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Abstract—In this paper, we develop a novel and safe control
design approach that takes demonstrations provided by a human
teacher to enable a robot to accomplish complex manipulation
scenarios in dynamic environments. First, an overall task is
divided into multiple simpler subtasks that are more appropriate
for learning and control objectives. Then, by collecting human
demonstrations, the subtasks that require robot movement are
modeled by probabilistic movement primitives (ProMPs). We also
study two strategies for modifying the ProMPs to avoid collisions
with environmental obstacles. Finally, we introduce a rule-base
control technique by utilizing a finite-state machine along with
a unique means of control design for ProMPs. For the ProMP
controller, we propose control barrier and Lyapunov functions
to guide the system along a trajectory within the distribution
defined by a ProMP while guaranteeing that the system state
never leaves more than a desired distance from the distribution
mean. This allows for better performance on nonlinear systems
and offers solid stability and known bounds on the system state.
A series of simulations and experimental studies demonstrate the
efficacy of our approach and show that it can run in real time.

Note to Practitioners—This paper is motivated by the need
to create a teach-by-demonstration framework that captures the
strengths of movement primitives and verifiable, safe control.
We provide a framework that learns safe control laws from a
probability distribution of robot trajectories through the use of
advanced nonlinear control that incorporates safety constraints.
Typically, such distributions are stochastic, making it difficult to
offer any guarantees on safe operation. Our approach ensures
that the distribution of allowed robot trajectories is within
an envelope of safety and allows for robust operation of a
robot. Furthermore, using our framework various probability
distributions can be combined to represent complex scenarios
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in the environment. It will benefit practitioners by making it
substantially easier to test and deploy accurate, efficient, and
safe robots in complex real-world scenarios. The approach is
currently limited to scenarios involving static obstacles, with
dynamic obstacle avoidance an avenue of future effort.

Index Terms— Motion control, motion and path planning,
learning from demonstration, optimization and optimal control,
robot safety.

I. INTRODUCTION

OBOTS are adept at structured repetitive tasks. However,

modern robotic tasks are moving towards reduced struc-
ture where items to be handled are in various locations and
obstacles may enter the workspace. Completing such tasks in
dynamic environments with fixed, preprogrammed movements
is not feasible. Moreover, increased proximity between robots
and humans working in shared spaces inevitably raises the
issue of safety. In fact, safety is a major limiting factor
for the development of autonomous robotic partners [1].
Consequently, robot systems need to be capable of detecting
task variations, and their motion planning and control algo-
rithms must be flexible enough to allow for variation while
guaranteeing safety [2]. In this work, we address the following
problem: how to synthesize a controller by learning from and
imitating a human teacher to simultaneously enable a robotic
arm to accomplish manipulation tasks while ensuring safety
constraints.

A. Motion Planning via Learning From Demonstration

Robot motion planning research has provided a variety
of successful frameworks to generate trajectories [3]. Yet,
these frameworks can be difficult to implement in environ-
ments without a predefined map. In addition, motion planning
requires the selection of algorithms, the design of cost func-
tions, and other operations that are outside the expertise of
nontechnical users. Learning from demonstration is a paradigm
that has played a significant role in addressing the issue
of scalability in robot learning [4], [5]. By relying on the
presence of a human teacher, it can avoid the drawbacks
inherent in traditional robot motion planning. One approach
to learning via demonstration is the use of parameterized
movements, known as movement primitives (MPs), to encode
and generalize human demonstrations for training robots.
Probabilistic movement primitives (ProMPs) provide a distri-
bution of trajectories learned from multiple demonstrations.
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In [6], the design of a stochastic ProMP feedback controller
was studied by exploiting the property of the covariance
derivatives, which can be explicitly computed. A model-free
ProMP controller that adapts movement to force-torque input
was designed in [7]. In [8], a model predictive control-based
ProMP controller was created for a linear discrete-time system
model. Nonetheless, ProMP techniques have notable defi-
ciencies. In the aforementioned works, a linearized model
of the system is used for designing the controller. This
makes the controller less applicable for nonlinear systems
(e.g., robotics, autonomous vehicles, etc.). ProMPs and their
resulting controllers are nontrivial to implement, sensitive to
noise, and highly dependent upon design parameters and initial
conditions. This significantly reduces their usability for non-
experts. In addition, since ProMPs are by definition stochastic,
the distribution of trajectories may have large support and
result in trajectories that deviate from the training set.

On the other hand, it is difficult or even impossible to model
a robot’s complex manipulation scenarios in unstructured
and dynamic environments with a single, fixed MP/ProMP.
ProMPs can be combined and blended in various ways. They
can be smoothly switched between and modified to force the
mean trajectories through specific via-points. This provides
a wide variety of trajectory distributions to handle different
situations [9]. Investigators have leveraged this capability in
numerous ways. A novel method for segmenting demonstra-
tions, recognizing repeated skills, and generalizing complex
tasks from unstructured demonstrations was proposed in [10]
and [11]. The authors of [12] and [13] developed a new
method for learning to sequence single movements from
kinesthetic demonstrations in order to reproduce a complex
task. A graph structure, called a sequence graph, was utilized
for representing sequences of robot movements. Learning
the transition behavior was formulated as a classification
problem. In [14], a finite-state machine (FSM) and DMPs
were combined for the purpose of task representation, and
a Bayesian nonparametric hidden Markov model was used for
robot movement recognition. In this work, we incorporate a
FSM and ProMPs to be able to represent the whole complex
task in the environment. Furthermore, we integrate concepts
from optimal and safe control theory to execute the learned
trajectories.

B. Safe Robot Control Approaches

Real-time safety in safety-critical dynamical systems is
an important problem that has received considerable atten-
tion [15]. This issue has been investigated by designing
polynomial barrier certificates/functions, using offline iterative
algorithms based on sum-of-squares optimization, to verify
safety for a given dynamical system [16]. For example,
the notion of barrier certificates/functions was extended for
synthesizing real-time safe control laws for dynamical systems
via control barrier functions (CBFs) in [17].

CBFs seamlessly integrate with control Lyapunov functions
(CLFs) to offer stability while respecting limits and safe
regions of the state space [18], [19], [20]. In addition, CBF
and CLF controllers typically solve a constrained quadratic
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program (QP) to find an optimal controller at runtime. This
allows the system to minimize the control effort while ensuring
stability and safety. Other tasks formulated as cost functions or
constraints can be included as well. A downside to CBFs and
CLFs is the complexity in defining barriers and trajectories.
Recent efforts to automate the definition of CBFs and CLFs
include mapping temporal logic statements with respect to
performance requirements [21] and fitting piecewise-linear
barrier functions to trained obstacles or regions [22].

