

1 **Effects of NO_2 aging on bismuth nanoparticles and bismuth-loaded silica xerogels for iodine capture**

2 Karthikeyan Baskaran^{a1}, Casey Elliott^{a1}, Muhammad Ali^a, Jeremy Moon^a, Jade Beland^a, Dave
3 Cohrs^a, Saehwa Chong^b, Brian J. Riley^b, Dev Chidambaram^{a,c}, Krista Carlson^{a,*}

4 ^aDepartment of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557,
5 USA

6 ^bPacific Northwest National Laboratory (PNNL), Richland, Washington 9932, USA

7 ^cNevada Institute for Sustainability, University of Nevada, Reno, Reno, Nevada, 89557-0388, USA

8 ¹Both authors contributed equally to this work.

9 *Corresponding author

10 **Abstract:**

11 The capture of long-lived radioactive iodine (^{129}I) from oxidizing off-gasses produced from
12 reprocessing used nuclear fuel is paramount to human health and environmental safety. Bismuth has been
13 investigated as a viable iodine getter but the phase stability of bismuth-based sorbents in an oxidizing
14 environment have not yet been researched. In the current work, bismuth nanoparticle-based sorbents, as
15 free particles (Bi-NPs) and embedded within silica xerogel monoliths made with a porogen (TEO-5), were
16 exposed to $\text{I}_{2(g)}$ before and after aging in 1 v/v% NO_2 at 150 °C. For unaged sorbents, BiI_3 was the dominant
17 phase after iodine capture with 8-30 mass% BiOI present due to native Bi_2O_3 on the surface of the unaged
18 nanoparticles. After 3 h of aging, 82 mass% of the Bi-NPs was converted to Bi_2O_3 with only a small amount
19 of iodine captured as BiOI (18 mass%). After aging TEO-5 for 3 h, iodine was captured as both BiI_3 (26%)
20 and BiOI (74%) and no Bi_2O_3 was detected.”. Additionally, bismuth lining the micrometer-scale pores in
21 the TEO-5 led to enhanced iodine capture. In a subsequent exposure of the sorbents to NO_2 (secondary
22 aging), all BiI_3 converted to BiOI . Thus, direct capture of iodine as BiOI is desired (over BiI_3) to minimize
23 loss of iodine after capture.

24 **Keywords:**

- 25 • Bismuth sorbents
- 26 • NO_2 aging
- 27 • Iodine capture
- 28 • Silica xerogel
- 29 • Bismuth oxyhalide

30 **1. Introduction**

31
32 Continuous growth in demands for energy has fueled the exploration, development, and
33 implementation of low-carbon energy sources [1]. As such, nuclear power contributes to over 20% of the

34 U.S. electricity demand and is among the top alternative energy sources to burning fossil fuels [2]. Nuclear
35 power is positioned to play a crucial role for the national grid decarbonization plans in the United States
36 [3]. To ensure continued utilization of current nuclear plants and next generation designs, the reprocessing
37 of used nuclear fuel (UNF) is being considered.

38 One reprocessing option is using the PUREX (plutonium uranium extraction) process, an aqueous
39 method to recover uranium and plutonium from UNF [4]. During the PUREX process, radioactive volatiles,
40 such as ^{3}H , ^{14}C , ^{85}K , and ^{129}I , are released into off-gas streams. As these radionuclides can have adverse
41 effects on the environment, their capture and management are paramount to the success of these nuclear
42 processes [5, 6]. Capturing ^{129}I before releasing the off-gas is of primary importance with respect to U.S.
43 regulations because of its mobility in the environment and long half-life of 15.7 million years [7]. Both
44 inorganic and organic iodine-bearing species can be released at multiple points during reprocessing [8].
45 The complexity of the off-gas streams, which can include variations in the form and concentration of iodine,
46 makes it challenging to find sorbents suitable for controlled and sustained capture. An example of one such
47 stream is the off-gas that is produced during an advanced tritium pretreatment (ATPT) process, employed
48 to reduce the release of tritium [9]. During this processes, the sheared fuel is exposed to ~75 vol% NO_2 gas
49 at elevated temperatures to release tritium contained within the fuel matrix [10]. A low concentration of
50 iodine is also released during this process [8]. A potential iodine sorbent for this off-gas stream would have
51 to capture dilute concentrations in highly oxidizing conditions.

52 Extensive efforts have been made to develop the ideal sorbent for operation in oxidizing off-gas
53 streams, which requires chemisorption to immobilize and/or retain the radioiodine as the loaded sorbent is
54 converted into a waste form [11-15]. To that end, the optimal iodine capture performance (i.e., loading
55 capacity of chemisorbed iodine under static and saturated conditions) of silver-exchanged mordenite [16-
56 21], and silver-functionalized xerogels [7] and aerogels [7, 22-25], have been extensively studied. These
57 silver-based sorbents have also been studied to understand and evaluate the change in iodine capture
58 performances in the sorbents “aged” with NO_x exposure. Decline in performance of silver-based sorbents
59 were seen as silver interacts with NO_x to form nitrosyl surface compounds. These nitrosyl compounds
60 compete for the iodine adsorption sites and reduce the capture capacity [20].

61 Alternatives to silver are being explored due to the reduction of performance of Ag-based sorbents
62 in the presence of NO_2 and because silver is an expensive metal whose disposition is controlled by the
63 United States Environmental Protection Agency [26, 27]. Bismuth-based sorbents, such as SBA-15 [28,
64 29], mordenite [30], functionalized carbon foam [31], functionalized metallic foam [32], carbon nanofiber
65 [33, 34], and graphene [35] have been explored because bismuth is far less expensive and does not have
66 disposal restrictions. Bismuth-based sorbents have shown great promise with reports of iodine trapping

67 capacities greater than commercial Ag-exchanged zeolites under the same experimental conditions (468
 68 mg g⁻¹ versus 305 mg g⁻¹ for Ag-faujasite) [26]. The primary compound formed when Bi reacts with I_{2(g)} is
 69 BiI₃. Bismuth embedded in mesoporous silica functionalized with thiol (-SH) groups was reported to have
 70 an even higher iodine loading capacity at up to 540 mg g⁻¹ [29]. In this case, Bi₂S₃ participated in the
 71 chemisorption of iodine to produce thermodynamically stable compounds even in the presence of O_{2(g)},
 72 and the formation of BiI₃ was more favorable than Bi₂O₃.

73 Thermodynamic modeling software (HSC chemistry) in Table 1 shows spontaneous formation of
 74 Bi₂O₃ and BiI₃, indicating the possibility for oxidation before or during iodine capture. However, bismuth
 75 was also thought to have potential for steady performance in the oxidizing atmospheres due to its ability to
 76 form bismuth oxyhalide compounds [17]. Together, Bi and Bi₂O₃ can capture I_{2(g)} by forming BiOI and
 77 Bi₅O₇I [29]. BiOI captured using Bi and Bi₂O₃ was found to be stable up to 350 °C, after which
 78 transformation to Bi₅O₇I is likely. As BiI₃ is highly susceptible to oxidation and moisture, understanding
 79 the performance of bismuth compounds in an oxidizing environment before and after iodine capture is
 80 necessary to improve the lifetime of these sorbents and for long-term iodine storage with both chemical and
 81 mechanical stability.

82 *Table 1. Reactions calculated using HSC*

HSC Reaction Equations			
Primary Aging Oxidation Reactions	ΔG(kJ,150°C)	Spontaneous	Eq #
$8Bi + 6NO_2(g) = 4Bi_2O_3 + 3N_2(g)$	-2163.19	Y	5
$2Bi + 3NO_2(g) = Bi_2O_3 + 3NO(g)$	-373.987	Y	6
Iodine Loading Reactions			
$Bi + 1.5 I_2(g) = BiI_3$	-150.356	Y	7
$Bi_2O_3 + Bi + 1.5 I_2 = 3BiOI$	-225.518	Y	8
$BiI_3 + Bi_2O_3 = 3BiOI$	-79.9939	Y	9
$0.5 Bi_2O_3 + 0.5 I_2(g) = BiOI + 0.25 O_2(g)$	-1.37654	Y/N	10
$2Bi + O_2(g) + I_2(g) = 2BiOI$	-455.19	Y	11
$Bi_2O_3 + 3I_2(g) = 2BiI_3 + 1.5O_2(g)$	151.7244	N	12
Secondary Aging Reactions			
$BiI_3 + 0.5 NO_2(g) = BiOI + I_2(g) + 0.25 N_2(g)$	-106.692	Y	13
$BiI_3 + NO_2(g) = BiOI + I_2(g) + NO(g)$	-51.0908	Y	14
$8BiOI + 2NO_2(g) = 4Bi_2O_3 + 4I_2(g) + N_2(g)$	-106.805	Y	15
$2BiOI + NO_2(g) = Bi_2O_3 + I_2(g) + NO(g)$	28.90307	N	16
$2Bi_2O_3 + 2NO_2(g) = 2Bi_2O_5 + N_2(g)$	-256.885	Y	17
$Bi_2O_3 + 2NO_2(g) = Bi_2O_5 + 2NO(g)$	-17.2381	Y	18
Comparable Reactions at 150°C			
$Ag + 0.5I_2(g) = AgI$	-69.0486	Y	19

83

84 Another challenge that has yet to be addressed with low-density, high specific surface area (SSA) sorbents
85 is how to form these materials into viable media that can be incorporated into an industrial facility. For
86 example, aerogels are often studied at the bench-scale using batch experiments or packed-bed systems [36-
87 40]. However, aerogels are low density, have low mechanical strength, tend to agglomerate, and are likely
88 to lead to non-uniform flow (i.e., channeling) at a larger scale and higher flow rates [41-43]. This behavior
89 would lead to unpredictable and lower-than-desired decontamination factors, as well as potential difficulties
90 with maintenance and materials handling [44, 45]. These issues could be eliminated by using highly
91 permeable membranes that minimize the pressure drop and sustain flow without channeling while
92 maintaining higher mechanical strength and integrity [44, 46]. Xerogels engineered to have
93 micrometer-sized pores are a type of high specific surface area material that could be used as
94 membranes [47]. Xerogels are produced by ambient pressure drying instead of critical point
95 (supercritical) drying as used in aerogel synthesis. Structural changes that occur during drying
96 typically result in xerogels that have enhanced strength but with fewer processing steps.

97

98 The goal of this study was to evaluate the $I_{2(g)}$ capture performance of bismuth nanoparticles, as
99 free particles (Bi-NPs) and embedded within silica xerogel monoliths, before and after aging in flowing 1
100 v/v% NO_2 (balance N_2) at 150 °C. This composition of NO_2 was chosen to be the first step towards
101 understanding the behavior of bismuth metal sorbents in a prototypical off-gas environment. Based on our
102 previous work, mechanically stable xerogel membranes were made with cost effective and environmentally
103 friendly soybean oil as porogen. The addition of soybean oil created hierarchical pore structure in the
104 xerogel membranes [47]. A secondary aging treatment was performed to understand the stability of the
105 bismuth-iodine phases. This information is important to understand the long-term stability of the sorbent
106 during storage or if the reprocessing plant is idling. Sorbents were characterized with field emission gun
107 scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction
108 (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform
109 infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS).

110 2. Experimental

111 2.1. Materials

112 TEOS (97%; CAS # 78-10-4) was acquired from TCI America. Heptane (99%; C_7H_{16} ; CAS #
113 142-82-5), deionized water (CAS # 7732-18-5), and absolute ethanol (C_2H_6O ; CAS # 64-17-5; 200 proof)

114 were acquired from Fisher Scientific. Ammonium fluoride (98%; NH₄F; CAS # 12125-01-8), and
115 ammonium hydroxide (reagent grade; NH₄OH; CAS # 1336-21-6) were acquired from Sigma Aldrich.
116 Bismuth nanoparticles (99.9%; < 100 nm) and bismuth oxide nanoparticles (99.9%; <200 nm) were
117 acquired from SkySpring Nanomaterials, Inc. Soybean oil was purchased from the local grocery store as
118 white label vegetable oil. Sylgard 184 silicone elastomer was obtained from DOW Chemical Company.
119 Helium gas and 1% nitrogen dioxide (NO₂) balance nitrogen (N₂) were obtained from Airgas. A granular
120 Ag-faujasite zeolite (AgX) (IONEX Ag400) was obtained from Molecular Products, Inc.

