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Abstract

Many machine learning problems can be formu-
lated as minimax problems such as Generative
Adversarial Networks (GANs), AUC maximiza-
tion and robust estimation, to mention but a few. A
substantial amount of studies are devoted to study-
ing the convergence behavior of their stochastic
gradient-type algorithms. In contrast, there is
relatively little work on understanding their gener-
alization, i.e., how the learning models built from
training examples would behave on test examples.
In this paper, we provide a comprehensive gener-
alization analysis of stochastic gradient methods
for minimax problems under both convex-concave
and nonconvex-nonconcave cases through the lens
of algorithmic stability. We establish a quanti-
tative connection between stability and several
generalization measures both in expectation and
with high probability. For the convex-concave set-
ting, our stability analysis shows that stochastic
gradient descent ascent attains optimal general-
ization bounds for both smooth and nonsmooth
minimax problems. We also establish general-
ization bounds for both weakly-convex-weakly-
concave and gradient-dominated problems. We
report preliminary experimental results to verify
our theory.

1. Introduction

In machine learning we often encounter minimax optimiza-
tion problems, where the decision variables are partitioned
into two groups: one for minimization and one for max-
imization. This framework covers many important prob-
lems as specific instantiations, including adversarial learn-
ing (Goodfellow et al., 2014), robust optimization (Chen
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et al., 2017; Namkoong & Duchi, 2017), reinforcement
learning (Dai et al., 2018; Du et al., 2017) and AUC max-
imization (Gao et al., 2013; Lei & Ying, 2021b; Liu et al.,
2018; Ying et al., 2016; Zhao et al., 2011). To solve these
problems, researchers have proposed various efficient opti-
mization algorithms, for which a representative algorithm
is the stochastic gradient descent ascent (SGDA) due to its
simplicity and widespread use in real-world applications.

There is a large amount of work on the convergence anal-
ysis of minimax optimization algorithms in different set-
tings such as convex-concave (Nemirovski et al., 2009),
strongly-convex-strongly-concave (SC-SC) (Balamurugan
& Bach, 2016), nonconvex-concave (Rafique et al., 2018)
and nonconvex-nonconcave (Liu et al., 2020; Yang et al.,
2020) cases. However, there is relatively little work on
studying the generalization, i.e., how the model trained
based on the training examples would generalize to test ex-
amples. Indeed, a model with good performance on training
data may not generalize well if the models are too com-
plex. It is imperative to study the generalization error of
the trained models to foresee their prediction behavior. This
often entails the investigation of the tradeoff between opti-
mization and estimation for an implicit regularization.

To our best knowledge, there is only two recent work on
the generalization analysis for minimax optimization al-
gorithms (Farnia & Ozdaglar, 2020; Zhang et al., 2020).
The argument stability for the specific empirical saddle
point (ESP) was studied (Zhang et al., 2020), which im-
plies weak generalization and strong generalization bounds.
However, the discussion there ignored optimization errors
and nonconvex-nonconcave cases, which can be restric-
tive in practice. For SC-SC, convex-concave, nonconvex-
nonconcave objective functions, the uniform stability of
several gradient-based minimax learners was developed in
a smooth setting (Farnia & Ozdaglar, 2020), including gra-
dient descent ascent (GDA), proximal point method (PPM)
and GDmax. While they developed optimal generalization
bounds for PPM, their discussions did not yield vanish-
ing risk bounds for GDA in the general convex-concave
case since their generalization bounds grow exponentially
in terms of the iteration number. Furthermore, the above
mentioned papers only study generalization bounds in ex-
pectation, and there is a lack of high-probability analysis.
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In this paper, we leverage the lens of algorithmic stability to
study the generalization behavior of minimax learners for
both convex-concave and nonconvex-nonconcave problems.
Our discussion shows how the optimization and generaliza-
tion should be balanced for good prediction performance.
Our main results are listed in Table 1. In particular, our
contributions can be summarized as follows.

1. We establish a quantitative connection between stability
and generalization for minimax learners in different forms
including weak/strong primal-dual generalization, primal
generalization and generalization with high probability. For
the technical contributions, we introduce novel decompo-
sitions to handle the correlation between the primal model
and dual model for connecting stability and generalization.

2. We establish stability bounds of SGDA for convex-
concave problems, from which we derive its optimal pop-
ulation risk bounds under an appropriate early-stopping
strategy. We consider several measures of generalization
and show that the optimal population risk bounds can be
derived even in the nonsmooth case. To the best of our
knowledge, our results are the first-ever known population
risk bounds for minimax problems in the nonsmooth setting
and the high-probability format.

3. We further extend our analysis to the nonconvex-
nonconcave setting and give the first generalization bounds
for nonsmooth objective functions. Our analysis relaxes
the range of step size for a controllable stability and im-
plies meaningful primal population risk bounds under some
regularity assumptions of objective functions, e.g., a de-
cay of weak-convexity-weak-concavity parameter along the
optimization process or a two-sided PL condition.

The paper is organized as follows. The related work is dis-
cussed in Section 1.1 and the minimax problem formulation
is given in Section 2. The connection between stability and
generalization is studied in Section 3. We develop popula-
tion risk bounds in the convex-concave case in Section 4
and extend our discussions to the nonconvex-nonconcave
case in Section 5. We report preliminary experiments in
Section 6 and conclude the paper in Section 7.

1.1. Related Work

We first review related work of stochastic optimization for
minimax problems. Convergence rates of order O(1/v/T)
were established for SGDA with T iterations in the convex-
concave case (Nedi¢ & Ozdaglar, 2009; Nemirovski et al.,
2009), which can be further improved for SC-SC prob-
lems (Balamurugan & Bach, 2016; Hsieh et al., 2019).
These discussions were extended to nonconvex-strongly-
concave (Lin et al.,, 2020; Luo et al., 2020; Rafique
et al., 2018; Yan et al., 2020), nonconvex-concave (Lin
et al., 2020; Thekumparampil et al., 2019) and nonconvex-

nonconcave (Liu et al., 2020; Loizou et al., 2020; Yang
et al., 2020) minimax optimization problems. All the above
mentioned work consider the convergence rate of optimiza-
tion errors, while the generalization analysis was much less
studied (Farnia & Ozdaglar, 2020; Zhang et al., 2020).

We now survey related work on stability and generalization.
The framework of stability analysis was established in a
seminal paper (Bousquet & Elisseeff, 2002), where the cel-
ebrated concept of uniform stability was introduced. This
stability was extended to study randomized algorithms (Elis-
seeff et al., 2005). It was shown that stability is closely
related to the fundamental problem of learnability (Rakhlin
et al., 2005; Shalev-Shwartz et al., 2010). Hardt et al. (2016)
pioneered the generalization analysis of SGD via stabil-
ity, which inspired several upcoming work to understand
stochastic optimization algorithms based on different al-
gorithmic stability measures, e.g., uniform stability (Chen
etal., 2018; Lin et al., 2016; Madden et al., 2020; Mou et al.,
2018; Richards et al., 2020), argument stability (Bassily
et al., 2020; Lei & Ying, 2020; Liu et al., 2017), on-average
stability (Kuzborskij & Lampert, 2018; Lei & Ying, 2021a),
hypothesis stability (Charles & Papailiopoulos, 2018; Foster
et al., 2019; London, 2017), Bayes stability (Li et al., 2020)
and locally elastic stability (Deng et al., 2020).

2. Problem Formulation

Let VW and V be two parameter spaces in R%. Let P be
a probability measure defined on a sample space Z and
f: W xV x Z— R. We consider the following minimax
optimization problem:

min max F(w,v) :=E, p[f(w,Vv; 2)]. 2.1

wew veV

In practice, we do not know P but instead have access to
a dataset S = {z1,...,2,} independently drawn from P.
Then, we approximate F' by an empirical risk

Fg(w,v) =

S|

Zf(w,v; ;).
i=1

We apply a (randomized) algorithm A to the dataset S and
get a model A(S) = (Aw(S), Av(S)) € W x V as an
approximate solution of the problem (2.1). Since the model
A(S) is trained based on the training dataset S, its empirical
behavior as measured by F's may not generalize well to a test
example (Bousquet & Elisseeff, 2002). We are interested in
studying the test error (population risk) of A(.S). Unlike the
standard statistical learning theory (SLT) setting where there
is only a minimization of w, we have different measures
of population risk due to the minimax structure (Zhang
et al., 2020). We collect the notations of these performance
measures in Table A.1. Let E[-] denote the expectation w.r.t.
the randomness of both the algorithm A and the dataset .S.
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Algorithm Reference Assumption Measure Rate
ESP p-SC-SC, Lip Weak PD Risk O(1/(np))
Zhang et al. (2020) p-SC-SC, Lip, S Strong PD Risk O(1/(np?))
R-ESP C-C, Lip Weak PD Risk O(1/y/n)
SGDA, SGDmax . p-SC-SC, Lip, S | Weak PD Generalization' O(log(n)/(np))
PPM Farnia & Ozdaglar (2020) |=—F"=77g Weak PD Risk O(1/\/n)
C-C,Lip (S) Weak PD Risk O(1/\/n)
. C-p-SC, Lip, S (H.P.) Primal Risk O(1/(v/np))
SGDA This work C-C, Lip H.P. Plain Risk O(log(n)/+/n)
p-SC-SC, Lip Weak PD Risk O(V1ogn/(np))
SGDA Farnia & Ozdaglar (2020) Lip, S Weak PD Generalization O(T7 /n)
SGDA p-WC-WC, Lip | Weak PD Generalization | O(T e /n 2eps )
This work D, Lip, S Weak PD Generalization | O(1/y/n +VT/n)
AGDA p-SC, PL, Lip, S Primal Risk O(n~zre1)

Table 1. Summary of Results. Bounds are stated in expectation or with high probability (H.P.). For risk bounds, the optimal 7" (number of
iterations) is chosen to trade-off generalization and optimization. Here, C-C means convex-concave, C-p-SC means convex-p-strongly-
concave, p-SC means nonconvex-p-strongly-concave, Lip means Lipschitz continuity, S means the smoothness, D means a decay
of weak-convexity-weak-concavity parameter along the optimization process as Eq. (5.1) and PL means the two-sided condition as
Assumption 3 . AGDA means Alternating Gradient Descent Ascent and (R)-ESP means the (regularized)-empirical risk saddle point. ¢ is

a parameter in the step size and L is given in Assumption 2.

Definition 1 (Weak Primal-Dual Risk). The weak Primal-
Dual (PD) population risk of a (randomized) model (w, v)
is defined as (Zhang et al., 2020)

AY(w,v) = sup E[F(w,v')] — inf E[F(W,v)].
v'evy w'ew

The weak PD empirical risk of (w, v) is defined as

AY(w,v) = sup E[Fs(w,v')] — inf E[Fgs(w',v)].
v'ey w'ew
We refer to A" (w,v) — A¥(w, V) as the weak PD gener-
alization error of the model (w, v).

Definition 2 (Strong Primal-Dual Risk). The strong PD
population risk of a model (w, v) is defined as

N*(w,v) = sup F(w,v') — inf F(w',v).
v'ey w'ew

The strong PD empirical risk of (w, v) is defined as

Ag(w,v) = sup Fg(w,v') — inf Fg(w',v).
v'ey w'ew
We refer to A®(w, v) — A% (w, V) as the strong PD gener-
alization error of the model (w, v).

Definition 3 (Primal Risk). The primal population risk
of a model w is defined as R(w) = supycy F(w,V).
The primal empirical risk of w is defined as Rg(w) =
sup,cy Fs(w,v). We refer to R(w) — Rg(w) as the pri-
mal generalization error of the model w, and R(w) —
infys R(w’) as the excess primal population risk.

According to the above definitions, we know A (w,v) <
E[A%(w,v)] and R(w) — Rg(w) is closely related to

A% (w,v) — A%(w,v). The key difference between the
weak PD risk and the strong PD risk is that the expectation
is inside of the supremum/infimum for weak PD risk, while
outside of the supremum/infimum for strong PD risk. In this
way, one does not need to consider the coupling between
primal and dual models for studying weak PD risks, and has
to consider this coupling for strong PD risks. Furthermore,
we refer to F'(w,v) — Fg(w, V) as the plain generaliza-
tion error as it is standard in SLT. An approach to handle
a population risk is to decompose it into a generalization
error (estimation error) and an empirical risk (optimization
error) (Bousquet & Bottou, 2008). For example, the weak
PD population risk can be decomposed as

AY(w,v) = (A“’(w7 v) — Ag(w, v)) + A (w,v). (2.2)

The generalization error comes from the approximation of PP
with S, while the empirical risk comes since the algorithm
may not find the saddle point of Fs. Our basic idea is to use
algorithmic stability to study the generalization error and
use optimization theory to study the empirical risk.

We now introduce necessary definitions and assumptions.
Denote || - ||2 as the Euclidean norm and (-, -) as the inner
product. A function g : W — R is said to be p-strongly-
convex (p > 0) iff for all w,w’ € W there holds g(w) >
g(w') + (w — W', Vg(w')) + §|lw — w'||3, where V is
the gradient operator. We say g is convex if g is O-strongly-
convex. We say g is p-strongly concave if —g is p-strongly
convex and concave if —g is convex.

Definition 4. Let p > 0and g : W x V — R. We say

(a) g is p-strongly-convex-strongly-concave (p-SC-SC)
if for any v € V), the function w — g(w,v) is p-
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strongly-convex and for any w € W, the function
v — g(w, V) is p-strongly-concave.

(b) g is convex-concave if g is 0-SC-SC.

(c) gis p-weakly-convex-weakly-concave (p-WC-WC) if
g+ 5(]lwll3 — [Iv[|3) is convex-concave.

The following two assumptions are standard (Farnia &
Ozdaglar, 2020; Zhang et al., 2020). Assumption 1 amounts
to saying f is Lipschitz continuous with respect to (w.r.t.)
both w and v. Let V, f denote the gradient w.r.t. w.

Assumption 1. Let G > 0. Assume for all w €
W,v € Vand z € Z, there holds ||wa(w,v;z)H2 <
G and HV <G@.

Assumption 2. Let L > 0. For any z, the function
(w,v) — f(w,v;z) is said to be L-smooth, if the fol-
lowing inequality holds forallw € W, v &€ Vandz € Z

(e B i) [ (W X

Vof(w,v;z) = Vf(w,v';2)
The minimax formulation (2.1) has broad applications in
machine learning. Here we give some examples.
AUC Maximization. Area Under ROC Curve (AUC) is
a popular measure for binary classification. Let h(w;x)
denote a scoring function parameterized by w at x. It was

shown that AUC maximization for learning i under the
square loss reduces to the problem (Ying et al., 2016)

2.1. Motivating Examples

min = maxE[f(w,a,b,a;2)], (2.3)

(w,a,b)eRIt2 a€R
where p = Ply = 1] and f(w,a,b,a;2) = (h(w;z) —
a)’Ljy=1)/p + (h(w;z) — 0)*[j——yy/(1 — p) + 2(1 +
a)h(w;2)([y=—1)/(1 = p) — I}y=1)/p) — o (I is the
indicator function). It is clear that & — f(w,a,b,; z) is a
(strongly) concave function. Depending on h, the function
f can be convex, nonconvex, smooth or nonsmooth.