The primary goal of CLF/CBF controllers is to enable robots
to satisfy certain joint space, workspace, and velocity/force
constraints, or to guarantee obstacle avoidance. CBFs were
utilized in [23] to design a constraint-enforcing controller for a
seven degrees of freedom (DoF) anthropomorphic manipulator.
In [19], the concept of robust CBFs was proposed to ensure
constraint satisfaction for mechanical systems in the presence
of sampling effects and model uncertainties. Moreover, the
application of the proposed method to the problem of robotic
grasping was studied to ensure an object remains inside the
grasp while manipulating it to the reference trajectory. CBFs
were also used in [24] to build safety barriers around each
robot link and guarantee that the body of the robot can
avoid collisions with obstacles. A new method using CBFs
was proposed in [25] to achieve smooth transitions between
sequential reachability tasks for a continuous-time mobile
robotic system.

In contrast to the aforementioned works, we introduce a
novel means of automating the design of CLFs and CBFs
from ProMPs. We aim to design a CLF/CBF-based framework
that guarantees a robot manipulator stays in a safe distribution
obtained from the ProMPs. Specifically, the ProMP mean is
used to define a CLF, and barriers for the CBFs are defined
using the standard deviation of the distribution.

C. Contributions

The overarching goal of this work is to develop a novel, safe
control architecture by learning to imitate a human expert for
solving complex robot manipulation tasks. To do this, we first
divide a whole task into multiple simpler subtasks. Tasks that
require movement are modeled by ProMPs. Next, we combine
a FSM with ProMPs, whereby the current and probable future
states dictate a sequence of ProMPs. Finally, we introduce a
unique control method that uses the distribution delivered by
each ProMP to define a set of CLFs and CBFs.

Our controller not only enjoys the stability and robustness
guarantees possessed by CLF and CBF controllers, but it can
also guarantee that the system never leaves a neighborhood
defined by the training set. Furthermore, we demonstrate the
effectiveness and computational efficiency of our approach
through simulations and experiments with a two-link and a
six-link robot. Examples of generated control trajectories for
a Universal Robots URS5 are shown in Fig. 1.

A preliminary version of this work was presented in [26]
where we first described how to design a CBF/CLF controller
based on a ProMP trained in the joint space of a robot.
Simulations of the approach with multiple robot systems were
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Fig. 1. Robotic setup used in the experimental evaluation. Our controller
guarantees that the system never leaves a neighborhood defined by the training
set and allows for a straightforward way to define trajectories that enforce
safety constraints. “A” denotes the starting point, “B”™ is the pick location,
“C” indicates the place location, and “O™ are the obstacles.

presented for verification and demonstration. In this paper,
we make the following extensions.

« We add a high-level FSM to govern the robot across a

task by switching between ProMP-defined controllers.

« Using our method, a CBF/CLF controller can be designed

based on ProMPs trained in the joint space or workspace.

« We develop multiple approaches to obstacle avoidance

such as adding via-points or modifying the ProMP.

« We include extensive simulations and experimental vali-

dation through a pick-and-place task.

The remainder of this paper is structured as follows.
In Section III, ProMPs, CBFs, and CLFs are reviewed. The
problem is described in Section II. Our approach for a ProMP
controller based on CLFs and CBFs is detailed in Section IV.
In Section V, simulation results are presented. The experimen-
tal evaluation is discussed in Section VI. Section VII provides
a discussion on possible future work. Finally, we conclude the
paper in Section VIII.

II. PROBLEM FORMULATION

Notation: Given a matrix A, let AT denote its transpose.
We indicate the identity and zero matrices, with appropriate
dimensions, by I and 0, respectively. Let » be the symmetric
entries of a matrix. For a vector field f;(x) and vector of vector
fields F(x) = [fi(x),..., fu(x)], let Ly and L denote,
respectively, the Lie derivative along f;(x) and the vector of
Lie derivatives in the directions fi(x): Ly = [Ly,..., L]
A zero-mean i.i.d. Gaussian distribution with mean m and
covariance X is denoted A (m, X).

A. System Modeling

Let p € R"» be the Cartesian coordinates of the robot’s end-
effector. By considering a serial n;, DoF manipulator, ¢ € Q
is a generalized coordinate (joint position) where @ C R"
denotes the configuration space of the robot. We consider the
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Fig. 2. Overall structure of the proposed system where (a) shows a pick-and-
place task, (b) is the process of breaking the complete task into a number of
simpler subtasks, (c) demonstrates the ProMP training, and (d) is the control
architecture for accomplishing the complete task as well as assuring safety.

equations of motion for a robot given in the general form by
the Euler-Lagrange equations

D(@)§+H(q,q) =T, (1)

where D(q) is the inertia matrix, H(q, q) = C(q, §)g+ K (q)
is a vector containing the Coriolis and gravity terms, and 7 is a
vector of applied torques. We consider the forward kinematics
map f, : R" — R" that determines task coordinates p as a
function of the generalized coordinates g, i.e.,

P=fr@): (@)

(1) and (2) both encompass the dynamic and kinematic models
of the robotic manipulators.

B. Problem Overview

We first segment a task into simpler subtasks, define the
subtasks via ProMPs, and then switch between them using
a FSM to achieve a motion primitive representation of the
whole task. Consider the pick-and-place task illustrated in
Fig. 2(a). First, the complete task is broken into a multiple
simpler subtasks, as illustrated in Fig. 2(b). The subtasks are
categorized into two groups: (i) tasks that require robot joint
movement (e.g., moving to the place position from the pick
position); (ii) tasks that do not require robot movement (e.g.,
closing or opening the gripper). Second, for each subtask,
we collect human demonstrations and then train a ProMP
distribution that captures the mean behavior and the teacher’s
variability over time (Fig. 2(c)). Third, we devise a new control
approach for accomplishing the task while guaranteeing the
safety of the robot (Fig. 2 (d). This approach incorporates a
FSM, trained ProMPs, a CLF, and CBFs (Fig. 3).

