MSEpower =1

T 2
T i=1 SE

9 https://archive.stsci.edu/missions-and-data,/kepler /documents/

data-release-notes

smooth knowledge and methodology transition to the
TESS data afterwards. The choice for Q9 was made
because it has the least gaps of all Kepler quarters.

3.1. Aperiodic variables

Aperiodic variability (aperiodic) is a class introduced
to account for targets whose variability (for one reason
or another) appears to be lacking periodicity over time
scales shorter than 27.4 days. For example, these can
be Mira long-period variables whose variability remains
unresolved on the time scale of 27.4 days as only a small
fraction of the variability cycle is being captured. Simi-
larly, a fraction of rotational variables may also appear
as aperiodic stars due to their rotation periods being
much longer than the length of the data set.

Our selection of aperiodic variables is based on the
catalog of long-period variables compiled by Yu et al.
(2020). The selection consists of 830 objects with Kepler
Q9 data and having periods longer than 13.7 days so
that less than two variability cycles are covered on the
time scale of 27.4 days. An example of the light curve
and amplitude spectrum of a Kepler aperiodic variable
is shown in Fig. 5 (first row).

3.2. Contact binaries & rotational variables

Contact  binaries and  rotational  variables
(contactEB/spots) is a combined class of i) contact
binary systems, and i) objects whose light curves show
signatures characteristic of surface inhomogeneities
modulated by stellar rotation over time. Contact bi-
naries are short-period gravitationally bound systems
of two stars that both fill their Roche-lobes, and are
therefore in contact at the Lagrangian point L;. An
example of a rotational variable is that of chemically
peculiar B, A, F-spectral type stars that show anomalies
in their surface chemical composition often associated
with a non-uniform distribution of chemical elements.
These surface inhomogeneities of either enhanced or
depleted abundances of certain chemical elements are
often termed “spots” as they appear to a distant ob-
server as darker/brighter regions with respect to the
bulk of the star due to significantly modified local opac-
ities (Preston 1974).

The term “surface spots” in application to B, A, F-
spectral type stars with radiative envelopes should not
be confused with surface spots observed in cooler stars
that have extended convective envelopes, e.g. in the
Sun. In the latter case, these are regions of reduced
surface temperature associated with the contribution of
a magnetic field to the total pressure, reducing the gas
pressure. Solar-type spots are typically short-lived and
vary in their appearance on the time-scales ranging from
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Figure 5. Examples of the light curves (left column) and the respective amplitude spectra (right column) from the training
set as defined in Table 2. The inset in the amplitude spectrum panel (where provided) shows a zoom-in into the low-frequency
domain of 0 to 3d™*. Note the different scale on the Y-axis.
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a day to a few months (McQuillan et al. 2014; Garcia
et al. 2014; Santos et al. 2019). Depending on the level
of stellar magnetic activity, such “temperature spots”
can be covering up to a few percent of the stellar sur-
face, hence notably modulating the light curves of the
respective stars (e.g. Namekata et al. 2019). Because
many spots with varying temperature gradients and sur-
face areas can be formed at the same time, light curves
of cool active stars are typically much more complex
than those of B, A, F-spectral type chemically peculiar
stars whose “chemical abundance spots” are long-lived
(i.e. timescales ranging from years to decades; Mathys
et al. 2020).

Our selection of rotational variables of cool stars is
based on the catalog by McQuillan et al. (2014). The
catalog contains rotation periods measured for over
30000 Kepler main-sequence stars and selected to have
KIC(Tesr)< 6500 K. In order to make sure at least two
rotation cycles are covered with the 27.4 days data, we
restricted our selection to systems whose rotation pe-
riods are shorter than 13.7 days. A total of 907 ob-
jects all having Kepler Q9 light curves were selected
this way. The training set was enriched with rota-
tional variables of hotter stars, i.e. with stars hav-
ing KIC(T,g)> 6500 K. For this, we used the catalogs
by Nielsen et al. (2013) and Hiimmerich et al. (2018)
which were cross-matched with the lists of dSct/bCep
and gDor/SPB variables (see below) to check for and
remove possible duplicates. Furthermore, we excluded
stars that do not have Kepler Q9 data and/or whose ro-
tational modulation signal is nowhere near the dominant
signal in the light curve/amplitude spectrum. A total of
656 objects passed the above selection criteria and were
added to the list of 907 cool rotational variables. An
example of the light curve and amplitude spectrum of a
rotational variable is shown in Fig. 5 (second row).

By analogy with the transit/eclipse class (see below),
we queried the Kepler Eclipsing Binary Catalog for stars
that have Kepler Q9 data and whose light curve mor-
phology parameter is larger than 0.6 (high probabil-
ity contact systems according to Matijevic et al. 2012),
given that their light curve morphologies look similar
to rotational variables. All 1054 systems selected that
way were subject to visual inspection to remove mis-
classified stars of semi-detached type, resulting in the
final selection of 697 contact binaries. Altogether, the
contactEB /spots class comprises 2 260 objects, of which
70% are rotational variables.

3.3. & Scuti & 5 Cephei stars

dSct and S Cep (dSct/bCep) stars are two classes of
variables pulsating in radial and low-order non-radial

pressure (p) and gravity (g) modes which are mostly ex-
cited by means of the x mechanism acting on the zone
of partial ionization of helium (¢ Sct stars) and of iron-
group elements (5 Cep stars, Aerts et al. 2010). The in-
stability regions of the § Sct and 8 Cep stars (partially)
overlap in the HR diagram with those of v Dor and SPB
stars (see below), respectively, giving rise to hybrid pul-
sators that exhibit both low-order p modes and high-
order g modes simultaneously. S Cep stars have masses
between 8 and 25 Mg and the periods of their pulsa-
tions range from about 2 to 8 hours, although none were
observed by the Kepler mission (Bowman 2020). Less
massive 0 Sct stars cover the mass range from 1.5 to 2.5
Mg and have periods from some 15 minutes to about
8 hours (Aerts et al. 2010), hence a significant overlap
with S Cep stars in terms of pulsation periods.

It is difficult to distinguish between § Sct and g Cep
stars solely based on their light curve information.
Hence, we introduce a joint class of coherent p-mode
(0 Sct/ 8 Cep) pulsators in our classification scheme. Our
selection of the training set for this class is based on the
0 Sct catalog compiled by Bowman et al. (2016). All
983 objects from that catalog were cross-matched with
the catalogs we used to select g-mode pulsators (see be-
low) to search for and remove possible duplicates. Light
curves of the remainder of stars were subject to a vi-
sual inspection in order to exclude objects with pro-
nounced signatures of rotational modulation as well as
stars whose dominant pulsation signal was found to be
in the g-mode regime (those hybrid pulsators were in-
cluded in the class of g-mode pulsators; see below). Ulti-
mately, we selected 772 objects into the class of p-mode
pulsators, among those are stars showing p-modes only
and hybrid pulsators whose dominant signal is in the p-
mode frequency domain. An example of the light curve
and amplitude spectrum of a Kepler ¢ Sct p-mode pul-
sator is shown in Fig. 5 (third row).

3.4. Eclipsing binaries and transit events

Eclipsing/Transiting (transit/eclipse) systems are a
class of objects that show extrinsic variability in the
form of periodic transits/eclipses. The latter occur due
to a partial or total obscuration of the stellar disk by
the companion that can be of either stellar (eclipses) or
a planetary (transit) mass. We do not make a distinc-
tion between transits and eclipses, neither do we intend
to distinguish between binary/multiple stellar systems
with different Roche geometries (e.g., detached or semi-
detached configurations, etc.). Instead, we introduce a
general class of eclipsing/transiting objects in our classi-
fication scheme which is also likely to contain members
whose stellar components are intrinsically variable stars.
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Many of eclipsing and transiting systems have been dis-
covered in the Kepler space-photometry in recent years,
with a variety of orbital and stellar /planetary configura-
tions. The most up-to-date overview of the detections in
the Kepler field can be obtained from the Kepler Eclips-
ing Binary Catalog'® and from the NASA Exoplanet
Archive'!.