Generative Adversarial Networks. GAN (Goodfellow
et al., 2014) refers to a popular class of generative mod-
els that consider generative modeling as a game between
a generator network G, and a discriminator network Dy, .
The generator network produces synthetic data from random
noise & ~ P¢, while the discriminator network discriminates
between the true data and the synthetic data. In particular, a
popular variant of GAN named as WGAN (Arjovsky et al.,
2017) can be written as a minimax problem

min max E[f (w, v 2, €)] = E+[Dy(2)

"Primal generalization bounds were presented in Farnia &
Ozdaglar (2020). However, the stability analysis there actually
only implies bounds on weak PD risk.

— E¢[Dw (Gv(§))]-

While this problem is generally nonconvex-nonconcave, it is
weakly-convex-weakly-concave under smoothness assump-
tions on D and G (Liu et al., 2020).

Robust Estimation with minimax estimator. Audibert &
Catoni (2011) formulated robust estimation as a minimax
problem as follows

n

— % Zz/)(él(w; z) — L2(V; %)),

=1

min max Fg(w,Vv)
w v

where ¢ : R +— R is a truncated loss, and ¢, {5 are Lip-
schitz continuous and convex loss functions. A typical
truncated loss is ¢ (z) = log(1 + |z| + 22 /2)sign(x) to
compute a mean estimator under heavy-tailed distribution
of data (Brownlees et al., 2015; Xu et al., 2020), where
sign(z) is the sign of x. The composition function Fg can
be nonconvex and nonsmooth since 1) is nonconvex and
£1, ¢5 can be nonsmooth. Following Xu et al. (2020), it can
be shown that Fg(w, v) is weakly-convex-weakly-concave.

3. Connecting Stability and Generalization

A fundamental concept in our analysis is the algorithmic
stability, which measures the sensitivity of an algorithm w.r.t.
the perturbation of training datasets (Bousquet & Elisseeff,
2002). We say S, S’ C Z are neighboring datasets if they
differ by at most a single example. We introduce three
stability measures to the minimax learning setting. The
weak-stability and uniform-stability quantify the sensitivity
measured by function values, while the argument-stability
quantifies the sensitivity measured by arguments. We collect
these notations of stabilities in Table A.2 in Appendix A.

Definition 5 (Algorithmic Stability). Let A be a random-
ized algorithm, € > 0 and § € (0, 1). Then we say

(a) A is e-weakly-stable if for all neighboring S and S’,
there holds

sup ( sup B4 [f(Aw(S),V'; 2)— f(Aw(S"),V'; 2)]
z v'ey

+ sup Eu [f(w’,Av(S);z)—f(w’,Av(S’);z)]) <e
w'ew

(b) A is e-argument-stable in expectation if for all neigh-
boring S and S’, there holds
} <e.
2

(RS- 2)

A is e-argument-stable with probability at least 1 — §
if with probability at least 1 — §

|G =28,

<e.
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(c) Ais e-uniformly-stable with probability at least 1 — §
if with probability at least 1 — §

sup [f(Aw(S), Av(S); 2) = f(Aw(S"), Av(S); 2)] < e.

Under Assumption 1, argument stability implies weak and
uniform stability. As we will see, argument stability plays
an important role in getting primal population risk bounds.

As our first main result, we establish a quantitative connec-
tion between algorithmic stability and generalization in the
following theorem to be proved in Appendix B. Part (a)
establishes the connection between weak-stability and weak
PD generalization error. Part (b) and Part (c) establish the
connection between argument stability and strong/primal
generalization error under a further assumption on the strong
convexity/concavity. Part (d) and Part (e) establish high-
probability bounds based on the uniform stability, which are
much more challenging to derive than bounds in expectation
and are important to understand the variation of an algorithm
in several independent runs (Bousquet et al., 2020; Feldman
& Vondrak, 2019). Regarding the technical contributions,
we introduce novel decompositions in handling the corre-
lation between Ay (S) and v = argsup, F(Aw(S5), V),
especially for high-probability analysis.

Theorem 1. Let A be a randomized algorithm and € > 0.

(a) If A is e-weakly-stable, then the weak PD generaliza-
tion error of (Aw(S), Ay (S)) satisfies

AY(Aw(S), Av(9)) — AG(Aw(9), Av(S)) < e
(b) If A is e-argument-stable in expectation, the function

v = F(w, V) is p-strongly-concave and Assumptions
1, 2 hold, then the primal generalization error satisfies

Es,a [R(Aw(S)) = Rs(Aw(S))] < (14 L/p)Ge.

(c) If A is e-argument-stable in expectation, v — F(w,v)
is p-SC-SC and Assumptions 1, 2 hold, then the strong
PD generalization error satisfies

Es.t [A%(Aw(8), Au(S)) ~ A5(Aw(S), A(5))]
< (14 L/p)GV2e.

(d) Assume |f(w,v;z)| < R for some R > 0 and w €
W,v € V,z € Z. Assume for all w, the function
v —= F(w, V) is p-strongly-concave and Assumptions
1, 2 hold. Let 6 € (0,1). If A is e-uniformly stable
almost surely (a.s.), then with probability at least 1 — §

R(AW(S)) - RS(AW(S)) =
O(GLp_lelognlog(l/é) + Rn_%\/log(l/(S)).

(e) Assume |f(w,v;z)| < R for some R > 0 and w €
W,veV,ze Z Letd € (0,1). If Ais e-uniformly-
stable a.s., then with probability 1 — 0 there holds

‘F(Aw(s)vAv(S)) - FS(AW(S)7AV(S))|
= O(elognlog(l/é) +Rn_%\/log(1/5)).

Remark 1. We compare Theorem 1 with related work.
Weak and strong PD generalization error bounds were estab-
lished for (R)-ESP (Zhang et al., 2020). However, the discus-
sion there does not consider the connection between stability
and generalization. Primal generalization bounds were stud-
ied for stable algorithms (Farnia & Ozdaglar, 2020). How-
ever, the discussion there is not rigorous since they used
an identity nRgs(Aw(S)) = >, maxy f(Aw(S), v; z),
which does not hold. To our best knowledge, Theorem 1
gives the first systematic connection between stability and
generalization for minimax problems.

Remark 2. We provide some intuitive understanding of
Theorem 1 here. Part (a) shows that weak-stability is suf-
ficient for weak PD generalization. This is as expected
since both the supremum over w’ and v’ are outside of
the expectation operator in the definition of weak stabil-
ity/generalization. We do not need to consider the correla-
tion between Ay (S) and v'. As a comparison, the primal
generalization needs the much stronger argument-stability.
The reason is that the supremum over w’ is inside the expec-
tation and v(*) := argsup,, F(Aw(S®),v') is different
for different i (v(?) correlates to Ay, (S®) and S is de-
rived by replacing the i-th example in S with z}). We need
to estimate how v(¥) differs from each other due to the
difference among A, (S(*)). This explains why we need
argument-stability and a strong-concavity in Parts (b), (d)
for primal generalization. Similarly, the strong PD general-
ization assumes SC-SC functions.

4. SGDA: Convex-Concave Case

In this section, we are interested in SGDA for solving mini-
max optimization problems in the convex-concave case. Let
wi; = 0 € Wand vi = 0 € V be the initial point. Let
Projy,,(+) and Projy,(-) denote the projections onto JV and V,
respectively. Let {7; }+ be a sequence of positive stepsizes.
At each iteration, we randomly draw ¢; from the uniform
distribution over [n] := {1,2,...,n} and do the update

W1 = Projy, (We — 0V f(we, vis 23,)), @)

Vi1 = Projv (Vt + ntvvf(wt, Vi, Zzt)) .

4.1. Stability Bounds

In this section, we present the stability bounds for SGDA in
the convex-concave case. We consider both the nonsmooth
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setting and smooth setting. Part (a) and Part (b) establish
stability bounds in expectation, while Part (c) and Part (d)
give stability bounds with high probability. Part (e) consider
the SC-SC case. The proofs are given in Appendix C.

Theorem 2. Assume for all z, the function (w,v) —
f(w,v; 2) is convex-concave. Let the algorithm A be SGDA
(4.1) with t iterations. Let § € (0,1).

(a) Assume 1y = n. If Assumption 1 holds, then A is
4nG (\/i +t/ n) -argument-stable in expectation.

(b) If Assumptions 1, 2 hold, then A is e-argument-stable
in expectation, where

=

o2 YROIG iy (00125 ) (o)
j=1 k=1

(c) Let ny = n. If Assumption 1 holds, then A is e-
argument-stable with probability at least 1 — §, where

e < VEeGr(Vi+t/n-+log(1/0)+/2tn T log(1/9) ).

(d) Let iy = n. If Assumptions 1, 2 hold, then A is e-
argument-stable with probability at least 1 — §, where
€ < V8eGnexp (2_1L2tn2) X
(1 +t/n+ log(1/8) + /2tn1 10g(1/5)>.

(e) If (w,v) — f(w,v;z) is p-SC-SC, Assumption 1

holds and n, = 1/(pt), then A is e-argument-stable in
2\/§G(log(et) + 1 )%
P t n(n—2)/

expectation, where € <

Remark 3. If t = O(n?), then the stability bounds in a non-
smooth case (Part a) become O(1+v/t) and we can still get
non-vacuous bounds by taking small step size n = o(t~1/?).
If we choose 1; = 1/+/t for j € [t], then the stability bound
in Part (b) under a further smoothness assumption becomes
O(V/t/n—+n"7), which matches the existing result for SGD
in a convex setting (Hardt et al., 2016). The high-probability
bounds in Part (c) and Part (d) enjoy the same behavior.

Remark 4. The stability bounds of SGDA and GDA were
discussed in Farnia & Ozdaglar (2020) for SC-SC, Lips-
chitz continuous and smooth problems. We remove the
smoothness assumption in Part (e) in the SC-SC case. The
stability of GDA was also studied there for convex-concave
f, which, however, implies non-vanishing generalization
bounds growing exponentially with the iteration count (Far-
nia & Ozdaglar, 2020). We extend their discussions to
SGDA in this convex-concave case, and, as we will show
in Theorem 3, our stability bounds imply optimal bounds
on PD population risks. Furthermore, the existing discus-
sions (Farnia & Ozdaglar, 2020) require the function f to
be smooth, while we show that meaningful stability bounds
can be achieved in a nonsmooth setting (Parts (a), (c), (e)).

Remark 5. We consider stability bounds under various
assumptions on loss functions. We now sketch the technical
difference in our analysis. Let 0; := ||w; — W}||3 + ||v¢ —
v} |3, where (wy, v¢), (w}, v}) are SGDA iterates for S and
S’ differing only by the last element. For convex-concave
and nonsmooth problems, we show 6,41 = §; + O(n?) if
iy # n. For convex-concave and smooth problems, we
show 0,11 = (1 + O(n?))d; if iy # n. For p-SC-SC and
nonsmooth problems, we show 0,11 = (1—2p1,)6;+0(n?)
if i; # n. For the above cases, we first control J;1 and then
take expectation w.r.t. 7;. A key point to tackle nonsmooth
problems is to consider the evolution ¢; instead of ||w; —
wi||2 + || ve — vi||2, which is able to yield nontrivial bounds
by making >, n? = o(1) with sufficiently small 7;.

4.2. Population Risks

We now use stability bounds in Theorem 2 to develop error
bounds of SGDA which outputs an average of iterates

T
_ Zt:1 Wt
Wr = —3
Zt:l Up

The underlying reason to introduce the average operator
is to simplify the optimization error analysis (Nemirovski
et al., 2009). Indeed, our stability and generalization anal-
ysis applies to any individual iterates. As a comparison,
the optimization error analysis for the last iterate is much
more difficult than that for the averaged iterate. We use the
notation B < B if there exist constants c1, ca > 0 such that
c1B < B < ¢y B. The following theorem to be proved in
Appendix E gives weak PD population risk bounds.

Theorem 3 (Weak PD risk). Let {wy, v;} be produced by
(4.1). Assume for all z, the function (w,v) — f(w,v;2)
is convex-concave. Let A be defined by Aw(S) =
wr and Ay(S) = vr for (Wr,vr) in (4.2). Assume
Sy [Wll2 < Bu and supyey V]2 < By

4.2)

SV
_ — tVt
and vp = ==L ——

t=1 Tt

(a) If g, = n and Assumption 1 holds, then

T
A" (W, vr) < 4\@nG2(\/T+ E) +nG?
B, + B N G(Bw + By)
20T vT

If we choose T =< n? and 1 =< T~3/%, then we get
Aw(V_VT, \_IT) = O(’I’L_l/Q).

(4.3)

(b) If ny = n and Assumptions 1, 2 hold, then

Ve +T?/n)G*nexp (LTn?/2)
Vvn

B, + B n G(Bw + By)

29T vT

4
AV (wrp,vr) <

+nG? + (4.4)
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We can choose T = n and n =< T~'/? to derive

Aw(WT, VT) = O(nil/z).

(c) If (w,v) — f(w,v;2)is p-SC-SC (p > 0), Assump-
tion 1 holds, n; = 1/(pt) and T < n?, then

AV (wp,vr) = O(y/logn/(np)).

(d) If (w,v) — f(w,v;z)is p-SC-SC (p > 0), Assump-
tions 1, 2 hold, n, = 1/(p(t + to)) with ty > L?/p?
and T < n, then AV (wrp,vr) = O(log(n)/(np)).

Remark 6. We first compare our bounds with the related
work in a convex-concave setting. Weak PD population
risk bounds were established for PPM under Assumptions 1,
2 (Farnia & Ozdaglar, 2020), which updates (w5, viey)
as the saddle point of the following minimax problem

1 1
i, mas Fs (W, v) 45w —wi ™45 =™ 3.
In particular, they developed population risk bounds
O(1/+/n) by taking T' < /n for PPM. However, the imple-
mentation of PPM requires to find the exact saddle point at
each iteration, which is often computationally expensive. As
a comparison, Part (b) shows the minimax optimal popula-
tion risk bounds O(1//n) for SGDA with O(n) iterations.
Weak PD population risk bounds O(1/4/n) were estab-
lished for R-ESP (Zhang et al., 2020) without a smoothness
assumption, which, however, ignore the interplay between
generalization and optimization. In this setting, we show
SGDA achieves the same population risk bounds O(1/+/n)
by taking n =< T~3/4 and T' < n? in Part (a). We now con-
sider the SC-SC setting. Weak PD risk bounds O(1/(np))
were established for ESP (Zhang et al., 2020). Since Farnia
& Ozdaglar (2020) did not present an explicit risk bound,
we use their stability analysis to give an explicit risk bound
O(log(n)/(np)) in the smooth case (Part (d)). As a com-
parison, we establish the same population risk bounds for
SGDA within a logarithmic factor by taking n; = 1/(pt)
and T =< n? without the smoothness assumption (Part (c)).