The FSM considers each subtask as a different state and
switches between them automatically according to the com-
mands of the human user and information from environmental
sensors. The states of the FSM, in Fig. 3, are catego-
rized into two groups: (i) states that implement open-loop
control (shaded blue); (ii) states that implement our CLF/CBF-
based ProMP controller (shaded orange). The CLF/CBF-
based ProMP controller is formulated such that the system
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output tracks a trajectory within the distribution generated
by a joint space or workspace ProMP. To this end, we first
construct a nonlinear inner-loop control law founded on the
feedback linearization of (1), or (1) and (2). Then, an outer-
loop controller based on a CLF/CBF is designed using the
distribution parameters of ProMP. The general structure of our
system is shown in Fig. 3.

II1. HIGH-LEVEL CONTROL AND
TRAJECTORY GENERATION

In this section, we introduce the FSM, ProMPs, as well as
ProMP-based obstacle avoidance.

A. Finite-State Machines

A FSM represents a finite number of states along with the
transitions between those states. A system can be in exactly
one state at a given time, and the transitions are governed by
the current state, system measurements, inputs, etc. [27]. For
example, a FSM representing a pick-and-place task for a robot
manipulator is shown in Fig. 4. From a starting position, the
robot first moves towards the pick position to grab an object.
Next, the robot grabs the object and moves towards the place
position. The robot places the object and finally moves back
towards the starting position. It should be noted that during the
process, the robot must avoid collisions with static/dynamic
obstacles in the environment.

Let (g,l,0) be the input signals that allow the FSM to
switch between different states, defined as follows.

1) Goal Information (g): The human’s expected action for
the robot is denoted by this signal. If there is no new pick-and-
place goal or when the robot completes its assigned pick-and-
place task, then g = 0. When g = 1, a new pick-and-place
goal will be set for the robot and it will move to the pick
location to grasp an object. If g = 2, then the act of object
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Fig. 4. FSM for a pick-and-place scenario where A denotes the “and”
operator. Orange states correspond to the CLF/CBF-based ProMP controllers
and blue states are associated with the open-loop controllers.

grasping has been completed and thus the robot should move
to the place position.

2) Positional Information (I): This signal indicates the most
recent location the robot has reached, i.e., the start, pick,
or place location. When the robot reaches the starting position,
I = 0. If the robot reaches a pick or place location, then ! will
change to 1 or 2, respectively.

3) Obstacle Information (0): The presence of an obsta-
cle near the robot is indicated by this signal. Specifically,
0 = 0 means there is no obstacle, while 0 = 1 indicates
an obstacle has been detected by the robot’s camera.

Based on these input signals, the FSM will switch between
different states in order to complete the assigned task. The
following states represent the output of the FSM.

4) Go to Start Location: The robot moves to its starting
position.

5) Obstacle Avoidance: Given the type of obstacle (e.g.,
static or dynamic), the robot will choose between the following
two strategies: “Stop” or “Avoid Obstacle”. In case of dynamic
obstacles, the robot will stay in its current position until the
path is cleared to avoid a collision. For static obstacles, the
robot will find a new ProMP to avoid the obstacle through an
approach discussed in IT1I-B2.

6) Go to Pick Location: The robot moves toward the
picking location to grab the assigned object.

7) Go to Place Location: The robot is expected to go to its
final position to deliver the object.

8) Grasp Object: The robot’s gripper picks the object.

9) Release Object: The robot’s gripper places the object.

10) Rest Mode: The robot stays in its starting position and
is ready to receive new commands and execute the assigned
tasks.

B. Distribution Generation

1) Probabilistic Movement Primifives: ProMPs provide a
parametric representation of trajectories that can be executed
in multiple ways through the use of a probability distribution.
In addition, basis functions are used to reduce the model
parameters and aid learning over the demonstrated trajectories.
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The trajectory distribution can be defined and generated in
any space that accommodates the system (e.g., joint space or
workspace). In this work, we consider joint space trajectories.

Within a ProMP, the execution of a trajectory is modeled
as a set of robot positions, ¢; = {q:(k)} (or & = {pi(k)}),
where k=0,...,K, gi(k) € R (or pi(k) € R) is the
state variable sampled at time k, and i € {1,...,n4} (or
i €{l,...,np}) is the joint (or Cartesian) index of a robot.
Let @ (k) = [¢(k) g‘&(k)]T € R**L be a time-dependent basis
function matrix where L is the number of basis functions and
let w; € R™*L be a matrix of weighting terms. A linear basis
function model is then given by

qi (k)
xi(k) = [qh-(k)] = O(k)w; + &, (3)
or
oy = [P _ ,
xi(k) = [ﬁf(k)] = O(k)w; + &,. (4)

In (3) and (4), a common variable x; is used to represent the
system (robot) states in either joint space (g;, §;) or workspace
(pi, pi)- This is due to the fact that our approach works in
either the joint space or workspace with no modifications.
Gaussian noise is denoted by &, ~ N(0, Z,,). Thus, the
ProMP trajectory is represented by a Gaussian distribution
over the weight vector w; and the parameter vector §; =
{#w;» Zw, }, which simplifies the estimation of the parameters.
We marginalize out w; to create the trajectory distribution, i.e.,

P, 0;) = / P(gi | wi)P(w;; 0;)dw;. (5)
In (5), the distribution P(¢;,6;) defines a hierarchical
Bayesian model over the trajectories ; [6] and P(w; |6;) =
N (w; | ftw;» Luw,)- In an MP representation, the parameters of
a single primitive must be easy to obtain from demonstrations.
The distribution of the state P(x;(k); 6;) is

Pxi(k); 0)=N (xi (k) | k) ptu;, ©(K) Zy, @ (k) T+Zs). (6)

The mean trajectory ji;(k) € R? and trajectory covariance
matrix X;(k) € R?>*? can be generated from the ProMP
distribution using w;, ®(k), and (6) as

ai(k) = ©k)pw;,
%i(k) = ®K)Z,, ®Kk)" + Xy

)
(®)

Multiple demonstrations are required to learn a distribution
over w;. We use a combination of radial and polynomial
basis functions for training the ProMP. The basis function is
chosen based on the type of robot movement, which can be
either rhythmic or stroke-based. From the demonstrations, the
parameters ¢; may be estimated using maximum likelihood
estimation [28]. However, this can result in unstable estimates
of the ProMP parameters when there are insufficient demon-
strations. Our method utilizes regularization to estimate the
ProMP distribution similar to Gomez-Gonzalez et al. [29].
We maximize §; for the posterior distribution over the ProMP
using expectation maximization,

P@O; | xi(k)) oc P(@;)P(xi(k)|8;). 9)

In addition, we use a normal-inverse-Wishart distribution as a
prior distribution P(6;) to increase stability when training the
ProMP parameters [29].

