
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 1

Partitioning Communication Streams into Graph
Snapshots

Jeremy D. Wendt, Richard V. Field, Jr., Cynthia A. Phillips, Member, IEEE, Arvind Prasadan, Tegan Wilson,
Sucheta Soundarajan Sanjukta Bhowmick

Abstract—We present EASEE (Edge Advertisements into
Snapshots using Evolving Expectations) for partitioning streaming
communication data into static graph snapshots. Given streaming
communication events (A talks to B), EASEE identifies when
events suffice for a static graph (a snapshot). EASEE uses
combinatorial statistical models to adaptively find when a snapshot
is stable, while watching for significant data shifts – indicating a
new snapshot should begin. If snapshots are not found carefully,
they poorly represent the underlying data – and downstream
graph analytics fail: We show a community detection example.

We demonstrate EASEE’s strengths against several real-world
datasets, and its accuracy against known-answer synthetic datasets.
Synthetic datasets’ results show that (1) EASEE finds known-
answer data shifts very quickly; and (2) ignoring these shifts
drastically affects analytics on resulting snapshots. We show that
previous work misses these shifts. Further, we evaluate EASEE
against seven real-world datasets (330K to 2.5B events), and find
snapshot-over-time behaviors missed by previous works. Finally,
we show that the resulting snapshots’ measured properties (e.g.,
graph density) are altered by how snapshots are identified from the
communication event stream. In particular, EASEE’s snapshots
do not generally “densify” over time, contradicting previous
influential results that used simpler partitioning methods.

Index Terms—datasets, graph sampling, social networks,
network evolution

I. INTRODUCTION

Many static graphs are built from underlying temporal
data.Each temporal event (e.g., 𝑢 talks to 𝑣 at time 𝑡) can
be viewed as an “edge advertisement” (EA). EA datasets can
be quite massive – covering years of data – and are often
converted into a series of static graphs (or snapshots). Although
techniques exist to create snapshots from EAs [1]–[7], the many
practitioners we consulted generally use either all their data,
or an amount that has worked previously for their applications.
Herein, we demonstrate a new, combinatorial statistics-based
technique which forms snapshots from EA streams.

For successful network analysis, the input snapshots must
be created to faithfully represent the underlying data – as
shown by extensive research [8]–[12]. For instance (as we
show in Sec. VI-B), community detection can find the correct
community assignments only when the snapshots it receives
match the underlying EAs stability and changes: Since the

J. Wendt is the corresponding author. J. Wendt, R.V. Field, C. Phillips
and A. Prasadan: Sandia National Laboratories, Albuquerque, NM 87185.
email:{jdwendt,rvfield,caphill,aprasad}@sandia.gov.

T. Wilson: Cornell University, Ithaca, NY 14853, teganwilson@cs.cornell.edu
S. Soundarajan: Syracuse University, Syracuse, NY 13244,

susounda@syr.edu
S. Bhowmick: University of North Texas, Denton, TX 76203,

sanjukta.bhowmick@unt.edu

underlying EA streams generally change with time, the series of
snapshots must reflect those changes. We introduce a statistical
model for monitoring snapshot properties from the EA stream
and use it to faithfully find snapshot boundaries.

When building static snapshots from streaming data, the
principle decision is which EAs to include in a snapshot. In
this work (and many previous), this means choosing the time
interval over which to accumulate edges from EAs.

An additional challenge for EA datasets is that the underlying
edges and nodes may be joining and leaving during a snapshot’s
interval. We focus on two competing interval size concerns. An
interval that is too small (undersampling) can lead to a grossly
incomplete graph; an interval that is too large (oversampling)
can hide important changes or shifts in the data.

As an example of oversampling, consider computer network
traffic in a wireless-enabled building. New computers enter
and exit the network, and transfer between wireless access
points (WAPs) as they travel through the building. With a too
large interval, a static graph representation may have all WAPs
connected through a single well-traveled computer even though
the computer is never connected to all at once. Previous work
identifies moments of catastrophic shift with massive edge or
node changes (e.g., [1]–[7]), but does not identify frequent
small changes. A key feature of our technique is its ability to
assess and trade-off both kinds of error.
Contribution: We create representative graph snapshots from
EA data by presenting a broadly applicable, interpretable,
concise model for building one or more static graphs from an
EA stream. Our proposed approach, Edge Advertisements into
Snapshots using Evolving Expectations (or EASEE), has the
following features that make it suitable for analyzing EA data:

1) Adaptively Finding Snapshot Intervals (Sec. III). EASEE
adaptively finds appropriate snapshot intervals to minimize
the effects of over- and undersampling. It selects a minimal
sufficient interval when the current snapshot stabilizes. It
merges neighboring intervals if they are similar enough.

2) Predicting Future Graph Sizes (Sec. III-A). EASEE
predicts near-future growth in numbers of nodes and
edges while building a snapshot. It can quickly test
these predictions to measure how well the model fits
the communication data (Sec. V-A).

3) Executing in Real Time (Sec. VI). EASEE runs on-line
and in real time with incoming communication data
with minimal compute overhead. This is important when
analyzing quickly evolving data streams.

4) Requiring Minimal Parameter Tuning (Sec. V). Many
adaptive techniques require considerable expertise to

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3223614

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2

properly set parameters. EASEE has only three parameters
(recent history size, smoothing window size, and merging
threshold). We show how to easily find suitable values for
the first and third. We show that choosing a reasonable
value for the second provides good results.

5) Identifying Underlying Data Shifts (Sec. VI). EASEE
monitors underlying EA properties, and directly identifies
times of drastic change, which cause EASEE to start a new
snapshot. We demonstrate this with real-world examples,
and quantify errors with synthetic datasets. We also show
that previous works do not evince such sensitivity.

6) Recognizing Problematic Datasets (Sec. VI-E). Our focus
on balancing under- and oversampling enables EASEE
to recognize datasets that shift so rapidly that quality
snapshots can’t be generated. With such datasets, static
snapshots likely create graphs with more paths that were
never active together than those that were.

We demonstrate EASEE’s accuracy against two known-
answer synthetic datasets – comparing against some previous
work. We also show its effectiveness against seven varying-size,
real-world datasets – one with over 2 billion EAs.

Finally, our results add caveats to previous analyses of such
streaming datasets. Prior work has argued that graphs from
streaming data densify over time [13]. We repeat experiments
from that previous work and add EASEE’s output to the analysis
(Sec. VII). We demonstrate that the previous statements about
densification are not generally true on the datasets we analyze
– both with EASEE and the previous fixed-width snapshot
intervals. However, our results show times where continuing
to develop a single static graph would blur two distinct
behavior periods into a single static representation. Thus,
while densification sometimes occurs, some of its reported
occurrences may be due to merging wildly varying underlying
graphs. See Sec. VIII for further discussion.
Organization: After reviewing related work in Sec. II, we
describe the EASEE model in Sec. III. We present real-world
datasets in Sec. IV, and use them to set model parameters
in Sec. V. Sec. VI describes several experiments: (1) two
known-answer synthetic datasets show that EASEE performs
better than previous works; (2) real-world datasets (a) measure
sensitivity to starting position in a datastream; (b) visualize
our merging step; and (c) identify datasets that should not be
converted into static snapshots. Sec. VII re-analyzes conclusions
from previous work [13] in light of EASEE snapshots. In
Sec. VIII, we discuss lessons from EASEE and conclude.

II. RELATED WORK

Previous works have focused on three facets of temporal
communication streams. Some analyzed how varying snapshot
intervals affect the resulting graphs – without proposing
techniques for setting the interval. Others avoid creating
static snapshots and instead propose new techniques to learn
directly from the temporal data: This field is called “Temporal
Networks”. Closest to this paper’s work, some developed
techniques to find graph snapshot intervals directly from
temporal data. We describe each briefly herein.
Varying Snapshot Interval: Researchers have studied how
graph properties evolve when they aggregate EAs into static

snapshots. Most consider cumulative snapshots from the
beginning of the dataset, each larger by a day, week, or year.
Some divide all the data into fixed-sized nonoverlapping (or
regularly overlapping) snapshots. Leskovec et al. [13] found
that although the snapshots added nodes and edges over time,
the graphs became denser and the diameter decreased. Their
work used datasets where many EAs repeat (similar to our own)
and datasets where EAs occurred once per edge (e.g., citation
networks). Krings et al. [3] thoroughly analyzed a single, very
clean telecommunication dataset. They found distinct patterns
of node count and clustering coefficient based on interval start
day and length that were well explained by normal call behavior.
Comparing neighboring snapshots using 2-week intervals even
found holiday weeks. Rocha et al. [14] studied four sampling
techniques for a stream of EAs including varying interval size.
They found that static snapshots lost some detail necessary for
temporal epidemic tracking and prediction.
Temporal Networks: Researchers have analyzed “temporal
networks” directly. In temporal networks, EAs are directly
analyzed for graph analytics (e.g., reachability or infection
spread; see [15] for a survey). However, our goal is to derive
static snapshots from EA data, and would leverage static graph
analytics for reachability or infection spread.
Identifying Appropriate Snapshot Intervals: Sun et al. [1]
proposed a mostly parameter-free technique called GraphScope
for tracking graph communities in EA streams. They batch
all edges that advertise during a fixed interval (the one
parameter) into a graph, compute its communities based on
small compressed size, and add it to the previous snapshot
“if there is a storage benefit”. Otherwise, this graph starts a
new snapshot. EASEE can break an EA stream into a new
snapshot at any point, not just at fixed time boundaries, and
uses overall graph stability measures, not communities. Sulo
et al. [2] developed an off-line technique that finds a universal
snapshot interval that balances within-snapshot variance and
between-snapshot compression. Cáceres [4] described an off-
line technique called DAPPER that allows varying snapshot
intervals, but they are multiples of a fixed minimum interval.
Breakpoints between snapshots are based on measures of edge
frequency consistency. Soundarajan et al. [5] proposed ADAGE
as an on-line technique that merges neighboring small fixed
snapshots until a user-specified graph metric converges. They
found that although different metrics changed final snapshot
intervals, often cheaper proxy metrics provided approximately
the same result as many more expensive metrics (e.g., degree
distribution as a proxy for Page Rank).

Fish et al. [6] presented a technique akin to supervised
learning that trains a snapshot detector to increase accuracy
against a specified, dataset-specific labeled problem (e.g.,
change point detection; node attribute prediction). EASEE
finds change points directly in the EA stream without labels.
Concurrent Research: As we were finalizing this paper for
submission, Orman et al. [7] published a snapshot detecting
technique. They merge neighboring, fixed-sized snapshots if the
edge or node Jaccard similarity deviates enough from a previous
null model. The fixed-size “shortest stable duration” (𝜖) is
intended to avoid undersampling noise. They suggest testing a
candidate 𝜖 by computing the sequence of similarities between

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3223614

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 3

N2-type
𝑢

𝑣

N1-type
𝑢

𝑣

N0-type
𝑢

𝑣

R-type
𝑢

𝑣

Fig. 1: The four possible types for new EA (𝑢, 𝑣, 𝑡) denoted by
the dashed line. The illustrations show a portion of the graph
just prior to time 𝑡 – shown as solid lines.

neighboring snapshots. It is good if both this sequence’s
variance and its compressibility (using measures similar to
those in [2]) are low. Orman’s technique is sensitive to how their
parameters are selected, but do not describe how to select their
sequence variance and compressibility cut-offs, nor provide
default values for them. EASEE is an on-line technique that
examines each EA (no fixed window) as it arrives for adaptive-
sized minimal snapshot detection, and cosine similarity for our
merging step. Furthermore, we show in Sec. V-C that cosine
similarity performs better at this task than Jaccard similarity.