Our selection of the training set for the transit/eclipse
class is based on the latest release of the Kepler Eclips-
ing Binary Catalog (Prsa et al. 2011; Slawson et al. 2011;
Kirk et al. 2016; Abdul-Masih et al. 2016). We started
by selecting all systems with the morphology param-
eter smaller than 0.6 which allows us to filter out con-
tact binaries while keeping the majority of detached and
semi-detached systems (Matijevic et al. 2012). The light
curves of all those 1679 objects were subject to a visual
inspection in order to remove i) systems whose eclipses
are hidden in the noise or any other astrophysical signal
and are not traceable in the time domain without ag-
gressive cleaning of the light curve; and 2) (long-period)
systems that do not show a single eclipse event in the
first 27.4 days segment of their Kepler Q9 light curve.
Our final training set for the class comprises 974 objects;
an example of the light curve and amplitude spectrum
of a Kepler eclipsing binary is shown in Fig. 5 (fourth
row).

3.5. v Doradus & Slowly Pulsating B stars

vDor and Slowly Pulsating B (SPB) stars
(gDor/SPB) are members of a class of high non-radial
order g-mode pulsators whose oscillations are excited
by means of the flux blocking mechanism at the base
of their convective envelope (yDor stars; Guzik et al.
2000) and by means of the x mechanism operating
on the zone of partial ionization of iron-group elements
(SPB stars; Aerts et al. 2010). Although « Dor and SPB
stars occupy different locations in the HR diagram rep-
resenting F- (mass range between some 1.2 and 2.0 Mg)
and B- (with masses from some 3 to 9 M) type stars,
respectively, their light curves are remarkably similar.
The light curves of v Dor and SPB stars are shaped by
an ensemble of g-mode pulsations whose periods range
from ~0.2 to ~3 days.

Our selection of g-mode pulsators is based on several
intermediate- to large-scale studies of F- and B-type
stars in the Kepler field. The sample of lower mass
~Dor stars was adopted from Tkachenko et al. (2013);
Van Reeth et al. (2015a,b, 2016); Li et al. (2020), mak-
ing sure to cross-match between the catalogs to exclude

10 http:/ /keplerebs.villanova.edu

I https:/ /exoplanetarchive.ipac.caltech.edu

possible duplicates. In addition, the catalog of §Sct
stars compiled by Bowman et al. (2016) was used to
complement pure g-mode pulsators with stars that show
both g- and p-modes simultaneously, the so-called hy-
brid pulsators. We selected only those hybrid pulsators
from Bowman et al. (2016) whose dominant variability
was found in the g-mode frequency domain. Finally,
the training set of g-mode pulsators was enlarged with
SPB stars from Papics et al. (2017) and Pedersen et al.
(2020), providing us with a total of 694 stars, of which
630 objects have Kepler Q9 data. Because of the simi-
lar observational properties of their light curves, we do
not distinguish v Dor stars from their higher-mass SPB
counterparts and combine them into a joint class of g-
mode pulsators in our classification scheme. A typical
light curve and amplitude spectrum of a g-mode pulsator
is shown in Fig. 5 (fifth row).

3.6. RR Lyrae and Cepheid stars

Classical pulsators (RRLyr/Ceph class) are low- to
intermediate-mass evolved stars whose intrinsic pulsa-
tion variability is driven by the opacity (k) mechanism
acting on the partial ionisation zone of helium. The
majority of these stars pulsate in a single dominant ra-
dial mode and have characteristic non-sinusoidal light
curves. However, a small fraction of these objects show
two or even three radial modes with comparable ampli-
tudes. Variability of RR Lyrae stars occurs at periods
shorter than 1 day, while Cepheids cover a much larger
period range, from half a day to several months.

About 50 RR Lyrae stars were identified in the Ke-
pler field during the mission (Szabé 2018). In Q9, 42 of
those were observed: 34 fundamental-mode and 8 first-
overtone pulsators. No double-mode RR Lyrae stars
have been targeted in the field, and only two Cepheids
have been confirmed: a classical Cepheid, V1154 Cyg,
and a medium-period, type II Cepheid, DF Cyg (Szabé
et al. 2011; Derekas et al. 2017; Kiss & Bdédi 2017; Vega
et al. 2017; Plachy et al. 2018; Manick et al. 2019). From
the list of 44 RR Lyrae stars and Cepheids, we excluded
one object whose 27.4 days segment of the Kepler light
curve and Fourier transform do not display any signif-
icant signal. To increase the training sample, we col-
lected 19 further Cepheids from K2 observations, and
created artificial light curves for them. We extrapolated
the Fourier decomposition of the light curves to the Q9
time stamps and added appropriately scaled white noise
to the data. Together, the 19 simulated Cepheid-type
light curves and 43 Kepler Q9 RR Lyrae/Cepheid light
curves provide us with a total of 62 objects in the fi-
nal training set for the class. We do not differentiate
between RR Lyrae stars and Cepheids in our classifica-
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tion scheme, but consider them as being members of the
joint class of classical radial pulsators. Fig. 5 (sixth row)
shows an example of a Kepler light curve of a RR Lyrae
star along with its amplitude spectrum.

3.7. Solar-like pulsators

Solar-like pulsators (solar class) are intrinsically vari-
able stars showing oscillations driven by turbulent con-
vective motions near their surfaces. Any star with an
outer convective zone is expected to show such stochasti-
cally excited oscillations. Indeed, following the detection
of solar-like oscillations in a number of main-sequence
and evolved stars from ground-based data, space-based
photometry with the Hubble Space Telescope (HST),
WIRE, MOST, SMEI, and in particular CoRoT and
Kepler, revealed a treasure of pulsational variability in
stars with outer convective regions and enabled extraor-
dinary probes of their interiors and improvement of the
respective models (see Hekker & Christensen-Dalsgaard
2017 for a review). Stochastically driven solar-like oscil-
lations are well characterized with two global asteroseis-
mic quantities, namely the frequency of maximum power
Vmax and the large frequency separation Av, which were
shown by Kjeldsen & Bedding (1995) to scale with mass,
radius, and effective temperature of the star. We do not
provide an estimate of the global asteroseismic param-
eters of solar-like pulsators in our classification scheme,
hence no differentiation is made between different evo-
lutionary stages of stars.

Our selection of a sample of solar-like pulsators for
the training set is based on the latest release of the
APOKASC Catalog (Pinsonneault et al. 2018). A to-
tal of 1800 objects were selected in a random way but
making sure each of the targets had a Q9 Kepler light
curve and oscillations detected with the CAN pipeline
(Kallinger 2019). That being said, our selection of solar-
like pulsators for the training set is biased towards red-
giant stars with very few main-sequence stars. The ma-
jority of those will have a high signal-to-noise ratio de-
tection. An example of the light curve and amplitude
spectrum of a solar-like pulsator is shown in Fig. 5 (sev-
enth row).

3.8. Constant stars

Constant stars (constant) are a class of objects that
do not show any statistically significant variability on
the time scale of 27.4 days. We made a random selec-
tion of 1000 objects from the TESS Input Catalog!?
(Stassun et al. 2019) and simulated their light curves
with pure white noise on the 27.4 days Kepler time

12 https:/ /tess.mit.edu/science/tess-input-catalogue/

stamps. The noise level was calculated by adding shot,
read, zodiacal and a TESS instrumental baseline noise
of 60ppm/vhour in quadrature, using the magnitude,
effective temperature and galactic coordinates of each
object. An example of the light curve and amplitude
spectrum is shown in Fig. 5 (last row).

4. METHODS - INDIVIDUAL CLASSIFIERS

We first train four individual classifiers each using dif-
ferent feature sets and learning algorithms. In the next
step we then combine these different classifiers using
stacked generalization by means of a metaclassifier. The
benefit of using this stacked ensemble of classifiers is that
we can leverage the individual strengths and weaknesses
of each classifier to come to the optimal combination of
classifiers and obtain a better predictive performance
compared to using just one single classifier.

We constructed the classification framework in a mod-
ular way, meaning that the different classifiers can use
the same functionality without requiring the use of
duplication. We have done this by creating a gen-
eral BaseClassifier class that implements all common
functionalities between the different classifiers. The dif-
ferent classifiers then inherit all methods and proper-
ties and can define new specific functionalities them-
selves. This modular set-up makes our framework very
flexible and easily allows for additional classifiers to
be added later on. As in the other modules of the
TASOC pipeline, we make use of Message Passing In-
terface (MPI) to parallelize our computations. During
runtime, all features are also cached in a local SQLite
database. In the following subsections we discuss each
individual classifier.