We further develop bounds on primal population risks under
a strong concavity assumption on v — F(w,v). Primal
risk bounds measure the performance of primal variables,
which are of real interest in some learning problems, e.g.,
AUC maximization and robust optimization. We consider
both bounds in expectation and bounds with high probability.
Let (w*,v*) be a saddle point of F, i.e., for any w € W
and v € V, there holds F((w*,v) < F(w,v) < F(w,v*).

Theorem 4 (Excess primal risk). Let {w, v} be pro-
duced by (4.1) with n, = n. Assume for all z, the
Sfunction (w,v) — f(w,v;z) is convex-concave and the
Sfunction v — F(w,v) is p-strongly-concave. Assume
SUpwew [Wll2 < Bw and supycy ||v|2 < By. Let the

algorithm A be defined by A (S) = wr and Ay (S) = vr
Sor (W, vr) in (4.2). If Assumptions 1, 2 hold, then

B%,+B? G(Bw+By)

]E[R(WT)]—igf R(w) < nG*+ 20T + T

N (14 L/p)\/32e(T + T?/n)G?*nexp (L*Tn?/2)
NG :

In particular, if we choose T =< n and < T~'/? then

E[R(wr)] — inf R(w)=O((L/p)n""/?).

Jof, 4.5)

Furthermore, for any § € (0,1) we can choose T < n and
n = T2 to show with probability at least 1 — §

R(wr)—R(w™*) = O((L/p)n_% lognlogz(l/é)). (4.6)

Theorem 4 is proved in Appendix E. In Theorem E.1, we
also develop high-probability bounds of order O(n~2 log n)
on plain generalization errors |F'(wp,vy) — F(w*, v*)|.

5. Nonconvex-Nonconcave Objectives

In this section, we extend our analysis to nonconvex-
nonconcave minimax learning problems.

5.1. Stability and Generalization of SGDA

We first study the generalization bounds of SGDA for WC-
WC problems. The proof is given in Appendix F.1. In
Appendix F.2, we further give high-probability bounds.

Theorem 5 (Weak generalization bound). Let {w;,v;}
be produced by (4.1) with T iterations. Assume for all
z, the function (w,v) — f(w,v;z) is p-WC-WC and
| (s 2)| < 1. If Assumption 1 holds and 1, = c/t, then
the weak PD generalization error of SGDA is bounded by

2¢p+1

of {1+ ) 7 (1)

n n

Remark 7. If T = O(n?), our weak PD general-
ization error bound is of the order O(nfz‘cﬁ%T%)
This is the first generalization bound of SGDA for non-
smooth and nonconvex-nonconcave objectives. Farnia
& Ozdaglar (2020) also studied generalization under
nonconvex-nonconcave setting but required the objectives
to be smooth, which is relaxed to a milder WC-WC assump-
tion here. Our analysis readily applies to stochastic gradient
descent (SGD) with nonsmooth weakly-convex functions,
which has not been studied in the literature.

We further consider a variant of weak-convexity-weak-
concavity. The proof is given in Appendix F.3.
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Theorem 6 (Weak generalization bound). Let {w;,v;} be
produced by (4.1) with T iterations. Let Assumptions 1, 2
hold. Assume there are non-negative numbers {p }+cn such
that the following inequality holds a.s.

(o) (e vlsie))
(o))

, VYwe W, ve.
2

Then the weak PD generalization error of SGDA with T

iterations can be bounded by

> =Pt (5.1

o> (e (Y o a24)))’

t=1 k=t+1

Eq. (5.1) allows the empirical objective Fg to have varying
weak-convexity-weak-concavity at different iterates encoun-
tered by the algorithm. This is motivated by the obser-
vation that the nonconvex-nonconcave function can have
approximate convexity-concavity around a saddle point. For
these problems, we can expect the weak-convexity-weak-
concavity parameter p; to decrease along the optimization
process (Sagun et al., 2017; Yuan et al., 2019).

Remark 8. If Fg is convex-concave, then p; = 0 and we
can take 7, =< 1/+/T to show that SGDA with T iterations
enjoys the generalization bound O(1/y/n + v/T'/n). This
extends Theorem 3 since we only require the convexity-
concavity of Fg here instead of f(-,-;z) for all z in
Theorem 3. If p, = Ot %) (o € (0,1)), then we
can take 7, = tmin{""l’*%}/ logT' (note Zthl n? =
0(1), 23:1 nepr = O(1)) to show that SGDA with T itera-
tions enjoys the weak PD generalization bound O (1/ vn+
ﬁ / n) As compared to Theorem 5, the assumption (5.1)
allows us to use much larger step sizes (O(t %), 8 € (0,1)
vs O(t1)). This larger step size allows for a better trade-off
between generalization and optimization. We note that a
recent work (Richards & Rabbat, 2021) considered gradient
descent under an assumption similar to (5.1), and devel-
oped interesting generalization bounds for 7, = O(t=")
(8 € (0,1)). However, their discussions do not apply to
the important SGD and require an additional assumption on
the Lipschitz continuity of Hessian matrix which may be
restrictive. It is direct to extend Theorem 6 to SGD for learn-
ing with weakly-convex functions for relaxing the step size
under Eq. (5.1). Therefore, our stability analysis even gives
novel results in the standard nonconvex learning setting.
We introduce a novel technique in achieving this improve-
ment. Specifically, let §; := ||w; — W} |2 + ||vi — V4|3,
where (wy, v ), (W}, v}) are SGDA iterates for neighboring
datasets S and S’. For the stability bounds in Section 4.1,
we first handle d,; according to different realizations of
i and then consider the expectation w.r.t. ¢;. While for

p-WC-WC problems, we first take expectation w.r.t. ¢; and
then show how E;, [d;11] would change along the iterations.

5.2. Stability and Generalization of AGDA and Beyond

We now study the Alternating Gradient Descent As-
cent (AGDA) proposed recently to optimize nonconvex-
nonconcave problems (Yang et al., 2020). Let {nw ¢, v+ }¢
be a sequence of positive stepsizes for updating {wy, vy }+.
At each iteration, we randomly draw ¢; and j; from the
uniform distribution over [n] and do the update
W1 = Projyy, (W — nw,e Ve f (Wi, vi; 24,)), (5.2)
Vir1 = Projy, (v + v Vo f(Weg1, ves 25,)).- '

This algorithm differs from SGDA in two aspects. First,
it randomly selects two examples to update w and v per
iteration. Second, it uses the updated w;;; when updating
vi+1. Theorem 7 to be proved in Appendix G provides
generalization bounds for AGDA.

Theorem 7 (Weak generalization bounds). Let {wy, v} be
the sequence produced by (5.2). If Assumptions 1, 2 hold
and Nyt + vy < % for some ¢ > 0, then the weak PD gen-

eralization error can be upper bounded by O(nichLcil )

Global convergence of AGDA was studied based on the two-
sided PL condition defined below (Yang et al., 2020), which
means the suboptimality of function values can be bounded
by gradients and were shown for several rich classes of
functions (Karimi et al., 2016). We also refer to the two-
sided PL condition as the gradient dominance condition.

Assumption 3. Assume Fj satisfies the two-sided PL con-
dition, i.e., there exist constants 31(S), 82(S) > 0 such that
the following inequalities hold forallw € W, v € V

261(5) (Fs(w,v)~ _inf Fs(w',v)) < [V Fs(w,v)]3,

262(5')( S/lé}f])}Fs(W,V/) —FS(W,V)) < ||VVF5(W,V)H%.

As a combination of our generalization bounds and opti-
mization error bounds in Yang et al. (2020), we can derive
the following informal corollary on primal population risks
by early stopping the algorithm to balance the optimization
and generalization. It gives the first primal risk bounds for
learning with nonconvex-strongly-concave functions. The
precise statement can be found in Corollary G.3.

Corollary 8 (Informal). Let B1,p > 0. Assume for all
w, the function v +— F(w,v) is p-strongly concave.
Let Assumptions 1, 2, 3 with 1(S) > p1,52(5) > p
hold. Then AGDA with some appropriate step size and

T = (n5f2p’3)% satisfy (¢ < 1/(B1p%))

c _ _2cL 5¢
E[R(wr)] = R(w") = O(n™ #5575 g, 577 =551 ).
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For gradient dominated problems, we further have the fol-
lowing error bounds to be proved in Appendix H. Note we
do not need the smoothness assumption here.

Theorem 9. Let A be an algorithm. Let Assumptions 1, 3
hold. Let ug = (Aw(S), Ayv(S)) and ugs) be the projec-
tion of ug onto the set of stationary points of Fs. Then,

[E[F(us) — Fs(ug)]| < 2%2 max {]E[1/51(5)],

E[1/82(S)] } +2GE[llus — u”2].

Remark 9. Note |lug — u(SS)HQ measures how far the
point found by A is from the set of stationary points
of Fg, and can be interpreted as an optimization error.
Therefore, Theorem 9 gives a connection between gen-
eralization error and optimization error. For a variant of
AGDA with noiseless stochastic gradients, it was shown that
|(wr, vr) — (W, vy)S)||2 decays linearly w.r.t. T (Yang
et al., 2020). We can plug this linear convergent opti-
mization bound into Theorem 9 to directly get general-
ization bounds. If A returns a saddle point of Fl, then
[lus — u(SS) |2 = 0 and therefore |E[F(us) — Fs(us)]| =
O(n~ ' max{E[1/51(5)],E[1/B2(S5)]}). Generalization
errors of this particular ESP were studied in Zhang et al.
(2020) for SC-SC minimax problems, which were extended
to more general gradient-dominated problems in Theorem 9.
Furthermore, Theorem 9 applies to any optimization algo-
rithm instead of the specific ESP. It should be mentioned that
Zhang et al. (2020) addressed PD population risks, while
we consider plain generalization errors.

6. Experiments

In this subsection, we report preliminary experimental re-
sults to validate our theoretical results>. We consider two
datasets available at the LIBSVM website: svmguide3
and w5a (Chang & Lin, 2011). We follow the experimental
setup in Hardt et al. (2016) to study how the stability of
SGDA would behave along the learning process. To this
end, we build a neighboring dataset S’ by changing the last
example of the training set S. We apply the same random-
ized algorithm to S and S’ and get two model sequences
{(wy, v¢)} and {(w}, v})}. Then we evaluate the Euclidean

distance Ay = (||w; — w}||3 + [|v, — v§||§)% We consider
the SOLAM (Ying et al., 2016) algorithm, which is the SGDA
for the solving the problem (2.3) (a minimax reformulation
of the AUC maximization problem). We consider step sizes
ne = n/V/T withnp € {0.1,0.3, 1, 3}. We repeat the experi-
ments 25 times and report the average of the experimental
results as well as the standard deviation. In Figure 1, we

2The source codes are available at ht tps: //github.com/
zhenhuan-yang/minimax—-stability.

Enclidean Distance

report /\; as a function of the number of passes (the iteration
number divided by n). It is clear that the Euclidean distance
continues to increase during the learning process. Further-
more, the Euclidean distances increase if we consider larger
step sizes. This phenomenon is consistent with our stability
bounds in Theorem 2. More experiments on the stability of
SGDA in GAN training can be found in Appendix 1.

& g & 0
& g0 -

----------------------

' “
Number of Passes

Figure 1. Ay versus the number of passes on svmguide3 (left)
and w5a (right).

7. Conclusion

We presented a comprehensive stability and generalization
analysis of stochastic algorithms for minimax objective func-
tions. We introduced various generalization measures and
stability measures, and present a systematic study on their
quantitative relationship. In particular, we obtained the
first minimax optimal risk bounds for SGDA in a general
convex-concave case, covering both smooth and nonsmooth
setting. We also derived the first non-trivial risk bounds for
nonconvex-nonconcave problems. Our bounds show how
to early-stop the algorithm in practice to train a model with
better generalization. Our theoretical results have potential
applications in developing differentially private algorithms
to handle sensitive data.

There are some interesting problems for further investiga-
tion. Our primal generalization bounds require a strong
concavity assumption. It is interesting to remove this as-
sumption. On the other front, it remains an open question
to us on understanding how the concavity of dual variables
can help generalization in a nonconvex setting.
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Appendix for “Stability and Generalization of Stochastic Gradient Methods for

A. Notations

We collect in Table A.1 the notations of performance measures used in this paper.

Minimax Problems”

Notation Meaning Definition
AV (w, V) weak PD population risk sup E[F(w,v')] — inf E[F(w',v)]
v'ey wew
Weak AY(w, V) weak PD empirical risk sup E[Fs(w,v')] — inf E[Fs(W,v)]
Measure v'ey w/ew
sup E[F(w,Vv')| — sup E[Fg(w, Vv
AY(w,v) — Ag(w,v) | weak PD generalization error (V’EI; [ ) v'erx); [Fs )
inf E|Fg(w’ — inf E[F(w
(it Bl v)] — o) BFGY,V)])
A (w,v) strong PD population Risk sup F(w,v') — ingv F(w',v)
v/ EY w’'e
Strong NG (W, V) strong PD empirical Risk sup Fs(w,v') — inf Fg(w',v)
Measure v/EV wEW
- (sup Fw,v') — sup Fs(w,v))
N (w,v) — Ag(w,v) | strong PD generalization error VeV viEW
inf Fg(w',v) — inf F(w’
+(v‘}’n€V S(W ,V) wl’IéW (W 7V))
R(w)— inf R(w') | excess primal population risk sup F(w,v') — inf sup F(w',v')
Pri w/'ew v'ey weWvey
rimal
Measure | Rg(w) — inf Rg(w’) | excess primal empirical risk sup Fg(w,v') — inf sup Fs(w',v')
w/EW v/EV wew v/ ey
R(w) — Rg(w) primal generalization error sup F(w,v') — sup Fs(w,v')
VeV VeV
F(w,v) — Fg(w,Vv) plain generalization error

Table A.1. Notations on Measures of Performance.

We collect in Table A.2 the stability measures for a (randomized) algorithm A.

Stability Measure Definition
Weak Stability | sup ( sup Ea[f(Aw(S),v'52) = f(Aw(S),¥'52)] + sup Ea[f(W, Au(S):2) = F(w', A(8");2)])
z N\VIEV wEW
Argument Stability Ea [ (AW(S) - AW(S,)) ] or (AW(S) - AW(S,))
Au(S) - A ) | AuS) - A ) |
Uniform Stability sup [f(Aw(5), Av(5); 2) — f(Aw(S"), Av(S"); 2)]

Table A.2. Stability Measures. Here S and S’ are neighboring datasets.
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B. Proof of Theorem 1

In this section, we prove Theorem 1 on the connection between stability measure and generalization.

Let S = {z1,...,2, and S’ = {z],..., 2}, } be two datasets drawn from the same distribution. For any i € [n], define
S = {z1,.--,2i-1, 2}, Zi+1,- - ., 2o }. For any function g, g, we have the basic inequalities

sup g(w) — sup g(w) < sup (g(w) — g(w))
w w w ( (B.1)

inf g(w) — inf §(w) < sup (g(w) — §(w)).