2) ProMP-Based Obstacle Avoidance: Since all trajectories
in the training set are by definition obstacle free, we would
expect that f;(k) will also be obstacle free. However, there
could be an unusual training set where the operator trains
a robot to move multiple ways around an obstacle or an
obstacle could be added to a previously safe workspace and
require a new ji; (k). In such cases, obstacle avoidance can be
accomplished by adding via-points or modifying j; (k) through
an optimization process.

The via-points modification causes the trajectory to move
through a desired position §;(k) (or p;(k)) and covariance
$; at a specific time k in the ProMP trajectory. A Gaussian
trajectory distribution p(¢;|w;) can be modified as

w = Huw; T L(‘?t(k) - (D(k)ﬂwf)a
v = T —LOK)Zo,,

(10)
an

1 =

where
L=3%,0k)E +0KkZ, 0k )",

and i, and £, is the new mean and covariance for the
ProMP distribution. After modulation of the ProMP through
via-points, the revised trajectory will stay within the original
ProMP distribution.

We also propose another form of trajectory modification
using an optimization process. Optimization-based ProMP tra-
jectory modification has been demonstrated by [30] and [31].
However, our method produces a trajectory within the ProMP
distribution that can avoid point obstacles with a specified
distance. To do this, we find a new weight vector ; for
a ProMP represented by # = {pu,, Xu,} such the new
ProMP ftrajectory stays within the ProMP distribution while
maintaining a safe distance from the obstacle. Let b be the
threshold of how far the mean of the new trajectory can
deviate from the mean of the old trajectory with respect to
the covariance. Let Oy be the position of the obstacle at time
k on the ProMP trajectory. The obstacle can be represented
by multiple points. Let D be the distance threshold for the
modified trajectory to avoid the obstacle. We propose the
following constrained optimization problem,

arg‘mjn (Ibl - ﬂwi)T(lf)" - luwi):

s.t. (O — ©(k)i) " A(O — @(k)idi) > D,
d(© k)i, Dk)pw,) < b,
O K) (i — pw,) = 0,

where 1 is a matrix used to prioritize the position and velocity
to avoid the obstacle and d is the Mahalanobis distance
between the new trajectory and the ProMP mean, i.e.,

d(@b;, Dpy,) = (Pid; — Opp,) (D, @)~ (P — D),

where the @ (k) dependence on k was dropped for clarity.
Both the via-point and optimization methods can be used

for obstacle avoidance while ensuring the mean of the mod-

ified trajectory is inside the original ProMP distribution.
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Fig. 5. Comparison between via-point and optimization-based ProMP mod-

ifications for obstacle avoidance. The top plot shows the modified trajectories
for one obstacle while the bottom plot shows the updated trajectories for three
obstacles.

Fig. 5 shows modified ProMPs based on the via-point and opti-
mization process. The via-point method has a smoother tran-
sition to avoid a point obstacle while the optimization-based
ProMP technique remains closer to the original ProMP when
clearing an obstacle.

IV. CONTROL CONSTRUCTION

In this section, we introduce the core components of
our control architecture including the feedback linearization
controller, CLF/CBF-based ProMP controller, condition for
switching between ProMP controllers, and open-loop con-
trollers. First, we design the inner-loop (feedback-linearization
controller) and outer-loop (CLF/CBF controller) such that the
following problem objectives are satisfied.

1) Design a feedback linearization controller to obtain a
linear and decoupled input-output closed-loop relation-
ship for the joint space or workspace error signal.

2) Create a CLF to stabilize the system such that Vi,
qi — u; or p; — p;, where p; is the first element
of ﬁj.
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3) Develop a CBF to guarantee that the error ef = ¢;—pu; Or
e/ = p; — p; satisfies the safety constraint Vi, |e] | < o;
or |ef| < oj, where o; is the (1, 1) element of Z;.
Then, we discuss the required conditions for switching
between different CLF/CBF-based ProMP controllers using
a FSM. Finally, we elaborate on our strategy for designing
open-loop controllers.

A. Inner-Loop Control Design

To address the first problem objective, we design a feedback
linearization controller for obtaining a linear relationship on
the joint space error ef, i=1,...,ng4, or workspace error ef s
i=1,...,np.

1) Joint Space Nonlinear Control: We define the joint space
error and trajectory vectors as e? = [ef,...,ef 1T and pu =
[en, -, ,unq]T, respectively. In this work, we limit ourselves
to relative degree-two systems. Using (1), we obtain the error
system as

¢(q,9)=—-D""(q)H(q,q)+ D't — ji. (12)

We can prescribe the following control law 7 to linearize the
nonlinear error system (12),

v = D(q)(D™ (q)H(q, ) + jt +), (13)

where v is an auxiliary feedback control value. This yields the

second order linear system from input v to output e,

&l =v. (14)

2) Workspace Nonlinear Control: The Jacobian matrix

J(g) = %‘;ﬂ € R"*" determines the relation between task

space and joint space velocities as well as between task-space
forces/torques f and joint torques 7,

(15)
(16)

P =J(q)4q,
t=J(@Q)"f.

Considering the robot dynamics (1) and the Jacobian matrix
J, the relationship between p and ¢ can be obtained as

p—Jq+ID@ 'H@,9)=ID@ . (A7)
Defining the workspace error vector as e” = [e],...,en 1",
we have
& =JG—JID(@)'H(q,§)+ID(@) 't —ji. (18)
We establish the control law 7z to linearize (18),
©=H(g, )+ D@I (—Iq+j+v), (19)

where J7 is the generalized inverse of J and v is the additional
control input. This yields the second-order linear system from
input v to output e”,

&P = . (20)
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3) Decoupled Linearized Models: For simplicity, we abuse
notation by using e in place of e” or e?. By defining n =
[e, €17, (14) or (20) can be written as a linear time-invariant

system,
. o 1 0
=10 o|"T |1

From there, n, (joint space) or n, (workspace) decoupled
systems can be obtained from (21),

(2D

ni = Fni + Gv;, (22)

T 01 T .
where n; = [e;, &]', F = 00 .G=[01]",i=1,...,n4
in case of joint space, andi = 1,..., n, in case of workspace.