121 **2.2. Preparation of xerogels**

122 TEOS-based silica xerogels were prepared using the sol-gel method published in our previous work
123 [47] and compositions used for this work are described in table 2. In summary, to make a silica alcogel, 1.2
124 M TEOS was used as silica precursor and 7.2 M water (with 10.9 mM NH₄F and 0.131 M NH₄OH as a
125 catalyst) was used as hydrolysis solution. Both the precursor and hydrolysis solutions was prepared in
126 separate containers with 200 proof absolute ethanol as the solvent. Then, 100 μ L of soybean oil per mL of
127 sol-gel solution was added to the precursor solution as a porogen [47]. Six sets of xerogels were created
128 with 0 w/v %, 2 w/v % and 5 w/v % Bi to sol-gel solution with and without porogen. Xerogels made without
129 the porogen (soybean oil) were named as TE, TE-2 and TE-5 for 0 w/v %, 2w/v % and 5 w/v % Bi loading,
130 respectively, and TEO, TEO-2 and TEO-5 for 0 w/v %, 2w/v % and 5 w/v % Bi loading with the oil
131 porogen, respectively. The precursor and hydrolysis solutions were mixed, vortexed for 30 s, and poured
132 into a mold, made by cutting the top of a 10 mL flat plunger plastic syringe with 10-mm inner diameter.
133 After 10 min, the gels were removed from the mold and transferred to a solution of heptane for 24 h to
134 remove the oil. The gels were then dried at ambient pressure for another 24 h, and then heat-treated at
135 150°C for 24 h to remove residual oil and solvent.

136 *Table 2. sorbent sample list*

Sample ID	Substrate	Porogen added	Bi-NPs added
TE	silica xerogel		
TEO	silica xerogel	100 μ l oil	
TE-2	silica xerogel		0.02 g per mL of precursor
TEO-2	silica xerogel	100 μ l oil	0.02 g per mL of precursor
TE-5	silica xerogel		0.05 g per mL of precursor
TEO-5	silica xerogel	100 μ l oil	0.05 g per mL of precursor
Bi-NPs	free bismuth nanoparticles		0.05 g

137

138 **2.3. Characterization**

139

140 The surface morphologies of silica xerogels were studied using an SEM (JSM-7001F, JEOL USA,
141 Inc. Peabody, MA) with EDS using a Bruker xFlash 6|60 detector (Bruker AXS Inc., Madison, WI). XRD
142 patterns were obtained using a Rigaku Smartlab 3 kW X-ray diffractometer with copper $K\alpha$ radiation. TGA
143 and DSC analysis were performed with a Netzsch STA 449F3 using ultra-high-purity (UHP) air and
144 protective argon and ramped at 10°C/min. Organic materials were identified using two different FTIR and
145 attenuated total reflectance (ATR) instruments (ThermoScientific Nicolet iN10 and 380). X-ray
146 photoelectron spectroscopy (XPS) spectra were collected using a ThermoFisher Scientific Nexsa G2
147 Surface Analysis System with a monochromatic Al X-ray source. Spectra were charge corrected to the C
148 1s peak of adventitious carbon at 284.8 eV. Depth profiling was conducted using a 1000 eV argon ion
149 source for 20-100 seconds. Thermo Avantage software was used for data analysis and reporting.
150 Gravimetric analysis was performed using a VWR-164AC analytical scale with 0.1 mg readability and
151 repeatability. Permeabilities of samples were found using a custom design described in Section 2.4. The
152 SSA values were measured with a Micromeritic 3Flex with nitrogen gas.

153 **2.4. Helium permeability measurements**

154

155 Helium permeabilities of xerogel samples were measured through steady state gas flow
156 measurements using a custom designed flow setup (Fig. S1 in SI). Polymethylsiloxane holders were cured
157 in 3D-printed molds designed specifically to house an as-prepared xerogel with a good fit. Xerogels were
158 sealed into the cured holder using a silicone adhesive, dried for 24 hours, and vacuum desiccated to remove
159 moisture before testing. Xerogel holders were inserted into an airtight glass tube and connected in line with
160 the helium gas-flow system. A working flow range of helium (0.01–1.00 standard cubic centimeter per
161 second by volume [sccsv]) was controlled using an Omega FMA-2618A flow controller (0.8% accuracy)
162 and an Omega FMA-2617A flow meter (0.8% accuracy) was used to observe the resulting pressure drop.
163 Once a linear regime was established, Darcy's law of fluid flow (Eq.1) through a porous medium was
164 applied at 0.02 ± 0.00016 sccsv, a flow rate within the linear working range to calculate permeability:

165
$$K = \frac{Q \cdot \eta \cdot L}{\Delta P \cdot A} \quad (1)$$

166 where the length of the porous medium is L (cm), the pressure drop is ΔP (g cm^{-2} s), the volumetric flow
167 rate is Q (cm s^{-1}), the fluid viscosity is η ($\text{g cm}^{-1}\text{s}^{-1}$), and the permeability is K (cm^2) converted into m^2 for
168 final reporting. Xerogels were checked for cracks before and after testing through backlit and standard
169 optical photography, and cracked samples were not included in the reported results.

170 **2.5. Iodine capture performance**

171 The optimal iodine capture performances of the xerogels and Bi-NP sorbents were quantified by
172 determining the quantity of chemisorbed iodine under saturated conditions. Before loading, samples were
173 kept under vacuum to prevent moisture accumulation. Samples were loaded into glass vials with known
174 tare masses, and the sample masses were recorded as (m_s). Triplicates of samples in glass vials, an empty
175 glass vial, and a glass vial with 1 g solid iodine were placed in a 1 L PFA (perfluoroalkoxy) jar with a lid
176 (Savillex). The Savillex jar was placed in the oven preheated to $150 \pm 2^\circ\text{C}$, and the reaction was carried out
177 for 24 hours. The mass of iodine was chosen to be in excess of the total sample mass to provide a saturated
178 environment, resulting in an iodine cloud when the container was opened immediately after removal from
179 the oven. After the reaction, the sample vials were placed uncovered back in the oven to remove physisorbed
180 iodine for 1 h. The resulting mass change in samples were recorded as iodine mass gained in mg (m_i). The
181 mass percentage of iodine in the final sample can be calculated using Eq. 2, and the iodine sorption capacity
182 (Q_e in mg g^{-1}) of samples can be calculated using Eq. 3. For samples that underwent mass change during
183 NO_2 exposure, m_s is given as the mass of the sorbent or mass of bismuth after oxidizing. Even though these
184 samples show BiOI as a reaction product, Eq. 8 and 9 (Table 1 in Section 1) stoichiometry show the mass
185 change is due only to the capture of iodine.

186
$$\text{Mass of } I_2 \text{ captured \%} = \frac{m_i}{m_i + m_s} \times 100 \quad (2)$$

187
$$Q_e = \frac{m_i}{m_s} \quad (3)$$

188 **2.6. NO_2 aging**

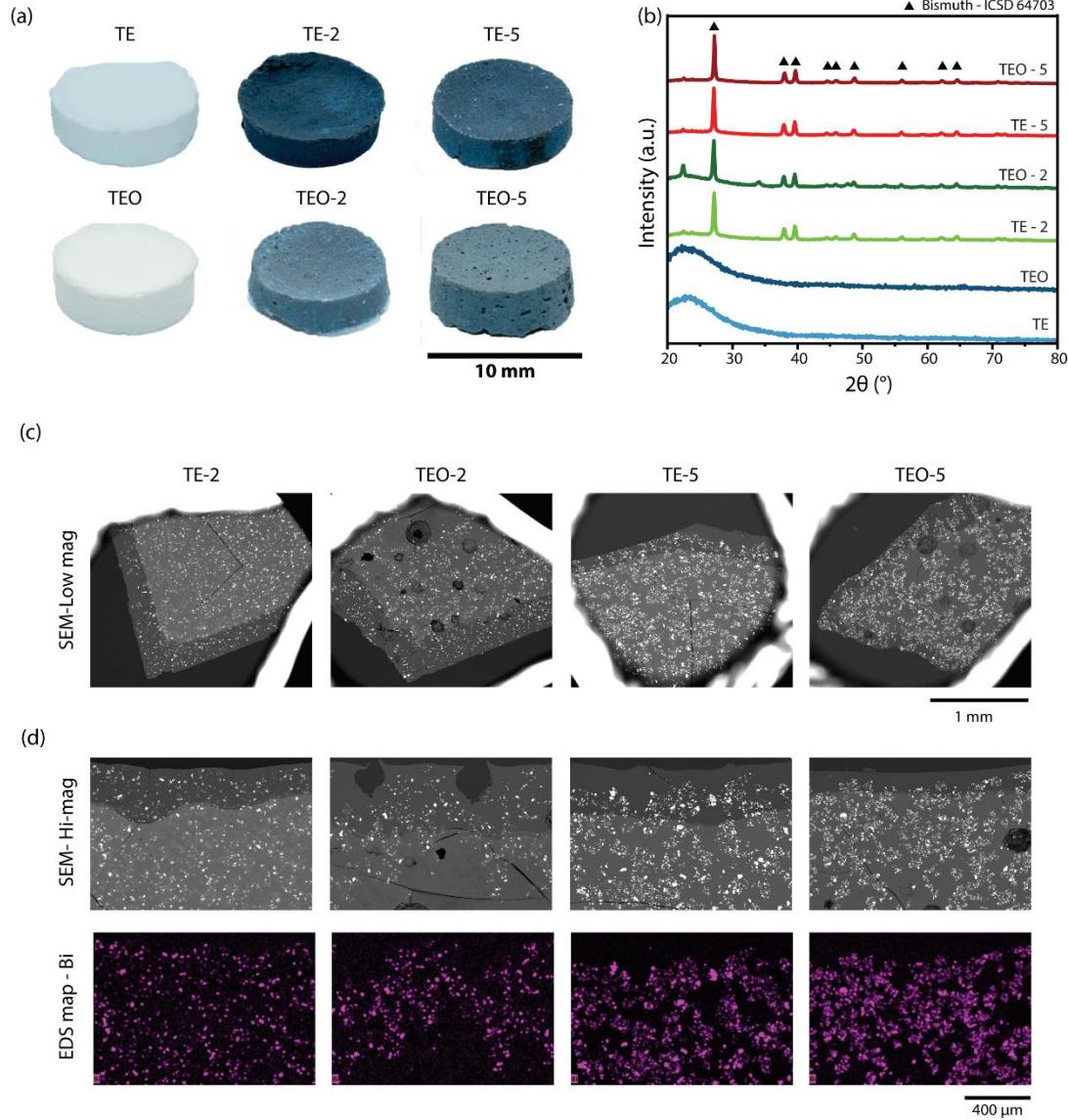
189 Before aging, samples were kept under vacuum to prevent moisture accumulation. A dynamic
190 system (Fig. S2 in SI) was used to age Bi-NPs and TEO-5 in 1 v/v% NO_2 (balance N_2) at 150°C before
191 and after iodine loading. Samples were loaded into glass vials with known tare masses, and the masses of
192 the sample (m_s). Triplicates of each sample were loaded into the 1-L Savillex jar. The jar was placed in an
193 oven preheated to $150 \pm 2^\circ\text{C}$ and connected to the gas supply. Then, NO_2 was introduced at 20 sccsv for 1
194 min using an Alicat MQS-100SLPM mass flow controller (2% accuracy) to saturate the container, then
195 reset to 1 sccsv for the duration of the aging test. Once the aging time was reached, the gas supply was
196 switched to UHP air, and the container was purged for 2 min at 20 sccsv. Finally, the gas supply was closed,
197 and the samples were removed for characterization. The final mass of the samples was recorded as mass
198 (m_f). The percentage of weight gain due to oxygen in the final sample was calculated using Eq. 4:

199
$$\text{Sorbent mass change \% (m\%)} = \frac{m_f - m_s}{m_s} \times 100 \quad (4)$$

200 Primary aging was concluded after 6 h of NO₂ exposure. Samples after 6 h exposure showed no
201 measurable iodine capture during subsequent iodine capture testing Secondary aging was performed for 6
202 h for all samples and followed the same procedure as primary aging. Sorbent mass change percentages were
203 found using Eq. 4.