III. THE EASEE MODEL

EASEE has two main steps: (1) Detect sufficient snapshots,
and (2) Merge neighboring snapshots based on graph similarity.
The first addresses undersampling while avoiding oversampling.
The second permits merging (to avoid unnecessary snapshot
splitting) while preserving oversampling controls.

In this section, we describe each step. First, we describe a
model to predict near-term graph growth as more EAs are added
to a snapshot. Second, we use that model to measure when a
minimum snapshot size has converged. Third, we describe a
metric that identifies which neighboring minimum snapshots
may be merged with measured amounts of oversampling.

A. Forecasting near-term growth

Suppose 𝑢 and 𝑣 are two entities (nodes) that communicate
at time 𝑡. We represent this communication by undirected edge
(𝑢, 𝑣) and denote the communication event by (𝑢, 𝑣, 𝑡). We
call each event an edge advertisement (EA) and say that edge
(𝑢, 𝑣) advertises at time 𝑡. We refer to the 𝑖th EA as (𝑢, 𝑣, 𝑡)𝑖 .
Edges may advertise more than once.

First, note that each EA is one of four possible types (Fig. 1):
1) N2-type: A new edge with two previously unobserved

nodes. This type creates a new connected component.
2) N1-type: A new edge with one previously unobserved

node.
3) N0-type: A new edge with zero new nodes. That is, both

𝑢 and 𝑣 were involved in at least one previous EA, but not
simultaneously. This EA can either merge two existing
components or “densify” an existing component.

4) R-type: A repeat of an edge already seen advertised.
These are the only four types. Each EA provides exactly two
nodes with exactly two possible values on each (seen before
or not). Symmetry where one node was seen reduces this from
four cases to three. Adding if the edge is a repeat when both
nodes are seen before increases up to four cases.

P
r(

m
x
+

y
�

m
x

=
µ
)

<latexit sha1_base64="oZpoAbEsU2i32UxHGs2j8l0aEpI=">AAACAXicbZBNS8MwHMbT+TbnW9WL4CU4hIk42jmYOwgDLx4nuBdYS0mzdIYlbUlSWSnz4lfx4kERr34Lb34bu66Ibw8EfjzP/0+Sxw0ZlcowPrTCwuLS8kpxtbS2vrG5pW/vdGUQCUw6OGCB6LtIEkZ90lFUMdIPBUHcZaTnji9mee+WCEkD/1rFIbE5GvnUoxip1HL0PastKtxJJsfxFJ5A7kzgObR4dOToZaNqZIJ/wcyhDHK1Hf3dGgY44sRXmCEpB6YRKjtBQlHMyLRkRZKECI/RiAxS9BEn0k6yH0zhYeoMoReI9PgKZu73jQRxKWPuppMcqRv5O5uZ/2WDSHlndkL9MFLEx/OLvIhBFcBZHXBIBcGKxSkgLGj6VohvkEBYpaWVshKameAcGvUcmuZXCd1a1Tyt1q7q5VYtr6MI9sEBqAATNEALXII26AAM7sADeALP2r32qL1or/PRgpbv7IIf0t4+AUuNldo=</latexit>

y
<latexit sha1_base64="6yVPJf61sgf0Gi9idy1hqii91tY=">AAAB6HicbZDJSgNBEIZrXGPcoh69NAbBU5iJgZhbwIvHBMwCyRB6OpWkTc9Cd48wDHkCLx4U8eojefNt7EwGcfuh4eOvKqr69yLBlbbtD2ttfWNza7uwU9zd2z84LB0dd1UYS4YdFopQ9j2qUPAAO5prgf1IIvU9gT1vfr2s9+5RKh4GtzqJ0PXpNOATzqg2VjsZlcp2xc5E/oKTQxlytUal9+E4ZLGPgWaCKjVw7Ei7KZWaM4GL4jBWGFE2p1McGAyoj8pNs0MX5Nw4YzIJpXmBJpn7fSKlvlKJ75lOn+qZ+l1bmv/VBrGeXLkpD6JYY8BWiyaxIDoky1+TMZfItEgMUCa5uZWwGZWUaZNNMQuhkYmsoF7LoeF8hdCtVpzLSrVdKzereRwFOIUzuAAH6tCEG2hBBxggPMATPFt31qP1Yr2uWtesfOYEfsh6+wQiQI2B</latexit>

Fig. 2: The probability distribution of number of future edges
Pr(𝑚𝑥+𝑦 − 𝑚𝑥 = 𝜇), assuming 𝑦 = 1, . . . , 9 additional edge
advertisements and 𝑝(R, 𝑥) = 1/3.

Given a stream of 𝑥 EAs, we can estimate 𝑝(𝑇, 𝑥), the
probability that a new EA will be of type 𝑇 ∈ {N2,N1,N0,R}.
We use this to predict the number of new edges and new nodes
that will be added to the graph given 𝑦 ≥ 1 further EAs.
Number of edges: Let 𝑚𝑥 denote the number of edges in the
graph after the 𝑥th EA. The (𝑥 + 1)st EA will be a repeat of a
previous edge with probability 𝑝(R, 𝑥), so that

𝑚𝑥+1 − 𝑚𝑥 =

{
0 with probability 𝑝(R, 𝑥)
1 with probability

(
1 − 𝑝(R, 𝑥)

)
.

(1)

With this, we derive the probability distribution for the general
case of 𝑦 ≥ 1 additional edge advertisements, that is, the
distribution of 𝑚𝑥+𝑦 − 𝑚𝑥 .

To do so, we make two simplifying assumptions. First, we
assume 𝑝(R, 𝑥) = 𝑝(R, 𝑥 + 1) = · · · = 𝑝(R, 𝑥 + 𝑦) – i.e., the
probability a repeat edge has “stabilized” after 𝑥 advertisements
and stays the same with 𝑦 new advertisements. As we choose
𝑦 to be relatively small when compared to 𝑥, this assumption
generally holds well. Second, for simplicity, we assume the
new edge advertisements are mutually independent. By these
assumptions, 𝑚𝑥+𝑦 −𝑚𝑥 = (𝑚𝑥+𝑦 −𝑚𝑥+𝑦−1) + · · ·+ (𝑚𝑥+1−𝑚𝑥)
is the sum of 𝑦 independent random variables, each with the
distribution defined by Eq. (1). This is the definition of the well-
known binomial distribution with 𝑦 trials, each with success
probability 1 − 𝑝(R, 𝑥):

Pr(𝑚𝑥+𝑦 − 𝑚𝑥 = 𝜇) =
(
𝑦

𝜇

)
𝑝(R, 𝑥)𝑦−𝜇

(
1 − 𝑝(R, 𝑥)

)𝜇 (2)

is the probability that exactly 𝜇 ∈ {0, 1, . . . , 𝑦} new edges will
be added to the graph after 𝑦 new advertisements. Thus, the
mean or expected number of new edges is [16]

E[𝑚𝑥+𝑦 − 𝑚𝑥] = 𝑦
(
1 − 𝑝(R, 𝑥)

)
. (3)

This expectation has an intuitive interpretation: Repeat-type
EAs are the only ones which do not add a new edge to the
graph. Therefore, the number of expected new edges after 𝑦

EAs is 𝑦 times the expected proportion for all other EA types.
For example, Fig. 2 illustrates Eq. (2) assuming 𝑦 = 1, . . . , 9

more EAs and 𝑝(R, 𝑥) = 1/3. For example, the orange bars
illustrate the probability that the graph will include from 0 to
8 more edges after 𝑦 = 8 more EAs; this probability initially
grows with 𝜇 and reaches a peak at 𝜇 = 5, meaning that 5
additional edges is the most likely outcome.
Number of nodes: Let 𝑛𝑥 denote the number of nodes in the

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3223614

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 4

graph after the 𝑥th EA. The (𝑥 + 1)st EA can add zero, one,
or two new nodes following a categorical distribution with

𝑛𝑥+1 − 𝑛𝑥 =


0 with probability 𝑝(R, 𝑥) + 𝑝(N0, 𝑥)
1 with probability 𝑝(N1, 𝑥)
2 with probability 𝑝(N2, 𝑥).

(4)

With this, we derive the probability distribution Pr(𝑛𝑥+𝑦 −
𝑛𝑥) for the general case of 𝑦 ≥ 1 more EAs. We make the
same simplifying assumptions discussed for edges (above) but
we also assume that 𝑝(N0, 𝑥), 𝑝(N1, 𝑥), and 𝑝(N2, 𝑥) have
also stabilized to remain constant for 𝑥 + 1, . . . , 𝑥 + 𝑦. Under
these assumptions, 𝑛𝑥+𝑦 − 𝑛𝑥 is the sum of 𝑦 iid categorical
random variables, where each takes one of three values with
probabilities defined by Eq. (4). Using the multinomial theorem
[17], we can show that

Pr(𝑛𝑥+𝑦 − 𝑛𝑥 = 𝜈) =
⌊𝜈/2⌋∑︁

𝑖=max(0,𝜈−𝑦)

(
𝑦

𝑖 + 𝑦 − 𝜈, 𝜈 − 2𝑖, 𝑖

)
×(

𝑝(R, 𝑥) + 𝑝(N0, 𝑥)
) 𝑖+𝑦−𝜈

𝑝(N1, 𝑥)𝜈−2𝑖 𝑝(N2, 𝑥)𝑖 (5)

is the probability that 𝜈 new nodes will be added to the graph
following 𝑦 ≥ 1 new EAs, where 𝜈 ∈ {0, 1, . . . 2𝑦}, and(

𝑛

𝑎, 𝑏, 𝑐

)
=

𝑛!
𝑎! 𝑏! 𝑐!

is a multinomial coefficient. For example, by Eq. (5), the
probability of 𝜈 = 2 and 𝜈 = 5 new nodes after 𝑦 = 3 additional
edge advertisements is

Pr(𝑛𝑥+3 − 𝑛𝑥 = 2) = 3
(
𝑝(R, 𝑥) + 𝑝(N0, 𝑥)

)
𝑝(N1, 𝑥)2 +

3
(
𝑝(R, 𝑥) + 𝑝(N0, 𝑥)

)2
𝑝(N2, 𝑥)

Pr(𝑛𝑥+3 − 𝑛𝑥 = 5) = 3 𝑝(N1, 𝑥) 𝑝(N2, 𝑥)2.

The expected number of new nodes is simply 𝑦 times the
mean value of 𝑛𝑥+1 − 𝑛𝑥 , that is,

E[𝑛𝑥+𝑦 − 𝑛𝑥] = 𝑦
(
𝑝(N1, 𝑥) + 2 𝑝(N2, 𝑥)

)
. (6)

Intuitively, this says that N1-type EAs add one node, N2-type
EAs add two nodes, and other types add none. The expectation
after 𝑦 EAs is 𝑦 times the weighted expected proportion.