B. Outer-Loop Control Design

The second problem objective is accomplished by ensuring
e¢; — 0. This is done by designing an appropriate CLE
To satisfy the third problem objective, it is sufficient to make
le;] < o;. This objective is satisfied by defining appropriate
CBFs. In the ensuing subsections, the appropriate CLFs and
CBFs are defined for the system in (22). Moreover, the i th
controller for each system in (22) is designed by combining
the corresponding CLFs and CBFs through a QP problem.

1) Control Barrier Functions: Consider the affine, nonlin-
ear system

i=f@)+G@u, 23)

where x € R”" denotes the state, u € R™ is the control input,
G=1Ig1,...,gnl,and f : R" - R" and g; : R" — R" are
locally Lipschitz vector fields. It is assumed that the system
in (23) is controllable. Let C be a safe set such that if x(t)
C Vi1, then the system remains safe. A smooth function A (x) :
R" — R is defined to encode a constraint on x such that

C = {x:h(x) =0},
oC = {x : h(x) =0},

Int(C) = {x: h(x) > 0}, (24)

where Int(C) and 8C denote the interior and boundary of C,
respectively.

Definition 1: [32] Given C and h, a function B : C — R
is a reciprocal CBF if there exists class K functions ai, as,
and a constant scalar y > 0 such that

1 1

- <B -

@) =PI Lamy

L;B(x)+ LgB(x)u — % <0. (25)

We propose two safety constraints for each system in (22).
More specifically, each system should satisfy —a; < ¢; < a;.
Consequently, we have the following two safety constraints

hiy = e +oi,
hi» = —e; + o;. (26)

From (26), we have multiple time-varying constraints that
should be satisfied simultaneously. For each system in (22),
it is easy to verify that L;e; = 0 and Lg Lre; # 0. Thus, the

safety constraint has a relative degree of two. For the relative
degree-two constraints, reciprocal CBF is defined as [33],

B, (n) = — ln( hij (n:) ) . beishyj (m)*

1+ hij(ni) 1+ bgijhij(ni)?
where j e {1,2} and ag;j, bg;; are positive scalars. Note
that the smaller the values of ag;; and bg;; are, the farther the
system will remain from the constraint surfaces. The following
control barrier condition should be satisfied for time-varying
constraints, which leads to time-varying CBFs,

OBj(ni) i <0. (28
ot Bj(n:)

2) Control Lyapunov Function: A CLF can be used to
design the control inputs of a dynamical system (23) to ensure
objectives such as stability, convergence to the origin (or other
set points), or convergence to a desired trajectory. In order
to have a construction similar to CBFs, we will consider
exponentially stabilizing CLFs [32].

Definition 2: In a domain X C R", a continuously differ-
entiable function V : X — R is an exponentially stabilizing
CLF (ES-CLF) if Vx € X there exists positive scalar constants
Ci, €2, ¢3 > 0 such that

(27)

LpBj(n:) + LgB;(n:)vi +

allx|? < V) < eollx| P,
LiV(x)+ LegV(x)u+c3V(x) <0. (29)
For each system in (22), we consider the ES-CLF [34],

1/ 0 1/ 0
Vfi (’?I) = '?;TI: KO‘ I]PI: KO‘ Iilm:

where ¢; is a positive scalar and P is a symmetric positive defi-
nite matrix that can be obtained by solving the continuous-time
algebraic Riccati equation,

(30)

F'P+PF—-PGG'P+1=0. (31)

In order to exponentially stabilize the system, we want to find
v; such that
Vel ) = LeVe (1) + Lo Ve (m)oi < =V (n), (32)
L
where c3; is a positive constant value.

3) Quadratic Program (QP): For each linearized, decoupled
system, a control input should be obtained that guarantees
adherence to both safety constraints given in (26). To compute
a single safe control, the CBF and CLF conditions are
combined through a QP by solving a constrained optimization
problem at each point in time [23]. To guarantee a feasible
solution for the QP, the CLF constraint in (32) can be relaxed
by &; > 0 [32] giving

LiVe(n) + Le Vol + 2 Va () <6 (33)

L

The QP should be designed to minimize the relaxation para-
meter while finding a feasible solution. Furthermore, the QP
should include a tunable weighting factor on &; such that
the user can mediate a trade-off between reducing tracking
error and control effort minimization in a way that safety is
always satisfied. In the following, n, (or n,) QPs are proposed
to unify ES-CLF and CBFs for each system in (22) into a
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Fig. 6. Switching between the safe sets. The orange and green regions show
the safe sets while the gray region represents the unsafe set. The system’s state
must be in the intersection of the safe sets when switching between them.

single controller. The n, (or np) QPs fori e {1,...,n4} (or
ief{l,...,np}), and j e {1, 2} are defined as

min
v;=[v;, 51T eR2
subject to LrV,, (1) + L Ve, (7)o

C .
+ Eiv (7:) < &, (CLF)

i
LrBj(ni) + LeBj(ni)v
oB;(n; -
J('?t)i Yi . (CBFs)
ot Bj(n:)

-
V; Hg\’;',

(34)

where H; :J:(l) pO ] and p,; € R, is a variable that can be
sci

chosen based on the designer’s assessment of weighting the
control inputs.

C. Switching Between CBF’s

In our proposed controller, switching between different
CBFs occurs when the FSM changes state. The required
condition to guarantee system safety when switching between
different CBFs is obtained as follows. Let C; and C; be
the respective safe sets before and after the occurrence of a
switch as depicted in Fig. 6. When the first CBF h(x, 1) is
replaced with the second CBF h;(x, f), the required condition
for guaranteeing system safety (i.e., assuring the invariance of
C, after the switch) is that the system state x should be in
the intersection of both sets C; and C;. Formally, a set C is
forward invariant if for every xo € C, x(t,xp) € C for all
t € I(xp), where I(xp) is the maximal interval of existence
of x(t,xp). Based on this fact, if the system’s state x is in
the intersection of C; and C,, then the new barrier function
hy(x,t) will make the new safe set C, invariant after the
switch. As a result, this condition assures the safety of the
system and it will be used to design the switches between
different CBF constraints in this work.

It is worth noting that there could be situations that prevent
the robot from entering the intersection of the two safe
sets in the planned time. Such situations might be due to
the appearance of new dynamic obstacles or changes in the
environment. Generally, in such cases the solution should wait
until the intersection is reached.
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Fig. 7. Training of the ProMPs for the second joint. The 50 input trajectories
are shown in red and the ProMP mean joint trajectories (u;) are shown in
dark green. A light-green fill shows u2 +a2.