204

3. Results

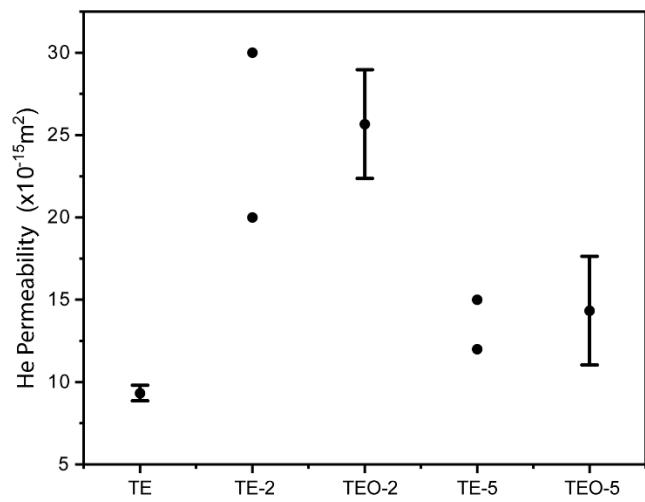

205

3.1. Synthesis of crack-free xerogel membranes

206 The synthesis of mechanically stable, crack-free xerogel monoliths approx. 10 mm in diameter was
207 demonstrated. A homogenous distribution of Bi-NPs throughout the monolith was achieved by vortexing
208 the sol-gel solution until a spanning gel state was reached. The presence of Bi-NPs in alcogels appeared to
209 assist in the formation of a crack-free monolith by absorbing some of the stress experienced by the silica
210 network during drying process to produce xerogels. The SSAs of these materials ranged between ~200 -
211 400 m² g⁻¹, however, no statistical differences were observed between the different samples. The adsorption
212 and desorption isotherms for xerogel with and without porogen is given in Fig. S3 (a and b) in the SI.

213 Mechanical stability was qualitatively assessed to determine suitability for permeability testing. A
214 pinch test was performed by squeezing the xerogels between two gloved fingers. If no fracture occurred,
215 the xerogels were then dropped from a height of two feet and examined for damage. All xerogels passed
216 both the pinch and drop tests except for TEO, which did not pass either. The addition of bismuth
217 nanoparticles to the xerogels increased the mechanical stability of the xerogels up to 5 w/v% loading. It is
218 believed that similar to their influence during drying, the nanoparticles can absorb stress and inhibit crack
219 propagation [48]. Between 10 – 20 w/v% loading, monoliths could be formed but did not pass the pinch
220 test. Above 20 w/v%, monoliths could not be formed as there appears to not be enough precursor to enable
221 the formation of a robust interconnected network. Due to these findings, 5 w/v% was the maximum Bi-NP
222 loading used for permeability and iodine loading studies.

223 All xerogels appeared opaque with visible macropores (Fig. 1a). Backlit images of the xerogels
224 (Fig. S3 c and d in the SI) were used to qualitatively assess the microstructure, specifically the pore structure
225 resulting from the porogen. Micrometer-scale pores were clearly observed in TEO but were difficult to
226 distinguish in TEO-2 and TEO-5 due to its dark color from the Bi-NPs. The pore structure of all the xerogels
227 appeared similar to the structure reported in our previous study [47], in which both isolated spherical pores
228 and clusters of pores were observed. The TE and TEO appeared amorphous in XRD while xerogels made
229 with Bi-NPs had peaks corresponding to Bi⁰ (Fig. 1b). Rietveld analysis (discussed in Section 3.3 and 3.4)
230 showed that a small fraction of Bi₂O₃ was present. SEM/EDS showed Bi-NPs were homogeneously
231 dispersed throughout the samples with denser Bi-NPs for the 5 w/v% loading compared to the 2 w/v%
232 loading (Fig. 1 c and d).

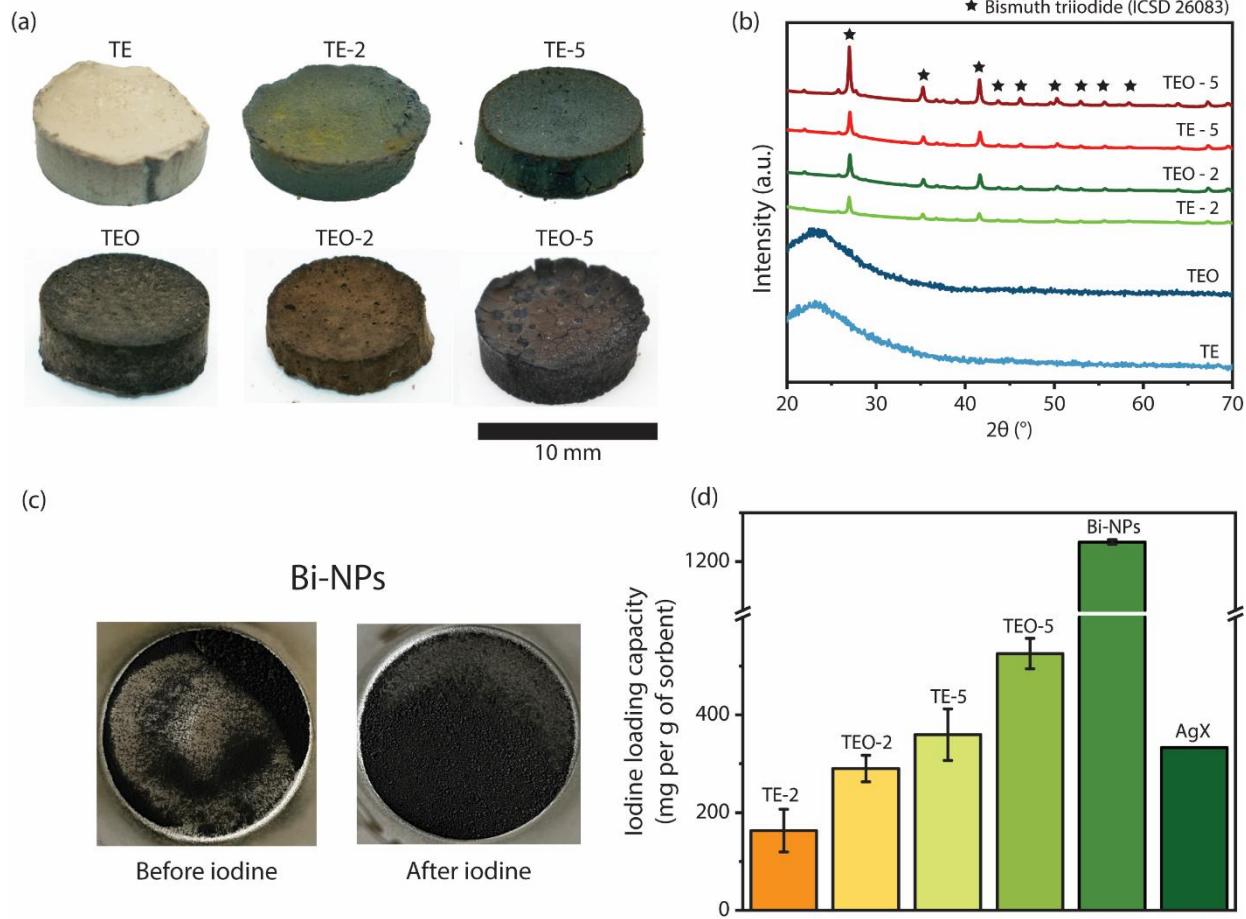

233

234 **Figure 1.** (a) Photograph of xerogel monoliths with visible macropores in samples synthesized with oil (TEO, TEO-2 and TEO-5). (b) XRD of xerogels with and without bismuth. Peak patterns in TE-2, TEO-2, TE-5 and TEO-5 correspond with Bi-metal (ICSD 235 64703) peaks from sample holder is seen in addition to Bi-metal. The amorphous hump in TE and TEO are from the glassy silica 236 xerogel. (c) SEM- Low magnification image (the backscatter detector is visible as the white outline in these images due to the low 237 magnifications). (d) SEM-high magnification images and EDS maps showing dispersion of Bi-NPs in xerogels. 238

239 Based on mass loss observed during DSC/TGA analysis, it is likely that organic residue from either 240 the porogen or heptane might be present in xerogels (Fig. S4 in SI). TEO showed gradual loss of 3 mass% 241 by 150°C, which can be attributed to desorption of physisorbed water. An exothermic peak at 280°C near 242 the regions of the flash points of the porogen was identified followed by gradual, yet steeper, weight loss 243 of an additional 10 mass% by 700°C [50-52]. A less intense and broader exothermic peak is seen at 450°C, 244 which is attributed to decomposition of the silica xerogel [49]. The presence of organic residues in TE and 245 TEO xerogels was confirmed using FTIR, seen predominately at 960 cm^{-1} and 1168 cm^{-1} , both attributed 246 to C–H rocking. (Fig. S5 in SI).

247 The permeability results for all xerogels are presented in Fig. 2. All xerogel formulations showed
248 permeability values on the order of 10^{-15} m^2 . Statistical analysis using a one-way analysis variance
249 (significance level of $\alpha = 0.5$) showed that there was a statistically significant difference between the TE
250 and Bi-NP loaded xerogels made with the porogen (TEO-2 and TEO-5). Statistical testing was not
251 conducted for the TE-2 and TE-5 because only two data points were collected. The Bi-NPs, in addition to
252 enhancing the mechanical stability of the xerogels (up to 5 w/v%), also appear to cause a slightly more open
253 pore structure. While the porogen does not appear to have a significant impact on the permeability, it was
254 shown to greatly enhance iodine capture (discussed in Section 3.2).

255



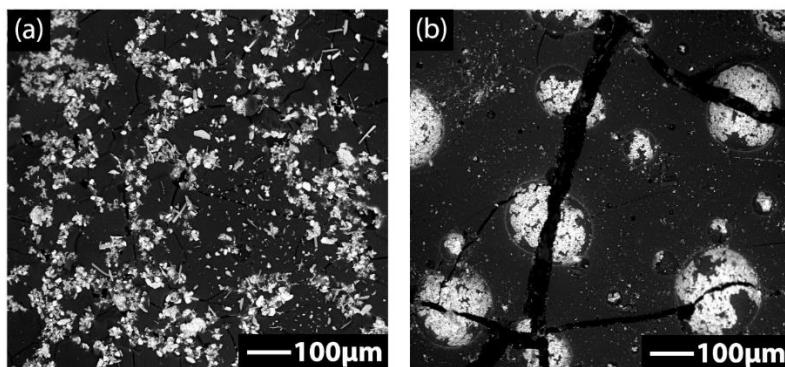
256

257 **Figure. 2.** He permeability results for all xerogels except for TEO, which did not pass the mechanical testing. Three samples were
258 tested for TE, TEO-2, and TEO-5 with error shown that includes the $\pm 1\sigma$ standard deviations. Two samples for TE-2 and TE-5
259 were tested and both He permeability values are shown.