Fig. 3 illustrates Eq. (5) assuming 𝑦 = 1, . . . , 9 additional
edge advertisements and parameters 𝑝(R, 𝑥) + 𝑝(N0, 𝑥) = 0.33,
𝑝(N1, 𝑥) = 0.25, and 𝑝(N2, 𝑥) = 0.42. For example, the
orange bars illustrate the probability that the graph will include
anywhere from 0 to 2𝑦 = 16 more nodes after 𝑦 = 8 more
EAs; this probability initially grows with 𝜈 and reaches a peak
at 𝜈 = 9: Nine additional nodes is the most likely outcome.

B. Detecting sufficient snapshots

EASEE’s first step creates minimum-sized static graphs from
the EA stream. Thus, it must ensure enough data has arrived that
undersampling will be minimized, but (to avoid oversampling)
take care that no significant changes occur.

Specifically, EASEE partitions the EA stream into non-
overlapping adjacent intervals, specified by interval size
and right endpoint, and builds a snapshot on each interval.
Let 𝑤1, 𝑤2, . . . be a sequence of interval sizes, and define

y
<latexit sha1_base64="aoKs8MywFzj4z2talfR8BQcK3y0=">AAAB6HicbZDJSgNBEIZrXGPcoh69NAbBU5iJgZhbwIvHBMwCyRB6OjVJm56F7h4hDHkCLx4U8eojefNt7EwGcfuh4eOvKqr692LBlbbtD2ttfWNza7uwU9zd2z84LB0dd1WUSIYdFolI9j2qUPAQO5prgf1YIg08gT1vdr2s9+5RKh6Ft3oeoxvQSch9zqg2Vns+KpXtip2J/AUnhzLkao1K78NxxJIAQ80EVWrg2LF2Uyo1ZwIXxWGiMKZsRic4MBjSAJWbZocuyLlxxsSPpHmhJpn7fSKlgVLzwDOdAdVT9bu2NP+rDRLtX7kpD+NEY8hWi/xEEB2R5a/JmEtkWswNUCa5uZWwKZWUaZNNMQuhkYmsoF7LoeF8hdCtVpzLSrVdKzdreRwFOIUzuAAH6tCEG2hBBxggPMATPFt31qP1Yr2uWtesfOYEfsh6+wQi2o2D</latexit>

P
r(

n
x
+

y
�

n
x

=
⌫
)

<latexit sha1_base64="rH9y+xw+qhsMeK6La8Ef19Lk+Ek=">AAACAXicbZBNS8MwHMbT+TbnW9WL4CU4hIk42jmYOwgDLx4nuBdYS0mzdIalaUlSWSnz4lfx4kERr34Lb34bu66Ibw8EfjzP/0+Sxw0ZlcowPrTCwuLS8kpxtbS2vrG5pW/vdGUQCUw6OGCB6LtIEkY56SiqGOmHgiDfZaTnji9mee+WCEkDfq3ikNg+GnHqUYxUajn6ntUWFe4kk+N4Ck8gdybwHFo8OnL0slE1MsG/YOZQBrnajv5uDQMc+YQrzJCUA9MIlZ0goShmZFqyIklChMdoRAYpcuQTaSfZD6bwMHWG0AtEeriCmft9I0G+lLHvppM+UjfydzYz/8sGkfLO7ITyMFKE4/lFXsSgCuCsDjikgmDF4hQQFjR9K8Q3SCCs0tJKWQnNTHAOjXoOTfOrhG6tap5Wa1f1cquW11EE++AAVIAJGqAFLkEbdAAGd+ABPIFn7V571F601/loQct3dsEPaW+fUDeV3Q==</latexit>

Fig. 3: The probability distribution of future nodes Pr(𝑛𝑥+𝑦 −
𝑛𝑥 = 𝜈), assuming 𝑦 = 1, . . . , 9 additional edge advertisements
and parameters 𝑝(R, 𝑥) + 𝑝(N0, 𝑥) = 0.33, 𝑝(N1, 𝑥) = 0.25,
and 𝑝(N2, 𝑥) = 0.42.

𝑟 𝑗 =
∑ 𝑗

𝑖=1 𝑤𝑖 to be the right endpoint of the 𝑗 th interval. By
convention 𝑟0 ≡ 0. Then the edge and node sets for the 𝑗 th
snapshot in the sequence are

E 𝑗 = {(𝑢, 𝑣) : (𝑢, 𝑣, 𝑡)𝑖 , 𝑖 = 𝑟 𝑗−1 + 1, . . . , 𝑟 𝑗 }, and
V𝑗 = {𝑢 : (𝑢, 𝑣) ∈ E 𝑗 or (𝑣, 𝑢) ∈ E 𝑗 }. (7)

(V1, E1) is a snapshot defined by the first 𝑤1 EAs, (V2, E2)
is a snapshot defined by EAs 𝑤1 + 1, . . . , 𝑤1 + 𝑤2, etc.

The expectations defined by Eqs. (3) and (6) are large at the
beginning of a snapshot interval, but both rapidly decrease with
increasing 𝑥 (the number of EAs). Thus, early EAs are more
likely to be N2 type, but eventually a steady proportion become
R type. A snapshot interval is sufficient when the expected
number of new nodes and edges converges. Specifically, an
interval ends when the smoothed prediction trends start to
increase again – indicating convergence (the derivative is zero)
or a non-trivial change in the underlying data stream (the
derivative is greater than zero).

EASEE’s initial output is a series of snapshots (V1, E1),
(V2, E2), . . . with sufficient intervals. These intervals {𝑤𝑖} are
intentionally kept as small as possible to limit the effect of
underlying data change. Alg. 1 describes this step – excepting
a few settings derived from real data (see Secs. V-A and V-B).

C. Merging neighboring snapshots
When creating a static snapshot representation from dynamic,

temporal data, creating a static snapshot across catastrophic
underlying changes leads to oversampling. Step one avoids
this by splitting when the derivative is non-negative. However,
sometimes neighboring sufficient snapshots are highly similar,
and the resulting graph snapshot stream would be improved
by merging these snapshots. To ensure such snapshots aren’t
merged across oversampling changes, EASEE quantifies the
amount of change between two in-time consecutive snapshots
– merging only if the change is small.

Specifically, EASEE uses the cosine similarity of the
advertisement rate between adjacent sufficient snapshots, i.e.,

𝑐 𝑗 · 𝑐 𝑗+1

| |𝑐 𝑗 | |2 | |𝑐 𝑗+1 | |2
, (8)

where 𝑐 𝑗 is a vector of either EA counts (number of times an
edge advertises in snapshot 𝑗) or node EA-participation counts
(number of times a node is in an EA in snapshot 𝑗). Cosine
similarity values range from 0 (no similarity) to 1 (equal).

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3223614

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 5

Algorithm 1: Identify Sufficient Snapshots
Data: A stream of EAs (𝑢, 𝑣, 𝑡)𝑖 , a prediction length 𝑦

Result: A stream of graph snapshots (V𝑗 , E 𝑗 , 𝑤 𝑗)
1 𝑤 𝑗 ← 0; numAds ← 0; V𝑗 ← countingSet(); E 𝑗 ←

countingSet(); lastAds ← 0; RecentEAs ← list()
2 while EA stream continues do
3 (𝑢, 𝑣, 𝑡) ← getNextEA()
4 if (𝑢, 𝑣) ∈ E 𝑗 then
5 type ← 𝑅

6 else if 𝑢 ∈ V𝑗 AND 𝑣 ∈ V𝑗 then
7 type ← 𝑁0
8 else if 𝑢 ∈ V𝑗 OR 𝑣 ∈ V𝑗 then
9 type ← 𝑁1

10 else
11 type ← 𝑁2
12 end
13 E 𝑗 .add((𝑢, 𝑣)); V𝑗 .add(𝑢); V𝑗 .add(𝑣)
14 numAds + = 1
15 RecentEAs.append(type)

/* Fix RecentEAs size: Sec.V-A. */
16 AdProbs ← percentsByType(RecentEAs)
17 E[𝑚numAds+𝑦],E[𝑛numAds+𝑦] ← Eqs. (3), (6)

/* Convergence details: Sec.V-B. */
18 if converged(E[𝑛numAds+𝑦],E[𝑚numAds+𝑦]) then
19 𝑤 𝑗 ← numAds − lastAds
20 lastAds = numAds
21 releaseSufficientSnapshot(V𝑗 , E 𝑗 , 𝑤 𝑗)
22 V𝑗 .clear(); E 𝑗 .clear(); RecentEAs.clear()
23 end

If both measures’ values are at least a threshold 𝑡𝑐, then
EASEE merges the two snapshots. Before merging a third (or
more) snapshot(s) to an earlier set, EASEE ensures all paired
cosine similarities are above the threshold. See Alg. 2.

In Sec. V-C, we show why cosine similarity is better than
Jaccard or weighted Jaccard similarity and provide a heuristic
for choosing 𝑡𝑐 against real data.

D. EASEE Parameters Overview

EASEE requires three parameters: a recent history size (𝑥)
for estimating EA-type probabilities (𝑝(𝑇, 𝑥)); a smoothing
window size for identifying sufficient interval convergence; and
the merging threshold (𝑡𝑐). After introducing our real-world
datasets (Sec. IV), we show in Sec. V how we selected values
for these parameters from samples of the data. In brief, we
show that the recent history size is rather consistent across our
varying datasets – selecting a single value for all of them. We
show that the smoothing window size changes results linearly,
and select a single value that works well across all datasets. We
show how to select an appropriate merging threshold for each
dataset by noting how sweeping the value alters the number
of merged snapshots – identifying a clear cut-off point.

IV. DATA

To find appropriate settings for our parameters (Sec. V),
we applied EASEE to seven datasets. We describe those

Algorithm 2: Merge Neighboring Snapshots
Data: A stream of graph snapshots (V𝑗 , E 𝑗 , 𝑤 𝑗),

threshold 𝑡𝑐
Result: A stream of merged graph snapshots

(Vout, Eout, 𝑤out)
1 Vactive ← ∅; Eactive ← ∅; 𝑤out ← 0
2 while graph stream continues do
3 (V𝑗 , E 𝑗 , 𝑤 𝑗) ← getNextSufficientSnapshot()
4 mergeGraph ← True
5 for V𝑧 ∈ Vactive AND E𝑧 ∈ Eactive do
6 nodeSim ← Eq. 8(V𝑗 , V𝑧)
7 edgeSim ← Eq. 8(E 𝑗 , E𝑧)
8 if nodeSim < 𝑡𝑐 OR edgeSim < 𝑡𝑐 then
9 mergeGraph ← False

10 end
11 if mergeGraph == False then
12 Vout ← unionAll(Vactive); Eout ←

unionAll(Eactive)
13 releaseMergedGraph(Vout, Eout, 𝑤out)
14 Vactive ← ∅; Eactive ← ∅; 𝑤out ← 0
15 Eactive.add(E 𝑗); Vactive.add(V𝑗); 𝑤out+ = 𝑤 𝑗

16 end

datasets here before analyzing the parameters. See Table I
for data sizes. To simulate streaming data, we sorted all EAs
by increasing timestamp. Finally, we removed duplicate EAs –
the same source, destination, and time. This last step cleaned
several datasets that had false repeats (e.g., the same emails in
several Enron inboxes). Although we preserved communication
direction in the data, our EASEE implementation considers
graphs undirected and thus ignores direction.