D. Open-Loop Control Design

Within the FSM, some states do not require the effort of
training a ProMP or the complexity of the CBF/CLF controller.
For instance, the CLF/CBF-based ProMP controller can move
the robot within close proximity of an item, and a simple
open-loop or closed-loop controller (e.g., visual servoing) can
handle a grasping task. In this work, we define an open-loop
controller to actuate the gripper to pick up an object, release
the object, and halt the robot. Each ProMP ends at the desired
location to perform an open-loop gripper task. During a halt
state, all joints are locked.

V. SIMULATIONS

In this section, we demonstrate different aspects and capa-
bilities of our methodology for the ProMP control of a robotic
system. As previously stated, our methodology is capable
of controlling robot manipulators based on ProMPs trained
and generated either in the joint space or the workspace.
Accordingly, the problems of joint space and workspace
control of a two-link robot are respectively considered in
Sections V-A and V-B. The system models and proposed
real-time controller are simulated using MATLAB 2019a. All
computations were run on a Dell OptiPlex 7050 machine with
an Intel Core i7-7700X CPU and 8 GB of memory.

A. Case Study 1: Joint Space Control of Two-Link Robot

We consider a rigid, two-link robot with the dynamic model
of (1) and the following parameters [35]

D(g) [mil? +may(f + 13 + 2Ll cos(qa))  *
D=1 m@+hlcosgr) mal; |
. _ [—malil2 sin(g2)§2(241 + ¢2)
€@q.9) = | mali2g7 sin(ga) ’
K(q) = [(my + my)gly sin(q1) + maglsysin(qy + ¢2)
9) = i magls sin(q + q2) ’

where m, and m, are the link masses, [y and [, are the
lengths of the links, and g is the gravitational acceleration.
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Fig. 8. Results of the CLF/CBF-based ProMP controller for the second joint.
The safe region of y2 + o7 is shown as a filled “tube”. The control results in
different trajectories for distinct values of the weight psc2., but all trajectories
remain safe.

For the simulations, the values of these variables are selected
asm=1,my=1,11=1,1b=1,and g =9.8.

We generated 50 trajectories that achieve a goal position
from various starting positions while avoiding obstacles. Using
this dataset, we train a ProMP with Alg. 1 from [29].
We use L = 2 basis functions consisting of five radial basis
parameters. This result originally appeared in [26], and results
for both joints can be seen there. We present the results for a
single joint here. In Fig. 7 the training trajectories are shown
in red, the ProMP mean joint trajectories (u) are shown in
dark green, and in a light-green fill is u; + o5.

Three sets of simulations were conducted. In each simula-
tion, the CLF parameters are selected as ¢; = 0.1 and c¢3; =
0.5. In the first scenario, greater priority is given to the CLF
than CBF by choosing a high gain, i.e., ps;; = 200. Moreover,
the CBF design parameters are set to ag;; = ag;p = 20.1,
agy = agn = 20, bpn = bgin = 1, by = bpn = 0.9,
y1 = 10.1, and y» = 9. In the second scenario, ps. is
chosen as ps.1 = psc2 = 0.02, which implies less priority
to the CLF in comparison with the CBF. Moreover, the CBF
parameters in this scenario are similar to the first scenario.
To show the effects of changing the CBF parameters ag;;, bgij,
and y;, we consider another scenario. In the third scenario,
agn = agip = 1.1, apn = agn = 1.1, bpn = bpin = 04,
bEZ] = bggg = 0.5., "= 1.3, and Y2 = ].5], with Psci =
0.02 as in the second scenario. Consequently, the effects of
changing the CBF parameters can be concluded by comparing
the second and third scenarios.

The simulation results are exhibited in Fig. 8. In the first
scenario, by choosing a large value for p,; (more priority
to the CLF than CBF), the system output remains close
to the mean trajectory. However, in the second scenario,
by considering a small value for p,.; (more priority to the CBF
than CLF), the system remains safely inside the distribution
but does not necessarily stay close to the mean. In the third
scenario, it can be seen that by choosing smaller values for
agij, bgij, and y;, the system output can have more deviation
from the constraint surfaces, i.e., be closer to the mean

Psc;

Fig. 9. Control effort with respect to different values of Pgc;.

trajectory. In short, our method provides a valuable option to
the designer that grants differing levels of trajectory flexibility
while ensuring safety.

Moreover, our technique allows for prioritizing between
strict tracking of the ProMP mean, and “loose” but safe
tracking of mean trajectory which is not possible in the
native ProMP control design nor with only a CLF controller.
This enables us to design safe controllers with different
desired performance attributes from the viewpoint of control
effort, length of trajectories, etc. For example, the results of
simulation for different values of Psc; are shown in Fig. 9.
From Fig. 9, it is clear that by decreasing Psc; we can have
trajectories that require less control effort.

B. Case Study 2: Workspace Control of Two-Link Robot

To demonstrate the capabilities of our methodology in
safe workspace control design we consider a two-link robot
with the same dynamic model represented in Section V-A.
Moreover, the forward kinematics equations for the 2-DOF
robotic manipulator have been derived as [36]

p1 = I cos(qy) + Iz cos(g; + q2),

p2 = lisin(qy) + L sin(q + q2), (35)

where p; and p; are, respectively, the x and y position of the
robot’s end-effector. The Jacobian matrix J(g) can be used to
obtain the relationship between the end-effector velocity, p;,
and the joint velocities, ¢;, as well as to design the nonlinear
feedback linearization controller (19). This matrix is

B I:—l] sin(qy) — Ly sin(gy +q2) —lsin(q; + qg)] 36)

" | Lhcos(q1) +1acos(gi +q2)  lhcos(qi +q2) |

Consider the two regions A and B in the robot workspace
as demonstrated with blue ellipsoids in Fig. 10 (top). The
goal is to control the robot to move from A to B, and then
move back to region A from B. Moreover, we consider that
the robot encounters a temporary obstacle, such as a human
coworker, when it reaches region B. Hence, it should stop (stay
in region B) until the path is cleared to avoid a collision. The
task is modeled via a FSM with the following three states:
“Go to Region A”, “Go to Region B”, “Obstacle Avoidance”.
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Fig. 10. Results of the workspace ProMP controller for the x — y position
(top), the x position (middle), and the y position (bottom).