260 **3.2. Iodine capture of unaged xerogels and bismuth nanoparticle sorbents**

261 All xerogels changed color after iodine capture performance testing (Fig. 3a). A color change was
262 observed for the TE and TEO xerogels even though no measurable iodine capture was observed. No
263 observable color change occurred after TE and TEO were subjected to a desorption heat treatment (72 h)
264 at 150°C (Fig. S6 in SI). A return to the original white color was observed after heat treating above 300°C
265 for 6 h. These results indicate that the color change was due to pyrolyzed hydrocarbons from remnants of
266 the porogen and/or solvent and was corroborated by TGA/DSC in Fig. S4 in SI. No crystallinity was
267 detected in the TE and TEO with XRD (Fig. 3b). The color change from blue-green to brown after iodine
268 exposure observed in xerogels containing bismuth nanoparticles is a result of the formation of BiI_3 , which
269 was determined using XRD (Fig. 3b).

270


271

272 *Figure 3. (a) Optical images of xerogels after I₂ exposure. (b) XRD patterns of xerogels after I₂ exposure. Patterns in TE-2, TEO-2, TE-5, and TEO-5 correspond to BiI₃ (ICSD 26083) and the amorphous hump in TE and TEO are from the glassy silica xerogel. (c) Optical images of Bi-NPs before and after iodine capture. (d) Iodine capture capacity of samples represented by the iodine mass captured per unit mass of sorbent (mg I₂ per g of sorbent with standard deviations in parenthesis), TE-2 : 163 (44), TEO-2 : 290 (27), TE-5 : 359 (53), TEO-5 : 526 (31), Bi-NPs: 1298 (24) and AgX : 318 (16). TE and TEO are not shown on the graph because no measurable mass changes were observed after exposure to iodine. XRD pattern of Bi-NPs shown in Fig. S7 (SI).*

273 The iodine loading of Bi-NPs were studied separately from bismuth-loaded xerogels to understand
 274 the effects of the sorbent substrate on capture and aging performance. The mass of Bi-NPs (0.05g) used per
 275 sample was the same as the mass of bismuth nanoparticles used in synthesizing TEO-5 xerogels to get
 276 comparable results. In TEO-5, bismuth nanoparticles constitute 50% of the overall mass of the sorbent.
 277 Iodine capture capacity of TEO-5 was recalculated per gram of bismuth (0.05 g) encapsulated per xerogel,
 278 at 1156 (± 60) mg per g of Bi (see Section 3.4). This result shows that the iodine loading capacity of TEO-
 279 5 is 90% ($\pm 5\%$) of the Bi-NPs, which indicates the substrate does little to limit iodine access to bismuth.
 280 No color change was observed for Bi-NPs after iodine capture performance testing (Fig. 3c) but this is
 281 attributed to the fact that both Bi metal and BiI₃ are black-grey in color. Analysis of the XRD patterns
 282 showed that iodine was captured as both BiI₃ and BiOI (see Section 3.4).
 283

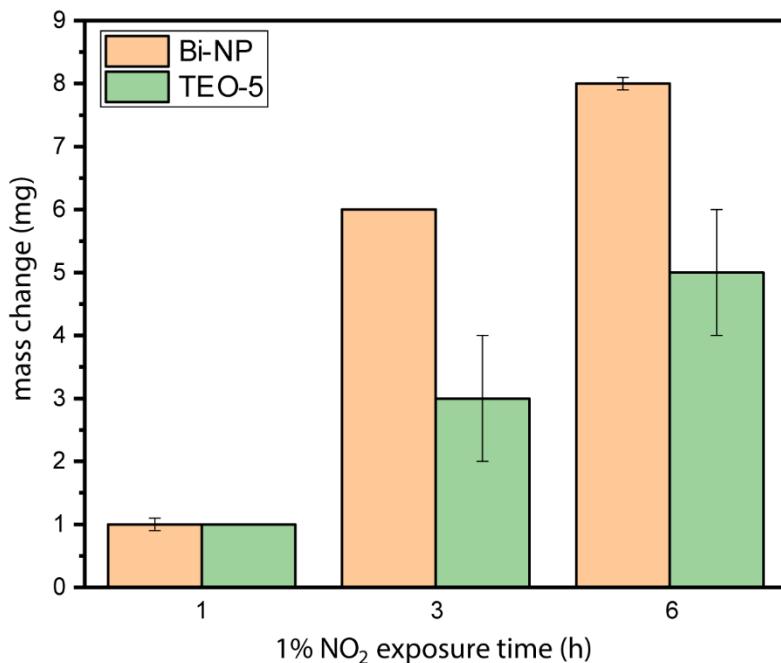
288 For the xerogels, the iodine capture capacity increased with increasing bismuth concentration from
289 163 (± 44) mg g⁻¹ for TE-2 to 359 (± 53) mg g⁻¹ for TE-5 (Fig. 3d). Although no statistically significant
290 differences were observed between the SSAs of the xerogels, the capture performance of xerogels formed
291 with porogens was statistically higher than those of the parent xerogels for each of the respective loadings.
292 TEO-2 (290 [± 30] mg g⁻¹) showed an 78% ($\pm 18\%$) increase over TE-2 and TEO-5 (525 [± 30] mg g⁻¹) was
293 47% ($\pm 12\%$) higher than TE-5. The chemisorption of TEO-5 was greater than that of AgX (318 [± 16]) and
294 reported by other studies (333.3 [± 4.0]) [50]. TEO-5 was selected for additional studies related to aging
295 and phase stability because it showed the greatest amount of iodine chemisorption.

296 SEM micrographs of TEO-5 (Fig. 4) provided insight into the enhanced iodine capture for samples
297 made with the porogen. In the SEM micrographs (Fig. 4a), both small and large bismuth clusters were
298 observed. Upon examination of an area of larger clusters that exhibited cracking (Fig 4b), it was found that
299 some of the bismuth nanoparticles appeared to line the spherical pores formed by the porogen. This result
300 shows that more bismuth is present to react with iodine in xerogels made with the porogen. It has been
301 reported that physisorption of iodine can be increased by increasing pore volume [26, 51-53]. Iodine
302 physically held within the pores increased the interaction time with the bismuth nanoparticles lining the
303 pore walls, which enabled enhanced iodine capture through chemisorption compared to xerogels made
304 without the porogen.

305
306 *Figure 4. TEO-5 showing Bi-NPs deposited in two different regions of the xerogel. It can be seen that (a) regions without*
307 *macroscopic pores have non clustered distribution while (b) regions with macroscopic pores have more concentrated Bi-NPs within*
308 *the pores.*

309

310 3.3. Primary aging of Bi-NPs and TEO-5

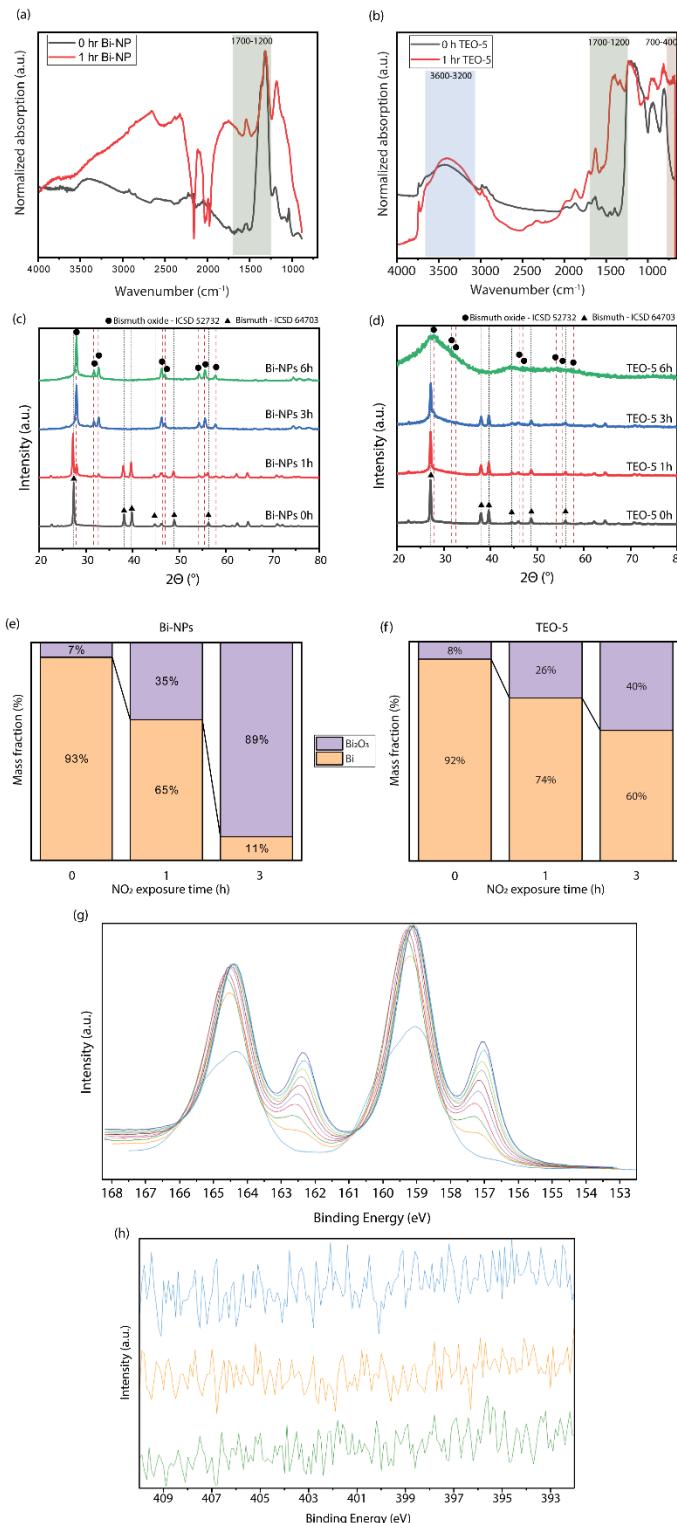

311 Aging Bi-NPs and TEO-5 in 1 v/v% NO₂ resulted in an increase in sorbent mass with increasing
312 exposure times (Fig. 5). In Table 3, samples are labeled for the number of hours aged in 1 v/v% NO₂, given
313 as 0 h, 1 h, 3 h, 6 h Bi-NPs and 1 h, 3 h, 6 h TEO-5.

314 *Table 3. sorbent sample list for aging experiments*

Sample ID	Substrate	Bi-NPs mass in sample	Hours aged in 1 v/v% NO ₂
0 h TEO-5	silica xerogel with porogen	0.05 g	0
1 h TEO-5	silica xerogel with porogen	0.05 g	1
3 h TEO-5	silica xerogel with porogen	0.05 g	3
6 h TEO-5	silica xerogel with porogen	0.05 g	6
0 h Bi-NPs	free bismuth nanoparticles	0.05 g	0
1 h Bi-NPs	free bismuth nanoparticles	0.05 g	1
3 h Bi-NPs	free bismuth nanoparticles	0.05 g	3
6 h Bi-NPs	free bismuth nanoparticles	0.05 g	6

315

316 Over a 6 h period, Bi-NPs gained $8 \text{ mg} \pm 0.1$ (15.5% [$\pm 1.0\%$]) compared to TEO-5, which gained
 317 5 mg ± 1 (5.3% [$\pm 1.0\%$]). A TEO sample was aged for 6 h to understand the behavior of the substrate and
 318 showed a mass loss of 4 mg ± 1 (7.0% [$\pm 1\%$]). Considering the mass loss of the xerogel substrate, the
 319 difference between the TEO-5 and Bi-NPs after 6 h is 3.1% ($\pm 2.0\%$).