B.1. Proof of Part (a)

We first prove Part (a). It follows from (B.1) that

A (4w (). Av(8)) = 3 (An(S). Av(S) < s1p ELF(Au(S).¥) = Fs(Aw(S). V)]
+ sup E[Fs(w, Au(S)) = F(w', Au(S)]

According to the symmetry between z; and z, we know
E[F(Aw(S), V') = Fs(Aw( ZE w($1).v)] = E[Fs(Aw(S), V)]
fZE w(S), V5 2) — f(Aw(S),V'; )],

where the second identity holds since z; is not used to train A (S(). In a similar way, we can prove

E[Fg(w', Av(S)) — F(w', Ay(9))] = % Z [F(W', AV(SW); 2i) = f(W', Au(S); 21)].

As a combination of the above three inequalities we get

AY(Ay(8),Ay(S)) — A¥%(Aw(S), Ay(S)) < sup % Z]E[f(Aw(s@)),v'; z) — f(Aw(S),v'; zi)]]+
1 n

sup [f Z [f(w’,AV(S(i)); zi) — f(W', Ay(S); zz)ﬂ

wew L i—1
The stated bound in Part (a) then follows directly from the definition of stability.

B.2. Proof of Part (b)

The following lemma quantifies the sensitivity of the optimal v w.r.t. the perturbation of w.

Lemma B.1 (Lin et al. 2020). Let ¢ : W x V > R. Assume that for any w, the function v — ¢(w, V) is p-strongly-concave.
Suppose for any (w,v), (w',v') we have

[Vvo(w,v) = Veg(w', V)|, < LIw — w'][>.

For any w, denote v*(w) = arg maxyey ¢(w, v). Then for any w,w' € W, we have

L
[v*(w) = v (w)]2 < Sllw = wlla-
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We now prove Part (b). For any S, let v = arg maxyey F'(Aw(S), v). According to the symmetry between z; and z] we
know

E[SE%F(AW(S),V')]:*Z]E sup F(Aw(57),v')]

n

7ZE S() VE(l‘))] - %ZE[f(Aw(S(i))vvg(U;Zi)]’

i=1

where the last identity holds since z; is independent of A, (S®)) and v* S

According to Assumption 1, we know

F(Aw(S™), Vii ) = f(Aw(S), vEiz)
= f(Aw(SY), Vi 21) — F(Aw(SD), v i) + F(Aw(S™), V5 2:) — F(Aw(S), VE; 2)
< G|l[Aw(SY) — Aw(9)|, + Gl[vise) — vill, < 1+ L/p)G||Aw(S?) — Aw(S)

||2, (B.2)

where in the last inequality we have used Lemma B.1 due to the strong concavity of v — F(w,v) for any w. As a
combination of the above two inequalities, we get

E[ S,Lg\)jF(AW(S),V )] < ﬁZ]E[f(AW(S),vS;zZ-)] / ZE | Aw(SD) = Aw(9)],]
v i=1
. 1 +L/p)G
— B[Fe(Au(S),v3)] + LG ZE [4w(5%) — An(S)]]]
1+L
<E[ su%FS(AW(S),v’)] ( /'0 ZIE | Aw (SD) = Aw(9)]],]- (B.3)
v'e
The stated bound in Part (b) then follows.
B.3. Proof of Part (c¢)
In a similar way, one can show that
E[ inf Fs(w', Av(S)] —E[ inf F(w' A(8))] < % ;E[HAM ) = Ay(9)]l2]-

The above inequality together with (B.3) then implies

E[A*(Au(S), Av(S))] ~ E[AF(Au(S), Av(S)]

:E[E/%%F(AW(S)’VI)] E[sup Fs(Aw (S),v)]—i—IE[ 1nf Fs(w', Av(9))] _E[wlrelt:/vF(w Ay(9))]

< (1+L/p)GE[||Aw(SD) — A ()H] + (1+ L/p)GE[|| Av(SD) — Ay(S)]|2]
<+ ipevaE]| (450 - ) [)

where we have used the elementary inequality a + b < 1/2(a? 4 b?). This proves the stated bound in Part (c).

B.4. Proof of Part (d)
To prove Part (d) on high-probability bounds, we need to introduce some lemmas.

The following lemma establishes a concentration inequality for a summation of weakly-dependent random variables. We
denote by S\{z;} the set {z1,...,2;_1, 2i41,-..,2n}. The L,-norm of a random variable Z is denoted by ||Z||, :=

(E[1Z7])7,p > 1.
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Lemma B.2 (Bousquet et al. 2020). Let S = {z1, ..., 2z, } be a set of independent random variables each taking values in
Zand M > 0. Let g1, . . ., gn, be some functions g; : Z™ — R such that the following holds for any i € [n]

* |Es\(2i319:(S)]| < M almost surely (a.s.),
* E.,[9:(9)] =0as.,
s forany j € [n] with j # i, and 2] € Z
|gi(S) —gi(21, 5 2521, 2 21, - ,zn)’ <B. (B.4)
Then, for any p > 2

H igi(S)HP < 12V6pn[log, n] + 3vV2M /pn.

The following lemma shows how to relate moment bounds of random variables to tail behavior.

Lemma B.3 (Bousquet et al. 2020; Vershynin 2018). Let a,b € Ry and § € (0,1/e). Let Z be a random variable with
|Z]|, < \/pa + pb for any p > 2. Then with probability at least 1 — ¢

|Z] < e(a\/log(e/é) + blog(e/d)).

With the above lemmas we are now ready to prove Part (d). For any S, denote

v = arg max F(Aw(S),v). (B.5)

We have the following error decomposition

NF(AW(S) VS) —nsu%Fs ZEZ VE;Z) _Ez;[f(Aw(S(i)LVg(i);Z)]]+
v'e

> By [Balf(Aw(SD), Vi 2] (Aw(SD), Vi )] 3 B [FAW(5), Vi) < sup Fe(Au(S).)

i—1 v'ey

By the definition of v}, we know Ez[f(Aw(S™¥), viu: Z2)] = Ez[f(Aw(S™), vi; Z)]. It then follows that

nF(Aw(S), vs)fnsup Fs(A <ZEZ vg;Z)—]Ez;[f(Aw(S(i)),vfg;Z)]]Jr
v/'ey

n

DB [E2 7 (Aw(SY), Vo 2= (Aw(SD), Vi 20| 4D By [F(Aw(5), i 2| = sup Fs(Aw(S),v).
; i=1 v
According to (B.2), we know

> E, [/ (Aw(SD), Vi 2| < (14 L/0)G By [ Aw(SD) = Aw(S)],] + D F(Aw(S), v =)

i=1 i=1

(11 /)G Y B [ (s (S)[1,] + nFs(Aw(S).vE)
i=1
< (1+L/,;)G§]EZ; |Aw (D) — Aw(9)]], ]+nvngs(Aw(5),v').
As a combination of the above two inequalities, we derive
NE(Aw(S),v5) — n sup Fs(Aw(S),¥) < (21 L/p)nGe + 3" 4i(8), 8.6)

/
v'ey i—1
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where we introduce
9i(8) = Ef |E2[f (Aw(5Y), viw; 2)] = F(Aw(S™), Vi 1)
and use the inequality
F(Aw(S),v5: Z) = f(Aw(SY), v Z) < G| Aw(S) — Aw(SY)]2 < Ge.
Due to the symmetry between z; and Z, we know E_, [g;(S)] = 0. The inequality [Eg ;.,1[9:(S)]| < 2R is also clear.

For any j # i and any 2/ € Z, we know

1 [BAlF(Aw(S). vh: 2)] = F(Aw(SD). Vi )| = Bay (B2l (Aw(S]"). Vi1 2] = F(Aw(S]). Vi 20|

J

1 [BAL (Aw(8). Vi 20] = B2l (Aw(S]"). ¥0: D)) | [Ber [£(Aw(SD). Vo120 = F(Aw(S”). Voo )

b

where SJ(-i) is the set derived by replacing the j-th element of S() with z;’ . For any z, there holds
[F(A(S) v5032) = F(AWS]), Vi 2)|
< |f(AW(S(i))aV§<U§Z) - f(Aw(S(i) S(?)a ’ + !f S(l ), Vj;(.i);z) - f(AW(SJ('Z))vvg(_w?Z)‘

w(SD) = Au(S{)l2 < (L/p+ 1) Gl A(ST) = Aw(S[")]l2,

<Gllvgm — Vi j

where in the last inequality we have used the definition of v, and Lemma B.1 with ¢ = F. Therefore g;(5) satisfies the

condition (B.4) with g = (L /p+ 1)Ge. Therefore, all the conditions of Lemma B.2 hold and we can apply Lemma B.2 to
derive the following inequality for any p > 2

H Zgz(S)H < 12V6pn(L/p + 1)Ge[log, n] + 6v2R/pn.
i=1 P
This together with Lemma B.3 implies the following inequality with probability 1 — §

’ Z gi(S)‘ < e<6R\/ 2nlog(e/d) + 12\/6n(L/p +1)Gelog(e/d)[log, n]) .
i=1
We can plug the above inequality back into (B.6) and derive the following inequality with probability at least 1 — §

F(Aw(S),vs)— S/llEI\)st(AW(S),V/) < (2+L/p)Ge+e(6R 2n-1log(e/5)+12v6(L/p+1)Gelog(e/d)[log, n})

This proves the stated bound in Part (d).

B.5. Proof of Part (e)

Part (e) is standard in the literature (Bousquet et al., 2020).

C. Proof of Theorem 2

In this section, we present the proof of Theorem 2 on the argument stability of SGDA.

C.1. Approximate Nonexpansiveness of Gradient Map
To prove stability bounds, we need to study the expansiveness of the gradient map
(v W =V f(W, V)
G (V) (Y metins)
associated with a (strongly) convex-concave f. The following lemma shows that G s ,, is approximately nonexpansive in

both the Lipschitz continuous case and the smooth case. It also shows that G, is nonexpansive if f is SC-SC and the step
size is small. Part (b) can be found in Farnia & Ozdaglar (2020).
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Lemma C.1. Let f be p-SC-SC with p > 0.
(a) If Assumption I holds, then
H (W —nVwf(w, V)) B (W’ - anf(WCV’))
VANV f(w,v) v+ nVy f(w', V)
(b) If Assumption 2 holds, then

H (W vaf w, V)) _ (wl - nvwf(w/7vl)>
v+ nVyf(w,v) v + 9V f(w,v')

2
+8G?n?.
2

w—w
v—v

<] (177)

2

< (1—-2pm+ L*?)
2

2

2

To prove Lemma C.1 we require the following standard lemma (Rockafellar, 1976).
Lemma C.2. Let f be a p-SC-SC function, p > 0. Then

((B) (Sptms Sty o f (42

Proof of Lemma C.1. Itis clear that
|G

e H (w—nvwf(w,v)) (W =V (W, )
' v+nVyf(w,v) v+ nVy (W, V)
9 w—w Vwf(w,v) — Ve f(w,v)
2_ " v—v )\ V. f(W, V)= V,f(w,v) ’
2

2
(C.1)

2

7 N

(wa(w’, V/) - vwf(wa V)
(w )

)

V) = Vo f(W',v

2
+ 7?

Plugging (C.1) to the above inequality, we derive
<vwf(w/7 Vl) - vwf<wv V))
2

A< (1_2”)H (ﬁjf) Vo (w,v) = Vo f(w', V)

We can combine the above inequality with the Lipschitz continuity to derive Part (a). We refer the interested readers to
Farnia & Ozdaglar (2020) for the proof of Part (b). O

2

We now prove Theorem 2. Let S = {z1,...,2z,tand S’ = {z1, ..., 21, 2, }. Let {wy, v;} and {w}, v} } be the sequence
produced by (4.1) w.r.t. S and S’, respectively.

C.2. Proof of Part (a)

We first prove Part (a). Note that the projection step is nonexpansive. We consider two cases at the ¢-th iteration. If i, # n,
then it follows from Part (a) of Lemma C.1 that

y 2
Wi+l — Wi
/
Vi+l = Vi

thwf(Wt, Vi; th) W; + ntvwf(wiv V%; Zit)
Vt + vf(Wtavta zi,) = Vi = Vv f (Wi, Vi 2i,)

H( 7,

If i; = n, then it follows from the elementary inequality (a + b)? < (1 + p)a? + (1 + 1/p)b* (p > 0) that

/
Wit1 — Wi

/
Vitl = Vg

2

+ 8G?n?. (C2)

2
— Vi f(We, Vi 2n) — Wi + 0. Vi f(W), vi; 2],)
Vt + Vo f(We, Vi 2n) — v — eV f (W, vy 20)

2
W
< (1+p) H<V _Vtt>

2

(vwf(wtvvt; Zn) - wf(wé7vé; Z;))

2

+(1+1/p)nt
2

\Y
vvf(Wh Vi Zn) - vvf(wgh V;; Z;z) (C3)

2
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Note that the event i; # n happens with probability 1 — 1/n and the event 7, = n happens with probability 1/n. Therefore,

we know
2 2
Wi+l — W:H»l n—1 W; + 8G2772 4+ 7 1 +p Wt
Virl = Vit | T Vt ~vi )l ¢ Vt — v
W, — W,
(%o v;) £ 8PGA(1+1/(np)).
Applying this inequality recursively implies that

b [H (sz: - i?:) j <SPG+ 1) Y (1+2)" e (14 I (R Y
= s (2 +§)((1+ 2y ).

By taking p = n/t in the above inequality and using (1 + 1/t)* < e, we get

2

N

NG

it

8(1+1/p)

2

= (1+p/n)

2 t2
] < 169°G2 (14— ).
n

/
Wit1 — Wiy
EA / +
Vitl = Vit J g

The stated bound then follows by Jensen’s inequality.

C.3. Proof of Part (b)

We now prove Part (b). Analogous to (C.2), we can use Part (b) of Lemma C.1 to derive

2 NS
Wi — Wy
Vi — V}

Wil — Wiy
Virl = Vigr /||y
in the case i; # n. We can combine the above inequality and (C.3) to derive
Wip1 — Wi ’ o (n=1)( 1+L2 2+1+P Wt
Vitr = Vi Jly| © Vt -V

el A

V—Vt

< (1+ L%np7)

2

2

4+
2

8(1+1/p)

n;G?

77t2G2.

2
Applying this inequality recursively, we derive
2

R
Vitl = Vg1 / ||o
By the elementary inequality 1 4+ a < exp(a), we further derive

win—wia ] 801y ,
H(Vuﬂ—v;ﬂ) j < Z H exp (L +p/n)

=1 j=k+1

2
:wzn eXp<L2 Z 77]+p(t7 )/n)

n
= j=k+1

t

win [T (1+2%2+p/n).

n
k=1 j=k+1

t

2
< wexp (LQZ”?WV”)Z”’%'

j=1 k=1

By taking p = n/t we get

!
Wit1 — Wi
/
Vi+l — Vi 2

The stated result then follows from the Jensen’s inequality.