Our Python code finished in far less time than the interval
time represented in each dataset. Our code reads each EA from
file, updates internal state, and identifies sufficient snapshots
before continuing to the next EA. Thus, the algorithm and
code do not require massive data interactions at any one time.
Thus, EASEE processes data far faster than the average arrival
rate for any of our datasets. The shortest period – also the
fastest arrival rate – for any of our datasets was LANL Netflow
with more than 18 days’ worth of data. Our single threaded,
unoptimized Python code completed in 32 hours, 5 minutes on
a Mac Pro with 3.7 GHz Intel Xeon E5 and 64GB RAM. All
other datasets represent much longer periods, and the analyses
completed in far less time. Several datasets contain millions
of nodes and edges, and in one case, billions of EAs.

EU Emails: Email represents a common, often repeating
communication type used to build static graphs [18].1 This
dataset presents EAs for each email sent between members
of a European research institution – but not for those where
either participant is outside that institution.

Enron Emails: This dataset provides all emails and directory
structure for around 150 users at the Enron Corporation.2 We
generated separate EAs for each address in the “to”, “cc” and
“bcc” fields of each email.

1https://snap.stanford.edu/data/email-Eu-core-temporal.html
2https://www.cs.cmu.edu/∼./enron/

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3223614

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://snap.stanford.edu/data/email-Eu-core-temporal.html
https://www.cs.cmu.edu/~./enron/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 6

TABLE I: Some properties for our datasets.

Name Number of Number of Number of
EAs Nodes Edges

EU Core Emails 327,336 986 16,064
Enron Emails 1,283,755 84,511 316,061
GameX Combats 500,327 10,589 86,351
GameX Messages 4,515,396 22,442 293,860
Stack Overflow Reply 63,496,479 2,601,977 29,541,284
Reddit Reply 646,024,723 8,901,033 437,747,667
LANL Netflow 2,585,934,400 166,925 1,237,992

Reddit Reply
Stack Overflow Reply
LANL Netflow
Enron Emails
GameX Messages
GameX Combats
EU Emails

N
um

be
r o

f E
dg

es

1

102

104

106

108

Number of Advertisements
1 101 102 103 104 105 106

Fig. 4: The EA distribution for all datasets. Although a
significant number of edges advertised only once, a non-trivial
number advertised hundreds to thousands of times.

GameX Messages and Combat: “GameX” is a browser-
based game. Players travel/explore a fictional world. They can
mine resources, trade, and conduct war. They can communicate
through in-game personal messages. The GameX Message and
GameX Combat datasets are logs of messages and combat
events (respectively) between anonymized players.3

Stack Overflow Reply: Stack Overflow is a question-and-
answer site. This dataset contains an EA for each time a user
posted to another user’s question or answer [18].4

Reddit Reply: Reddit is a social platform where users
submit and discuss news content. EAs exist for when any user
commented on another user’s post or comment [19], [20].5

LANL Netflow: We used the Time, SrcDevice, and
DstDevice columns from Los Alamos National Laboratory’s
Unified Host and Network dataset [21].6 We used the first 32
days of data, which contains EAs generated by human and
automated computer actions.

Fig. 4 shows the EA distribution for each dataset. While
many edges advertise only once, many produce hundreds to
thousands of EAs: These are long-tailed distributions.

V. MODEL CALIBRATION FROM DATA

Sec. III describes the EASEE model. The user must set three
parameters: recent history size, smoothing window size, and

3To maintain full player privacy, we are not permitted to share this data nor
provide further identifying details for which game generated the data.

4https://snap.stanford.edu/data/sx-stackoverflow.html
5Jason Baumgartner, pushshift.io. https://www.cs.cornell.edu/∼arb/data/

temporal-reddit-reply/
6https://csr.lanl.gov/data/2017.html

R
N0
N1
N2

Pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1.0

Num Advertisements
0 1×105 2×105 3×105

Fig. 5: EA type probabilities for the EU Email dataset with
recent history size set to 1,000.

merging threshold. In this section, we show how to use real data
to select an appropriate recent history size and demonstrate that
EASEE is robust to a wide variety of values for this parameter.
We briefly discuss the second parameter. We provide an analysis
of the third and show that cosine similarity performs better
than Jaccard or weighted Jaccard similarities.

A. Probabilities from Recent History

We can estimate the probability of the four EA types – N2,
N1, N0, R (Sec. III-A and III-B) – from their fractions of the
most recent EAs. Here, we show how to identify a suitable
recent-history size. We also show that this size parameter is
robust to a wide range of values across a wide range of datasets.

Fig. 5 illustrates probability estimates for each EA type for
the EU Email dataset for one recent-history size. It shows that
although there is some noise in the estimates, the approximate
values are surprisingly stable: 𝑝(N2) converges rapidly to near-
zero; 𝑝(N1) converges only slightly more slowly to near-zero;
𝑝(N0) converges to non-zero; and 𝑝(R) converges to near-one.
Although different datasets converge to different final values
for each EA type, and some contain much more motion and
noise, all show similar results.

To detect a sufficient snapshot, EASEE predicts near-future
edge and node sizes (Eqs. (3) and (6)). As EASEE uses these
predictions to identify steady-state convergence or sudden
underlying data shift, these predictions must be accurate.
Herein, we show how to select an optimal recent-history size
for a fixed data set to minimize prediction error.

Given a data sample, we use the following to find the optimal
recent-history size (𝑘). For varying 𝑘: (1) Estimate 𝑝(T, 𝑥),
the percent of the most recent 𝑘 EAs that are type T. (2)
Use these estimates to compute the expected number of new
nodes and edges (Eqs. (3) and (6); 𝑦 = 100). (3) Compute
the error between the expected values from Step 2 and actual
change after 𝑦 = 100 EAs. (4) Move forward one EA, update
percentages, predictions, and errors; repeat for all EAs in the
data sample. (5) Collect all errors and report the root mean
squared error (RMSE).

Figs. 6(a)–(g) show the RMSE for all of our datasets across
24 different recent history sizes (𝑘 =10; 50; 100; 150; 250;
350; 450; 600; 850; 1,150; 1,600; 2,200; 3,050; 4,200; 5,760;
7,900; 10,850; 14,850; 20,450; 28,050; 38,550; 53,000; 72,800;
100,000). All datasets’ results are similar: (1) When the recent

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3223614

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://snap.stanford.edu/data/sx-stackoverflow.html
https://www.cs.cornell.edu/~arb/data/temporal-reddit-reply/
https://www.cs.cornell.edu/~arb/data/temporal-reddit-reply/
https://csr.lanl.gov/data/2017.html

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 7

Edge RMSE
Node RMSE
Minimum

R
M

S
Er

ro
r -

 N
od

es

0.5

1.0 R
M

S Error - Edges

4

6

8

Recent History Size
101 102 103 104 105

(a) EU Emails

Edge RMSE
Node RMSE
Minimum

R
M

S
Er

ro
r -

 N
od

es

12

14

R
M

S Error - Edges

26

28

30

Recent History Size
101 102 103 104 105

(b) Enron

Edge RMSE
Node RMSE
Minimum

R
M

S
Er

ro
r -

 N
od

es

2

4

R
M

S Error - Edges

10

15

20

Recent History Size
101 102 103 104 105

(c) GameX Combats
Edge RMSE
Node RMSE
Minimum

R
M

S
Er

ro
r -

 N
od

es

1

2

3

R
M

S Error - Edges

5

10

Recent History Size
101 102 103 104 105

(d) GameX Messages

Edge RMSE
Node RMSE
Minimum

R
M

S
Er

ro
r -

 N
od

es

2

4

6

R
M

S Error - Edges

10

15

Recent History Size
101 102 103 104 105

(e) StackOverflow

Edge RMSE
Node RMSE
Minimum

R
M

S
Er

ro
r -

 N
od

es

5

10

15

R
M

S Error - Edges

10

15

Recent History Size
101 102 103 104 105

(f) Reddit
Edge RMSE
Node RMSE
Minimum

R
M

S
Er

ro
r -

 N
od

es

8

10

12 R
M

S Error - Edges

15

20

Recent History Size
101 102 103 104 105

(g) LANL Netflow

Mean Num Edges
Num Snapshots

Av
er

ag
e

Ed
ge

s

10000

20000

50000

N
um

ber Snapshots

10

100

Derivative Smoothing Window
104 105

(h) Enron Derivative Smoothing Parameter

Fig. 6: (a)–(g): The root mean squared error (RMSE) for predicting the graph size for the first 300K EAs for all our datasets.
(h): The effect of the prediction smoothing window size on snapshot size and number of snapshots found for the Enron dataset.

history size is small, predicted graph sizes have significant
errors. (2) This error decreases, plateaus, and increases again.
(3) The shapes (and minima) of the node and edge curves are
surprisingly similar (Reddit Reply being the only exception).
Even more surprising is the width of the plateaus and their
consistency across all datasets. Even LANL Netflow with the
narrowest plateau spans a full order of magnitude. Therefore,
for simplicity in all following experiments, we used a fixed
recent history size within all plateaus – 𝑘 = 5, 000 EAs.

This analysis could be repeated off-line for any dataset
sample. Although an on-line analysis could be performed,
we didn’t develop such a technique. We feel across-dataset
consistency indicates this parameter is stable. We prefer a
simpler algorithm over one that could adapt to unknown other
datasets that could possibly be different on-line.

B. Identifying Sufficient Snapshots

We end a sufficient interval when growth stabilizes or
suddenly increases (i.e., when smoothed prediction trends are
flat or increase).

We want both node and edge growth to be stable. Therefore,
a sufficient interval ends when the smoothed derivatives of both
nodes and edges reach or exceed zero. Without noise, finding
this endpoint would be trivial. However, the predictions have
considerable noise – from recent history size and data motion.
Furthermore, numerical derivatives increase noise. Therefore,
we smooth the numerical derivatives over a window.

We tested how different smoothing window sizes affect
sufficient intervals. Fig. 6(h) shows how the smoothing
parameter affects the number of snapshots generated (blue;
right y-axis), and the size of each snapshot (black; left y-axis)
for Enron. We saw the same trend for all datasets: A larger
smoothing window led to larger graphs and fewer snapshots.
Thus, the larger the smoothing window, the more likely EASEE
will miss changes in the communication stream. After some

manual evaluation, and as the analysis in Fig. 6(h) showed no
knee in the data, we selected a value that worked well across all
datasets – 10,000. This value resulted in well-sized snapshots
for all datasets. Furthermore, with no reason to choose from
any of the various values, we chose a round number.

C. Merging Threshold and Metric

The final parameter is the merging threshold 𝑡𝑐 for the
snapshot similarity metric (Sec. III-C). We propose pairwise
cosine similarity as the similarity metric (Eq. 8). In this section,
we first demonstrate that Jaccard, weighted Jaccard, and cosine
similarities approximate the ℓ0 pseudo-norm and the ℓ1, and ℓ2
norms, respectively. We then show that cosine similarity better
leverages its range and provides better differentiation to help
identify clear values for the threshold parameter 𝑡𝑐.
Similarity metric definitions: Recall that the simplest
representation of each snapshot is as a list of edges and nodes
with their corresponding EA counts. (For nodes, we use the
number of EAs the node appears in.) Thus, edges and nodes
may be represented by a vector of EA counts, where each entry
in the vector corresponds to a particular edge or node. There
are three common metrics for comparing graphs represented
thus – Jaccard, weighted Jaccard, and cosine similarities [22].