320

321 *Figure 5. Mass change of samples after aging in 1 v/v% NO₂. The mass lost by TEO xerogels was added to the mass change of the*
 322 *TEO-5 xerogel to highlight the change due to bismuth oxidation.*

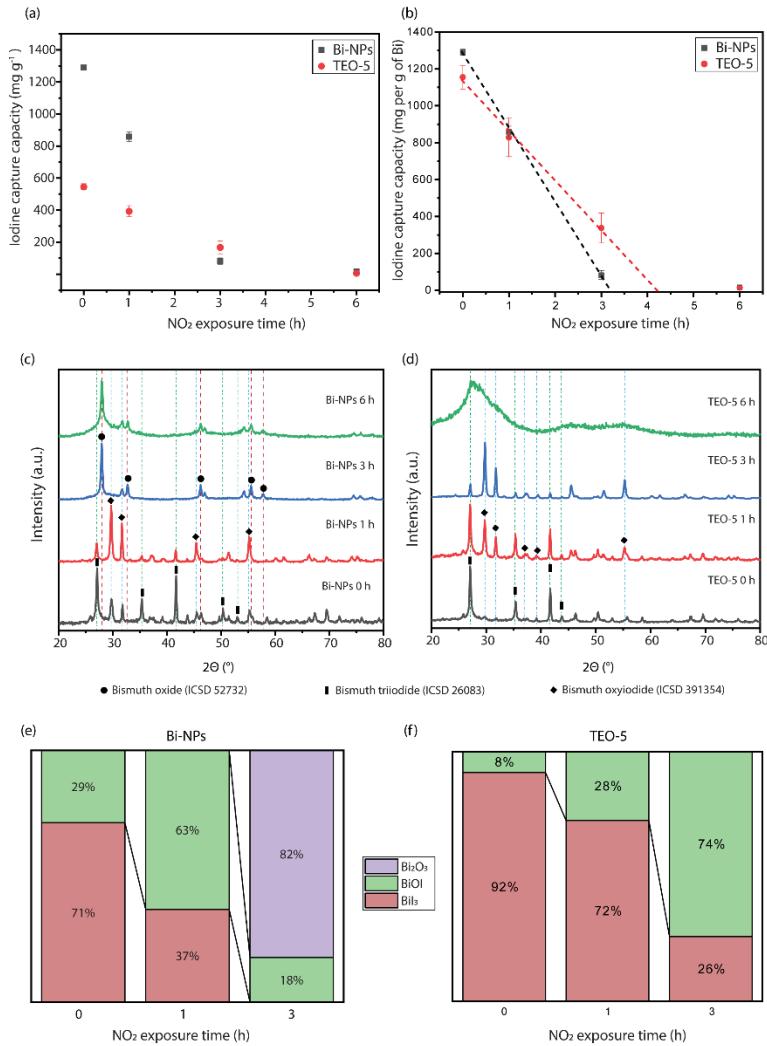
323 To understand the effects of organic residue on aging, FTIR spectra were collected for Bi-NPs and
 324 TEO-5 before and after 1 h of aging in NO₂ (Fig. 6 a and b). Spectra for Bi-NPs showed peaks at 1210 cm^{-1} ,
 325 which correspond to Bi-OH bond [54]. After aging, a wide peak from the region 1200 cm^{-1} to 1750 cm^{-1}
 326 is seen along with a sharp peak at 1210 cm^{-1} indicative of presence of nitrate species. Between 2500 cm^{-1}
 327 and 3500 cm^{-1} , -OH peaks appear in aged Bi-NPs [54]. This indicates that the unaged sample contained a

328 small amount of OH species, likely due to the passive oxide layer [54], and increased the amount of oxide
329 in the nanoparticles after aging. Since the ATR limit of detection is $< 900 \text{ cm}^{-1}$, the characteristic bond of
330 Bi–O–Bi is not seen in Bi-NPs.

331 The FTIR of TEO-5 before aging has an -OH peak between 3200 cm^{-1} and 3600 cm^{-1} , which could
332 be from moisture adsorbed in silica or surface OH groups. Peaks from organic residue from oil and heptane
333 can be seen as a peak at 1400 cm^{-1} and 1450 cm^{-1} [55]. Peaks near 1400 cm^{-1} and 1450 cm^{-1} were associated
334 with rocking of C–H bonds of olefins and bending of –CH₂ in aliphatic groups in vegetable oil [56, 57].
335 Aged TEO-5 have new strong peaks between 1700 cm^{-1} to 1200 cm^{-1} along with peaks associated with Bi–
336 O–Bi bonds in the range 700 cm^{-1} to 400 cm^{-1} [54, 58]. The higher relative intensity of the NO₃⁻ peak at
337 1210 cm^{-1} in aged Bi-NPs compared to the wider peaks from 1200 cm^{-1} to 1700 cm^{-1} in aged TEO-5 could
338 indicate increased interaction of NO₂ with xerogel components in TEO-5. The increased contact time of
339 NO₂ in pores of TEO-5 and bismuth lining the pores could promote the formation of bismuth subnitrates
340 compared to formation of primarily Bi₂O₃ in free Bi-NPs [25]. The organic residue from oil could interfere
341 with oxidation of Bi nanoparticles. The combination of these mechanisms could show why TEO-5 captures
342 iodine at higher mg per g of Bi for comparable aging times. XRD was performed to analyze the phases
343 present after primary aging (Fig. 6c and 6d) and Rietveld refinement was used to investigate the extent of
344 oxidation through calculating mass fractions of identified phases (Fig. 6e and 6f). From XRD analysis, 7-8
345 mass% of Bi₂O₃ was present in unaged Bi-NPs and TEO-5 due to native oxide layers on as-received Bi-
346 NPs. After aging for 1 h, Bi-NPs showed 25% more Bi₂O₃ than TEO-5 and after aging for 3 h, Bi-NPs
347 showed 55% more Bi₂O₃. After 6 h, Bi-NPs showed Bi₂O₃ but the XRD pattern for TEO-5 could not be
348 refined, and this is attributed¹⁴ to the formation of amorphous bismuth oxynitrate or bismuth oxide phases.
349 At this point, the samples did not chemisorb iodine and aging was considered complete. XPS was performed
350 to determine the structure of the as- received bismuth nanoparticles. Depth profiling revealed a core-shell
351 structure consisting of a bismuth oxide shell with a bismuth metal core as seen from the evolution of the
352 lower binding energy Bi metal peaks with depth profiling in Fig. 6g. XPS scans of nitrogen 1s peaks in Fig.
353 6h shows 0 h, 1 h, and 3 h Bi-NPs have no incorporation of nitrogen or nitrates on free Bi-NPs.

354

355 *Figure 6. (a) FTIR of Bi-NPs with 0h and 1h of aging in 1 v/v% NO₂ aging. (b) FTIR of TEO-5 with 0h and 1 h aging in 1v/v% NO₂ aging. (c) XRD patterns of Bi-NPs and (d) xerogels after aging in 1v/v% NO₂ showing Bi and Bi₂O₃, ICSD 64703 and ICSD 356 52732. Rietveld refinement data of (e) Bi-NPs and (f) TEO-5 after 0 h, 1 h, and 3h of 1 v/v% NO₂ aging and (g) Bi 4f XPS spectra 357 of unaged Bi-NPs shows increasing Bi metal peaks with depth profiling and (h) N 1s spectra 0 h, 1 h and 3 h Bi-NPs samples 358 show that there is no incorporation of N (or presence of BiNO₃) in the samples after aging.*

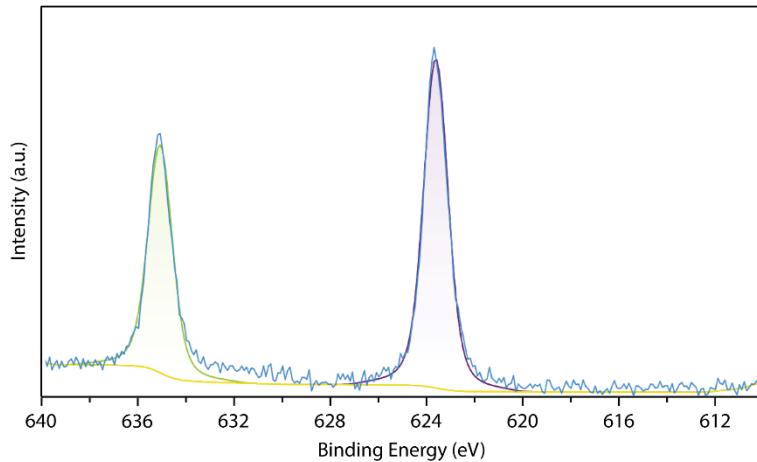

359

360 **3.4. Iodine loading of aged Bi-NPs and TEO-5**

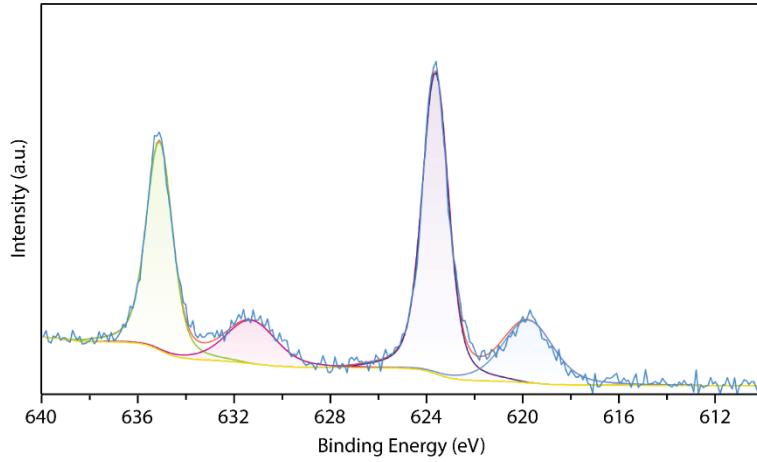
361 Figure 7a shows a reduction in iodine capture capacity represented in Q_e (mg g⁻¹) for both Bi-NPs
362 and TEO-5 after NO₂ aging. Due to the incorporation of the xerogel mass in this calculation, TEO-5 shows
363 lower iodine capture for unaged samples. When the iodine capture capacity of unaged TEO-5 is represented
364 in mg of iodine captured per g of bismuth per xerogel (Fig. 7b), TEO-5 shows a reduction of only 10% ±5%
365 compared to unaged Bi-NPs. These results indicate high utilization of the dispersed Bi-NPs in TEO-5. Fig.
366 7a and 7b also reveal a shallower slope for iodine capture reduction for TEO-5 compared to Bi-NPs through
367 the aging process. Extrapolating trendlines from 0 h to 3 h in Fig. 7b indicated Bi-NPs will no longer capture
368 iodine at ~3.25 h of aging and TEO-5 will no longer capture iodine at ~4.25 h, a 40% increase in bismuth
369 utilization lifetime. By 6h, TEO-5 and Bi-NPs no longer captured iodine and was not used for the trendline.

370 Figure 7c and 7d show XRD patterns of TEO-5 and Bi-NPs after aging and subsequent iodine
371 loading. Rietveld refinements were performed to quantify identified phases (Fig. 7e and 7f). The relative
372 phases in Bi-NPs are closer to a direct comparison to gravimetric analysis as there were no other materials
373 present that could react during the aging process. Eq. 8 shows that BiOI will form if a 50:50 molar ratio of
374 Bi:Bi₂O₃ ratio is present. Unaged Bi-NPs showed 71 mass% BiI₃ with 29 mass% BiOI due to the passive
375 oxide layer present on the bismuth nanoparticles. The BiOI:BiI₃ mass ratio increased after 1 h due to the
376 higher concentration of Bi₂O₃ initially present. Bi-NPs aged for 3 h showed unreacted Bi₂O₃ along with
377 BiOI, and BiI₃ was not detected. The absence of BiI₃ and presence of 82 mass% Bi₂O₃ shows that
378 significantly less than 50 mol% Bi was present in 3 h Bi-NPs sample. Only 18 mass% BiOI in Bi-NPs 3 h
379 was present, which correlates closely to the gravimetric extrapolation of no iodine capture at ~3.25 h. The
380 phases for the 6 h Bi-NPs could not be quantified due to low peak intensity and the amorphous shoulder
381 present, but XRD patterns indicate oxidation to Bi₂O₃.