21 < 8@G2(1n—|— t/n (ng%)i
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C.4. Proof of Part (c)

To prove stability bounds with high probability, we first introduce a concentration inequality (Chernoff, 1952).

Lemma C.3 (Chernoff’s Bound). Letr X, ..., Xt be independent random variables taking values in {0,1}. Let X =
Z;:l X; and = E[X]. Then for any 6 > 0 with probability at least 1 — exp ( — p6%/(2 + 6)) we have X < (1 + 6)p.
Furthermore, for any 6 € (0, 1) with probability at least 1 — § we have

X < p+log(1/d) + +/2nlog(1/9).

We now prove Part (c). According to the analysis in Part (a), we know

2
Wit1 Wt+1 Wi 8G2n2 | 1., 1 Wi — Wi
H (Vt+1 — Vi ) (H ( Vi ) i nt) it + | (14P) Vi —Vy

2
It then follows that
2

/
Wi+l — Wt+1>
!
Vitl = Vit1 / ||o

Applying this inequality recursively gives

Wi+l — Wt+1
Vitl = Vig

+8(1+ 1/p)77§G2> Liiy=n)-

+8G (1+ iy =n) /D) (C4)

2
w
S(l-&-pﬂm =n] H(Vt v;)

2

t

<802 QZ L+ T, —n/p) [] (1+plg,=n)

k=1 j=k+1
t
- 8G?2 22 1+ Iji,=n)/P) H (1_|_p) [ij=n)
k=1 j=k+1

. t
< SGHP(1+ )2 9 (64D T /).

Applying Lemma C.3 with X; = [};, _,; and p = t/n (note E4[X;] = 1/n), with probability 1 — ¢ there holds
t
D" sy < t/n+log(1/8) + /2 Log(1/3). ©5)
j=1

The following inequality then holds with probability at least 1 —

H (Wt+1 “’;H—l) < 8G2772(1 +p)t/7n+10g(1/6)+\/2tn—1 log(1/6) (t +t/(pn) +p—1 10g(1/§) +p—1 2tn—1 log(l/é))
Vi+l = Vit1 /g

1
t/n+log(1/6)+\/2tn*1 log(1/46)

Wil — Wt+1
Vitl = Vig

This finishes the proof of Part (c).

We can choose p = (note (1 + x)*/* < e) and derive the following inequality with probability

atleast 1 — ¢

<8eG2 2(t+(t/n+log(1/5)+ 2tn*110g(1/5))2).

C.5. Proof of Part (d)

We now turn to Part (d). Under the smoothness assumption, the analysis in Part (b) implies

W — W 2]1' tla+ wt 2
vi— v, ) ||, el ) — v

2

2

Wit1 — W2+1> < (1 2. 2
<(1+1L
H(VtH - Vi ) ( )

+8(1+ l/p)n?G2> [iy=n)-
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It then follows that

/
Wig1 — Wt+1

/
Vitl = Vi

We can apply the above inequality recursively and derive

2 2

+8(1+ 1/p)n; G?ljs, =
2

2,2 Wy — W,
< (1 + L n; +pﬂ[it:n]) H(Vt —v;>

2

t

2 t
Witl — Wi 2 2 2p2
‘ (Vt+1 — Vi > ‘ <8(1+1/p)G ZWHUF"] H (1+ L*nf + plis, )

2 k=1 j=k+1
t t t
§8(1+1/p)G2n22H[ik:n] H (1+L%n?) H (1 + pl, =)
k=1 j=k+1 j=k+1
t t t
=81+ /DG > Tyme [[ (0 +2%2) [ (1+p)"7
k=1 j=k+1 j=k+1

t t t
<8(1+1/p)G? [T (+ £202) [T (04 9) "7 Y T,
k=1

Jj=1 Jj=1

It then follows from the elementary inequality 1 + = < e* that

!
Wit1 — Wiy

!
Vi+l — Vi

According to (C.5), we get the following inequality with probability at least 1 — §

/
Wit1 — Wt+1

/
Vitl = Vi1

We can choose p =

2 ¢ . t
< 8(1+1/p)G*n* exp (L2 Z 77]2) (1+p) 2o lij=m Zl[ik:n]
2 =1 k=1

2
< 8(1+1/p)G*n? exp (L?tn?) (1+p)t/n+log(1/6)Jr V2t Hlog(1/9) (t/n+log(1/8)++/2tn=1log(1/4)).
2

1
t/n+10g(1/6)+\/2t7f1 log(1/6)

/
Wii1 — Wiy

/
Vitl = Vip

The stated bound then follows.

and derive the following inequality with probability at least 1 — §

2 2
< 8eG*n? exp (L?tn?) (1 +t/n+1log(1/0) + /2tn~! log(l/é)) :
2

C.6. Proof of Part (e)

If iy # n, we can analyze analogously to (C.2) excepting using the strong convexity, and show

/ /
Wir1 — Wi Wi — Wy
/ /
Vil — Vi Vi — Vy

If 24 = n, then (C.3) holds. We can combine the above two cases and derive

, 2
] Wit1 — Wiy
Azl
2
n—1 Wt—W; 2 9 1+p Wt_W;E
((1—2pm)’(vtv; 2+8Gm T v =,

W — W
V¢ *V;

] < (1 —pm)

2

< (1—2pm)
2

2
+ 8G*n}.
2

E

N

2
n;G?

IN

L 801 1)

2

+ 80 G*(1+1/(np)).

W — W
vy — V)

= (1= 2pn; + (2pm: +p)/n)

We can choose p = pn(n — 2) to derive

2
/
E. Wit1 — Wiy
it /
Vit — Vt+1

2
1
+ 8262 (1 n 7)
, n(n —2)pn,

2
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It then follows that

t

: 1
<8G*Y (nj T 2)p) IT = pm).

j=1 k=j+1

2
Ea

Wit1 — Wi
Vigl = Vig
For n; = 1/(pt), it follows from the identity []},_;,, (1 — 1/k) = j/t that

/ 2 2 9
Wipl — Wy < 8G* N 8G* rlog(et) 1
B UKWH ~Vis ) ] St Z ((pj) i n(n — 2)P> = P> ( i n(n — 2))'

2 j=1
The stated result then follows from the Jensen’s inequality.

2

D. Optimization Error Bounds: Convex-Concave Case

In this section, we present optimization error bounds for SGDA, which are standard in the literature (Nedi¢ & Ozdaglar,
2009; Nemirovski et al., 2009). We give both bounds in expectation and bounds with high probability. The high-probability
analysis requires to use concentration inequalities for martingales. Lemma D.1 is an Azuma-Hoeffding inequality for real-
valued martingale difference sequence (Hoeffding, 1963), while Lemma D.2 is a Bernstein-type inequality for martingale
difference sequences in a Hilbert space (Tarres & Yao, 2014).

Lemma D.1. Ler {&. : k € N} be a martingale difference sequence taking values in R, i.e., E[¢|&1,. .., &k—1] = 0.
Assume that |, — ., [€k]| < by for each k. For § € (0, 1), with probability at least 1 — § we have

" " 1\3
;&c < (2;% log 5) . (D.1)

Lemma D.2. Ler {& : k € N} be a martingale difference sequence in a Hilbert space with the norm || - ||2. Suppose
that almost surely ||&|| < B and 35—, E[|k]2[€1, - - -, Ex—1] < 0} for ¢ > 0. Then, for any 0 < § < 1, the following
inequality holds with probability at least 1 — 0

! B 2
< — —=.
o | 6 <2(5 + o) e

Lemma D.3. Let {w;, v;} be the sequence produced by (4.1) with n, = . Let Assumption I hold and Fg be convex-concave.
Assume supy,cyy |W|l2 < Bw and sup,¢y, | V]2 < By. Then the following inequality holds

B%, + B? G(Bw + By)

EA[sup Fs(wrp,v) — inf Fg(w,vr)] <nG? + , D.2
A[velg s(Wr,V) Jnf s(w,vr)] <n T JT (D.2)
where (WT, VT) is defined in (4.2). Let § € (0,1). Then with probability at least 1 — 6 we have
B%, + B? G(BW + BV) (9 log(6/6) + 2)
Fs(w — inf Fg(w,vp) <nG*+ H_—V . D.3
sup s(Wr,v) — inf Fs(w,vr) <nG”+ 5Tn T (D.3)

Proof. According to the non-expansiveness of projection and (4.1), we know

[Wepr — w3 < [we = 0V f (We, ves 2i,) — w3
= |we — w3 + 07 IV f (We, vis 22,) 15 + 200 (W — Wi, Vo f (We, Vi3 23,))

< lwe — w3 4+ 77G? + 20w — Wy, Vw Fs (W5 vi)) + 200(W — Wy, Ve f(We, vis 23,) — Ve Fs (Wi, vi)),

where we have used Assumption 1. According to the convexity of Fs(-, v¢), we know

2 (Fs(wi,vi) — Fs(w,vy)) < [lwy — wll3 — [ Wi — w3+
N7 G? + 200 (W — Wi, Vo (Wi, Vi3 21,) — VwFs(We, vi)).  (D.4)
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Taking a summation of the above inequality from¢ = 1tot =T (w; = 0), we derive

2n (Fs(Wt,Vt) — Fg(w, Vt)> < ||W||% + Tn*G?

[M]=

o~
I
-

T T
+ 277 Z<Wta VWFS(Wtth) - wa(wt,vt; Zit)> + 277 Z<Wa wa(wt7vt; Zit) - VWFS(Wt7vt)>'

t=1 t=1

It then follows from the concavity of Fis(w, -) and Schwartz’s inequality that

M=

2n (Fs(Wt,Vt) — Fs(w, \_IT)) < B;‘;V + Tn*G?
t=1
T T
+20) (Wi, VaFs(Wi, vi) = Ve f (Wi, vis 2,)) + QUBWH > (Vwlf (Wi, vii 2,) = Ve Fs(wy, vi)) H2
=1 =1

Since the above inequality holds for all w, we further get

[M]=

2n (Fs(wt,vt) — ianS(w,\_/T)) < BIQ,V + Tn*G?
t=1
T T
+2n Z<Wt, VwFs(We, Vi) — Vaw f(We, Ve; 23,)) + 2nBWH Z (Vo f (Wi, vi5 2i,) — Vi Fs(wy, vy)) H2 (D.5)
t=1 t=1
Note

E;, [(we, VwFs(wWy, vi) — Vw f (Wi, vi;2;,))] = 0. (D.6)
We can take an expectation over both sides of (D.5) and get

© S B[Pt vl ~Ealig Pt )] < 2 15 B0 9 (9 o i) Pt w) ]
t=1

~
I
=

According to Jensen’s inequality and (D.6), we know

(Ea [H i (Ve (Wi, Vi 22,) — Vg Fs (Wi, vi)) HQDQ <E, {H ZT: (Ve f (Wi, Vi 22,) — Vg Fs (Wi, v1)) Hz}

t=1

T
2
= ZEA {vaf(wt,vt;zit) — VWFS(Wt,vt)HQ} <TG
t=1

It then follows that

T

1 B2 nG%?  BwG
— Y E4[F —Ea[inf Fs(w,vr)] < 2L + — + ——. D.7
T; A[Fs(wy, vy)] A[lvnv S(W,VT)]_%T-&- 5t T (D.7)

In a similar way, we can show that
T

_ 1 B nG?>  ByG

Easup Fs(wr, v)] = 7 S BalFs(wev)] < 5+ -+ = (D3)

t=1
The stated bound (D.2) then follows from (D.7) and (D.8).

We now turn to (D.3). It is clear that |(wt, VEs(wyi,vi) =V (Wi, vi; 2, )>‘ < 2G By, and therefore we can apply Lemma
D.1 to derive the following inequality with probability at least 1 — §/6 that

T
Z<Wt’ VwFs(W, Vi) — Vi f(We, Vi; 25,)) < 2GBw (2Tlog(6/5)) . (D.9)

t=1

=
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Forany ¢t € N, define §; = Vi f(Wy, vi; 25, ) — VwFs(wy, v¢). Then it is clear that ||& ||z < 2G and

T

> Ell&l3lr, - &) < ATG.

t=1

Therefore, we can apply Lemma D.2 to derive the following inequality with probability at least 1 — 6/3

HZ@

Then, the following inequality holds with probability at least 1 — §/3

<2 23G 2GVT) log(6/9).

H zir: (VS (Wi, vis 2i,) — V‘,‘,Fs(wt,vt))H2 <4G(1+ \/f) log(6/9).

We can plug the above inequality and (D.9) back into (D.5), and derive the following inequality with probability at least
1-46/2

S ; 2 9GBw /21 P
Z (W, v¢) — inf Fg(w, vp) < By  nG*  2GBw/210g(6/9) 8BwGlog(6/)

H \

In a similar way, we can get the following inequality with probability at least 1 — §/2

nG? 9By Glog(6/5) + 2By G

B2
sup Fs(wp,v) — = Fs(wye,vy) <V 4I= 4
ve\% S T Z S(Wi, Vi 2T B \/T

Combining the above two inequalities together we get the stated inequality with probability at least 1 — §. The proof is
complete. O

The following lemma gives optimization error bounds for SC-SC problems.

Lemma D.4. Let Assumption 1 hold, to > 0 and Fs(-,-) be p-SC-SC with p > 0. Let {w,v:} be the sequence produced
by (4.1) withne = 1/(p(t + to)). If to = 0, then for (W, Vr) defined in (4.2) we have

2l0g(eT)  (Bw + B
E4[sup Fs(Wr,v) — inf Fs(w,vr)] < GZlog(eT) | (Bw + Bv)G. (D.10)

vey wew pT \/T
If supy,eyy [|Wll2 < Bw and sup,,cy, || V]2 < By, then

2pto(BE, + BY) n G?log(eT)

AY (W, V) <

(D.11)

Proof. Analyzing analogously to (D.4) but using the strong convexity of w — Fg(w, v), we derive
2 [Fs(wi,ve) = Fs(w,vo)] < (L=mep)l[we — wl5 — [[wes — wl5 + 177G + & (w),
where & (W) = 2, (W — Wy, Vi f (W, V5 23, ) — VwFs(Wy, vi)). Since ny = 1/(p(t + to)), we further get

2 G2

o+ to) [Fs(we,ve) = Fs(w,vi)] < (1= 1/(t +to))llwe = Wi — [wesr — wli3 + 1) + & (w).

Multiplying both sides by ¢ + ¢y gives

2 G2
;[FS(Wtth) — Fs(w,vi)] < (t+to — Dflwe = w3 — (¢ +to)|Werr — w3 + (¢ + to)&(w) + 2t to)



Stability and Generalization of Stochastic Gradient Methods for Minimax Problems

Taking a summation of the above inequality further gives

G?log(eT)
2p

T
+ 53+ t)é(w),

t=

T
> [Fs(wi,vi) — Fs(w,v)] < 2ptoBjy +
t=1

=

where we have used ZtT,l t~! < log(eT). This together with the concavity of v — Fg(w, v) gives

_ 5 GZlog(eT) p d
Z Fs(wye,vy) Fs(W7VT)} < 2pto By + T + 5 Z(t + t0)&(w). (D.12)
t=1 t=1

Since the above inequality holds for any w, we know
T T
_ G? log(eT) p
. 2
; [Fs(weve) = inf Fs(w,vr)] < 2010Bfy + =22 0 sup 3 (1 +10)6(w).