Let 𝑐 𝑗 and 𝑐 𝑗+1 be edge or node vectors for neighboring
snapshots with non-negative entries 𝑐 𝑗 ,𝑘 and 𝑐 (𝑗+1) ,𝑘 (the count
for edge or node 𝑘). Jaccard similarity is defined as��{𝑐 𝑗 ,𝑘 ≠ 0

}
∩
{
𝑐 (𝑗+1) ,𝑘 ≠ 0

}����{𝑐 𝑗 ,𝑘 ≠ 0
}
∪
{
𝑐 (𝑗+1) ,𝑘 ≠ 0

}�� . (9)

where | · | denotes set cardinality, ∩ set intersection, and ∪ set
union. Weighted Jaccard similarity is defined as∑

𝑘 min{𝑐 𝑗 ,𝑘 , 𝑐 (𝑗+1) ,𝑘}∑
𝑘 max{𝑐 𝑗 ,𝑘 , 𝑐 (𝑗+1) ,𝑘}

. (10)

Cosine similarity was already defined in Eq. (8).

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3223614

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 8

We can re-write Jaccard similarity as:

𝑐 𝑗 ⊙ 𝑐 𝑗+1

0

𝑐 𝑗

0 +

𝑐 𝑗+1

0 −

𝑐 𝑗 ⊙ 𝑐 𝑗+1

0
, (11)

where ⊙ denotes the Hadamard or element-wise product, and
∥ · ∥0 denotes the ℓ0 pseudo-norm (that counts the number of
non-zero entries). Weighted Jaccard similarity becomes

𝑐 𝑗

1 +

𝑐 𝑗+1

1 −

𝑐 𝑗 − 𝑐 𝑗+1

1

𝑐 𝑗

1 +

𝑐 𝑗+1

1 +

𝑐 𝑗 − 𝑐 𝑗+1

1
, (12)

where ∥ · ∥1 denotes the ℓ1 norm. Cosine similarity was already
written in terms of the ℓ2 norm.

This shows a rough correspondence between the Jaccard,
weighted Jaccard, and cosine similarities and ℓ0, ℓ1, and ℓ2
norms respectively. Thus, choosing between Jaccard, weighted
Jaccard, and cosine similarities is akin to choosing between
these standard norms – with similar expectations. Jaccard
counts simple edge or node existence in both snapshots with
the same weight independent of how many times it advertised
in each snapshot. Weighted Jaccard increases the importance
of having similar counts. By having a squared-like property,
cosine similarity increases the importance of high-count edges
or nodes proportionally higher than low-count edges.
Comparing similarity metric results: Recall that our goal is to
identify whether neighboring sufficient snapshots can be merged
without increasing oversampling. Herein, we demonstrate both
that cosine similarity is a better similarity measure, and that
there is generally an identifiable point for the threshold 𝑡𝑐.

Given a series of sufficient snapshots {(V1, E1), (V2, E2),
. . . (V𝑑 , E𝑑)}, we form a 𝑑 × 𝑑 similarity matrix, where the
(𝑟, 𝑠) entry denotes the similarity between snapshots 𝑟 and
𝑠. We then perform a sensitivity analysis by (1) sorting all
unique values in the matrix in increasing order, (2) sweeping
the merging threshold over these values, and (3) plotting the
number of resulting merged snapshots. Similar to choosing the
number of clusters or principal components from a scree plot
[23], we look for a knee in the plot. Much like selecting the
recent history size 𝑘 (Sec. V-A), this method is not entirely
online: it requires enough data for many sufficient snapshots.
A fully online or adaptive method remains unsolved.

Fig. 7 demonstrates the results for all of our datasets for
this analysis. To make the computations feasible for our
larger datasets, we use only the first 200 minimum snapshots
(from Alg. 1).As stated above, this analysis is intended to
be performed on a subset of the data. Note that the node
similarities are generally higher than their corresponding
edge values – requiring higher thresholds to result in the
same number of snapshots. Thus, we consider only the edge
similarities going forward. Next, notice that Jaccard and
weighted Jaccard provide surprisingly similar scores for the
edge values. Furthermore, the Jaccard and weighted Jaccard
scores (1) are much lower than the cosine scores, (2) use less
of the [0, 1] range available to these metrics, and (3) generally
show less significant knees than the cosine similarities.

Thus, we use cosine similarity on the edges for determining
which minimal snapshots to merge in EASEE Step 2. As
selecting knees on scree plots is an inexact technique (and

specific choices could be affected by down-stream application
needs), we selected our own in a few plots that follow, but do
not indicate specific values on each of the plots in Fig 7.

VI. EXPERIMENTS

In this section, we thoroughly analyze EASEE against
both known-answer, synthetic datasets and several real-world
datasets. Each subsection covers a different analysis: Sec. VI-A
shows how well EASEE finds changes with varying rates of
underlying temporal change against known-answer, synthetic
data; and shows that a recent technique fails. Sec. VI-B shows
how important it is to find such changes to downstream
analytics: EASEE’s change detection enables community
detection against the resulting snapshots, while missing the
change fails for community detection (even if the exact right
number of EAs are combined in snapshots). Sec. VI-C shows
that EASEE quickly converges to stable snapshots against
real-world data – even when started at very different times.
Sec. VI-D shows EASEE’s merge results against our real-
world datasets – uncovering results not seen before in any
previous works. Sec. VI-E discusses how EASEE can identify
EA datasets that should not be used to create static snapshots.7

A. Synthetic Data 1: Varying Change Rate Detection

For this test, we measure how responsive EASEE’s first
step is to identifying changes in the underlying communication
streams. There are three factors that affect the ability of EASEE
to detect these changes: (1) Change amount: As shown in Fig. 5,
some new edges are joining at all times. How many new edges
and nodes are needed to find a change point? (2) Change
rate: If a change is spread across a long period, it becomes
a series of small changes. How rapid a change is needed to
find a change point? (3) EASEE convergence: As shown on
the left portion of Fig. 5, EASEE must collect some amount
of data before the EA type probabilities become nearly-stable.
How does decreased convergence time before the change affect
EASEE’s ability to find it?
Synthetic EA generation: We developed a dataset of synthetic
EAs with a single known transition between two different
periods of activity. Let 𝐺 be an undirected static graph with 𝑛

nodes built from the stochastic block model (SBM) with 10
blocks, and let 𝐴 = {𝑎𝑖, 𝑗 } denote the 𝑛 × 𝑛 adjacency matrix
of 𝐺. Specifically, we use an SBM where diagonal blocks
have connection probability 𝑝𝑖𝑛 and off-diagonal blocks have
connection probability 𝑝𝑜𝑢𝑡 . (Although the SBM isn’t used
in this analysis, it is in Sec. VI-B. To keep the two synthetic
generators as similar as possible, this one uses SBM as well.)

To handle the first factor (change amount), let

𝐴0 =

{
𝑎𝑖 𝑗 : 𝑟 ≤ 𝑖, 𝑗 ≤ 𝑟 + 𝑛

2

}
𝐴1 =

{
𝑎𝑖 𝑗 :

𝑛

2
− 𝑟 ≤ 𝑖, 𝑗 ≤ 𝑛 − 𝑟

}
denote two submatrices of 𝐴, where 𝑟 ∈ {0, 1, ..., 𝑛/4} is an
integer parameter (to simplify notation, we assume 𝑛 is divisible
by 4). By construction, 𝐴0 and 𝐴1 are defined by the 𝑛/2×𝑛/2

7Our code is published at https://github.com/sandialabs/Easee/.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3223614

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 9

Node Jaccard
Node Weighted Jaccard
Node Cosine

N
um

be
r o

f S
na

ps
ho

ts

0

2

4

6

8

Threshold
0 0.2 0.4 0.6 0.8 1.0

(a) EU Emails – Node Scree

Node Jaccard
Node Weighted Jaccard
Node Cosine

N
um

be
r o

f S
na

ps
ho

ts

0

10

20

30

40

50

Threshold
0 0.2 0.4 0.6 0.8 1.0

(b) Enron – Node Scree

Node Jaccard
Node Weighted Jaccard
Node Cosine

N
um

be
r o

f S
na

ps
ho

ts

0

5

10

15

Threshold
0 0.2 0.4 0.6 0.8 1.0

(c) GameX Combats – Node Scree
Edge Jaccard
Edge Weighted Jaccard
Edge Cosine

N
um

be
r o

f S
na

ps
ho

ts

0

2

4

6

8

Threshold
0 0.2 0.4 0.6 0.8 1.0

(d) EU Emails – Edge Scree

Edge Jaccard
Edge Weighted Jaccard
Edge Cosine

N
um

be
r o

f S
na

ps
ho

ts

0

10

20

30

40

50

Threshold
0 0.2 0.4 0.6 0.8 1.0

(e) Enron – Edge Scree

Edge Jaccard
Edge Weighted Jaccard
Edge Cosine

N
um

be
r o

f S
na

ps
ho

ts

0

5

10

15

Threshold
0 0.2 0.4 0.6 0.8 1.0

(f) GameX Combats – Edge Scree
Node Jaccard
Node Weighted Jaccard
Node Cosine

N
um

be
r o

f S
na

ps
ho

ts

0

50

100

Threshold
0 0.2 0.4 0.6 0.8 1.0

(g) GameX Messages – Node Scree

Node Jaccard
Node Weighted Jaccard
Node Cosine

N
um

be
r o

f S
na

ps
ho

ts

0

50

100

150

200

Threshold
0 0.2 0.4 0.6 0.8 1.0

(h) StackOverflow – Node Scree

Node Jaccard
Node Weighted Jaccard
Node Cosine

N
um

be
r o

f S
na

ps
ho

ts

0

50

100

150

200

Threshold
0 0.2 0.4 0.6 0.8 1.0

(i) Reddit – Node Scree
Edge Jaccard
Edge Weighted Jaccard
Edge Cosine

N
um

be
r o

f S
na

ps
ho

ts

0

50

100

Threshold
0 0.2 0.4 0.6 0.8 1.0

(j) GameX Messages – Edge Scree

Edge Jaccard
Edge Weighted Jaccard
Edge Cosine

N
um

be
r o

f S
na

ps
ho

ts

0

50

100

150

200

Threshold
0 0.2 0.4 0.6 0.8 1.0

(k) StackOverflow – Edge Scree

Edge Jaccard
Edge Weighted Jaccard
Edge Cosine

N
um

be
r o

f S
na

ps
ho

ts

0

50

100

150

200

Threshold
0 0.2 0.4 0.6 0.8 1.0

(l) Reddit – Edge Scree
Node Jaccard
Node Weighted Jaccard
Node Cosine

N
um

be
r o

f S
na

ps
ho

ts

0

50

100

150

200

Threshold
0 0.2 0.4 0.6 0.8 1.0

(m) LANL Netflow – Node Scree

Edge Jaccard
Edge Weighted Jaccard
Edge Cosine

N
um

be
r o

f S
na

ps
ho

ts

0

50

100

150

200

Threshold
0 0.2 0.4 0.6 0.8 1.0

(n) LANL Netflow – Edge Scree

Fig. 7: Scree plots for the node and edge similarity metrics. Although generally used for identifying knees in PCA analysis, we
use it here to find similar knees in cosine similarity threshold (x-axis) vs. number of merged snapshots (y-axis).

top left and bottom right submatrices of 𝐴, respectively, offset
by 𝑟; this is illustrated by Fig. 8.