4.1. Multiclass Solar-Like Oscillation Shape Hunter
(multiSLOSH)

The multiSLOSH classifier uses image recognition via
deep learning to visually determine the presence of the
desired signal on a 2D plot of the power density of a star.
This is the multiclass generalization of the method de-
scribed by Hon et al. (2018), where now we classify other
types of variability at once instead of only solar-like os-
cillations. To summarize, a 128128 binary image of a
star’s power density spectrum in log-log space is used
as input into a 2D deep learning network. The log-log
representation of the power density spectrum is used be-
cause stars with different types of variability distinctly
show different frequency-power profiles in log-log power
density spectra. For example, in the case of a solar-like
oscillator, one can see the convective granulation back-
ground and the Gaussian-like power excess containing
the oscillation modes.
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While the original method has shown to be effective
in classifying red giants observed in long-cadence during
any amount of time as obtained by TESS (Hon et al.
2018), SLOSH can be very easily generalized towards
stars only observed in short-cadence, for example, main
sequence, dwarf or subgiant stars. This can be done
by modifying the training set that the networks use to
learn. To allow for the detection of signals in main se-
quence or subgiant stars, the plotting range in the 2D
image has to be modified. The range in frequency, frange,
and power density, Prange, for the different evolutionary
states are defined by the following:

3,283]  for LC

frange (UHZ) =
[40,4160] for SC

(11)
3 x [101,107]  for LC

Prange(pme/f"HZ_l) =
1 x [1071,105] for SC
where respectively LC and SC stand for Kepler long-
and short-cadence data. These ranges are defined in pHz
(where one cycle per day (d=!) amounts to 11.57 uHz)
given that this frequency unit is commonly used in the
solar-like community.

The original deep learning implementation from Hon
et al. (2018) saved generated plots to image files to be
read in later. In this work, we implemented a new
method to directly create 128128 binary array repre-
sentations of the power density spectra without using
a plotting library or input/output to disk. We define
128 even bins in log-log space between the bounds indi-
cated in Eq. 11 that represent image pixels. The default
pixel values are one, except for bins that the plotted
power spectrum passes through, which take the value
of zero. Compared to the original approach, the im-
age arrays that we now generate are computed faster,
maintain higher data fidelity, and are better suited for
parallel processing.

4.2. Random Forest General Classification (RFGC)

The RFGC uses a hybrid self-organising-map (SOM;
Kohonen 1990; Brett et al. 2004) and Random Forest
(Breiman 2001) classifier, as previously demonstrated on
data from the K2 satellite (Armstrong et al. 2015, 2016).
A full methodological description is provided in Arm-
strong et al. (2016). While the underlying methodology
is the same, the features used here have been updated
to better account for the new datasets and variability
classes considered.

Light curves are initially phase folded, using 64 equal
width bins, on the dominant frequency as extracted in

Section 2.1. We also test each light curve using half the
dominant frequency, and if the resulting phase-folded
light curve shows significantly reduced dispersion, the
half-frequency is used. This test ensures the correct
value is picked for the orbital frequency of an eclipsing
binary, where the presence of primary and secondary
eclipses often results in the dominant frequency being
double the true binary orbital frequency.

The training set of phase-folded light curves is then
used to train a SOM with shape (1,400) using 300 train-
ing iterations and a learning rate of 0.1. Training a
SOM involves creating a set of template ‘pixels’” which
steadily approach similarity to underlying shapes in the
input data. In the end the pixels contain representa-
tions of various common and uncommon shapes seen in
the training set. The index of the closest matching pixel
to a test input is then a powerful feature for parameter-
izing the phase-folded light curve shape.

The actual classification is performed by a Random
Forest, implemented through scikit-learn (Pedregosa
et al. 2011). The 22 features used are listed in Table 1,
including the SOM location described above. We set
the parameters of the Random Forest by optimising the
out-of-bag score. This led to a Random Forest with
1000 component decision trees, considering a maximum
of three features at each node split, with a minimum
of two samples required to split an internal node and a
maximum tree depth of 15. We use the Gini impurity
to measure the quality of a split and in this way select
the best splits at the decision tree nodes (Breiman et al.
1984).

4.3. Supervised randOm foRest variabiliTy classIfier
using high-resolution pHotometry Attributes in
TESS data (SORTING-HAT)

The SORTING-HAT is a Random Forest classifier
with an architecture similar to RFGC. It does not use
a SOM, but relies on a set of 13 carefully constructed
features in the entropy, Fourier and time domain, as de-
scribed in Table 1. The use of entropy metrics allows it
to differentiate light curves based on their unpredictabil-
ity and complexity.

The set of hyperparameters is the same as in RFGC,
but was independently confirmed by optimising the
weighted F} score'® in an initial version of the classi-
fier, through a general randomized grid search followed
by a narrow but complete grid search. This led to a
Random Forest with 1000 decision trees, a maximum
tree depth of 15, a minimum of two samples required to

13 _ Precision x Recall
Fr=2x Precision+Recall
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split an internal node and the usage of the Gini impurity
measure.

4.4. Gradient Boosting General Classification
(GBGC)

Similar to the RFGC discussed in section 4.2, GBGC
is a tree-based ensemble method whose trees were con-
structed with Gradient Boosted Machines (Friedman
2001). In contrast to RFGC, the GBGC is an adap-
tive method of constructing a model where the classifier
aims to correct previous trees in the ensemble by assign-
ing higher weights to the incorrectly predicted samples.
The efficiency and generalisation abilities of the GBGC
classifier were established using a sample of labelled
light curves from the OGLE catalog of variable stars in
the LMC (Udalski et al. 2008, 2015) and from the Ke-
pler/K2 missions by Kgoadi et al. (2019). Eight hyper-
parameters were adjusted to improve the performance of
the classifier. In addition to the number of trees in the
ensemble (n_estimators) and the optimal depth of the
trees (max_depth), the fraction of samples in the train-
ing set (subsample) and features (colsample_bytree)
during training were also tuned. To ensure convergence
was reached in a timely manner, the learning rate of
the gradient descent (learning_rate) was tuned once
the n_estimators were determined. Adjustment of the
hyperparameters was done to prevent over-fitting and
to reduce running time complexities. Optimal hyperpa-
rameters were established using a grid search with 10-
fold cross validation. This resulted in 500 estimators, a
maximum tree depth of 6, a training sample ratio of 0.8,
a feature sample ratio of 0.7, and a learning rate of 0.1.

The finalized GBGC classifier was trained on the set of
features indicated in Table 1. These were selected using
Recursive Feature Elimination with Cross-Validation
supplemented by Correlation Based Feature Selection
as introduced in Kgoadi et al. (2019). This is a two step
feature selection process where recursive feature elim-
ination with cross-validation (Granitto et al. 2006) is
applied to select features that best describe light curves
and can be mapped to the star classes. To reduce re-
dundancy, the Pearson correlation coefficients were used
to remove correlated features from the selected subset
through the Correlation Based Feature Selection pro-
cess (Hall 1999), in which a correlation threshold of 0.65
was applied to remove features. In order to accommo-
date the class imbalance in our training set, feature se-
lection was done with stratified cross-validation. The
GBGC classifier was constructed using XGBoost (Chen
& Guestrin 2016) as the base estimator of the model.

5. TESTING AND VALIDATION OF THE
INDIVIDUAL CLASSIFIERS

Table 3. Accuracy of each classifier on the training data us-
ing 5-fold cross validation and on the holdout set (see Fig. 2
for a graphical explanation of the classifier training and test-
ing procedure). For the Training set (5-fold CV) case we
report the mean of the accuracy over each of the five differ-
ent tested folds. The uncertainty here is equal to standard
deviation.