Since EAKWt,vwf(Wt,Vt;Zit) — VwFs(we, ve))] = 0 we know

5u$VZ t+t0)&(w)] = QEA[ sug\;z t+ to)n (W, Vaw f(Wy, vi; 2i,) — vwFs(Wt,Vt»}
we we

T
<2 sup [[wlsE4 D0+ to)n (T (e vis 21) = VuFs(wi, o))
we
2\ 1/2
)

T 1/2
< 2By <Z(t + 10)?02Ea || Ve f (W, Vi zi,,)||§> < 2BwGp VT.

t=1

< 2Bw (EA

T
Z t+to) 77t Vwf(We,Ve;2i,) — VWFS<Wt;Vt>)

We can combine the above two inequalities together and derive
T

G?log(eT
ZEA [Fs(wt,vt) — lglf;\/ Fs(W, \_/'T)] S 2,0750312/[/ + 2gp(6) + BwG\/T
t=1

In a similar way one can show
G2 log(eT
S B [sup F(wr,v) — Fa(wi.vi)] < 200053 + AT 4 GV,
=1 vey

We can combine the above two inequalities together, and get the following optimization error bounds

G?log(eT
TEA[sup Fs(Wr,v) — irelist(w,\_/T)] < 2pto(B3, + BY) + opg(e)
vey w

This proves (D.10) with ¢y = 0.

+ (Bw + By)GVT.

We now turn to (D.11). Since E 4[£:(w)] = 0, it follows from (D.12) that

v G?log(eT
ZEA [FS(Wt;Vt) — FS(W,VT)} < thOB‘%V + Qgp()
t=1

In a similar way, one can show

T

ZEA [Fs(Wr,v) — Fs(wy,vi)] < 2ptoBy +
t=1

G?log(eT)
2p ’

We can combine the above two inequalities together and derive

2pto(B? B2 2] T
E[FS(V_VT,V)—FS(W7\7T] < pO( I{/Z[/'_‘+ V)_|_G (;?(6 )

The stated bound (D.11) then follows by taking the supremum over w and v. The proof is complete. O
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E. Proofs on Generalization Bounds: Convex-Concave Case

In this section, we prove the generalization bounds of SGDA in a convex-concave case. We first prove Theorem 3 on bounds
of weak PD population risks in expectation.

Proof of Theorem 3. We first prove Part (a). We have the decomposition
A (W, vr) = AV (Wr, V1) — A (Wr, Vr) + A (W, V7). (E.1)
According to Part (a) of Theorem 2 we know the following inequality for all ¢
_ /
=)
Vitl = Vg1 /|l

It then follows from the convexity of a norm that
WT — WT
T — V

sup ( sup B [f(Wr,V';2) — f(Wp,v'i2)] + sup Ea[f(W,Vr;2) — f(W, V7 Z)D
z v'ey w’' ew

< G(Ball[wr ~ %rll] + Eal[vr — ¥5,]) < 4vane? (VT + ).

] < 477G(\/i+ %)

} < 4nG(\/T+ %)

2

and therefore

According to Part (a) of Theorem 1, we know
W (= S W (o S 2 T
A (Wop, ¥7) — A (Wr, 1) < 4V20G (\/T + g)-

According to Eq. (D.2), we know

By +B%  G(Bw+By)
2nT VT

AY(wrp,vp) < nG? +

The bound (4.3) then follows directly from (E.1).

Eq. (4.4) in Part (b) can be proved in a similar way (e.g., by combining the stability bounds in Part (b) of Theorem 2 and
optimization error bounds in Eq. (D.2) together). We omit the proof for brevity.

We now turn to Part (c). According to Part (e) of Theorem 2 and the convexity of norm, we know

W — W
EAw(vTv&>

Analyzing analogous to Part (a), we further know

Z\fGlo() 1
2]— T *m)'

N (W, vr) = A (Wr, Vr) < 4G(log\z/(;T) i \/ﬁ>

p
This together with the optimization error bounds in Lemma D.4 and (E.1) gives

wr— - 4G? log%(eT) 1 G?log(eT) = (Bw + By)G
A (WT,VT)S—( 7T +m)+ pr A N

p
The stated bound then follows from the choice of T'. The proof is complete.
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Finally, we consider Part (d). Since tq > L?/p? we know 1, = 1/(p(t + to)) < p/L?. The stability analysis in Farnia &
Ozdaglar (2020)° then shows that A is e-argument stable with e = O(1/(pn)). This together with Part (a) of Theorem 1
then shows that

Aw(V_VT,\_fT) AS (WT7VT (1/(pn))

We can combine the above generalization bound and the optimization error bound in (D.11) together, and get

A (W, vr) = O(1/(pn)) + O(% + logp(;T))’

The stated bound then follows from 7" < n. The proof is complete. O
We now present proofs of Theorem 4 on primal population risks.

Proof of Theorem 4. We have the decomposition
R(wr) — R(w") = (R(Wr) — Rs(wr)) + (Rs(Wr) — Fs(w",vr))
+ (Fs(w*,v7) — F(w*, 7)) + (F(w*, V1) — F(w*,v")).
Since F(w*,vr) < F(w*,v*), it then follows that
R(wr) — R(w*) < (R(Wr) — Rs(Wr)) + (Rs(Wr) — Fs(w*, V1)) + (Fs(w*, vr) — F(w*, V7). (E2)
Taking an expectation on both sides gives
E[R(Wr) — R(w*)] <E[R(Wr) — Rs(Wr)] + E[Rs(Wr) — Fs(w*,vr)] + E[Fs(w*,vr) — F(w*,v7)]. (E3)

Note that the first and the third term on the right-hand side is related to generalization, while the second term Rg(Wr) —
Fg(w*,vr) is related to optimization. According to Part (b) of Theorem 2 we know the following inequality for all ¢

/
Wit1 — Wy
EA |: < / +
Vt+1 — Vt+1 9

It then follows from the convexity of a norm that

] (%3

This together with Part (b) of Theorem 1 implies that

p (LQtn2/2)17~

] < G+/8e(t +t2/n) ox

] < GVET AT ) (LzTn2 /2)77. (E4)

(1+ L/p)G?*n\/8e(T +T?/n)exp (L*Tn?/2)
7 .

Similarly, the stability bound (E.4) also implies the following bound on the gap between the population and empirical risk

Es a {R(WT) - RS(WT)} <

(1+ L/p)G*n\/8e(T + T2 /n) exp (L*Tn?/2)

Es, [Fs(w*,vT) _ F(w*,v—T)} < v

According to Lemma D.3, we know

B3, + B G(Bw + By)
Rg(wr) — Fg(w*,vr)] <E Fg(w — inf F vr)] < nG? W~V )
a[Rs(wr) — Fs(w*,vy)] < A[32€ s(Wr,v) = inf Fs(w,vr)] <nG”+ onT NG

We can plug the above three inequalities back into (E.3), and derive the stated bound on the excess primal population risk in
expectation.

3Farnia & Ozdaglar (2020) considered the constant step size n; = n < p/L?. It is direct to extend the analysis there to any step size
nt < p/L? since an algorithm would be more stable if the step size decreases.
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We now turn to the high-probability bounds. According to Assumption 1 and Part (d) of Theorem 2, we know that with
probability at least 1 — 6 /4 that SGDA is e-uniformly stable, where € satisfies

€= o(n exp(L2Tn?/2)(Tn~" + 1og(1/5))). (E.5)
This together with Part (d) of Theorem 1 implies the following inequality with probability at least 1 — §,/2

R(wr) — Rg(wr) = O(Lp_lelognlog(l/é) + n_%\/log(l/é)),

where e satisfies (E.5). In a similar way, one can use Part (d) of Theorem 1 and stability bounds in Part (d) of Theorem 2 to
show the following inequality with probability at least 1 — §/4

Fs(w*,vp) — F(w*,vr) = O(lognlog(l/é)e) +0(n2 log? (1/9)). (E.6)
According to (D.3), we derive the following inequality with probability at least 1 — §/4

Rs(wr) = Fs(w",vr) = sup Fs(wr,v) = Fs(w',vr) = O(n-+ (Tn) ™ + T~} log(1/5)).
ve

We can plug the above three inequalities back into (E.2) and derive the following inequality with probability at least 1 — §
R(wr) — R(w*) = O(Lpfln exp(L*Tn?/2) lognlog(1/8)(Tn~" + log(l/é))) +0(n"%/10g(1/9))

+O0(n+ (T + T Flog(1/6)). E7)

The high-probability bound (4.6) then follows from the choice of 7" and 7. The proof is complete. O

Finally, we present high-probability bounds of plain generalization errors for SGDA.

Theorem E.1 (High-probability bounds). Let {wy, v} be the sequence produced by (4.1) with n, = 1. Assume for all z,
the function (w,v) — f(w,V; z) is convex-concave. Let A be defined by A (S) = wr and Ay (S) = v for (Wr,vr) in
(4.2). Let supy,cyy [Wll2 < Bw,supyey, [[Vl2 < By and § € (0,1). Let Ay = |F(wr,vy) — F(w*,v*)

(a) If Assumption I holds, then with probability at least 1 — §
Ap = O(n lognlog(1/8) (VT +Tn~" + 10g(1/6))) +0(n"2 log%(1/5)) + O((Tn)_1 +T73 log(l/d)).

If we choose T =< n? and n < T—3/* then we get the following inequality with probability at least 1 — §

Ar = O(n~Y2lognlog?(1/6)). (E.8)
(b) If Assumptions 1, 2 hold, then the following inequality holds with probability at least 1 — ¢
Ap = O(n log nlog(1/6) exp (L*Tn?/2) (Tn~" +log(1/6)) + n"2 log%(1/5) +(Ty) ' +T2 10g(1/5)>.
In particular, we can choose T = n and 1 =< T~/ to derive (E.8) with probability at least 1 — 6.
Proof. We use the error decomposition

F(V_VT,\_IT) — F(W*,V*) = F(WT,\_/T) — Fs(\x/’T7\_/T) + Fs(V_VT,\_fT) — FS(W*,‘_/'T)
+ Fs(w*,vr) — F(w*,vy) + F(w",vp) — F(w",v"). (E.9)

We first prove Part (a). According to Assumption 1 and Part (c) of Theorem 2, we know that SGDA is e-uniformly stable
with probability at least 1 — /4, where

€= O(n(\/T—I— Tn™' + 10g(1/5))>.
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This together with Part (e) of Theorem 1 implies the following inequality with probability at least 1 — §/2
F(wr,vr) — Fs(Wr,vp) = o(n log nlog(1/8) (VT +Tn™ + 1og(1/5))) +0(n"2 log?(1/6)). (E.10)
Similarly, the following inequality holds with probability at least 1 — 6/4
Fs(w*,vp) — F(W*,vr) = O(n lognlog(1/8) (VT + Tn~"' + log(l/é))) +O(n" % log? (1/5)). (E.11)
According to Lemma D.3, the following inequality holds with probability at least 1 — §/4
Fy(Wr,¥7) = Fs(w*,v7) < sup F(wr,v) — inf Fs(w,vr) = O(n+ (Tn) " + T ¥ log(1/6)).  (€12)

According to the definition of (w*, v*), we know F(w*, vy) < F(w*, v*). We can plug this inequality and (E.10), (E.11),
(E.12) back into (E.9), and derive the following inequality with probability at least 1 — §/2

F(wr,v7) — F(w*,v*) = o(n log nlog(1/8) (VT + Tn~" + 1og(1/5)))
+O(n™ 4 log? (1/6)) + O((Tn) ™ + T~ H log(1/9) ).
Analyzing in a similar way but using the error decomposition
F(w*,v*) — F(wp,vp) = F(W*,v*) — F(wp,v*) + F(wp,v*) — Fs(wp,v")
+ Fs(Wr,v") = Fs(Wp,Vr) + Fs(Wrp, V1) — F(Wr, V1),

one can derive the following inequality with probability at least 1 — §/2

F(w*,v*) — F(wp,vp) = O(nlognlog(1/§)(ﬁ+ Tn™' + log(l/é)))

+O(n~ % log? (1/6)) + O((Tn)’l v T3 1og(1/5)).

The stated bound then follows as a combination of the above two inequalities.

Part (b) can be derived similarly excepting using the stability bounds in Part (d) of Theorem 2. We omit the proof for brevity.
The proof is complete. O

F. Stability and Generalization Bounds of SGDA on Non-Convex Objectives
F.1. Proof of Theorem 5

In this section, we show the stability and generalization bounds of SGDA for weakly-convex-weakly-concave objectives.
We first introduce some lemmas. As an extension of a lemma in Hardt et al. (2016), the next lemma is motivated by the fact
that SGDA typically runs several iterations before encountering the different example between S and S’

Lemma F.1. Assume |f(-,-,2)] < 1 for any z and let Assumption 1 hold. Let S = {z1,...,2z,} and S’ =
{#1y- .+, 2n-1, 2 }. Let {w¢, v} and {w},v,} be the sequence produced by (4.1) w.rt. S and S’, respectively. De-

note
W, — W,
_ t
Ay = ,
Vi — 'V,

(F.1)
2

Then for any tg € N and any w', v’ we have

4t(]
n

E[f(wr,v';2) = f(Wp,v'i2) + f(W,vri2) = f(W, v 2)] < — + V2GE[A7|Ay, = 0],
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Proof. According to Assumption 1, we know
f(wp, V5 2) = f(Wh, V5 2) + fF(W,vr; 2) — f(W, vl 2) < GV2Ar. (F.2)
Let £ denote the event that A;, = 0. Then we have
E[f(wr, v’ 2) = f(wp, v 2) + f(W, vri2) = f(W, v 2)]
=P[EIE[f (Wr, Vs 2) = f(Wp, V' 2) + f(W, vy 2) = f(W, v 2)[€]
+ PEJELf (wr, Vs 2) = f(Wh, V' 2) + f(W', vy 2) — f(W, v 2) €]
<V2GE[A7|E] + 4P[£°],

where in the last step we have used (F.2) and the condition | f(-, -, z)| < 1. Using the union bound on the outcome i; = n
we obtain that

t
PlE] <> Pliy =n] = =
t=1
The proof is complete by combining the above two inequalities together. O

Lemma F.2 shows the monotonity of the gradient for weakly-convex-weakly-concave functions. Its proof is well known in
the literature (Liu et al., 2020; Rockafellar, 1976).

Lemma F.2. Let f be a p-weakly-convex-weakly-concave function. Then
w—w Vwf(wW,v) =V f(W, V) > w—w
v—v )\ Ve f(W, V)= Vef(w,v) =P\ v—v

We are now ready to prove Theorem 5.