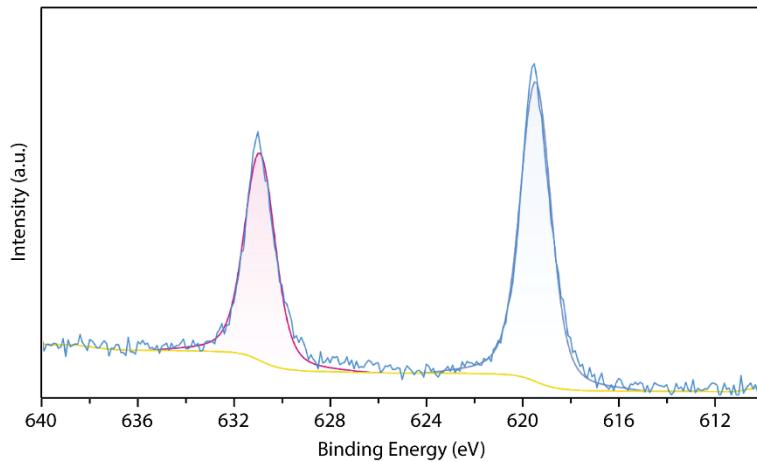
382 In Fig. 7f, unaged TEO-5 showed 92 mass% BiI₃ with 8 mass% BiOI after exposure to iodine.
383 Compared to the Bi-NPs, TEO-5 maintained higher percentages of bismuth capable of participating in
384 iodine capture throughout aging. TEO-5 aged for 1 h showed similar phase percentages as unaged Bi-NPs.
385 TEO-5 aged for 3 h showed complete utilization of bismuth by forming BiI₃ and BiOI. For TEO-5 aged for
386 6 h, the iodine loading was near zero, and the XRD patterns revealed an amorphous structure that further
387 indicated a change from a crystalline to an amorphous bismuth oxide phase. After aging and iodine loading,
388 TEO-5 xerogels passed the drop and pinch tests described in Section 3.1.



389


390 *Figure 7.* (a) Iodine capture capacity in mg per g of sorbents aged in 1% NO₂ for 0 h, 1 h, 3 h, and 6 h. (b) Calculated iodine
 391 capture capacity in mg per g of bismuth for samples aged in 1% NO₂ for 0 h, 1 h, 3 h, and 6 h. (c) XRD patterns of Bi-NPs aged in 1%
 392 NO₂ for 0 h, 1 h, 3 h, and 6 h. (d) XRD patterns of TEO-5 aged in 1% NO₂ for 0 h, 1 h, 3 h, and 6 h showing BiI₃, BiOI and Bi₂O₃
 393 (ICSD 26083, ICSD 391354 and ICSD 52732). (e) Rietveld refinement of Bi-NPs aged in 1% NO₂ for 0 h, 1 h, and 3 h after iodine
 394 exposure. (f) Rietveld refinement of TEO-5 aged in 1% NO₂ for 0 h, 1 h, and 3 h after iodine exposure.

395 Figure 8a shows the I 3d spectra from 1 h Bi-NPs after iodine exposure. The initial surface spectra
 396 from the sample showed the presence of two peaks at 623.6 eV and 631.1 eV. These high values of I 3d
 397 binding energies are associated with iodates. In this case, we hypothesize that the outer layers of the sample,
 398 as analyzed by XPS, formed a bismuth iodate, which is in agreement with the observed XPS spectrum [59].
 399 To ensure that the bismuth iodate was only formed on the outer layers, the sample was depth profiled.
 400 Figure 8b shows the emergence of two new peaks around 619.5 eV and 631 eV. These peaks are associated
 401 with iodide in BiOI and BiI₃ [60, 61]. Further depth profiling showed that the original higher binding energy
 402 iodate peaks completely disappeared, and the iodine spectra only comprised of the lower binding energy
 403 iodide peaks, as seen in Fig. 8c. This result confirms that the outer surface formed a highly oxidized bismuth
 404 iodate whereas the bulk Bi-NPs formed a bismuth iodide/oxyiodide.


(a)

(b)

(c)

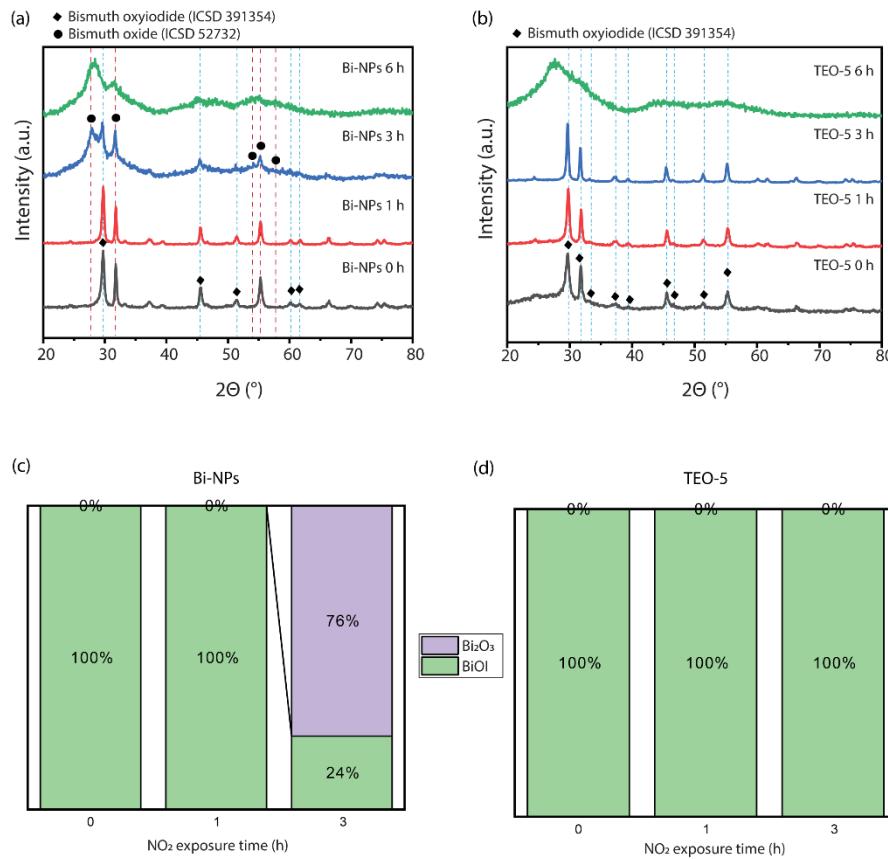

405
406
407

Figure. 8. $I\ 3d$ spectra of the $1h$ Bi-NPs after iodine exposure. (a) Sample prior to depth profiling, (b) After 20 seconds of depth profiling, and (c) After 100 seconds of depth profiling.

408
409

410 **3.5. Secondary aging**

411 Unaged and aged samples were exposed to 1 v/v% NO₂ to explore the stability of BiI₃, BiOI, and
 412 Bi₂O₃ phases. Fig. 9a and 9b show the XRD patterns of samples after secondary aging and the corresponding
 413 Rietveld analysis is shown in Fig. 9c and 9d. Rietveld analysis showed the transformation of BiI₃ to BiOI
 414 in all samples containing BiI₃ prior to secondary aging (Bi-NPs 0 h, 1 h and TEO-5 0 h, 1 h, 3 h). Rietveld
 415 refinement showed that BiOI present in the samples prior to secondary aging remained as BiOI, which
 416 indicates the stability of this phase in an oxidizing environment. Bi₂O₃ present in Bi-NPs 3 h prior to
 417 secondary aging remained at similar mass loading ($\pm 6\%$), however XRD showed a shift from crystalline to
 418 amorphous phases for Bi-NPs 3 h and 6 h and TEO-5 6 h. This shift is congruent with either the formation
 419 of bismuth oxynitrate, or the formation of amorphous Bi₂O₃.

420

421 *Figure 9. (a) XRD patterns of Bi-NPs after secondary aging showing BiOI in 0 h and 1 h, and Bi₂O₃ in 3 h and 6 h (ICSD 391354
 422 and ICSD 52732). (b) XRD patterns of TEO-5 showing BiOI in 0 h, 1 h, and 3 h, and Bi₂O₃ in 6 h. (c) Rietveld refinement of Bi-
 423 NPs after secondary aging in 1 v/v% NO₂. (d) Rietveld refinement of TEO-5 after secondary aging in 1 v/v% NO₂*

424 **4. Discussion**

425 **4.1. Xerogel microstructure**

426 Obtaining a crack-free silica xerogel monolith via ambient pressure drying can be challenging as
 427 the capillary forces experienced by the silica network during drying can lead to pore collapse. We have

428 previously reported a method to synthesize crack-free xerogel monoliths with tunable pore structures
429 without any surface modification by adjusting the vapor pressure during drying [47]. Despite the presence
430 of a thin oxide layer on the bismuth nanoparticles, the direct incorporation of bismuth nanoparticles
431 removes the uncertainty associated with incorporating Bi^0 through bismuth nitrate reduction techniques [26].
432 Bismuth nanoparticles and clusters were strongly embedded within the silica matrix, remaining in place
433 after sample preparation using mechanical polishing.

434 While there were no statistically significant differences in the SSAs between samples, the effects
435 of adding Bi-NPs were observed through statistically significant differences in measured permeabilities.
436 The presence of Bi-NPs in the pores of xerogel creates microcracks, which creates more paths for gas flow,
437 resulting in increased permeability. In addition to increased permeability, Bi-NPs also likely reinforced the
438 silica network and helped prevent pore collapse during ambient pressure drying. This reinforcement
439 provided by Bi-NPs created mechanically stable xerogel up to 5 w/v% of Bi-NPs. Further addition of Bi-
440 NPs created mechanically weak gels, as there is not enough silica network to support the weight of Bi-NPs.

441 When soybean oil is added as a porogen during silica gel synthesis, it creates macro-scale pores,
442 lowering the mechanical strength in TEO xerogels as oil pores closer to other pores can cause catastrophic
443 pore collapse of silica pore walls in xerogels. Bi-NPs likely stabilized the oil during the sol-gel reaction
444 through the Pickering effect in TEO-2 and TEO-5, leading to the stable and separated pores in the xerogels
445 [62]. These isolated pores avoid a catastrophic collapse of pore walls and improved mechanical strength
446 enough to complete the permeability testing of TEO-2 and TEO-5. The Bi-NPs stabilizing the oil during
447 the sol-gel reaction were lining the pores in the SEM of xerogel. The presence of pores lined with Bi-NPs
448 can have improved access for iodine species through deeper diffusion and enhanced iodine capture in TEO-
449 2 and TEO-5 compared to TE-2 and TE-5.

450 The heptane used in the sample preparation process acted as a low surface tension solvent and
451 helped in achieving a xerogel monolith. The organic residues left by heptane inhibited accurate
452 characterization of skeletal density. It also appears that the organic residues aided in extending the life of
453 Bi-NPs during aging. While the porogen did not create interconnected macropores, the cluster of Bi-NPs
454 surrounding the macroscale pores along with microcracks inside the monolith improved iodine capture.

455 4.2. Aging and iodine capture

456

457 HSC software was coupled with experimental characterization to understand the chemical reactions
458 occurring during aging, iodine exposure, and secondary aging (Table 1 in Section 1 and Table S1-S6 in SI).
459 Both Bi-NPs and TEO-5 formed Bi_2O_3 during primary aging. The increase in Bi_2O_3 formation yielded lower

460 percentages of BiI_3 and increasing percentages of BiOI and Bi_2O_3 or bismuth oxynitrate after iodine loading.
461 After secondary aging, BiI_3 transformed to BiOI , with BiOI present prior to secondary aging remaining
462 unchanged. Bismuth oxide or oxynitrate present prior to secondary aging remained but further aging in 1
463 v/v% NO_2 changed the phase from crystalline to amorphous. The digital photograph in Fig. 10 shows that
464 oxidized Bi-NPs change color from black to yellow, characteristic of Bi_2O_3 , while oxidized TEO-5 shows
465 a partial change in color from black to white, characteristic of bismuth oxynitrate or bismuth oxides formed
466 from heat treating bismuth oxynitrate at 150°C. Analysis of XRD patterns and optical imaging in Fig. S8
467 in SI show the formation of yellow, crystalline Bi_2O_3 after aging TEO-5 in air at 150°C for one week. The
468 3 h aged TEO-5 shows color change from black and white to uniform brown color. This uniform product
469 shows that when immobilized within the xerogel matrix, Bi and Bi_2O_3 or bismuth nitrate reacted in the
470 presence of iodine to form BiOI .

