

Evaluation of Metal Oxide Coated Stainless Steel As a Potential Anode for Pyroprocessing

Craig Moore¹, Jeremy Moon², Jerry Howard¹ and Dev Chidambaram² © 2022 ECS - The Electrochemical Society

ECS Meeting Abstracts, Volume MA2022-02, C03: Corrosion in Nuclear Energy Systems: From Cradle to Grave 2

Citation Craig Moore et al 2022 Meet. Abstr. MA2022-02 776

DOI 10.1149/MA2022-0212776mtgabs

Jeremy Moon https://orcid.org/0000-0001-5326-7882

Abstract

Pyroprocessing is a potential route to close the nuclear fuel cycle. Used nuclear fuel (UNF) is electrolytically reduced from UO₂ to U⁰ at a stainless-steel cathode while oxygen evolution occurs at a platinum anode in a molten LiCl-Li₂O environment. Platinum is consumed during this process as a result of the formation and spallation of lithium platinate. To increase the economic viability of pyroprocessing, alternative low-cost, electrochemically efficient materials are needed to replace platinum. In this study, metal-oxide coated 316L stainless streel rods were explored as potential replacements. The characteristics of these coatings in molten LiCl-Li₂O was evaluated through electrochemical techniques. The surface chemistry of the coatings was explored through X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy and scanning electron microscopy before and after exposure to molten salts to understand the degradation of the coatings. Results detailing the performance of the coatings will be presented.

Export citation and abstract

BibTeX

RIS

This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

¹ University of Nevada Reno

² University of Nevada, Reno

CERN COURIER LIVE WEBINARS | Click for our list

2. The axion search programme at DESY. 2 p.m. GMT.

You may also like JOURNAL ARTICLES High Energy SAXS-Waxs Studies on the Fluid Structure of Molten LiCl-Li Solutions Long-Term Corrosion Performance of Stainless Steel 316 in Molten LiCl-Li₂o-Li Review—Metallic Lithium and the Reduction of Actinide Oxides Reduction of ZrO₂ in LiCl-Li₂O Melt During Electrolysis Advanced Characterization of Molten Salts Effect of Metallic Li on the Corrosion Behavior of Inconel 625 in Molten LiCl-Li₂O-Li