We can interpret 𝐴0 and 𝐴1 as adjacency matrices for two
subgraphs of 𝐺. These two graphs have edges and nodes in
common for 𝑟 > 0; in particular, they share 2 𝑟 nodes. Thus, 𝑟
leads to a change amount metric, defined as the ratio of shared
area in the adjacency matrix in each subgraph, i.e.,

overlap =
(2 𝑟)2(𝑛

2

)2 =
16 𝑟2

𝑛2 . (13)

We note that overlap = 0 and 100% for the special cases of
𝑟 = 0 and 𝑟 = 𝑛/4, respectively.

Let E0 and E1 denote the (possibly intersecting) edge sets
of the two graphs defined by 𝐴0 and 𝐴1. We generate a stream
of EAs from these edge sets as follows. First, all EAs occur
at times modeled by a homogeneous Poisson process with

intensity 𝜆. This implies that EAs occur at an average rate of
𝜆 per unit time.

To handle the second factor (change rate), for all times 𝑡, we
build EAs from edge set E0 with probability 𝑝0 (𝑡) and from
edge set E1 with probability 1 − 𝑝0 (𝑡), where

𝑝0 (𝑡) =


1 𝑡 ≤ 𝑡0
𝑡 − 𝑡1
𝑡0 − 𝑡1

𝑡0 < 𝑡 ≤ 𝑡1

0 𝑡 > 𝑡1

(14)

and 0 < 𝑡0 < 𝑡1 denote two “transition times” parameters.
Eq. (14) implies that we build EAs only from E0 and E1 for
times 𝑡 ≤ 𝑡0 and 𝑡 > 𝑡1, respectively. The EAs are drawn from
both E0 and E1 at times 𝑡0 < 𝑡 ≤ 𝑡1 (the transition zone). The
probability of drawing edges from E1 is small but nonzero near
the beginning of the transition zone; increasing linearly and
reaching one at the end of the transition zone. Fig. 9 illustrates

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3223614

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 10

r +
n

2<latexit sha1_base64="R27zfC9dtkBLEsbcnNrx+EUObng=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIglKSKOix4MVjBfsBbSib7aZdutmE3Y1QQ36JFw+KePWnePPfuG1z0NYHA4/3ZpiZFyScKe0431ZpbX1jc6u8XdnZ3duv2geHbRWnktAWiXksuwFWlDNBW5ppTruJpDgKOO0Ek9uZ33mkUrFYPOhpQv0IjwQLGcHaSAO7KtE56ocSk0zkmZcP7JpTd+ZAq8QtSA0KNAf2V38YkzSiQhOOleq5TqL9DEvNCKd5pZ8qmmAywSPaM1TgiCo/mx+eo1OjDFEYS1NCo7n6eyLDkVLTKDCdEdZjtezNxP+8XqrDGz9jIkk1FWSxKEw50jGapYCGTFKi+dQQTCQztyIyxiYFbbKqmBDc5ZdXSduru5d17/6q1rgo4ijDMZzAGbhwDQ24gya0gEAKz/AKb9aT9WK9Wx+L1pJVzBzBH1ifP/dLkpQ=</latexit>

r +
n

2<latexit sha1_base64="R27zfC9dtkBLEsbcnNrx+EUObng=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIglKSKOix4MVjBfsBbSib7aZdutmE3Y1QQ36JFw+KePWnePPfuG1z0NYHA4/3ZpiZFyScKe0431ZpbX1jc6u8XdnZ3duv2geHbRWnktAWiXksuwFWlDNBW5ppTruJpDgKOO0Ek9uZ33mkUrFYPOhpQv0IjwQLGcHaSAO7KtE56ocSk0zkmZcP7JpTd+ZAq8QtSA0KNAf2V38YkzSiQhOOleq5TqL9DEvNCKd5pZ8qmmAywSPaM1TgiCo/mx+eo1OjDFEYS1NCo7n6eyLDkVLTKDCdEdZjtezNxP+8XqrDGz9jIkk1FWSxKEw50jGapYCGTFKi+dQQTCQztyIyxiYFbbKqmBDc5ZdXSduru5d17/6q1rgo4ijDMZzAGbhwDQ24gya0gEAKz/AKb9aT9WK9Wx+L1pJVzBzBH1ifP/dLkpQ=</latexit>

r
<latexit sha1_base64="etySaZkw67DWozd9sVcvi6+k9K0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCnosePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWaqp+ueJW3TnIKvFyUoEcjX75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14l7VrVu6zWmleV+kUeRxFO4BTOwYNrqMMdNKAFDBCe4RXenEfnxXl3PhatBSefOYY/cD5/ANfRjOQ=</latexit>

r
<latexit sha1_base64="etySaZkw67DWozd9sVcvi6+k9K0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCnosePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWaqp+ueJW3TnIKvFyUoEcjX75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14l7VrVu6zWmleV+kUeRxFO4BTOwYNrqMMdNKAFDBCe4RXenEfnxXl3PhatBSefOYY/cD5/ANfRjOQ=</latexit>

n � r
<latexit sha1_base64="3IS+B8zklW2330NgR8tcwCfYvgE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBg5akCnosePFYwbSFNpTNdtMu3WzC7kQopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1MpDLrut1NYW9/Y3Cpul3Z29/YPyodHTZNkmnGfJTLR7ZAaLoXiPgqUvJ1qTuNQ8lY4upv5rSeujUjUI45THsR0oEQkGEUr+YpcEt0rV9yqOwdZJV5OKpCj0St/dfsJy2KukElqTMdzUwwmVKNgkk9L3czwlLIRHfCOpYrG3AST+bFTcmaVPokSbUshmau/JyY0NmYch7Yzpjg0y95M/M/rZBjdBhOh0gy5YotFUSYJJmT2OekLzRnKsSWUaWFvJWxINWVo8ynZELzll1dJs1b1rqq1h+tK/SKPowgncArn4MEN1OEeGuADAwHP8ApvjnJenHfnY9FacPKZY/gD5/MHugmN5w==</latexit>

n � r
<latexit sha1_base64="3IS+B8zklW2330NgR8tcwCfYvgE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBg5akCnosePFYwbSFNpTNdtMu3WzC7kQopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1MpDLrut1NYW9/Y3Cpul3Z29/YPyodHTZNkmnGfJTLR7ZAaLoXiPgqUvJ1qTuNQ8lY4upv5rSeujUjUI45THsR0oEQkGEUr+YpcEt0rV9yqOwdZJV5OKpCj0St/dfsJy2KukElqTMdzUwwmVKNgkk9L3czwlLIRHfCOpYrG3AST+bFTcmaVPokSbUshmau/JyY0NmYch7Yzpjg0y95M/M/rZBjdBhOh0gy5YotFUSYJJmT2OekLzRnKsSWUaWFvJWxINWVo8ynZELzll1dJs1b1rqq1h+tK/SKPowgncArn4MEN1OEeGuADAwHP8ApvjnJenHfnY9FacPKZY/gD5/MHugmN5w==</latexit>

n

2
� r

<latexit sha1_base64="wlcNn2PWDdFLBVPxdnjuGxyhnLU=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIHrQkUdBjwYvHCvYD2lA22027dLMJuxuhhvwSLx4U8epP8ea/cdvmoK0PBh7vzTAzL0g4U9pxvq3S2vrG5lZ5u7Kzu7dftQ8O2ypOJaEtEvNYdgOsKGeCtjTTnHYTSXEUcNoJJrczv/NIpWKxeNDThPoRHgkWMoK1kQZ2tR9KTDKRZ16OLpAc2DWn7syBVolbkBoUaA7sr/4wJmlEhSYcK9VznUT7GZaaEU7zSj9VNMFkgke0Z6jAEVV+Nj88R6dGGaIwlqaERnP190SGI6WmUWA6I6zHatmbif95vVSHN37GRJJqKshiUZhypGM0SwENmaRE86khmEhmbkVkjE0S2mRVMSG4yy+vkrZXdy/r3v1VrXFexFGGYziBM3DhGhpwB01oAYEUnuEV3qwn68V6tz4WrSWrmDmCP7A+fwACHJKW</latexit>

n

2
� r

<latexit sha1_base64="wlcNn2PWDdFLBVPxdnjuGxyhnLU=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIHrQkUdBjwYvHCvYD2lA22027dLMJuxuhhvwSLx4U8epP8ea/cdvmoK0PBh7vzTAzL0g4U9pxvq3S2vrG5lZ5u7Kzu7dftQ8O2ypOJaEtEvNYdgOsKGeCtjTTnHYTSXEUcNoJJrczv/NIpWKxeNDThPoRHgkWMoK1kQZ2tR9KTDKRZ16OLpAc2DWn7syBVolbkBoUaA7sr/4wJmlEhSYcK9VznUT7GZaaEU7zSj9VNMFkgke0Z6jAEVV+Nj88R6dGGaIwlqaERnP190SGI6WmUWA6I6zHatmbif95vVSHN37GRJJqKshiUZhypGM0SwENmaRE86khmEhmbkVkjE0S2mRVMSG4yy+vkrZXdy/r3v1VrXFexFGGYziBM3DhGhpwB01oAYEUnuEV3qwn68V6tz4WrSWrmDmCP7A+fwACHJKW</latexit>

A
<latexit sha1_base64="+fFcGeefrE1MB1KGtxEstL13B3Q=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcJuFPQY8eIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6re9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCG3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpFkpe5flSv2qVL3I4sjDCZzCOXhwDVW4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD42NjLM=</latexit>

A0
<latexit sha1_base64="YP7z2PBViXmlyH1TdZs3RzRxFm0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4kJJUQY8VLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj26nfekKleSwfzThBP6IDyUPOqLHSw03P7ZXKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwms/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdKsVryLSvX+slw7z+MowDGcwBl4cAU1uIM6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx+xA41W</latexit>

A1<latexit sha1_base64="Eg69kT5MW9rALea4P/+WYXU2x9Y=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4kJJUQY8VLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj26nfekKleSwfzThBP6IDyUPOqLHSw03P65XKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwms/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdKsVryLSvX+slw7z+MowDGcwBl4cAU1uIM6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx+yh41X</latexit>

Fig. 8: Overlapping adjacency matrices 𝐴0 and 𝐴1 defined from
a stochastic block model with 10 blocks; parameter 0 ≤ 𝑟 ≤ 𝑛/4
controls the amount of overlap.

0 500 1000 1500 2000

0

0.5

1

Fig. 9: Probability 𝑝0 (𝑡) of building an edge at time 𝑡 using
edge set E0. The transition zone is [𝑡0, 𝑡1] = [1000, 1100]; the
rate of transition, 𝛼 defined by Eq. (15), is equal to 5%.

𝑝0 (𝑡) assuming 𝑡0 = 1000 and 𝑡1 = 1100.
Suppose we generate 𝑚 total EAs; the expected last EA then

occurs at time 𝑚/𝜆. It follows that

𝛼 = 100
𝜆(𝑡1 − 𝑡0)

𝑚
(15)

quantifies the average length of the transition zone as a
percentage of the total simulation time and can therefore be
interpreted as a measure of the rate of transition.