2
(F.3)

2

Proof of Theorem 5. Note that the projection step is nonexpansive. We consider two cases at the t-th iteration. If i; # n,
then it follows from Lemma F.2 and the Lipschitz continuity of f that

2 /

2 ’ ve=vi ) |l

Wit1 — W2+1

Vit+1 — V2+1
Ve (W Viizi) = Vel woviz) [° Ly, [ (we= Wi (Ve (Wi viizi) = Ve (W], vii2,)
2 h Vi — Vé ’ vvf(wg7 V:ﬁa Zit) - vvf(wt7 Vi Zit)

2 2
< Wi — 0 Vwf(We, Vi zi,) — Wi + 0V f(Wh, v 23,)
2 B v+ TIthf(wt’vt; Zif,) - V; - ntvvf(wgavé; Zif,)

+77t2 . I
vvf(whvtz Zit) - VVf(Wthv Zit)

T
Wi — W,
Vi — V}

+8G?n2. (F.4)
If i; = n, then it follows from the elementary inequality (a + b)? < (1 + p)a® + (1 + 1/p)b? that

2
/
Wit1 — Wiy
/
Vi+l =~ Vip

<(14 2n:p)

IN

2 2
Wi — ntvwf(wtv Vi3 Zn) - W:f + ntvwf(wga V:f; 241)
Vi + 0V f (Wi, vis 2n) — Vi = mi Vi f(W, vi; 27,)

W, — W,
aen (=)

Note that the event i; # n happens with probability 1 — 1/n and the event ¢, = n happens with probability 1/n. Therefore,

we know
Wil — Wi |-t w —wp) | L+p| (w—w;
R | EE (N R R B ()
Vitl — Vi 9 n Vi =V 2 n
Wy — W
Vi — V}

2
(vwf(wtvvt; Zn) - wa(Wé,Vg; Z’;L)

2

2 2

+ (1 +1/p)m;
2

IN

(F.5)

vvf(wtavﬁ Zn) - vvf(wévv;; Z;z))

2

> 8(1+1/p)

E;,

IN

2

+ 817 G*(1+1/(np)).

IN

(1+2nep+p/n)

+ ——niG?
n
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Let ¢y € N and &£ be defined as in the proof of Lemma F.1. We apply the above equation recursively from ¢ = ¢y + 1 to T,

then
W —W/T
2[[timey

By the elementary inequality 1 + a < exp(a) and 7, = ¢, we further derive

/
Wit1 — Wiiq
IEA ( / +
Vi+l = Vip

2 T T

51 <8G*(1+1/(mp)) > n¢ J] (1+2mp+p/n).

t=to+1  k=t+1

2

2 2

2 ~ 1 2cp | P
el <sc?(1+1/mp) 3 5 ] e (52+2)

2 t=to+1 k=t+1 n
T T
c 2¢ T
<8G2(1+ 1/(np)) = exp ( 7” +2).
t=to+1 k=t+1 n

By taking p = n/T in the above inequality, we further derive

Wil — Wiy ’ 2 T ¢ r 2¢cp
Ea “(Vt+1_v2+1) E| <8eG (14‘?) Z t—2exp( Z 7)

2

t=to+1 k=t+1
) T\ = T
<8eG (1 + 7) Z 3 oXP (QCplog <?))
M e
T
T 1
S8C2€G2 (1 + 72)T2Cp Z W
n t=to+1
<862€G2 (1 2) (z)%pl
“2cp+1 n2/ \tgy to

Combining the above inequality and Lemma F.1 together, we obtain

n

4ty 4/ecG? (1+\/T)(T>cp 1

EA[f(WTavléz) _f(W/TvV/§Z)+f(WIaVT§Z) —f(W/;V/T§Z)] §7+ NoTES % ﬁ. (F.6)

The right hand side is approximately minimized when

2
o — (/G <1+@)TC”n o
0 V2ep +1 n '

Plugging it into the Eq. (F.6) we have (for simplicity we assume the above % is an integer)

VeceG? (1 N ﬁ)p)* (1)1

EALf(wr, '3 2) — F(Wip, V5 2) 4+ (W', Vs 2) — (W', Vi 2)] ss(

V2ep+1 n n
Since the above bound holds for all z, S, S” and w’, v/, we immediately get the same upper bound on the weak stability.
Finally the theorem holds by calling Theorem 1, Part (a). O

F.2. High-Probability Stability and Generalization Bounds

In this section, we give stability and generalization bounds of SGDA with nonconvex-nonconcave smooth objectives with
high probability. The analysis requires a tail bound for a linear combination of independent Bernoulli random variables
(Raghavan, 1988).

Lemma F.3. Let ¢, € (0,1] and let X1, -+ , X1 be independent Bernoulli random variables with the success rate of X
being p; € [0, 1]. Denote s = Zthl c¢pg- Then, for all a > 0,

ea

T s
P[;Q&Xt > (1+a)s} < (m> )
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In particular, for all § € (0,1) such that log(1/6) < s with probability at least 1 — 6 we have

T
Z e Xy < s+ (e — 1)4/log(1/9)s.
t=1

Theorem F.4. Let {w, v} be the sequence produced by (4.1) with 1, < ¢ for some ¢ > 0. Assume Assumption 1, 2 hold

and |f(-,;2)] < 1. Forany ¢ € (0,1), if ¢ < m, then with probability at least 1 — § we have

[F(wr,vr) = Fs(wy,vr)| = O(T log(n) log**(1/6)n™1/% + n™Y/210g!/2(1/5) ).

Proof. Let S" = {z1,...,2n-1, 7, } and {w}, v}} be the sequence produced by (4.1) w.r.t. S". If i; # n, it follows from

the L-smoothness of f that

/
Wi+l — Wigg
/
Vit1 — Vi vt — vt

If 74 = n, we have
_ / _ /
Wt-‘,—l Wt-‘,—l < Wi Wt
! — /
Vit — Vt+1 9 Vi — 'V,

We can combine the above two inequalities together and get
W — W,
Vi —V}

!
(Wt+1 — Wt+1)
/
Vil = Vipr /||y

We apply the above inequality recursively from ¢t = 1 to 7" and get

+77t < (14 L)

va(wta Vi, Zit) - va(ww/fa V;; Zit) 2

(vwf(wta Vi3 zit) - wa(W27 V:&; Zit))

2

<(1+ Lny) + 4G, =)

2

T T
|G, a6t TL (e )
T T/ 2 t=1 k=t+1

By the elementary inequality 1 + a < exp(a) and 1, < ¢, we further derive

T

T
[(yr =y, oo 3 2 T o (5) = a3 o (37 F)
k=t+1 t=1 k=t+1
Ifi,=n) T e N Lie=n]
<4eq " le=nd Llog (=)) < 4cGT .
¢ ; r P (C Og(t)) ¢ ; teL+1

By Lemma F.3, for any 6 > 0 such that log(2/¢) < Zthl ﬁ with probability at least 1 — §/2 we have

W7 — WT
v — VT

T T

§4cGTCL<Z ﬁ +(e—1),|log(1/8) ) ﬁ)

2 t=1 t=1

Note that

| T at 1
Z teL+1 — tcLJrl <1+ E
t=1
Plugging the above bound into Equation (F.7) , we know with probability at least 1 — §/2

H (VT - VTT) <aerer (AL (o 1y [l Dlos1/0)y,

vl

F.7)
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By the Lipschitz continuity of f, the above equation implies SGDA is e-uniformly stable with probability at least 1 — 6/2
and
= O(TCL\/log(l/é)n_%).
This together with Part (e) of Theorem 1 implies the following inequality with probability at least 1 — ¢
|F(w,v) — Fs(wrp,vr)| = O(TCL log(n) log®?(1/8)n~1/2 4 n~1/2 logl/Q(l/(S)).

The proof is complete. O

F.3. Proof of Theorem 6

In this section, we prove Theorem 6 on generalization bounds under a regularity condition on the decay of weak-convexity-
weak-concavity parameter along the optimization process.

Proof of Theorem 6. Let S = {z1,...,z,} and S" = {z], ..., 2/} be two neighboring datasets. Without loss of generality,
we assume z; = z, for i € [n — 1]. If i; # n, then it follows from Assumption 2 that

2 2

wf wtavtazu) - Wf(wtavta Zt Wf wt7vt7Z'Lf) - wa(wgavé;zit) < L2 Wi — W;
Vof(Wi,vi;2i,) — Vo f (W), Vs 2 Vol (Wi, Vi 2i,) — Vo f (W, V] 2 = vy — Vv,
t tr Vi “ t ty Vi “it 2 t 2
If i = n, then it follows from Assumption 1 that
2
w.f Wi, Vi, Zu) - wa(W;,V;; Z;,) < 8G2
vf thvfazlt) 7vvf(wrl‘7vgvz;t) 2 -
Therefore, we have
2
E. vwf(wtyvt; Zit) - wa(wgu\’;f; Z;,) < (TL — 1)L2 Wi — W;f + 8G2 (F 8)
" va(wtvvt; Z’it) - va(W%,V;; th) 9 n Vi — V:ﬁ 2 ' )

According to (4.1), we know
/ 2 /
Wi+l — Wip < || (Wt~ Wt
Vitr = Vil T [\ ve — v

Taking a conditional expectation w.r.t. ; gives

2

+ 7
2

2

(wa(wtavt; Zit) - wa(vajt; Z;,))
)

vvf(wtavt; Zit - vvf(wghvft; th) 2

B Wi — Wi\ (Vwf(We,ve;2i,) — Vi f(W, Vi 2])

~

v (Wt>Vt;Zit)

2

/
E. Wil — Wt+1
iy —
Vitl = Vit /g

2 2
AT 2 I | AP < Wi =W\ (Vo f (We, vis 2i,) — Ve f(W], v 27,) >
- vi— vy 9 ! Vi — vy 9 n N vi—vy ) T\ Vv f(Wi,vis 7)) — Vv f (Wi, vis 2i,)
2 2
_|[we—wy Lz | (Ve W n 8G*n; 9 < Wy — W, VwFs(Wi,vi) — VwFg (Wi, vy) >
vi—vi ), It vi—vi /), n Mt vi — Vi |\ VyFs (W}, v)) — VyFs(wy,vi) ) /7

where we have used (F.8) in the first step and used the fact
E, Vf(w,v,z;,)=VFs(w,v), E;Vf(w,v, z;f) =VFs (w,v)

in the second step. According to (5.1), we know
< (wt — wg) <VWF5(Wt,Vt) — VwFs (wé,vé)) >
vi — v}, ) '\ VyFs (W}, v}) — VyFs(wWe, vi)
_ < W — W VwEs(wi,vi) — Vi Es (Wi, v}) > n < W — W VwEs(wi,vi) — VwFs (W, v}) >
vi — v, )\ VyFs(w},v}) — VyFs(wy, vy) vy — v, ) '\ VyFs (W}, v}) — VyFs(w},v})

W, — W) ? + < W — W, VwFs(wi,v}) — VwFs (W}, v}) >
vi—vi ), vi — vV}, ) '\ VyFs (W}, v}) — VyFs(wj,vy) )/

v

—pt
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It follows from Assumption 1 that

< Wi =W\ (VwFs(Wi, vi) = VwFo (W, vi) >7l< Wi = Wi\ (Vwf(Wi, Vi zn) = VS (Wi, vis 2,) >
v)’ b VE) — b Vi )\ Vvf(wi,visz,) = Vo f(wi, visz,)

VyFs(wi,vi) — VyFs(wi, vy) n
o () M (S -
Vt*Vt Vo f Wtavtazn)f vf Wtavtazn

We can combine the above three inequalities together and derive

Vi — 'V Vi —V,

2l

2 2

N 8n?G? 4\f 2Gn,

Wil — W, / w
E;, <Vt+1_v/t+1) < (L4 2peme + L?n7) H(V —v) <v _Vt)
t+1 t4+1 2 t t 2 n n t t 2
2 2 2 2
W — W 8 G Wi — W 8G
<o) | () e (L5
2 2
Applying the above inequality recursively, we get
Wil — Wiy ’ G2Z 2 1 ﬁ ( 2,2 2)
EAH( /t+> < = (71t+*) 14 2pme + L7n5 +n5) -
Vi T Vi1 /o "= " i
By the elementary inequality 1 4+ a < exp(a) we know
Wil — W 2 2 2 1 i
E < EEE (D)o (X @omt 224 i)
A H (Vt+1 IR ; m; p k:zj;l (2pwmi + (L* + 1)ni)

It then follows from the Jensen’s inequality that

/
Wit1 — Wiy
IEA < /+
Vitl = Vg1

The stated bound then follows from Part (a) of Theorem 1 and Assumption 1. The proof is complete.

t 2

2[G 3 (m ) exp ( S (2owme + (L7 + 1)7713))

Jj=1 k=j+1

G. Stability and Generalization Bounds of AGDA on Nonconvex-Nonconcave Objectives

In this section, we give the proof on the stability and generalization bounds of AGDA for nonconvex-nonconcave functions.
The next lemma is similar to Lemma F.1, which shows AGDA typically runs several iterations before encountering the

different example between S and S’.

Lemma G.1. Assume |f(-,-,z)] < 1 for any z and let Assumption 1 hold. Let S = {z1,...,2,} and S’ =
{z1,.- -y 2n-1,2 . Let {wy,vi} and {w}, v} be the sequence produced by (5.2) w.rt. S and S’, respectively. De-

note
Ay = |lwe = willa + [[ve = villa-

Then for any ty € N and any w', v’ we have
8t
ELf(wr v 2) — F(Wr ¥ 2) + F(W Ve 2) — F(W Vi 9] € S0 4 GE[A 7|, =0].

Proof. Let £ denote the event that A;, = 0. Then we have

Elf(wr,V';2) — f(wp, V5 2) + (W, vr; 2) — f(W', vips 2)]
=P[EIE[f(wr,V'; 2) — f(Wp, V' 2) + f(W,vr; 2) = f(W',vip; 2) [€]

+ PETE[f(wr, V5 2) = f(Wip, Vs 2) + f(W,vr; 2) — f(W', v 2)[E°]
<GE[AT|E] + 4P[E€],

(G.1)

(G.2)
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where we have used (F.2) and the assumption | f(-, -, z)| < 1. Using the union bound on the outcome i; = n and j; = n we
obtain that

to
P& SZ n) +Pjy =n]) = —.
The proof is complete by combining the above two inequalities together. [

Proof of Theorem 7. Since z;, and z;, are i.i.d, we can analyze the update of w and v separately. Note that the projection
step is nonexpansive. We consider two cases at the ¢-th iteration. If i, # n, then it follows from Assumption 2 that

(Wit — Wil
<|IWi = Nw s Vo f (We, Ve, 2i,) = Wi+ D t Vo f (W Vs 23, |2
SHWt - WW,tVWf(thvta Zi,) — W;f + nW,tVWf(Wgavtv zi,)|l2 + ||77w,tvwf(W;7Vt, Zi,) — VW,tVWf(W;aV:vait”b
<1+ Lopw,o)l[we = Willz + Lijw el[ve — vi[2.