The robot motion between two regions A and B is modeled
via ProMPs. In Fig. 10 (middle) and (bottom), the mean of
the ProMP distributions are shown with dashed black lines and
the mean =+ variance bounds for the ProMPs from A fo B and
from B to A, respectively, are shown as filled tubes with light
blue and green.

The CLF parameters are selected as ¢ = 0.1 and
cy; = 0.6. The weighting variable p,; is selected as
Psci = 0.2. Moreover, the CBF design parameters are set to
agn = agiz = 1.1, agn = agn = 1.2, bgny = bgnn = 0.5,
bEZ] = bggg = 0.55, " = ].51, and Y2 = 10.51. The
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Fig. 11. Robot torque inputs.

robot trajectory generated using the proposed workspace safe
controller is depicted by a solid red line in Fig. 10. The shaded
orange area in Fig. 10 (middle and bottom) indicates the
occurrence of an obstacle. It can be seen that the system states
(x, y positions of the robot), at the time of switching between
two ProMPs, are at the intersection of both ProMPs. This
satisfies the required condition of the rule-based safe control
design in Section IV. C, i.e., the condition for switching
between different CBFs. As is clear from the figure, the robot
can successfully move to region B from A, stop for one
second to avoid a collision, and then move back to region A
through the provided distributions. The control input signals
are depicted in Fig. 11. As shown in this figure, switching
between the different safe sets, or between the QPs, does not
lead to a discontinuity or sudden jump in the control inputs.
The constant value of control inputs, during the one second
“Stop” period, corresponds to the torque necessary to cancel
gravity.

C. Case Study 3: Universal Robots URS 6-Link Robot

The equation of motion of the URS robot can be written in
the form of (1) with the following parameters [37]

6
D(q) = [stfuffv.- +J, Riln, R‘.T.Iwi], (37)

i=1

where m; € R is the mass of the ith link, J,, € R3*¢ and
Jy, € R3*® are the linear and angular parts of the Jacobian
matrix J;, respectively. R; € R3* is the rotation matrix and
In, € R¥3 is the inertia tensor. The elements of C(q, §) are
obtained from the inertia matrix as

6

1 amg
CU:ZE(aqk +

k=1

oy
oq;

omyg;\ .
— 38
24 )‘}’k, (38)

where m;; are the entries of the inertia matrix. The elements
of the gravity vector are obtained from

o
Ki(q) =

e (39)
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Fig. 12.

Results of the proposed ProMP controller for the URS.

where # is the total potential energy of the robot. Additional
information on these equations can be found in [38]. We gen-
erate 90 joint space trajectories with defined goals, obstacles,
and starting positions. The 90 UR5 trajectories are then used
to train a joint space ProMP using the same parameters as in
the two-link robot case study. The following set of CLF and
CBF parameters were chosen: €; = ey = €3 = €4 = €5 = 0.1,
€ = 0.01, and C3j = 1.1, agij = 20.], bggj = ], and Vi =
10.1,i € {1,...,6}, j € {1,2}. The simulation environment
is depicted in Figs. 1 and 12.

We consider two different scenarios. In the first scenario
Psci = 200, which gives higher importance to the CLF. In the
second scenario ps:; = 0.001, implying that the design interest
and priority is on the CBF. As is clear from Fig. 12, in both
scenarios the robot can effectively track the mean of the
ProMP and simultaneously avoid colliding with obstacles.

VI. EXPERIMENTAL RESULTS

In this section, we provide an experimental evaluation of our
CLF/CBF-based ProMP controller using a Universal Robots
URS5e six-link manipulator with a Robotiq two-finger gripper.
We selected three fixed locations to represent the start, pick,
and place locations introduced as part of the FSM. The work
environment included two static obstacles: the table that the
robot was mounted on and a stack of books on the table.

The experiments were carried out as follows. First, a teacher
demonstrates a pick-and-place procedure to the robot. Then,
the robot must move from a sfart location to a pick location
where a bin with small objects is located. From there, the robot
travels to a place location while avoiding any static obstacles,
i.e., the stack of books. Finally, once the robot deposits the
objects in the place location bin, it returns to the start location.

We installed a gravity compensation controller on the robot
to enable the teacher to directly manipulate the robot’s joints
via kinesthetic teaching. Using this directed learning from
demonstration approach allows us to bypass the correspon-
dence problem [4]. Additionally, kinesthetic teaching retains
parity between the demonstration, learning, and execution
space of the trajectories.

Original PraMP
Wia-Point ProbP
Optimized ProMP | 7
®  Obstacle

21F e

72 (angle)
i

-2.7

0 0.5 1 1.5 2 25 3 35 4 4.5 5
time (sec)

Fig. 13. Results of the modified ProMP trajectory for the second joint
provided to the robot.

In all, ten demonstrations of the task were conducted for
each of the three FSM states. Figs. 14 and 15 depict the
demonstration operation as the operator moves the UR5e robot
during the pick-and-place task, respectively, without and with
obstacles. This grants sufficient variation in trajectories to
allow obstacle avoidance. From these demonstrations, we col-
lected the joint angles, velocities, and the associated time steps.
It is worth mentioning that care must be taken to collect data
that is roughly Gaussian, or at least unimodal (e.g., moving
around an obstacle in the same direction each time). Methods
to handle non-Gaussian or multimodal data is an issue to be
addressed in future work.

Using the demonstration data, we trained 6 joint space
ProMPs with L = 55 basis functions for a 6-link UR5 robot.
We implemented the CLF/CBF-based ProMP controller with
Psci = 0.5. The other parameters were selected to be the same
as the previous simulations in Section V-C. Figs. 16, 18, 17,
and 19 show the UR5e robot executing the CLF/CBF-based
ProMP controller trajectory for the pick-and-place task. Fig. 17
shows that following the ProMP mean trajectory will cause a
collision when obstacles are present.

As discussed in Section III-B2, we demonstrated obstacle
avoidance based on both the via-point and optimization-based
processes. To do this, we modified the second joint (shoulder)
trajectory to avoid obstacles during the experiments. In both
the via-point and optimization-based procedures, the physical
obstacle was represented using three point obstacles Oy along
the trajectory at times k = 1.14s,1.53s, and 1.9s. Please
note that in the current setup, the manipulator cannot identify
the presence of obstacles. We hard-coded the position of the
obstacles and generate the trajectories offline. As part of future
work, we plan to utilize external sensing to perform monitoring
of the environment and identify the presence of obstacles.