The third factor (EASEE convergence) is quantified by the
value of 𝑡0 relative to the number of EAs EASEE would
usually require to converge – independent of underlying data
change. That is, if an infinite number of EAs were generated
for edges from E0, what would be the average number of
EAs EASEE needs to find converged snapshots? When run
on millions of EAs generated from only 𝐴0 (tested on 200
different EA streams), EASEE converged with exactly zero
derivatives after between 57,068 and 90,843 EAs. Thus, using
𝑡0 near the minimum observed value (57,068) leads to the
easiest dataset – change detection near convergence; 𝑡0 far
earlier than that is a much harder dataset – change detection
when far less converged.
Change detection and comparison with ADAGE: For these
experiments, we used the following parameters to test these

three EASEE factors (see Fig. 10): (1) Change amount: We
used overlaps of 0%, 25%, 50%, and 75% (horizontal axis,
each subfigure). (2) Change rate: We set the change rate to 0%,
5%, and 30% of the simulation time for immediate, medium,
and slow transition (purple, green, and blue whisker plots,
respectively). (3) EASEE convergence: We selected a near
convergence 𝑡0 = 40, 000 – well less than the minimum natural
convergence we saw. We used 𝑡0 = 25, 000 for a harder, not
very converged case; 𝑡0 = 15, 000 for a hardest, recently started
case. Each subfigure is labeled as one of these cases.

We generated datasets of 100,000 EAs for each of these
parameter settings – repeated five times with different random
seeds. We ran EASEE sufficient snapshot detection against each.
We collected the EA number that EASEE found a snapshot
after the change point for each case – always the first snapshot
detected. Error was defined as the number of EAs after the
transition period began until a sufficient interval was detected.

Fig. 10 shows all test results – hereafter referred to as (a), (b)
or (c). When the change is immediate and the probabilities are
largely converged, changes are rapidly detected ((a), purple).
Even with slower changes, changes are detected relatively
quickly ((a), green and blue). For each of these, there is some
degradation caused by more node overlap – fewer new edges
arriving after the change begins. When convergence is only
partially accomplished, either the node overlap needs be very
low ((b), blue, overlap=0 or 25), or the temporal change needs
be relatively quick ((b), purple or green) for changes to be
found around 3,000 EAs. When the sufficient interval is recently
started, if temporal changes are relatively quick and the node
overlap is low changes are well detected ((c), purple, green,
overlap=0 or 25). However, when the node overlap is too low,
all transitions fail ((c), overlap=75).

An interesting property arises in Fig. 10(c) for overlap=50
when the immediate change (purple) does far poorer than the
medium rate of change (green). We believe this is because
the change point is early enough that the probabilities are
decreasing, so this sudden influx of some new edges is lost
in the overall decreasing. However, the slower change (green)
delays and spreads the influx just enough so that EASEE’s
measured probabilities converge enough to detect the slightly
slower/delayed new edges. The slow change (blue) is slow
enough that it’s never detected.

To compare EASEE against prior work, we ran ADAGE
against these same datasets [5]. We selected ADAGE as it was
the most recent, fully automated snapshot detecting technique.
ADAGE was designed to identify when sufficient EAs have
been included that a social network has converged, not to
identify when the communication data changes.

ADAGE requires as input a series of very small pieces
(usually minutes, hours, or days), so we split the generated
data into 100 EA pieces. We ran ADAGE looking for converged
degree distribution. (We tested with converged clustering
coefficient, but as the data is an SBM (locally Erdős-Rényi), the
clustering coefficient is practically zero. The score converges
almost immediately – leading to many tiny ADAGE interval
sizes.) ADAGE converged to 1, 2, or 3 static graphs in each
100,000 EA dataset. We computed error similarly as for EASEE
– However, we generously used the first ADAGE-found snapshot

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3223614

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 11

Immediate Change
Medium Change
Slow Change

D
et

ec
tio

n
D

el
ay

 (i
n

EA
s)

0

2000

4000

6000

Overlap Percent
0 25 50 75

(a) 𝑡0 = 40, 000

Immediate Change
Medium Change
Slow Change

D
et

ec
tio

n
D

el
ay

 (i
n

EA
s)

0

5,000

10,000

Overlap Percent
0 25 50 75

(b) 𝑡0 = 25, 000

Immediate Change
Medium Change
Slow Change

D
et

ec
tio

n
D

el
ay

 (i
n

EA
s)

0

20,000

40,000

60,000

80,000

Overlap Percent
0 25 50 75

(c) 𝑡0 = 15, 000

Fig. 10: Change detection error under varying known-truth cases. We tested our change detection against several synthetic,
known-truth datasets. 𝑡0 indicates when the transition period began for (a) nearing natural convergence (𝑡0 = 40, 000), (b) farther
from converged (𝑡0 = 25, 000), and (c) recently started (𝑡0 = 15, 000). The edge overlap between the graphs 𝐴0 and 𝐴1 is
shown on the horizontal axis. The change rate between the two graphs is shown by the colors. Note that the vertical axis range
changes for each sub-plot. See text for more explanation.

Immediate Change
Medium Change
Slow Change

D
et

ec
tio

n
D

el
ay

 (i
n

EA
s)

0

20,000

40,000

60,000

Overlap Percent
0 25 50 75

Fig. 11: Change detection error for ADAGE under the easiest
known-truth case (similar to Fig. 10(a)). ADAGE delays are
wildly varying, generally quite poor, and show no patterns to
matching to easier or harder datasets. Although only shown for
nearing natural convergence (𝑡0 = 40, 000), no ADAGE results
looked very different.

after 𝑡0. Fig. 11 shows results from ADAGE against the easiest
settings (similar to Fig. 10(a)). ADAGE does not appear to find
any changes directly: Its results do not respond to any changes
in the data difficulty. ADAGE does not find 𝑡0 more quickly
with smaller node overlap, or with faster changes. Although not
shown, ADAGE’s results for more difficult 𝑡0 were similarly
poor. Thus, if your goal is generating snapshots that identify
drastic changes, EASEE identifies them; ADAGE does not.

B. Community detection

We next quantified the degree to which down-stream
applications are affected by correctly identifying change
moments in the EA stream. We selected community detection
as the down-stream application.
Synthetic EA generation: We leveraged a similar process
to the previous EA generation, with a few changes specific
to the needs for community detection. First, for there to be
truly known-answer communities, the two graphs can’t ever
advertise together in the same period. Otherwise, these period
could create unknown communities. Thus, we use immediate
transition (𝑡1 = 𝑡0 + 1; 𝑡0 = 49, 999). Second, as we wanted
to use Adjusted Mutual Information (AMI) [24] to measure
community detection accuracy, and as EASEE’s first snapshot
will have some EAs from the second graph, we needed the

node sets to be identical. (AMI requires there to be a correct
community for all nodes in the graph. If there were nodes
included in the first EASEE snapshot from EAs for the second
true graph, there would be no communities for them in the
correct answer for the first graph: There would be no correct
AMI answer for them.) This required changes to how the SBMs
were defined – described below. Third, we needed to ensure
that all edges advertised at least once.This required changes to
how EAs are selected – described below.

We created two SBM edge sets on the same set of nodes as
follows. We want both graphs to have all nodes in common,
but have different edges and communities. We created edge
set E0 as described in Sec. VI-A, but with the requirement
that all nodes have at least three neighbors: We achieved this
by combining the SBM with a configuration model where
each node had desired degree 3 [25].8 This ensures that all
nodes advertise enough to be seen by snapshots: Nodes with
only one edge that advertises only once could be missed if
the only advertisement occurred in the period when EASEE
was accidentally including E1 edges due to latency. Adding
this low-degree graph made a minimal change to the SBM
probabilities in our tests. We generated edge set E1 the same
way, except we randomly permuted the nodes. Thus, the two
graphs define independent communities.

We generated a stream of 𝑥 EAs from each edge set as
follows. First, we assigned each edge a fixed number of EAs
so that (1) each edge advertises at least once, and (2) the EA
distribution is long-tailed (as for our real datasets; Fig. 4). We
did this by fitting a power law distribution

cnt(𝑒𝑖) = floor(𝑖𝑎/𝑧), (16)

where cnt(𝑒𝑖) denotes the number of times the 𝑖-th randomly
ordered edge advertises, 𝑚 is the number of edges in the
graph, 𝑧 is a normalizing constant, and 𝑎 and 𝑧 are constrained
so

∑𝑚
𝑖=0 cnt(𝑒𝑖) = 𝑥 and min(cnt(𝑒𝑖)) = 1. We generated the

specified number of EAs for each edge, randomly order all
EAs, and assigned each a generation time as modeled by
a homogeneous Poisson process with intensity 𝜆. This was

8https://networkx.github.io/documentation/networkx-1.10/reference/
generated/networkx.generators.degree seq.configuration model.html

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3223614

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.degree_seq.configuration_model.html
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.degree_seq.configuration_model.html

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 12

TABLE II: Results against known-answer datasets.

Name First Last Matched AMI AMI
EA EA to Mean Stdev

Oracle 0 49,999 𝐺0 0.948 0.009
Oracle 50,000 99,999 𝐺1 0.708 0.044
EASEE 0 50,271.4 𝐺0 0.947 0.008
EASEE 50,272.4 99,999 𝐺1 0.704 0.038
Fixed Split 0.2 10,000 59,999 𝐺0 0.775 0.027
Fixed Split 0.4 20,000 69,999 𝐺0 0.096 0.011
Fixed Split 0.6 30,000 79,999 𝐺1 0.029 0.003
Fixed Split 0.8 40,000 89,999 𝐺1 0.094 0.014

repeated for each edge set. We concatenated the EA stream
from E1 to the end of E0’s stream and increased the times for
E1 so they continue right after the end of E0.
Community detection and comparison to fixed-width
techniques: For the tests that follow, we used 10 stochastic
blocks, 𝑡0 = 50, 000, 𝜆 = 25, 𝑛 = 2, 000, 𝑝in0 = 0.05,
𝑝in1 = 0.04, and 𝑝out = 0.005. We generated 20 different EA
streams with these parameters. For the community detection
tests, we used Louvain community detection [26]. To compute
community detection accuracy, we used AMI between the
SBM-assigned communities, and the communities discovered
by Louvain on each run. We formed a graph from the first
EASEE-identified split of EAs and compared to the SBM for
𝐺0; and formed a graph from the remaining EAs and compared
to the SBM for 𝐺1.

We compared the results from EASEE to two different types
of solutions: (1) An Oracle that demonstrates the results from
perfect accuracy in the split. For the Oracle, we formed a
graph from the first 50, 000 EAs and compared to the SBM
for 𝐺0, and formed a second graph from the second 50, 000
EAs and compared to the SBM for 𝐺1. (2) A variety of fixed-
size datasets simulate a fixed-interval graph that correctly uses
50, 000 EAs for the sample size, but does not monitor incoming
EAs to identify change moments. This is a best-case scenario
for several previous works that identify optimal fixed-size
snapshots, but do not monitor for underlying change moments
(e.g., [1] and [2]). The Fixed Split 0.X datasets simulate these
with varying errors for when they split relative to the data
change. For each of these, we formed 50, 000-edge graphs
from EA 𝑐 to 𝑐 + 49, 999 for 𝑐 = 10, 000, 20, 000, 30, 000,
and 40, 000. These graphs have 20%, 40%, 60% and 80%
respectively of the EAs from 𝐺1 mixed with parts of 𝐺0. We
compared these graphs’ Louvain results with both 𝐺0’s SBM
and 𝐺1’s SBM and (generously) report the best AMI.