. Accuracy
Classifier
Training set (5-fold CV) Holdout set

multiSLOSH 92.39 4 0.89% 91.48%
RFGC 93.41 +0.27% 92.56%
SORTING-HAT 93.79 4 0.26% 93.70%
GBGC 93.79 4+ 0.26% 91.36%
Meta, 94.90%

The individual classifiers are tested and validated in
two different ways to ensure that they are not overfitting
the training data. For a given training set, we hold out
20% of the data from the start for testing both individual
classifiers and the metaclassifier (see Section 6). We
partition the remaining 80% of data into five folds or
splits of equal size, making sure to include a balanced
proportion of all variability classes in each fold. We
train on four of these folds and validate on the fifth
fold to report one iteration of the performance for all
individual classifiers. We repeat this process four more
times, but using different folds to train and validate; we
are thus cross-validating the individual classifiers over
the training set.

Cross-validation is the first approach we use to val-
idate the performance of each classifier. The variance
of each classifier over the different folds should be rela-
tively low if they are not overfitting the training set. In
Table 3 we report the mean of the accuracy over the five
cross-validation folds and report the uncertainty as the
standard deviation. The mean scatter of ~ 0.5% over
the cross-validation is due to the small size of some of
the classes and the initial training set (0.5% corresponds
to ~ 8 stars).

All of the classifiers perform well on the training set,
with SORTING-HAT performing best. As we shall see
in Section 6, we are not concerned with a single classifier
performing better than all the others but more so with
the classifiers being uncorrelated with one another. It
is important that the individual classifiers have different
strengths and each perform best on different parts of the
training set if we are to leverage this information in a
meta-classification stage.

The second way we validate the individual classifiers
is on the 20% initial hold out set that was not used in
the previous training and cross-validation step. Whilst
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validating the classifiers over cross-validation folds gives
a good grasp of how well the classifiers generalize to
unseen data, testing the classifiers on a holdout set gives
an idea of pure performance and accuracy. We report
the accuracy of each classifier in the third column of
Table 3.

Overall the holdout set accuracy of the set of clas-
sifiers is comparable to their mean accuracy over the
cross-validation folds, as for most classifiers the holdout
set accuracy lies almost within one standard deviation
of the mean cross-validation accuracy. For REGC alone,
we notice that the holdout set accuracy is about 0.6 per-
cent lower than the lower uncertainty bound. In abso-
lute numbers, however, this is still very small and only
represents +10 out of the 1666 stars in the holdout set.
Given that the accuracies on both sets are so similar,
we can safely assume that the individual classifiers are
fitting the data well and are not overfitting significantly.

We use SHAP (SHapley Additive exPlanations; Lund-
berg & Lee 2017; Lundberg et al. 2020), a unified ap-
proach that connects game theory with local explana-
tions to explain the output of a machine learning model,
to compute the feature importance scores. The fea-
ture importance plots for SORTING-HAT, RFGC and
GBGC are shown in Appendix A including a more de-
tailed explanation. For RFGC we find that the zero-
crossing parameter and point-to-point differences are the
most important features, while for SORTING-HAT it is
clear that the multiscale entropy (MSE) together with
the first fundamental frequency and skewness are the
most important attributes in the classification process.
Lastly, for GBGC the variability index is by far the most
important. We do not plot the feature importance scores
for multiSLOSH given that it is a neural network classi-
fier that does not rely on a set of predefined features, but
rather learns a set of weights that define the importance
of each region in the power density spectrum image.

6. THE METACLASSIFIER

Each of the individual classifiers described in Section 4
predicts the class probability scores for each light curve.
We combine the predictions from this ensemble of clas-
sifiers using stacked generalization (Wolpert 1992), in
which we turn to a metaclassifier that takes the prob-
abilities outputted by the individual classifiers as its
features to produce overall class probabilities for each
light curve. This metaclassifier accounts for the rela-
tive strengths of the individual strong classifiers in the
ensemble (see Schapire 1990 for a description of strong
versus weak).

6.1. Training the Metaclassifier

A
~— -
| training data |ho|dout |}—
| kfolds

| train | train | train | train |va|. l|
B — —
S S T U I TR R
£ 12LOSHy  RFGC 1y Har_ 13 SRCE! -
| I S S d— :
5 + o

[fold 1] | | .. [fold k]| i

—— —

SORTING
SLOSH| | RFGC | [PHaT | | GBGC

S S S

META

'

Classifications

Figure 6. Graphical representation of the classifier training
and testing procedure. 80% of the data set is split into k
stratified folds for cross-validation, where k = 5. Class prob-
abilities for data in each fold are predicted by the supervised
individual classifiers trained on the other k — 1 folds. The
training class probabilities from each individual classifier are
used to train the metaclassifier. The individual classifiers
used to characterize the unseen data are trained on all of
the training data. The success of the overall classification
is tested by classifying the holdout data with the individual
classifiers, and then by using their predictions as input into
the metaclassifier.

The stacked nature of our overall classification scheme
could lead to overfitting and poor generalization to the
unseen TESS data if the classifier is not trained carefully.
Our approach to training the metaclassifier and individ-
ual classifiers together closely follows Algorithm 19.7 in
Aggarwal (2014). We represent our application of this
training algorithm graphically in Figure 6.4

As explained in Section 5, for a given training set, we
take 20% of the data from the start as a holdout set to
test the trained ensemble of individual classifiers. We
split the remaining data set into k& folds and produce
class probabilities for each by cross validation. We pre-
dict the class probabilities for each fold using the classi-

M Tnspired by the illustration at http://rasbt.github.io/mlxtend/

user_guide/classifier /StackingCV Classifier/
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Figure 7. Normalized confusion matrix of the metaclassifier for the holdout set in percentages. Each element shows the fraction
of stars that were predicted as positive for a particular class (column) over the total number of stars that truly belong to that
class (row). The diagonal shows the fraction of stars that the classifier correctly predicted as positive for that class (i.e. the

recall rate = TPT;%,
fiers that are trained on the other k—1 folds. We assume
that the performance of the classifiers trained across
k folds approximates the performance of the models
trained on all of the training data. The cross-validated
class probabilities from each of the individual classifiers
on the training data are the inputs used to train the
metaclassifier. The performance of the metaclassifier is
finally tested on the holdout data by using the holdout
set class probabilities predicted by the individual classi-
fiers trained on the training data (indicated in blue on
Fig. 6) as input.

The algorithm we use for the metaclassifier is a Ran-
dom Forest with a similar architecture to RFGC (see
Section 4.2), but with the number of estimators and
maximum tree depth constrained to respectively 100 and
7, to avoid overfitting. This is chosen over a simpler
scheme such as majority /soft voting because we want to
leverage the potential correlations between classes. The
meta classifier, like the individual classifiers, predicts
the class probabilities per star. We note that the class

where TP is the number of True Positives and F'N the number of False Negatives).

probabilities predicted by the metaclassifier are well cal-
ibrated, but not perfect. It might thus be better to in-
terpret them as a ranked confidence score rather than
in a purely probabilistic fashion. If the metaclassifier
assigns a confidence of 0.8 to 100 predictions, we should
not expect that exactly 80 of those are correct. How-
ever, if we have a star with a confidence of 0.3 and a star
with a confidence of 0.7, we can safely assume that the
second one has a much higher probability of belonging
to the class than the first one.

6.2. Metaclassifier Testing and Validation

The metaclassifier obtains an accuracy of 94.90%, a
substantial improvement over any single individual clas-
sifier. However, given that there are class imbalances in
our training set the overall accuracy only provides a lim-
ited amount of information. We therefore also look at
the confusion matrix as this gives a more detailed view
on the metaclassifier’s performance per class. The con-
fusion matrix for the metaclassifier is shown in Fig. 7.
The classification rates (or recall scores) per class range
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from 90% for the v Dor/SPB class to a near perfect score
for the constant class. A detailed look reveals that the
lower score for v Dor/SPB is mostly caused by confusion
with the 6 Sct/8 Cep and contactEB/spots class. Our
visual analysis shows that the former can be explained
by the presence of hybrid pulsators in the training sam-
ple, while the latter is caused by v Dor/SPBs containing
either some rotational signal or low frequencies that re-
semble those of contactEB/spots. We also notice some
confusion between the aperiodic and contactEB/spots
classes. This is mostly caused by the fact that both
classes can mimic each other on the short time scale of
27.4 days. Lastly, there is a fraction of solar-like os-
cillators being predicted as aperiodic variables, where
we find that they all have low vy, values, hence their
light curve and power spectrum properties are similar
to those of aperiodic stars. The high percentage for
RRLyr/Ceph misclassifications is due to the small class
size and in absolute numbers only concerns one star.