In the via-point modification, §»(k) was specified to
go through interest points {—2.27,—-2.2, —2.17} at times
k = 1.14s, 1.53s, and 1.9s, which corresponds to the
values of gz(k) + 0.03. The resultant trajectory is shown in
green in Fig. 13. Our optimization-based obstacle avoidance
scheme was implemented using CVXPY [39], [40]. In the
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Fig. 15. Operator demonstrating a pick-and-place task to a URSe robot with an obstacle.

Fig. 16. Robot performing the initial pick action of the FSM.

Fig. 17. Robot executing the mean ProMP, without any obstacle avoidance, thus causing it to hit the obstacle.

Fig. 18. Overlay showing the robot performing the pick to drop action of the FSM using both the optimization and via-point based trajectories.

optimization-based process, we specified three constraints to  The subsequent trajectory is shown in blue in Fig. 13. A video
avoid the point obstacles and maintain a distance threshold, of these experiments has been submitted as metadata and can
D = 0.03, from the ProMP trajectory while staying within be viewed from the publisher.

the ProMP distribution. We chose 4 = diag([8, 1]) to give The computation time is arguably the major distinguishing
more priority to the position of the trajectory over velocity. factor between these approaches. Although the algorithmic
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Fig. 19.

Robot performing the drop to start action of the FSM.

time complexity of both the via-point and optimization-based
modifications is O(n?), the iterative-based CVX modification
ran notably slower than the via-point method. We recorded
the time to compute the via-point and optimization-based
trajectory adjustments over multiple simulations. This included
running both methods with 3, 6, and 10 different points for
100 times. The mean computation times for the via-point
trials were 0.35ms, 0.56ms, and 0.98ms, respectively. The
optimization process was completed in 0.7s, 1.12s, and
1.78s, respectively. These tests demonstrate that the via-point
approach can run fast enough for use in real-time (assuming a
1 kHz update rate). On the other hand, the optimization-based
method can be accommodated with a brief pause of the system.
The degree to which the new distributions differ from the
original is a second distinguishing factor. Compared to the
via-points method, the optimization-based approach generally
produces mean trajectories that deviate from the original mean
later and return to it sooner. The optimization-based method
also produces new variances that are closer to the original
variance than the via-points procedure, which tends to produce
a smaller variance than the original. It is worth noting that the
optimization-based approach can generate trajectories similar
to the via-point modification by adding more constraints to the
optimization process, therefore making it a much more flexible
technique.

In summary, both methods of obstacle avoidance can be
applied to various robotics tasks depending on the system’s
time requirements and user preferences. The via-point should
be used for higher-speed dynamic systems that must modify
the trajectory in real-time such as autonomous vehicles,
powered prosthetics, or high-speed/throughput manufacturing.
Users will have to balance this with the knowledge that
the trajectory generated may be less predictable, though still
guaranteed to be safe. Systems that can safely pause such as
delivery robots/vehicles not in traffic, rehabilitation robots,
and low-throughput pick-and-place robots, can employ the
optimization-based method to ensure greater control over the
generated trajectory.

VII. ONGOING AND FUTURE WORK

A version of this work was a finalist for the Best Paper
Award at the 2021 IEEE Conference on Automation Science
and Engineering, leading to an invitation to this special issue
of the Transactions on Automation Science and Engineering.
There are a number of topics we are currently exploring or
have identified for future efforts.

A. Obstacle Avoidance Using CBFs

We have presented an approach for modifying a ProMP
during runtime to avoid novel static obstacles. Dynamic obsta-
cles will likely need to be avoided using the control law. One
approach is to add a CBF for obstacle avoidance [24], [41].
Since obstacle avoidance could cause the state to leave the
ProMP, we must determine how to ensure safety in unexplored
areas and an eventual return to the ProMP. Additionally,
dynamic constraints to velocity or position could be added
to the QP to slow down or stop the robot in the presence
of obstacles, but the effects on stability and convergence will
need to be studied as will the solvability of the QP.

B. Different Choices of CBFs

In this work, we focused on reciprocal CBFs for their
relative simplicity and fast convergence. However, unbounded
function values at boundaries may be undesirable when real-
time/embedded implementations are considered. One possible
solution will be zeroing barrier functions, where the barrier
function vanishes on the set boundary. We plan to explore a
mixture of CBFs for different tasks, such as zeroing CBFs
for remaining in a safe trajectory and exponential CBFs for
obstacle avoidance.

C. Multidimensional and Non-Simply-Connected ProMPs

We designed the ProMP and CBF/CLF controller using
ng (or np) independent trajectory distributions. However, the
proposed approach can be extended to the case where we
encode the coupling between the joints (or Cartesian elements)
by using the 2n; x 2n,; (or 2n, x 2np) covariance matrix.
We are also interested in how to generate and work with
ProMPs that are not simply connected. This can arise if there
is an obstacle and trainers take different paths around it. The
mean could pass through a non-safe space and thus the ProMP
must either accommodate a hole or be split.

D. Defining Unsafe Regions With ProMPs

We used a ProMP to define the safe region for the robot
and CBFs to ensure that the robot remains in the distribution.
We recently proposed a variation in which unsafe regions are
defined by ProMPs, such as by monitoring where humans
move through an area [42]. This gives an indication of
where people are likely to be and the CBFs are defined to
keep the robot out. We will investigate the interplay between
safe-region ProMPs and unsafe-region ProMPs in regions
where they intersect.
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E. Closed-Loop Object Grasping

Our work uses open-loop controllers to actuate the grip-
per based on the FSM state. Closed-loop approaches would
increase the robustness and success rate for reaching and
picking up objects of interest, including reattempts during a
grasp failure, by considering gripper orientation and finger
position.

VIII. CONCLUSION

In this work, we developed a safe, rule-based control design
approach for accomplishing complex manipulation scenarios
modeled as multiple simpler subtasks and a FSM that switched
between them. The subtasks that require robot movements
were modeled by ProMPs. A ProMP-based robot guidance
problem was solved using a CLF/CBF-based controller that
can be designed in either the joint space or workspace.
In each subtask, our proposed controller stabilizes the robot
and guarantees that the system output is always inside the
distribution generated by a ProMP. Moreover, the required con-
dition for switching between different CLF/CBF-based ProMP
controllers (i.e., different subtasks) was stated. Simulation and
experimental studies on a 2-link and 6-link robot confirm the
viability of the proposed method. Lastly, avenues of current
and future work were discussed.
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