471

472

473 *Figure 10. Optical images of (top) Bi-NPs and (bottom) TEO-5 after primary aging, iodine exposure, and secondary aging.*
 474 *Xerogels that appeared heterogenous in color did not show any effect on iodine loading capacity compared to xerogels that*
 475 *appeared homogenous.*

476

477 For primary aging, equilibrium compositions calculated using HSC (Table S3 in SI. and Eq. 5 and
 478 6) indicate that exposing bismuth metal to NO_2 will yield Bi_2O_3 and N_2 gas. Experimental NO_2 exposure
 479 yielded bismuth oxide in Bi-NPs and amorphous bismuth oxide in TEO-5. However, HSC does not include
 480 bismuth nitrates, so we were unable to explore equilibriums of bismuth nitrate products identified in TEO-
 481 5 xerogels. It was found that the oxidation rate was lower for TEO-5 compared to Bi-NPs.

482 The reaction calculated using HSC (Eq.7) for the formation of BiI_3 from unaged bismuth samples
483 after iodine exposure were verified experimentally. However, up to 29 mass% BiOI was formed due a
484 passive oxide layer present on as-received bismuth nanoparticles. Consistent decrease in iodine sorption
485 values is seen with aging of both Bi-NPs and TEO-5, although TEO-5 shows slower decline in iodine
486 capture capacity over time. By comparing Bi-NPs and xerogels, it was identified that dispersing bismuth
487 nanoparticles throughout the xerogel decreased unaged iodine loading capacity by 10% but maintained
488 higher iodine loading capacity after aging.

489 For iodine exposure, equilibrium compositions calculated using HSC (Table S.4 and S.5) agreed
490 with results in the literature in that exposing bismuth to iodine will result in (a) BiI_3 if only bismuth is
491 present, (b) BiOI if 50 mol% Bi_2O_3 and 50 mol% Bi (69 mass% Bi_2O_3 and 31 mass % Bi) are present (Eq.
492 8 and 9), or (c) no reaction if only Bi_2O_3 is present (Eq. 12) [26]. Samples with $\text{Bi}:\text{Bi}_2\text{O}_3$ molar ratios
493 between these three points were found to show a relative amount of either BiI_3 and BiOI , or BiOI and Bi_2O_3 .
494 Experimental results showed maximum BiOI formation in 3 h TEO-5, which contained 40 mol% Bi (60
495 wt.%) prior to iodine exposure. However, as BiI_3 was also seen in this sample after iodine exposure, TEO-
496 5 could have been further oxidized for some time between 3-6 h to form more BiOI . Equations 8 and 9
497 calculated using HSC show BiOI formation could occur via a combined reaction of Bi, Bi_2O_3 , and I_2 , or via
498 BiI_3 reacting with Bi_2O_3 . The BiI_3 and Bi_2O_3 were not identified together in any samples at any time,
499 indicating the reactivity of BiI_3 and Bi_2O_3 to form BiOI . While it is unknown if BiI_3 must be formed as an
500 intermediate, or if Bi_2O_3 can react with Bi and I_2 simultaneously, the final product was established as
501 thermodynamically stable BiOI . For Bi-NPs immobilized in the xerogel substrate, BiOI is likely formed
502 from a core-shell structure of Bi- Bi_2O_3 identified through XRD and XPS. Based on the XPS and XRD
503 results, we hypothesize that the oxygen is successively replaced by iodine; iodine to oxygen atomic ratio
504 starts with 0:1 when it is bismuth oxide and proceeds to 1:3 for iodate, then to 1:1 for oxyiodide, and finally
505 to 3:0 for bismuth iodide. Verification of this mechanism will require studying the reaction using in situ
506 techniques in future. TEO-5 allowed for complete utilization of metal sorbent after aging at times when Bi-
507 NPs did not. This can be seen best after 3 h aging, where Bi-NPs formed Bi_2O_3 but TEO-5 formed BiI_3 and
508 BiOI . The above findings reveal valuable information as to the lifetime of bismuth metal in relation to its
509 ability to capture iodine.

510 For secondary aging, equilibrium compositions calculated using HSC (Table S6 in SI) indicate that
511 exposing BiI_3 to NO_2 will yield BiOI , Bi_2O_3 , and $\text{Bi}_5\text{O}_7\text{I}$ as physical phases and release molecular $\text{I}_{2(g)}$. The
512 formation of $\text{Bi}_5\text{O}_7\text{I}$ and Bi_2O_3 during secondary aging was not seen in this study but rather the formation
513 of stable BiOI (Eq. 13,14). BiOI was not found to oxidize further to Bi_2O_3 or $\text{Bi}_5\text{O}_7\text{I}$.

514 Although unaged samples showed higher iodine loading than aged samples through formation of
 515 BiI_3 , all BiI_3 samples were transformed to BiOI , indicating that iodine was lost (likely as $\text{I}_{2(\text{g})}$) during
 516 secondary aging. HSC (Eq. 13,14) mass balance calculations show BiI_3 loses 40.3 mass when reacting with
 517 NO_2 to form BiOI through a 43.0 mass decrease in I_2 and 2.7 mass increase in O_2 . While gravimetric analysis
 518 could show error after secondary aging due to the addition of oxygen (Table 4), preliminary results of
 519 unaged Bi-NPs and TEO-5 showed up to 39 mass% and 30 mass% losses, respectively. The trends for
 520 converting BiI_3 in a sample to BiOI was also verified through XRD and Rietveld refinement. Samples that
 521 showed high percentages of BiOI prior to secondary aging did not show any change other than forming
 522 more BiOI with available BiI_3 , and corresponding percent mass loss. These results highlight BiI_3 is a
 523 thermodynamically unstable phase under elevated temperatures and exposure to NO_2 . According to HSC
 524 mass balance, iodine capture capacity after secondary aging will be equivalent regardless of initial iodine
 525 capture phase, be it BiI_3 or BiOI . While Rietveld refinement indicates these reactions (Eq. 7, 8, 9),
 526 gravimetric results are not conclusive enough for total verification. However, these results indicate that full
 527 utilization of the sorbent, given by the restrictions of the environment, can be made even after significant
 528 aging has occurred. Under the testing conditions, the highest theoretical mg per g of Bi iodine loading
 529 achievable by bismuth is 564 mg per g of Bi due to the one-to-one bismuth-iodine coordination of BiOI
 530 rather than 1822 mg per g of Bi theoretically achievable by one-to-three bismuth-iodine molar ratio of BiI_3 .

531 *Table 4. Secondary aging gravimetric analysis where $m_{\text{L,sa}}$ is the mass loss after secondary aging (mass%).*

Sample Name	$m_{\text{L,sa}}$ (mass%)
0 h TEO-5	-30, -31
1 h TEO-5	-22, -19
3 h TEO-5	-10, -8
6h TEO-5	-2, -2
0h Bi-NPs	-39, -37
1 h Bi-NPs	-23, -22
3 h Bi-NPs	1, 2
6 h Bi-NPs	1, 2

532

5. Summary and conclusions

533 Mechanically robust xerogels were prepared with up to 5 w/v % Bi-NPs and soybean oil as a
 534 porogen. The addition of more than 5 w/v % Bi NPs created a weak and delicate xerogel with low
 535 mechanical integrity (high friability). The addition of soybean oil reduced the robustness yet yielded a
 536 monolith with higher iodine capture. The successful and rapid synthesis of a monolithic silica xerogels with
 537 few processing steps could be beneficial for commercial production.

538 The iodine capture capacity was studied for unaged xerogels and xerogels aged in 1 v/v% NO₂ at
539 150°C. Most of the iodine was captured in unaged xerogels as BiI₃, and a combination of BiI₃ and BiOI
540 was found in aged xerogels. The unaged Bi-NPs captured iodine as both BiI₃ and BiOI. While the BiOI
541 content increased proportionally with aging time for both Bi-NPs and xerogels, Bi-NPs showed faster aging
542 compared to Bi-NPs loaded in xerogels. It was determined that BiI₃ was not a stable phase and transformed
543 to BiOI during the secondary aging process. This indicates that iodine captured as BiOI is desired over BiI₃
544 to prevent the loss of captured iodine as I₂(g).

545 HSC provided a robust framework for the reactions studied in this work. However, some of the
546 HSC predictions were not observed, such as the formation of Bi₅O₇I or the oxidation of BiOI to Bi₂O₃
547 during secondary aging. While this work showed the importance of capturing iodine as BiOI, studies using
548 in situ characterization should be performed to further understand the underlying mechanisms of these
549 phase transformations.

550 Acknowledgements

551 This work was supported by the United States Department of Energy (DOE) Nuclear Energy
552 University Program (NEUP) under contracts DE-NE0008900 and DE-NE0008236, the WTP project office
553 in the DOE Office of River Protection managed by Albert Kruger under contract 89304021CEM000014,
554 and the US Nuclear Regulatory Commission (USNRC) under contract 31310022M015. Dr. Kenny Osborne
555 and Ms. Nancy Hebron-Isreal serve as the program managers for the DOE and NRC awards, respectively.
556 Pacific Northwest National Laboratory (PNNL) is operated by Battelle Memorial Institute for the DOE
557 under contract DE-AC05-76RL01830. The purchase of the X-ray photoelectron spectrometer, housed in
558 the Materials and Electrochemical Research Laboratory, was supported by the National Science Foundation
559 through NSF MRI award 2117820.

560 References

- 562 1. Brook, B.W., et al., *Why nuclear energy is sustainable and has to be part of the energy mix*.
563 Sustainable Materials and Technologies, 2014. **1-2**: p. 8-16.
- 564 2. Center, B.P., *Annual energy outlook 2020*. Energy Information Administration, Washington, DC,
565 2020. **12**: p. 1672-1679.
- 566 3. Lawson, A., *Decarbonizing US power*. Climate innovation, 2018. **2050**.
- 567 4. Bertelsen, E.R., et al., *Electrochemistry of PUREX: R is for reduction and ion transfer*. Solvent
568 Extraction and Ion Exchange, 2022. **40**(1-2): p. 64-85.
- 569 5. McKibben, J.M., *Chemistty of the purex process*. Radiochimica Acta, 1984. **36**(1-2): p. 3-16.
- 570 6. Henrich, E., et al., *Improved iodine and tritium control in reprocessing plants*. 1981.

571 7. Riley, B.J., et al., *Evaluation of Getter Metals in Na-Al-Si-O Aerogels and Xerogels for the Capture*
572 *of Iodine Gas*, in *ACS Applied Materials and Interfaces*. 2020, American Chemical Society. p.
573 19682-19692.

574 8. Bruffey, S.H., et al., *A Literature Survey to Identify Potentially Volatile Iodine-Bearing Species*
575 *Present in Off-Gas Streams*. 2015, Office of Scientific and Technical Information (OSTI).

576 9. Paviet-Hartmann, P., W. Kerlin, and S. Bakhtiar, *Treatment of gaseous effluents issued from*
577 *recycling—A review of the current practices and prospective improvements*. 2010.

578 10. Jubin, R., A. Jordan, and S. Bruffey, *Testing of an iodine and tritium removal system for advanced*
579 *tritium pretreatment off-gas*. 2018, U.S. Department of Energy, Oak Ridge National Laboratory.