In Fig 8 we show the feature importance plot for the
metaclassifier, which allows us to analyze the contribu-
tion of each individual classifier towards the final pre-
diction. The hatched regions indicate the most im-
portant feature for a specific class here. This reveals
that the multiSLOSH _solar probability is the most im-
portant feature in the classification of solar-like oscil-
lators, followed by SORTING-HAT. This could be ex-
pected given that SLOSH was initially designed to clas-
sify this type of star and in the case of SORTING-HAT
the entropy features allow it to capture the stochas-
tic nature of the signal. The same order holds for the
gDor/SPB class. GBGC is most the important classifer
in classifying transit/eclipse signals while it is REGC for
the aperiodic, RRLyr/Ceph, constant and dSct/bCep
classes. SORTING-HAT is the primary classifier for con-
tactEB/spots stars. It is interesting, however, that in
the contactEB/spots class, SORTING-HAT is followed
by the multiSLOSH probability of being a solar-like star.
By plotting the SHAP values of every feature for every
star, specifically for the solar class, we analyze the im-
pact of each feature on the model output (i.e. the prob-
ability of being classified as solar). This reveals that a
high multiSLOSH _solar probability lowers the predicted
probability of being a contactEB/spots star and vice-
versa. The feature importance plot in Fig. 8 clearly
shows that the metaclassifier’s strength is in combining
the different individual classifier results.

We also assess performance by looking at the receiver-
operator characteristic (ROC) curves. The ROC curves
illustrate the diagnostic ability of a classifier by plotting
the True Positive Rate (TPR) against the False Positive
Rate (FPR) for different classification thresholds. This
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Figure 8. Metaclassifier feature importance from SHAP.
The hatched regions indicate the most important feature per
class.

allows us to assess the performance of the classifier at
each threshold. We calculate the ROC curves for each
class using a one-vs-rest methodology (Fawcett 2006).
The ROC curves per class are shown in Fig. 9. Ideally,
the ROC curve should be as close to the top left cor-
ner (0,1) as possible, because for this threshold on the
curve the classifier is making a high number of correct
classifications with a small amount of false positives.
Final class labels are commonly assigned to the class
with the highest probability, which is equivalent to using
a probability threshold of 1/C, where C' is the number
of classes. In case more than one of the predicted class
probabilities of a star exceeds its respective threshold,
the star is assigned to the class with the highest proba-
bility. When dealing with class imbalance, however, this
1/C approach often does not lead to the optimal results
(Provost 2000). We therefore opt to fine-tune the classi-
fication threshold by choosing for each class the thresh-
old that maximizes the TPR and minimizes the FPR,
which is the point on the ROC curve that is closest to
the top left corner. This point can be determined by
finding the threshold that maximizes Youden’s J statis-
tic (Youden 1950), which is the difference between the
TPR and FPR. Given that we have one ROC curve per
class, this implies that we also have a different thresh-
old for each, reflecting the classifier’s differing ability in
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Figure 9. Receiver-Operator Characteristic (ROC) curves
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ROC (AUROC) curve is indicated next to the classes in the
legend and the dots represent the TPR and FPR for the
chosen probability thresholds. The dashed line indicates the
‘random chance’ curve.

Table 4. Classification thresholds per class.
Class label Probability threshold

aperiodic 0.211
constant 0.593
contactEB/spots 0.262
dSct/bCep 0.049
transit/eclipse 0.157
gDor/SPB 0.135
RRLyr/Ceph 0.101
solar 0.296

identifying the class members of each variability class.
The obtained thresholds per class are given in Table 4.

As an aggregate performance measure across all prob-
ability thresholds used in the ROC curve, we can mea-
sure the Area Under the ROC curve (AUROC). The
AUROC represents the probability that the classifier as-
signs a higher probability to a random positive example
than to a random negative example. It is thus a mea-
sure of how well the classifier predicts the correct class.
Given that we are working with a one-vs-rest method-
ology, it means that the respective ROC class is the
positive class and that the other classes belong to the
negative class. The confusion between the gDor/SPB
and contactEB/spots class causes their AUROC values
to be slightly lower compared to the other classes.

7. VALIDATION ON FULL KEPLER Q9 DATA SET

Table 5. Kepler Q9 classification summary: number of stars
per class for each thresholding method.

Class label # stars per threshold type

1/C Youden’s J

aperiodic 3711 3711
constant 5061 0
contactEB/spots 140566 139059
dSct/bCep 1758 1758
transit/eclipse 1563 1563
gDor/SPB 2263 2263
RRLyr/Ceph 96 96
solar 12225 12185
unknown 6608

We validate our classification scheme by applying it
to all 167243 stars observed in Kepler Q9, but with
their light curves cut to the first 27.4 days. We start
with the default methodology as described in the pre-
vious sections, then test the effect of linear detrending,
and ultimately assess the advantage of introducing an
instrumental class. For each of those additional scenar-
ios, we assess both the results on the holdout set and on
the Kepler Q9 data set. The assessment is achieved by
the summary statistics of both data sets and by visually
inspecting random sub-samples of 1000 light curves in
each class for the Kepler Q9 classification results.!®

7.1. The default scenario

The results obtained by applying our framework to
Kepler Q9 data are summarized in Table 5. The left
column lists the numbers for the label assignments be-
ing made according to the highest probability, while
the right column gives those according to the optimized
probability thresholds. Overall, we see that all predicted
classes, apart from contactEB/spots, have classification
rates similar to those in the confusion matrix in Fig. 7.
The high number of stars in the contactEB/spots class
can be explained by the fact that light curves that are
not assigned to any of the other classes, for example with
a dominant instrumental signal in the low-frequency do-
main, end up in this bin. A careful visual inspection of
the light curves and amplitude spectra of 1000 random
sub-samples in each class strengthens the above conclu-
sion; below we present a concise summary of our visual
analysis.

The aperiodic variables are identified robustly by our
methodology with an overall low number of misclassi-
fications. After inspecting 1000 light curves randomly

15 Before taking the random sample we first removed the stars that

were included in the training set.
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Figure 10. Examples of the misclassified Kepler Q9 light curves. Left and right columns show the light curves and the
amplitude spectra, respectively. Note the different scale on the Y-axis of the plots.

selected from the respective class, we confirm that some The contactEB/spots class suffers the most from mis-
97% of the light curves indeed exhibit aperiodic type classifications and partially resembles properties of mis-
variability as demonstrated in the first row in Fig. 5. cellaneous classes often employed by other light curve
The most common misclassifications (about 3% in total) classification methods (e.g., Debosscher et al. 2011).
belong to the contactEB/spots class and are the light Fig. 11 (orange line) shows the probability density func-
curves resembling rotational modulation and/or binary tion for the contactEB/spots class. We immediately no-
ellipsoidal signals, in many cases with the coverage of a tice an excess of objects in the low probability regime
single rotation/orbital period. The median probability (p(x) < 0.55) as well as a double-peak feature at high
value for misclassifications is found to be p(x) = 0.50. probabilities (p(z) 2 0.65). Owing to this distribu-
The worst-case scenario misclassification light curve is tion, we divide the contactEB/spots class into three
shown in Fig. 10 (first row) where likely a close eclips- probability bins and visually inspect 500 randomly se-

ing binary got (mis)classified as an aperiodic variable. lected light curves in each of them: i) p(x) < 0.65, i%)
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Figure 10. Continued