If iy = n, then it follows from Assumption 1 that

W1 — Wi ll2 S<IWe — Dt Vo f (We, Vi, 243, ) — Wi + Dt Ve f (W5 v, 23,) 2
<|lwe — will2 + 2Gnw, .

According to the distribution of 7;, we have

-1 1
Ea (14wt D) Iwe = Will2 + Litw.tl[ve = villa] + - (Iwe = w2 + 200, G)

277w,tG
n .

Ealllwipr = wipill2] <

<1+ nwi L)Eal[[we — willo] + Lipw i Ea[[[ve — vill2] + (G.3)

Similarly, for v we also have

277v,tC¥

Eall[vesr = vigillo] <A+ nv DEA(llve = villo] + Loy Ea [[[we — will2] + (G.4)
Combining (G.3) and (G.4) we have

2wt + v .t)G
Eallwerr — Will2 + [[vier — Vill2] S0+ wye + nv.e) DEa[[[we — Whl2 + [[ve — vill2] + 201wt +11v.)G

n
Recalling the event £ that A, = 0, we apply the above equation recursively from ¢t = ¢y + 1 to 7', then
2 T T
Ealllwesr = Wipqll2 4 [Vesr — Vi ll2|As = 0] §7 Z (Thw,t + 1v.t) H (14 (Mw,k + 1v,) L)
t=to+1 k=t+1
By the elementary inequality 1 + = < exp(z) and 7w+ + 7v,+ < £, we have

Ea[llWesr —wWigll2 4 [Vesr — V2+1||2|Ato =0

_2cG XT: ﬁ eXp(cL) 2cG XT: %eXp( XT: %)

t= t0+1 k=t+1 t=to+1 k=t+1
T T
2c¢G 1 T 2cGTeL 1 2G
= n Z $ &P (cLlog (?)) = n Z tel+1 = Ln( )
t=to+1 t=to+1

By Lemma G.1 we have

2 c
Bl (Wi Vs 2) = F(Wh Vi) + [(W.vri2) — Fw v 2)] <o 2 (L)

- n (G.S5)



Stability and Generalization of Stochastic Gradient Methods for Minimax Problems

The right hand side of the above inequality is approximately minimized when

G2 fl-*—l cL
to = (7) T
O~ \4rL

Plugging it into Eq. (G.5) we have (for simplicity we assume the above ¢ is an integer)

2 -1
E[f(wr V5 2) — f(Wh v 2) 4 (W, vrs2) = f(w v 2)) <16( 5 ) T et
Since the above bound holds for all z, S, 5" and w’, v/, we immediately get the same upper bound on the weak stability.
Finally the theorem holds by calling Theorem 1, Part (a). O

We require an assumption on the existence of saddle point to address the optimization error of AGDA (Yang et al., 2020).

Assumption 4 (Existence of Saddle Point). Assume for any S, Fs has at least one saddle point. Assume for any v,
miny, Fs(w, v) has a nonempty solution set and a finite optimal value. Assume for any w, max, Fs(w, v) has a nonempty
solution set and a finite optimal value.

The following lemma establishes the generalization bound for the empirical maximizer of a strongly concave objective. It is
a direct extension of the stability analysis in Shalev-Shwartz et al. (2010) for strongly convex objectives.

Lemma G.2. Assume that for any w and S, the function v — Fs(w, V) is p-strongly-concave. Suppose for any w, v, v’
and for any z we have

|f(w,viz) = f(w,v';2)| < G|v =V (G.6)
Fix any w. Denote V5 = arg maxyey Fg(w,v). Then
. . 4G?
E[Fs(w,VvE) — F(w,v3)] < —.
on
Proof Let S' = {zi,...,2.} be drawn independently from p. For any i € [n], define S =
{#1,- -5 2i-1, 2], zix1,- -, Zn }. Denote Vi, = argmaxyey Fg (W, v). Then
Ak Ak 1 A% Ak 1 Ak Ak
Fs(w,vs) = Fs(w, V) “n Z (f(W,Vs; zj) — f(vasm;Zj)) + n (f(W,Vs; zi) — f(w, Vs(i)§Zi))
J#i
1

NEY Ak 1 e A~k
:ﬁ (f(Wv"sm;Z;‘) - f(w,V5; Z;)) + o (f(W7 Vs 2i) — f(WaVsm;Zi))

+ Fsi (W, ¥5) — Fsi) (W, Vi)

1 Ak Ak 1 Ak Ak
Sﬁ (f(W7Vs(1:>§Z;‘) — f(w, Vss Z:)) + n (f(Wa Vg; %) — f(WaVsm;Zi))
2G| . s
<— 95 = ¥ s (G.7)

where the first inequality follows from the fact that ¥, is the maximizer of Fig:) (W, -) and the second inequality follows
from (G.6). Since Fs is strongly-concave and ¥% maximizes Fis(w, -), we know

p

2

Ak

. 2 . .
Vs — Vs ’2 < Fg(w,¥g) — Fs(w, V).

Combining it with (G.7) we get ||V — V%)

, < 4G/(pn). By (G.6), the following inequality holds for any 2

- .k 4G?
Fw.¥552) = Flw, 9503 < O
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where the last identity holds since z; is independent of ¥, . Therefore
i ORI o . 4G?
E[Fs(w,vs) — F(w,¥5)] = - S E[f(w,¥5iz) — f(w, Vi 2)] < o
i=1
The proof is complete. O

Corollary G.3. Let B1,p > 0. Let Assumptions 1, 2, 3 with $1(S) > 1, 82(S) > p and 4 hold. Assume for any w and
any S, the functions v — F(w,v) and v — Fs(w, V) are p-strongly concave. Let {wy, v} be the sequence produced by

cL+1
(5.2) with e < 1/(B1t) and ny + < 1/(B1p°t). Then for T = (5%;)3) 2eLFL e have

E[R(wr) - R(w")] = O(n# Pl ).
where ¢ < 1/(31p?).
Proof. We have the error decomposition
R(wr) — R(w") = (R(wr) — Rs(wr)) + (Rs(wr) — Rs(w")) + (Rs(w") — R(w")). (G.8)

First we consider the term R(wr) — Rg(wr). Analogous to the proof of Theorem 7 (i.e., the only difference is to replace
the conditional expectation of function values in (G.2) with the conditional expectation of E[||wp — W/ ||2 + ||ve — v/ ||2]),

one can show that AGDA is O(nilT ﬁ)-argument stable (note the step sizes satisfy 7w, + 7v.+ < ¢/t). This together
with Part (b) of Theorem 1 implies that

E[R(wr) — Rs(wr)] = O((pn) ' T#5). (G.9)

For the term Rg(wr) — Rg(w™*), the optimization error bounds in Yang et al. (2020) show that

N 1
E[Rs(wr) — Rs(w")] = O(W). (G.10)
Finally, for the term Rg(w™*) — R(w™), we further decompose it as

E[Rs(w") — Riw")] = E[Fs(w",v5) — F(w",v")] = E[Fs(w", %) — F(w",v5)] + E[F(w*,¥5) = F(w",v")].

where V% = arg max, Fs(w*, v). The second term E [F(w*, V%) — F(w*,v*)] < 0 since (w*, v*) is a saddle point of

F. Therefore by Lemma G.2 we have
E[Rs(w") — R(w")] < E[Fs(w",v5) — F(w",v%)] = o(f).
We can plug the above inequality, (G.9), (G.10) into (G.8), and get

E[R(wr) —~ B(w")] = O((pn) "T57) + 0( o) + 0 ).

B2 p'T o
cL+1
We can choose T < (6277;3) 2eL+1 to get the stated excess primal population risk bounds. The proof is complete. O
H. Proof of Theorem 9

To prove Theorem 9, we first introduce a lemma on relating the difference of function values to gradients.

Lemma H.1. Let Assumption 3 hold. For any u = (w, V) and any stationary point u sy = (W (g, V(s)) of Fs, we have

)13 [VwFs(w,v)|[3
—W < FS(u) - FS(U(S)) < W)Q
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Proof. Since ug) is a stationary point, it is also a saddle point under the PL condition (Yang et al., 2020) which means that
Fs(W(S),VI) < FS(W(S),V(S)) < Fs(Wl,V(S)), Yw e W,v € V.
It then follows that

Fs(u) — Fs(u(g)) = Fs(w,v) — Fs(W(g),V) + Fs(W(g),V) — Fs(W(s), V(s))

< Fs(w,v) = Fs(ws),v) < Fs(w,v) - inf Fs(w',v) < 261( )HV wFs(w,v)|l3,
where in the last inequality we have used Assumption 3. In a similar way, we know
Fs(u) — Fs(ugy) = Fs(w,v) — Fs(w,v(s)) + Fs(W,v(s)) — Fs(W(g), V(s))
> Fs(w,v) — Fs(w,v(s)) > Fs(w,v) — SLIPFS(W,V/) > _w%(S)HvVFS(W’V)”g'

The proof is complete. O

Proof of Theorem 9. Let S’ = {z},...,z.} be drawn independently from p. For any i € [n], define S} =
{#1y- o, 2im1, 20, Zit1y -y 20 Let ug = (Aw(S), Av(S)) and u(S ) be the projection of ug onto the set of station-
ary points of F. For each i € [n], we denote u; = (Aw(S®), A,(S®)) and ul@ the projection of u; onto the set of
stationary points of Fiq(y. Then V Fq) (ugi)) =0.

We decompose f(u;; z;) — f(us; z;) as follows

i i s s
fluisz) = flusiz) = (flusz) = s 2)) + (Fi2) = fags2)) + (fugs2) = fusz). HD
We now address the above three terms separately.
We first address f (uz(i); zi)— f (ugs)7 2;). According to the definition of Fs, S, S, we know

Fl;z) = nFs(ul”) — nFg () + f(ul”; 2]).

Since z; and 2] follow from the same distribution, we know E[f(u @, 4 ) =E[f (u(SS); z;)] and further get

E[f(u}”sz0)] = nE[Fs(u)”)] —nE[Fso (u”)] + E[f(ug”;2)].
It then follows that

E[f(u’;z) - f(u;2)] = nE[Fs(uf’) = Feo ()] = nE|Fs(u{") - Fs(ug?)], (H2)

where we have used the following identity due to the symmetry between z; and z}: E[Fg¢) (ugl))} =E [Fg(u(ss))} . By the
PL condition of Flg, it then follows from (H.2) and Lemma H.1 that

0., (5) Ngr_1
]E[.f(u( )121) f(uS 725)] S QE[ﬁl(s)

Z-)) = 0 and therefore ((a + b)? < 2a? + 2b%)

|V Fs(u{”)]3]. (H.3)

According to the definition of u( R

&A

we know Vy Fgei (u

2
|V Fis(uf”) ||2—Hv Fyio (u Ez)—*wa( u?20) Va2

, _ 4G?
<*Hwa( u; V2B + 2||wa(ui ;Zi)IIQSF, (H4)

where we have used Assumption 1. This together with (H.3) gives

(S) LGQ { 1 } (H.5)

]E[f(u(i);zi)—f(us 1)) < n o Lpi(S))
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We then address f(u;;2;) — f (ul@; z;). Since u; and u'® are independent of z;, we know

E[f(ui;z) — f(ul”;2)] = E[F(w) - F(u")] = E[F(us) — F(u$")], (H.6)

where we have used the symmetry between z; and z;.

) (%)

Finally, we address f(ufgs ; 2;) — f(ug; z;). By the definition of ug’’ we know

(f(u(SS);zi) — f(us;zi)) = n(Fs(u(SS)) — F5<U.S>). (H.7)

n

K2

Plugging (H.5), (H.6) and the above inequality back into (H.1), we derive

n

D E[f(wiiz) - flug; )] < E[

=1

2G?
B1(S)

| + nE[F(us) = F@E)] +nE[Fs(uf) - Fs(us)].

Since z; and z; are drawn from the same distribution, we know

1« 1<
E[F(us) — Fs(us)] = - > E[F(w) - Fs(us)] = -~ S E[f(uiz) — flus; z)]
i=1 i=1
2G? 1
< 715[7} +E[F(ug) — F(u)] + E[Fs(uf”) — Fs(us)], (H.8)
where the second identity holds since z; is independent of u;. It then follows that
2G? 1
E[F(uY)) - Fsi)] < ZR|——|. H.9
[ (uS ) S(uS )] = n |:,81(S)i| ( )
According to the Lipschitz continuity we know
[Flus) ~ F(ug”)] < Glus —ug’l> and  [Fs(us) — Fs(ug”)] < Glus —ug..
Plugging the above inequality back into (H.8), we derive the following inequality
2G? 1 )
E[F(us) — F < T[] + 2GE[Jus - uf”|2]. H.10
[F(ug) s(ug)] < i 5(S) + [[lus —ug”’|2] ( )
By Lemma H.1 and (H.2), we can also have
, 1 )
E (1) ) — (9). : >_2E VVF (2) 2 .
[f(uz ?Z) f(uS 72)] = 2 [ﬁQ(S)” S(uz )HQ]
Using this inequality, one can analyze analogously to (H.10) and derive the following inequality
2G? 1 s
E[F(us) - F > == E| | - 2GE[|lus — u{’|l5].
[F(us) = Fs(us)] = —— 5(9) [lus —ug”|l2]
The stated inequality follows from the above inequality and (H.10). The proof is complete. O

I. Additional Experiments

In this section, we investigate the stability of SGDA on a nonconvex-nonconcave problem. We consider the vanilla GAN
structure proposed in Goodfellow et al. (2014). The generator and the discriminator consist of 4 fully connected layers,
and use the leaky rectified linear activation before the output layer. The generator uses the hyperbolic tangent activation
at the output layer. The discriminator uses the sigmoid activation at the output layer. In order to make experiments more
interpretable in terms of stability, we remove all forms of regularization such as the weight decay or dropout in the original
paper. In order to truly implement SGDA, we generate only one noise for updating both the discriminator and the generator
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at each iteration. This differs from the common GAN training strategy, which uses different noises for updating the
discriminator and the generator. We employ the mnist dataset (LeCun et al., 1998) and build neighboring datasets S and
S’ by removing a randomly chosen datum indexed by 4 from S and ¢ + 1 from S’. The algorithm is run based on the same
trajectory for S and S’ by fixing the random seed. We randomly pick 5 different i’s and 5 different random seeds (total
25 runs). The step sizes for the discriminator and the generator are chosen as constants, i.e. n = 0.0002. We compute the
Euclidean distance, i.e., Frobenius norm, between the parameters trained on the neighboring datasets. Note that we do not
target at optimizing the test accuracy, but give an interpretable visualization to validate our theoretical findings. The results
are given in Figure I.1.
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Figure I.1. The parameter distance versus the number of passes. Left: generator, right: discriminator. ’total’ is the mean normalized
Euclidean distance across all layers and the shaded area is the standard deviation.

It is clear that the parameter distances for both the generator and the discriminator continue to increase during the training
process of SGDA, which is consistent with our analysis in Section F.1 and F.3.