580 11. Yadollahi, M., H. Hamadi, and V. Nobakht, *Capture of iodine in solution and vapor phases by*
581 *newly synthesized and characterized encapsulated Cu₂O nanoparticles into the TMU-17-NH₂*
582 *MOF*. *Journal of Hazardous Materials*, 2020. **399**: p. 122872.

583 12. Chen, G., et al., *Pitch-based porous polymer beads for highly efficient iodine capture*. *Journal of*
584 *Hazardous Materials*, 2022. **434**: p. 128859.

585 13. Liu, B., et al., *High efficient adsorption and storage of iodine on S, N co-doped graphene aerogel*.
586 *Journal of hazardous materials*, 2019. **373**: p. 705-715.

587 14. Zhao, Q., et al., *Controllable Synthesis of Porous Cu-BTC@polymer Composite Beads for Iodine*
588 *Capture*. *ACS Applied Materials & Interfaces*, 2019. **11**(45): p. 42635-42645.

589 15. Jiang, M., et al., *Novel synthesis of NaY-NH₄F-Bi₂S₃ composite for enhancing iodine capture*.
590 *Chemical Engineering Journal*, 2022. **443**.

591 16. Jordan, J.A. and R.T. Jubin. *Stability of Tritium and Iodine Sorbents in TPOG Conditions*. 2017. Oak
592 Ridge, TN (United States).

593 17. Muhire, C., et al., *An overview on metal Oxide-based materials for iodine capture and storage*, in
594 *Chemical Engineering Journal*. 2022, Elsevier B.V. p. 133816.

595 18. Tesfay Reda, A., et al., *Bismuth-impregnated aluminum/copper oxide-pillared montmorillonite*
596 *for efficient vapor iodine sorption*, in *Separation and Purification Technology*. 2021, Elsevier B.V.
597 p. 118848.

598 19. Umadevi, K. and D. Mandal, *Performance of radio-iodine discharge control methods of nuclear*
599 *reprocessing plants*, in *Journal of Environmental Radioactivity*. 2021, Elsevier Ltd. p. 106623.

600 20. Wiechert, A.I., et al., *Capture of Iodine from Nuclear-Fuel-Reprocessing Off-Gas: Influence of*
601 *Aging on a Reduced Silver Mordenite Adsorbent after Exposure to NO/NO₂*. *Acs Applied*
602 *Materials & Interfaces*, 2020. **12**(44): p. 49680-49693.

603 21. Choi, S., Y. Nan, and L.L. Tavlarides, *Kinetics of aging process on reduced Ag exchanged*
604 *mordenite in dry air and humid air*. *AIChE Journal*, 2021. **67**(8).

605 22. Choi, S., Y. Nan, and L.L. Tavlarides, *Aging kinetics on silver-functionalized silica aerogel in off-*
606 *gas streams including dry air, humid air, NO and NO₂*. *Chemical Engineering Journal Advances*,
607 2021. **8**: p. 100191.

608 23. Matyáš, J., E.S. Ilton, and L. Kovařík, *Silver-functionalized silica aerogel: towards an*
609 *understanding of aging on iodine sorption performance*. *RSC Advances*, 2018. **8**(56): p. 31843-
610 31852.

611 24. Bruffey, S.H., K.K. Patton, and R.T. Jubin, *Complete Iodine Loading of NO Aged Ag⁰-functionalized*
612 *Aerogel*. 2015, Office of Scientific and Technical Information (OSTI).

613 25. Asmussen, R.M., et al., *Silver-functionalized silica aerogels and their application in the removal*
614 *of iodine from aqueous environments*. *Journal of hazardous materials*, 2019. **379**: p. 119364.

615 26. Yang, J.H., et al., *Novel synthesis of bismuth-based adsorbents for the removal of 129I in off-gas*.
616 *Journal of Nuclear Materials*, 2015. **457**: p. 1-8.

617 27. Zou, H., et al., *Novel synthesis of Bi-Bi₂O₃-TiO₂-C composite for capturing iodine-129 in off-gas*.
618 *Journal of hazardous materials*, 2019. **365**: p. 81-87.

619 28. Xian, Q., et al., *Facile synthesis of novel BiO-SBA-15 adsorbents by an improved impregnation*
620 *reduction method for highly efficient capture of iodine gas*. *Journal of Hazardous Materials*,
621 2022. **424**: p. 127678.

622 29. Yang, J.H., et al., *Bismuth-embedded SBA-15 mesoporous silica for radioactive iodine capture and*
623 *stable storage*, in *Journal of Nuclear Materials*. 2015, Elsevier B.V. p. 556-564.

624 30. Al-Mamoori, A., et al., *Development of bismuth-mordenite adsorbents for iodine capture from*
625 *off-gas streams*. *Chemical Engineering Journal*, 2020. **391**: p. 123583.

626 31. Baskaran, K., et al., *Evaluating the Physisorption and Chemisorption of Iodine on Bismuth-*
627 *Functionalized Carbon Foams*. *ACS Materials Letters*, 2022. **4**: p. 1780-1786.

628 32. Tian, Z., et al., *Comprehensive comparison of bismuth and silver functionalized nickel foam*
629 *composites in capturing radioactive gaseous iodine*, in *Journal of Hazardous Materials*. 2021,
630 Elsevier B.V. p. 125978.

631 33. Chee, T.S., et al., *Efficient capture of radioactive iodine by a new bismuth-decorated*
632 *electrospinning carbon nanofiber*, in *Journal of Nuclear Materials*. 2020, Elsevier B.V.

633 34. Tian, Z., et al., *Novel bismuth-based electrospinning materials for highly efficient capture of*
634 *radioiodine*, in *Chemical Engineering Journal*. 2021, Elsevier B.V. p. 128687.

635 35. Han, S., W. Um, and W.-S. Kim, *Development of bismuth-functionalized graphene oxide to*
636 *remove radioactive iodine*. *Dalton Transactions*, 2019. **48**(2): p. 478-485.

637 36. Matyas, J., et al. *Functionalised silica aerogels: Advanced materials to capture and immobilise*
638 *radioactive iodine*. in *Ceramic Engineering and Science Proceedings*. 2011. American Ceramic
639 Society, Inc., 735 Ceramic Place Westerville OH 43081

640 37. Li, M., et al., *A novel nanocomposite based silica gel/graphene oxide for the selective separation*
641 *and recovery of palladium from a spent industrial catalyst*. *Chemical Engineering Journal*, 2020.
642 **386**: p. 123947.

643 38. Mineo, H., et al., *A simple model predicting iodine profile in a packed bed of silica-gel*
644 *impregnated with silver nitrate*. *Journal of nuclear science and technology*, 2002. **39**(3): p. 241-
645 247.

646 39. Wang, D., et al., *Aqueous phase adsorption of toluene in a packed and fluidized bed of*
647 *hydrophobic aerogels*. *Chemical Engineering Journal*, 2011. **168**(3): p. 1201-1208.

648 40. Soelberg, N. and T. Watson, *Deep bed adsorption testing using silver-functionalized aerogel*.
649 2012, Idaho National Lab.(INL), Idaho Falls, ID (United States).

650 41. Hosticka, B., et al., *Gas flow through aerogels*. *Journal of non-crystalline solids*, 1998. **225**: p.
651 293-297.

652 42. Beurroies, I., et al., *Gas permeability of partially densified aerogels*. *Journal of non-crystalline*
653 *solids*, 1995. **186**: p. 328-333.

654 43. Baskaran, K., et al., *Sol-gel derived silica: A review of polymer-tailored properties for energy and*
655 *environmental applications*. *Microporous and Mesoporous Materials*, 2022: p. 111874.

656 44. Reynes, J., T. Woignier, and J. Phalippou, *Permeability measurement in composite aerogels:*
657 *application to nuclear waste storage*. *Journal of non-crystalline solids*, 2001. **285**(1-3): p. 323-
658 327.

659 45. Woignier, T., et al., *The use of silica aerogels as host matrices for chemical species: Different*
660 *ways to control the permeability and the mechanical properties*. *Journal of non-crystalline solids*,
661 2004. **350**: p. 299-307.

662 46. Kim, S.J., G. Chase, and S.C. Jana, *Polymer aerogels for efficient removal of airborne*
663 *nanoparticles*. *Separation and Purification Technology*, 2015. **156**: p. 803-808.

664 47. Baskaran, K., et al., *Membrane synthesis via in-situ pore formation in silica gels through dynamic*
665 *miscibility with soybean oil*. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*,
666 2022. **636**: p. 128183.

667 48. Etienne, P., et al., *Slow crack growth in aerogels*, in *Journal of Non-Crystalline Solids*. 1995. p. 19-
668 26.

669 49. Yang, K., et al., *Structural analysis of embedding polyethylene glycol in silica aerogel*.
670 *Microporous and Mesoporous Materials*, 2021. **310**.

671 50. Riley, B.J., et al., *Silver-Loaded Xerogel Nanostructures for Iodine Capture: A Comparison of*
672 *Thiolated versus Unthiolated Sorbents*. *ACS Applied Nano Materials*, 2022. **5**(7): p. 9478-9494.

673 51. Liu, N., et al., *Construction of Microporous Lignin-Based Hypercross-Linked Polymers with High*
674 *Surface Areas for Enhanced Iodine Capture*. *ACS Applied Polymer Materials*, 2021. **3**(4): p. 2178-
675 2188.

676 52. Chen, P., et al., *Iodine Capture Using Zr-Based Metal-Organic Frameworks (Zr-MOFs):*
677 *Adsorption Performance and Mechanism*. *ACS Applied Materials & Interfaces*, 2020. **12**(18): p.
678 20429-20439.

679 53. Wang, L.Y., et al., *Thiophene-based MOFs for iodine capture: Effect of pore structures and*
680 *interaction mechanism*. *Chemical Engineering Journal*, 2021. **425**.

681 54. Astuti, Y., et al. *Synthesis of α -Bismuth oxide using solution combustion method and its*
682 *photocatalytic properties*. in *IOP Conference Series: Materials Science and Engineering*. 2016. IOP
683 Publishing.

684 55. Yang, H., J. Irudayaraj, and M.M. Paradkar, *Discriminant analysis of edible oils and fats by FTIR,*
685 *FT-NIR and FT-Raman spectroscopy*. *Food Chemistry*, 2005. **93**(1): p. 25-32.

686 56. Kaur, A., et al., *Changes in chemical properties and oxidative stability of refined vegetable oils*
687 *during short -term deep -frying cycles*. *Journal of Food Processing and Preservation*, 2020. **44**(6).

688 57. Guillen, M.D. and N. Cabo, *Some of the most significant changes in the Fourier transform*
689 *infrared spectra of edible oils under oxidative conditions*. *Journal of the Science of Food and*
690 *Agriculture*, 2000. **80**(14): p. 2028-2036.

691 58. Zulkifli, Z.A., K.A. Razak, and W.N.W.A. Rahman. *The effect of reaction temperature on the*
692 *particle size of bismuth oxide nanoparticles synthesized via hydrothermal method*. in *AIP*
693 *Conference Proceedings*. 2018. Author(s).

694 59. Ji, Z., et al., *Fabrication of Carbon-Modified BiOI/BiOIO₃ Heterostructures With Oxygen*
695 *Vacancies for Enhancing Photocatalytic Activity*. *Catalysis Letters*, 2018. **148**(11): p. 3349-3362.

696 60. Boopathi, K.M., et al., *Solution-processable bismuth iodide nanosheets as hole transport layers*
697 *for organic solar cells*. *Solar Energy Materials and Solar Cells*, 2014. **121**: p. 35-41.

698 61. Intaphong, P., et al., *Sonochemical synthesis and characterization of BiOI nanoplates for using as*
699 *visible-light-driven photocatalyst*. *Materials Letters*, 2018. **213**: p. 88-91.

700 62. Salaün, F., C. Butstraen, and E. Devaux, *Sol-Gel Microencapsulation Based on Pickering Emulsion,*
701 *in Science and Technology Behind Nanoemulsions*. 2018, InTech.

702

703

704