0.65 < p(x) < 0.75, and 4i) p(z) > 0.75. We find that
the lowest probability bin (p(z) < 0.65) contains some
97% misclassifications. Among those the dominant frac-
tion (about 90%) are light curves that exhibit some sort
of instrumental signal (see the second row in Fig. 10).
This can be either truly instrumental in origin or due to
inferior data processing. The intermediate-probability
bin that is associated with the first peak in the kernel-
density plot (0.65 < p(x) < 0.75, Fig. 11) is also found
to be rich in misclassifications (overall about 92%). Yet,
the major difference with the low-probability regime is
that the fraction of light curves that exhibit pure instru-
mental signal is significantly lower, at around 55%. In
the rest of the light curves, the instrumental and the true
astrophysical signals are found to co-exist, as illustrated
in the third row in Fig. 10. In this particular example,
a weak astrophysical aperiodic signal (on the time scale
of 27.4 days) co-exists with low-frequency signal due to
inferior data processing. Lastly, the highest probability

bin associated with the tallest peak in the probability
density function (p(x) > 0.75, Fig. 11) contains 16%
misclassifications that are pure instrumental in origin.
About 34% show both instrumental and astrophysical
signals. We note that the latter are not necessarily mis-
classifications, it is just that we visually identify the
instrumental signal as being the dominant one in the
respective light curves (the fourth row in Fig. 10). Fi-
nally, we note that pure astrophysical misclassifications
are dominated by aperiodic variables and is at the level
of some 17%. Many of those seemingly aperiodic signals
might in fact be rotational variables with periods longer
than 13.7 days and therefore spanning less than half of
the rotation cycle. Hence they are visually classified as
aperiodic stars. That said, we recommend a probability
threshold of p(x) 2 0.75 for the high-confidence selection
of contactEB/spots variables for this class (an example
is shown in the second row in Fig. 5). This threshold de-
viates from the one calculated using Youden’s J statistic
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the original (i.e. from the default set-up) contactEB/spots
class, against the complete original contactEB/spots class,
with class assignments based on Youden’s J statistic (see
Sect. 6.2 for a description of Youden’s J). Stars from the
training set have been subtracted from both sets.

because our training set is largely free from any instru-
mental signal, while this type of signal is present in the
full Kepler Q9 data (we will elaborate on this point in
sect. 7.2), resulting in a suboptimal contactEB/spots
threshold. The results with probabilities p(x) < 0.75
should be taken with caution and one should keep in
mind that the number of genuine astrophysical signals
in this particular class drops substantially towards low
probability values.

The dSct/bCep variables are identified with high con-
fidence by our methodology, where the overall fraction
of misclassifications amounts to some 3.5%. The vast
majority of misclassifications are due to spurious fre-
quencies found in the high-frequency domain (the fifth
row in Fig. 10). We consider those frequencies as spu-
rious because exactly the same frequencies are found in
multiple objects indicating their non-astrophysical ori-
gin. At the same time, we did not find any indication
of these particular frequencies being instrumental in na-
ture as those are not listed as such the latest Kepler
Data Release Notes. The median probability value for
the misclassified light curves is p(z) ~ 0.45. A consid-
erable fraction of the identified § Sct stars also exhibit
low-frequency variability (either due to g-mode oscilla-
tions or rotational modulation), yet the high-frequency
component is significant in all the detections and is the
dominant one in the majority of them.

The transit/eclipse class is among the cleanest identi-
fied with our method, containing about 10% misclassifi-
cations overall. All misclassifications look alike and are

due to imperfections in the data processing mimicking
a flux drop in the light curve, most often at the begin-
ning/end of the dataset. A typical example of the tran-
sit/eclipse misclassification is shown in the sixth row in
Fig. 10. We also note that the type of light curve shown
in the fifth row in Fig. 10 has high chances of being mis-
classified as a transit/eclipse variable, in absence of the
high-frequency peak. We find the median probability
value for the misclassifications to be p(x) ~ 0.45.

The gDor/SPB class suffers from about 30% misclassi-
fications, either from astrophysical signal of different ori-
gin or from low-frequency signal due to imperfections of
data processing. The median probability value for mis-
classifications appears to be p(z) ~ 0.52 and the most
common astrophysical misclassifications are stars that
belong to the contactEB/spots class. We show a typi-
cal example of a misclassified light curve in the seventh
and eighth rows in Fig. 10. The Fourier transform of
the light curve reveals a rich variability spectrum at low
frequencies, possibly with a harmonic structure. Owing
to the frequency range of gravity-mode oscillations ob-
served in v Dor/SPB stars and to the short time span
of light curves that are being classified (see the fifth row
in Fig. 5), contactEB/spots class members are indeed
the primary candidates for an astrophysical misclassifi-
cation in the gDor/SPB class. We also note that the
particular example shown in the seventh row in Fig. 10
might not be the actual misclassification but is identi-
fied by us visually as such because of a short duration
of the respective light curve.

The RRLyr/Ceph class of classical pulsators is found
to be small (see Table 5) which is expected given the
location of the Kepler field. Misclassifications amount
to about 60%, are mostly astrophysical in origin, and
are dominated by contactEB/spots or transit/eclipse
class members. All three types of objects (includ-
ing RRLyr/Ceph) have their dominant signals in the
low-frequency domain and will often show a harmonic
structure. However, owing to the characteristic shapes
of their light curves (as shown in the sixth row of
Fig. 5), RRLyr/Ceph stars are usually readily distin-
guished from other classes of variable stars. Indeed,
only a small fraction of binaries and/or rotational vari-
ables with light curves that closely resemble those of the
RRLyr/Ceph class are expected to exist and hence get
misclassified to the class of classical pulsators. The high
relative number of binaries and rotational variables that
we find in this class is very likely the result of the con-
tactEB/spots and transit/eclipse classes being at least
two orders of magnitude larger than the RRLyr/Ceph
class itself, hence increasing the chance of misclassifica-
tion. An example of the light curve and amplitude spec-
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trum of an eclipsing binary misclassified as RRLyr/Ceph
is shown in the ninth row in Fig. 10.

The solar class is the second largest. The number
of misclassifications is found to be small in this class
(about 4%) and is mostly instrumental in origin. The
median probability value for misclassifications is found
to be p(z) ~ 0.55.

The unknown class contains objects that do not sat-
isfy the Youden’s J statistics-based thresholds per class
as listed in Table 4 (see Sect. 6.2 for a description).
By comparing the class sizes before and after apply-
ing the thresholds (see Table 5) we notice that the un-
known class comprises the entire class of constant stars
as well as a small fraction of the lowest probability ob-
jects from the contactEB/spots class. The constant class
gets marked as unkown due to the fact that the calcu-
lated probability threshold of 0.593 is very high. This
happens because the classifier achieves a near perfect
classification rate for the constant class (see Fig. 7) and
is thus very confident in classifying stars as such. There-
fore, during testing, stars are either predicted not belong
to the constant class at all (i.e. p(z) ~ 0) or they are
confidently classified as constant. In the latter case, the
lowest probability (which is still high in absolute terms)
of a star that is being classified as constant is set as
the threshold (due to the mathematical calculation). In
reality, however, it appears that there are no stars as
distinctly constant as in our training set. This makes
sense given that this class is simulated in the training
set while existence of constant stars is not assured. 99%
of objects found in the unknown class do not show any
significant astrophysical signal, with two typical exam-
ples being shown in the two bottom rows (10 and 11) in
Fig. 10.

7.2. Additional classification set-ups

We also test the effect of automatically removing a lin-
ear trend from all Kepler 27.4 days light curves prior to
computing the Fourier- and time-domain features. The
results on the holdout set and Kepler Q9 show no per-
formance gain over the default set-up, hence we stick
to using the original light curves. We do not test de-
trending with higher degree polynomials because this
can have undesirable effects on the classification as i)
the original light curves may be significantly distorted,
and 1) the signal of long-period variables may be largely
filtered out during the process.

One of the key findings from running our default set-
up is that the contactEB/spots class is largely overpop-
ulated, with a clear tendency for a large number of mis-
classifications towards the low probability values by light
curves containing some sort of an instrumental signal.

We note that we use the term “instrumental signal” to
mark a signal that is either truly instrumental in origin
or is the result of sub-optimal detrending/correction of
the data. To overcome the above-mentioned drawback,
we opt to introduce an instrumental class with prop-
erties resembling those of light curves affected by the
instrumental trends and/or sub-optimal data process-
ing. We use a sub-sample of the contactEB/spots class
light curves whose probability values were found to be
of p(x) < 0.65 to manually select a training set for the
instrumental class based on the visual inspection of the
light curves. To preserve the balance with other vari-
ability classes in the training set a total of about 1100
light curves are selected.

The most notable differences after introducing the in-
strumental class are i) a considerable reduction of the
size of the contactEB/spots variability class by about
a factor 3.5, and ii) a much smaller size of the un-
known class. This happens because the originally low-
probability (lower than the respective thresholds re-
ported in Table 4) objects in the various classes are now
classified with high confidence as members of the newly
introduced instrumental class. Hence there are consid-
erably less candidates to feed the unknown class in the
latter.

Furthermore, we cross-match the newly obtained in-
strumental class with the original contactEB/spots class
and find about 70% of overlap. The probability density
plot for the cross-matched sample is shown in Fig. 11
(blue line) where the distribution is evidently skewed
towards low probabilities. Therefore, we conclude that
introducing an instrumental class does not necessarily
improve the overall performance of the method, instead
a considerable fraction of light curves that receive low
confidence values in their respective classes are moved
to the class of instrumental variables.

While not having clear advantages, the disadvantages
of introducing an instrumental class are that it is not
only instrument-dependent but that it is also extremely
sensitive to the way data from a given instrument are
being processed. Therefore, an instrumental class proves
impractical as it has to be re-designed each time the data
from a given instrument are being reprocessed and/or
the methodology is being applied to data from a different
instrument. A much more practical solution is the one
outlined and employed in Sect. 7.1, i.e. a recommended
probability-based threshold to separate high-confidence
detections of genuine contactEB/spots variables from
their low-confidence counterparts that are most likely
not astrophysical in origin.

7.3. Effects of photon noise
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The level of recognizable astrophysical signal in a light
curve is tightly related to the amount of photon noise
present in it, which depends on the stellar magnitude.
Given that we did not exert any particular influence on
the distribution of the magnitudes in the training set,
we test the sensitivity of the metaclassifier with respect
to increasing photon noise. As for the relation between
magnitude and noise level, we base ourselves on the 10th
percentile RMS CDPP (Combined Differential Photo-
metric Precision) measurements presented in the TESS
Data Release Notes: Sector 5, DR7. We multiply the
values by v/2 to account for the 30-min sampling.

For each class in the holdout set, we select the 20
stars with the highest probability and remove all stars
with Kepler magnitude < 15. We leave out the constant
stars given that they are simulated white noise already.
We then add noise to the sampled light curves in steps
of 0.5 magnitude, with the maximum number of steps
restricted to 8, which is equivalent to a magnitude 4 in-
crease. The added noise is Gaussian with mean zero and
standard deviation equal to 30-min CDPP value for the
desired magnitude. The new equivalent magnitude is
constrained to be brighter than 15.5. If this is reached
before the maximum number of allowed steps, no fur-
ther noise additions are done for the star. We choose
this constraint because the T'DA Photometry pipeline
(Handberg et al. 2021) will process TESS stars down to
magnitude 15.

Once we have calculated the new noisier light curves,
we classify those in each step with the metaclassifier and
analyze how the overall predictions change with added
photon noise. Fig. 15 shows how stars move between the
different classes when more noise is added to their light
curves. The relatively brightest stars are shown on the
left and relatively faintest on the right. The colors of the
streams indicate the true variability class, and the bars
indicate the predicted class. The height of the bars cor-
responds to the number of stars in that bin. The num-
ber of stars decreases from left to right because stars are
eliminated once their new equivalent magnitude exceeds
the 15.5 threshold. In Fig. 16 we show how the magni-
tudes evolve over the different steps. We start with 115
stars on the left and end up with 36 in the rightmost
bin.

We can see from Fig. 15 that when the noise level in-
creases (i) the majority of solar-like stars get classified
as constant (i7) a signficant fraction of contactEB/spots
star get classified as constant and (i4) most aperiodic
stars end up being classified as contactEB/spots. The
reason for (7) is physical in origin and results from the
fact that the added noise is much larger than the os-
cillations in the original light curve, causing the new

light curves to be dominated by white noise and get
classified as such. The solar class is also the most var-
ied one in terms of time scales and so the location of
the oscillations dictates to which bin a star moves into
when adding noise, causing some of them to be classi-
fied as other variability types as well. In a similar man-
ner, we can see that the contactEB/spots stars that get
classified as constant (i) are actually cool and spotted
stars in which the noise becomes larger than their oscil-
lations. Only the hot and chemically peculiar stars with
high amplitude variability that is stable on longer time
scales survive. The reason for (iii) can be attributed to a
training set bias and occurs because aperiodic and con-
tactEB/spots stars can mimic each other on 27.4 day
time scales, and because in our training set the con-
tactEB /spots class tends to be more noisy than its ape-
riodic counterpart, causing these stars to be classified as
such.

When we connect these findings to the magnitude dis-
tribution of our full training set (Fig. 17), we conclude
that one should be careful when interpreting the pre-
dicted probabilities of stars that do not lie within the
magnitude range of the training set. More specifically, a
decreasing magnitude for stars that are part of the solar,
contactEB/spots or aperiodic class corresponds to an
increasing uncertainty over their probabilities. Hence,
when interpreting the results, it is important to, in ad-
dition to the assigned probabilities, also look at the mag-
nitude of the target. If the magnitude is much fainter
than those of the training samples and it belongs to
one of these three classes, caution should be paid when
interpreting the results. For other classes, such as tran-
sit /eclipse, this effect is not present because the ampli-
tude of the signal is often much larger than the added
noise. It is thus important to note that a bright star,
even in the case of (7), (i7) and (iii), does not always
mean that there is a very clear signal while a faint stars
does not necessarily mean we have an indistinguishable
signal. It is the amplitude of the signal relative to the
noise that matters.

8. DISCUSSION AND CONCLUSIONS
8.1. Summary and Discussion

The TESS Data for Asteroseismology pipeline is de-
signed for a largely automated processing and high-level
interpretation of TESS space-based photometric data.
As depicted in Fig. 1, the first two modules of the
pipeline are designed for the extraction of light curves
from the TESS Full Frame Images (Handberg et al.
2021) and for their subsequent optimal correction for
systematic effects (Lund et al. in prep.). In this work,
we have designed a third module of the T'DA pipeline
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that performs an automated classification of the cor-
rected light curves according to their type of variability.
We combine four individual classifiers into a meta-
classifier using stacked generalization. Out of the four
individiual classifiers, RFGC (Armstrong et al. 2016,
Sect. 4.2) and SLOSH (Hon et al. 2018, Sect. 4.1)
have been previously published, while SORTING-HAT
(Sect. 4.3) and GBGC (Sect. 4.4) were additionally
developed to enhance the T’DA pipeline classification
module appreciably. We show that by stacking the pre-
dictions of this set of different individual classifiers we
obtain a substantial improvement over any single one,
because the metaclassifier is able to learn their relative
strengths. We are able accurately classify light curves
according to their general variability type, without rely-
ing on any extra information other than the light curves.
Although inspired by the amount of TESS data cur-
rently collected, our ultimate goal is to design an au-
tomated pipeline for the end-to-end processing of high-
cadence and duty-cycle space-based photometric data,
irrespective of whether these come from the retired
CoRoT and Kepler /K2 missions, currently operational
TESS mission, or future space-missions such as PLATO
(Rauer et al. 2014). Hence, in this work, we make use
of the Kepler mission legacy, both in terms of the avail-
able high precision, cadence, and duty-cycle data and
the published catalogs of variable stars, to train, vali-
date and test our classifiers. The training set is care-
fully built from the existing catalogs with a subsequent
vetting of light curves in all eight variability classes used
in our classification scheme. All individual classifiers as
well as the metaclassifier are trained on 80% of the com-
piled training set, while the remaining 20% are kept as a
hold-out set to test and validate the method. We obtain
an overall accuracy of 94.9% on the holdout set with
some small differences between the different classes.
We further apply the designed classification scheme
to the Kepler Q9 data set that has been truncated into
27.4 days light curves. In addition to testing our de-
fault classification set-up, we also test the effect of lin-
ear detrending and the introduction of an extra instru-
mental class to isolate light curves dominated by the
instrumental signal. We show that although the latter
allows for a significantly lower number of misclassifica-
tions of the sub-optimally processed light curves in some
of the classes, it has the disadvantage that the instru-
mental class has to be re-designed each time the method
is applied to the re-processed data from the same space-
mission and/or data obtained by another mission.
Given that we currently use 27.4 days light curves, one
of the expected and detected (astro)physical limitations
of our method are apparent misclassifications of objects

whose variability on a 27.4 days time scale does not nec-
essarily resemble their true origin. A common example
is non-resolved rotational variability in cool stars that
gives rise to an overdensity of low frequencies in the
Fourier transform of the light curve causing a confusion
with the class of g-mode pulsators and/or aperiodic vari-
ables. Another example is the flux drop in a light curve
due to sub-optimal data processing which mimics a sin-
gle transit/eclipse event in the time-domain and gives
rise to a misclassification as a transiting/eclipsing ob-
ject. Other than that, we find that the predicted classes
have classification scores similar to those in the confu-
sion matrix based on the hold-out validation set (see
Fig. 7).

Generalizing our framework to TESS will still require
adjustments because we are currently training our classi-
fiers on Kepler data. Not only does Kepler have a differ-
ent underlying distribution compared to TESS, possibly
requiring domain adaptation techniques, TESS also has
a worse photometric precision (and hence more noise),
more blending, and more systematics that we cannot
characterize very well yet. That said, there is no one-
to-one correlation between the results obtained based
on Kepler data in this work and the expectations for
TESS data. In order words, we cannot simply extrap-
olate the results of the performance of our classifiers to
TESS data prior to exploring domain adaptation, per-
forming initial classification of TESS dataset, and ulti-
mately (re)training based on the actual TESS data. We
note, however, that the performance will not necessarily
drop when transitioning to TESS data, it can also be as
high or higher than in this work.

We make both the methodology and the results of its
application to the Kepler Q9 27.4 days data using the
default set-up publicly available to the community. Our
training set, individual classifiers, and the metaclassifier
can be accessed through the dedicated GitHub reposi-
tory'® as well as through the TESS Asteroseismic Con-
sortium (TASOC) Wiki pages'”. The predicted class
probabilities and class labels for the Kepler Q9 27.4 days
are released in electronic format; a snippet of the class
probabilities table is shown in the Appendix (Table. 6).

8.2. Future prospects
With the machinery built, our immediate future

prospects include:

o Classification of all Kepler stars based on i) 1-year
data to mimic TESS Continuous Viewing Zone

16 https://github.com/tasoc/starclass
17 https:/ /tasoc.dk /tda/
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(CVZ) operations and enable direct comparison
with the results presented in this work; i) 2-year
data to mimic PLATO Long Pointing Field (LPF)
operations enabling an important set of tests for
the PLATO Consortium; and iii) 4-year data to
provide a full Kepler classification catalogue and
quantitatively assess performance of our method
on ultra-high precision data by cross-matching
with the existing Kepler catalogues. At this step,
we will consider using extra information, such as
photometric colours, Gaia parallaxes, etc., in order
to break the existing degeneracies within and be-
tween the individual variability classes. This par-
ticular step covers our intended “second-level clas-
sification” (as depicted in Fig. 2) where we aim to
distinguish between different evolutionary states
of solar-like pulsators (dwarfs vs. sub-giants, RGB
stars vs. red-clump stars), between sub-groups of
g- (v Dor vs. SPB variables) and p-mode (0 Sct
vs. (B Cep stars) pulsators, etc.

Inclusion of a learning algorithm capable of iden-
tifying transient phenomena, such as stellar flares,
Be star outbursts, etc. For this, we will consider
existing algorithms such as STELLA'® (Feinstein
et al. 2020) which will be adapted to the needs
of our metaclassifier similarly to the RFGC and
multiSLOSH methods.

Inclusion of an unsupervised learning algorithm to
help identify misclassifications and search for over-
densities in the feature space within the identified
supervised classification module variability classes.
This particular step is depicted in Fig. 2 as the
“unsupervised methods” box and will strengthen
our classification scheme by allowing for the detec-
tion of additional variability (sub)classes.

Inclusion of statistical features for an improved
classification of aperiodic autocorrelated signals.
For this, we will consider tests such as the Durbin-
Watson statistic for serial autocorrelation and the
Kullback-Leibler divergence to measure the dis-
parity against white noise.

Transition to TESS data that are processed with
the corresponding T’DA pipeline light curve ex-
traction and systematics correction modules. At
this step, we also envision an iteration between all
three modules of the T'DA pipeline, in particu-
lar to inform the light curve correction algorithms

18 https:/ /archive.stsci.edu/hlsp/stella

on the variability time-scales that should be pre-
served rather than removed for specific classes of
objects. In terms of the corresponding data re-
leases, we plan them jointly with the light curves
themselves on a per sector basis and will make our
results publicly available through the MAST and
TASOC databases. The accompanying TESS clas-
sification papers for the nominal missions are also
foreseen and will be based on the full year of TESS
data, i.e., per TESS observational hemisphere.

e Integration of the variability catalog into the
TASOC database search-interface!?. This inter-
face will allow for a quick and convenient search
of variable stars according to user-defined selec-
tion criteria. As concrete examples, one will be
able to opt for an all-sky search of & Sct variables
that have been identified with a user-defined con-
fidence with our classifiers, or stars classified with
probability in multiple classes (e.g. both ¢ Sct and
eclipsing binary).

e Inclusion of the full variability catalog on both
TASOC and MAST as an new high-level data
product.

19 https:/ /tasoc.dk
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APPENDIX

A. FEATURE IMPORTANCE PLOTS

The SHAP?! feature importance plots (see Sect 6.2
for an explanation) allow us to evaluate the importance
of the different attributes used by each classifier on a
per class basis. The hatched regions in the plots indi-
cate the most important feature per class. The plots
for RFGC, SORTING-HAT and GBGC are respectively
shown in Figs. 12, 13 and 14. Due to the fact that up-
dated features have been used in the training of RFGC,
the feature importances are different to those reported
in Armstrong et al. (2016).

For RFGC this reveals that the zero-crossings pa-
rameter is the most important for classifying con-
tactEB/spots and dSct/bCep stars. The point-to-point
differences are the primary features for solar-like oscil-
lators and aperiodic stars, while respectively the co-
herency parameter, first fundamental period, FliPer
value and the SOM are the most important for constant,
gDor/SPB, RRLyr/Ceph and transit/eclipse stars.

In the case of SORTING-HAT we notice that the mul-
tiscale Entropy is by far the most important, as it is
the primary feature for the contactEB/spots, aperiodic,
constant, solar and gDor/SPB classes. In addition to
that, the differential entropy is the primary feature for
RRLyr/Ceph stars. For transit/eclipse stars the skew-
ness is the most important followed by the flux ratio,
which is logical given that these types of stars tend to
have very skewed light curves. Lastly, for dSct/bCep
stars the first fundamental frequency is most important.

For GBGC the variability index is the primary feature
for constant, aperiodic and dSct/bCep stars. The range
of the cumulative sum of the fluxes of the phase-folded
light curve is the primary feature for solar-like oscillators
and contactEB/spots stars. The skewness, first funde-
mental period and Shapiro-Wilk test for normality of the
light curve are respectively the primary features for the
transit/eclipse, gDor/SPB and RRLyr/Ceph classes.

B. EFFECTS OF PHOTON NOISE
C. CLASS PROBABILITIES KEPLER Q9

21 https://github.com/slundberg/shap
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Figure 12. RFGC feature importances from SHAP. The
hatched regions indicate the most important feature per
class.
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Figure 15. Sankey plot indicative of how stars move between classes when more noise is added to their light curves. The
relatively brightest stars are shown on the left and relatively faintest on the right. The colors of the streams indicate the
true label of the stars therein, and the bar labels and colors are representative of the predicted class. The height of the bars
corresponds to the number of stars in that bin. The number of stars decreases from left to right because stars are eliminated
once their newly calculated magnitude exceeds 15.5. Each step corresponds to a noise increase representative of 0.5 magnitude.
Step 0 shows the original predictions by the metaclassifier.
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Figure 16. Violin plot illustrating the magnitude distribution at each step or bar of the Sankey plot in Fig. 15.
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