Table II shows the results of our test. EASEE’s runs are
the only runs that are not precisely 50,000 EAs long, but its
error in identifying the transition averages only 272.4 EAs late
(stdev = 77.7; max = 448). That is, EASEE rapidly identified
the shift in this data.

Although EASEE was a few hundred EAs later than perfect
to identify the data shift, its AMI was nearly identical to
the Oracle with a perfect split. This high AMI is particularly
impressive when compared with how the naı̈ve, fixed-interval
approach did when it crossed the change moment. Even when

the split contained only 10,000 of the later EAs, the AMI
fell drastically. Furthermore, although 𝐺1 had identifiable
communities (both the Oracle and EASEE obtain AMIs around
0.7), its community structure was weak enough that when it
traded 20% of its EAs for 𝐺0 EAs (No Split 0.8), Louvain
was unable to identify its communities well. When the EA mix
was more even, community detection did even worse.

Thus, missing these change events – and forming graphs
with components before and after the change – can drastically
affect downstream tasks. EASEE is a critical tool to improve
analytics for graphs from communication streams.

C. Sensitivity of EASEE to Initial EA Position

Now that we have identified (1) that EASEE correctly
identifies change moments while ADAGE does not, and (2)
that correctly identifying change moments is critical to down-
stream applications (while fixed-interval-size techniques will
miss these and fail, except by random chance), we turn to
analyzing EASEE’s results on our real-world datasets.

Our first analysis tests how robustly EASEE responds to a
standard real-world problem: When starting to form snapshots
from a stream of EAs, there is no way to know if you are
starting at a “good point” in the EA stream.

We simulated this problem by comparing EASEE results
against 41 different start times on our real-world data. In an
ideal setting, EASEE would recover the same snapshots started
at any delay – as it would had it been applied to the full stream
(for the shared observed portions). Slightly less ideally, EASEE
would return to the snapshots predicted by the full stream after
some brief period of instability.

We performed the following test on each of our datasets: (1)
We omitted a fixed number (𝜏) of EAs at the start of the stream
– providing EASEE the remaining data. (2) We reported the
EA indices (relative to the full stream) where EASEE created
snapshots. (3) We performed the above steps for 𝜏 = 0; 5,000;
10,000; . . . ; 200,000. We stopped after 200,000 because (a) we
needed many resulting snapshots to measure similarity across
all our datasets, and (b) because our results showed strong
convergence across all 41 different runs on all 7 datasets. (4)
We compared the stability of the EA snapshot indices across
different 𝜏s.

Fig. 12 shows EASEE run in this manner against the Enron
dataset. Each column shows a different run against the Enron
EA stream dropping the first 𝜏 EAs (horizontal axis). The dots
indicate the EA when EASEE created a snapshot (vertical axis).
Visual similarity is reached quickly.

Beyond the visual comparison in Fig. 12, we created a
numerical comparison that takes these results from each of our
seven datasets, grouped the last snapshots in each column, the
second-to-last, until the first in each column. (Note that the
first groups had fewer snapshots – some of the EASEE runs
had not started yet.) We measured the standard deviation of
the snapshot-ending EA indices in each group.

Fig. 13 shows these results. The horizontal axis is ordered by
the snapshots generated and grouped as just described: Lower
indices are the first snapshots taken. This shows that while
EASEE does not identify the exact same snapshot-ending EA

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3223614

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 13

Fig. 12: EASEE sensitivity to different start times on the Enron
dataset. Each column indicates a run of EASEE with a different
starting delay (horizontal axis). Dots indicate EASEE snapshot
times (vertical axis). Visual consistency is rapidly reached
between one run and its immediate predecessor.

point for the first few snapshots after starting (compared to
EASEE runs started on smaller 𝜏), this initialization period
quickly converges for all datasets. EU Emails and GameX
Combat are the only two datasets where EASEE doesn’t fully
converge: As there are fewer EAs in these datasets, there are
insufficient snapshots for convergence. Note that the near-zero
values on most of these plots are actually precisely zero.

Thus, EASEE is very robust to differing start times in data
streams. Once an early series of snapshots complete, EASEE
will consistently give the same snapshots as it would have
if started at a much earlier time. Furthermore, this indicates
that EASEE is finding many consistent change points in these
various datastreams.

D. Comparing and Merging Sufficient Snapshots

Thus far, our focus has been on analyzing EASEE’s ability
to identify minimal snapshots. In this section, we present many
of the results of those snapshots and their associated cosine-
similarity merge scores.

Although EASEE yields a set of merged non-overlapping
snapshots, comparing all sufficient snapshots can provide
insight into dataset structure. Thus, we show plots like Fig. 14
(for EU Emails), which we call “sufficient-snapshot similarity”
(S3) plots. The main diagonal has cosine similarity 1.0 as each
snapshot is compared to itself. Off-diagonal elements 𝑟 ≠ 𝑠 are
the cosine similarity of the 𝑟-th and 𝑠-th sufficient snapshots.
Sufficient snapshots are ordered chronologically.

Fig. 14 shows the EU Emails dataset’s 8 sufficient snapshots’
similarities. All had similar node advertising rates, slightly
dropping off with time. Edge similarity shows groups of similar
snapshots: the first three, the middle three, and the last two
with a threshold of 𝑡𝑐 = 0.7. There is less similarity outside
these groups.

In all datasets, node similarity is higher than edge similarity.
To preserve space, we now show only edge similarities.

Fig. 15 shows the S3 plot for the Enron Email dataset. We
set 𝑡𝑐 = 0.5. EASEE identifies sub-boxes that are above the

threshold and merges them. We omit the EASEE merge boxes
for all future plots for plot legibility.

Fig. 15 shows several key structures: First, there are periods
of high neighbor similarity shown by boxes of lighter color
down the main diagonal. Second, there are periods of slower
variation, where snapshots are quite similar to several nearby
sufficient snapshots, but slowly become less similar to those
farther away (around snapshots 5 − 15). Third, there are some
periods of high neighbor similarity that repeat after periods of
low similarity, as evidenced by the boxes of high similarity
off the main diagonal.

This third pattern is instructive when considered in the
real-world Enron context. The last high similarity box came
immediately after Enron laid off 4,000 employees.9 Although
these snapshots come after Enron was drastically smaller, there
are three periods before the layoff (with far more staff) with
high similarity to this period (see arrows from the right). Thus,
a significant proportion of the email characteristics of the
post-layoff Enron had occurred previously. If we assume that
the staff remaining at Enron after the layoffs were managers
and lawyers tasked to handle urgent problems, these off-axis
patterns lead to a question: What events happened in April and
October 2001 that caused these same set of “handlers” to be
so active then as well?

Fig. 16(a) shows the S3 plot for GameX Messages. Like
Enron, some periods of extended similarity repeat with other
non-neighboring periods of extended similarity. These are split
either by periods with low similarity even with their own
neighbors, or periods that show some level of internal similarity.

Figs. 16(b) and (c) show two portions of the LANL Netflow
S3 plot. These have a shifted color scheme from all previous
figures because many intervals are so similar that most of the
plot would have been white. Fig. 16(b) shows the first 26 hours
of sufficient snapshots. There appears to be a repeating network
scan around every 70 minutes that drastically changes EA
activity. This shows up as repeated dark blue bands. Ignoring
those, daytime hours (0–7, 22-26) have lower internal similarity
than nighttime hours (8–21).

Zooming out with Fig. 16(c), we see about 10 days’ activity.
The LANL dataset’s timestamps were altered to remove specific
dates and time of day. However, by looking at the daily activity
patterns – where nights are similar to other nights – and
combining the two-day period of night-like behavior, we can
identify the likely weekend in this dataset. The Friday data is a
lighter color than other weekdays (more similar to weekends),
which may indicate LANL’s flexible Friday work schedules.

Fig. 17 shows the S3 plot for Stack Overflow. It shows some
periods of reasonable similarity within sets of neighboring
nodes, but no crisply defined squares of similarity. Some
neighboring sufficient snapshots merge with some of their
neighbors for low enough 𝑡𝑐, but there were no off-axis
similarity blocks.

E. Warnings of building static graphs
A danger in building static snapshots from streaming

communication data is that considerable data is lost. However,
912/2/01 https://www.theguardian.com/business/2006/jan/30/corporatefraud.

enron

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3223614

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://www.theguardian.com/business/2006/jan/30/corporatefraud.enron
https://www.theguardian.com/business/2006/jan/30/corporatefraud.enron

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 14

(a) EU Emails (b) Enron (c) GameX Combats (d) GameX Messages

(e) StackOverflow (f) Reddit (g) LANL Netflow

Fig. 13: Sensitivity analysis of EASEE against delay in the start time of the stream observations. We see that after a small
number of snapshots, the downstream EASEE output is unaffected by different start times.

0

0.2

0.4

0.6

0.8

1.0

Su
ffi

ci
en

t S
na

ps
ho

t I
nd

ex

0

2

4

6

Sufficient Snapshot Index
0 2 4 6

(a) Node Similarity

0

0.2

0.4

0.6

0.8

1.0

Su
ffi

ci
en

t S
na

ps
ho

t I
nd

ex

0

2

4

6

Sufficient Snapshot Index
0 2 4 6

(b) Edge Similarity

Fig. 14: Sufficient snapshot similarity for the EU Emails dataset.
Node similarity is nearly uniformly large, but edge similarity
breaks into three distinct subgroups.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Periods with high similarity,
but different from end

Enron lays off 4,000 employees

Periods with high
proportion same edges

2004-02-03

Sn
ap

sh
ot

 E
nd

 D
at

e

1999-12-10

2000-05-15

2000-08-22

2000-10-23

2000-12-01

2001-01-30

2001-03-12

2001-04-18

2001-05-17

2001-06-14

2001-08-09

2001-10-11

2001-10-31

2001-12-21

2002-01-30

Sufficient Snapshot Index
0 10 20 30 40

Fig. 15: Sufficient snapshot edge similarity for Enron Emails.
There are several distinct periods shown. Further, while some
of these periods are largely unique (arrows from middle-left),
some periods repeat (arrows from top-right).

building static snapshots is desirable because of the many
existing static graph analytics. Neighboring snapshots’ cosine
similarity indicates if the underlying data is shifting too quickly
to form representative static snapshots. To our knowledge,
EASEE is the only technique that can identify such change.

Sufficient snapshots identify minimal interval sizes that
generate good graph representations. Neighboring sufficient
snapshots aren’t merged only when critical shifts occur in
the underlying data. However, there are datasets where all
neighboring sufficient snapshots show critical changes. That
is, no neighboring intervals merge for a reasonable threshold.

Specifically, the GameX Combat and Reddit datasets show
almost no between-interval similarities. The GameX Combat
dataset split into 15 sufficient intervals, and none of the 14
neighboring pairs of intervals had a cosine edge similarity
greater than 0.1. With 3 orders of magnitude more EAs, the
Reddit dataset split into just over 7.4K sufficient intervals, but
92% of the neighboring pairs of intervals had cosine similarity
less than 0.2, and less than 1% had cosine similarity greater
than 0.5. Non-neighboring comparisons showed even less
similarity. Both datasets showed higher node similarity across
neighboring snapshots, indicating that while similar people
often participated, edges were forming and dying between
them within single sufficient intervals. Although only for a
portion of the Reddit data, the scree plots for both of these
datasets show this problem (Fig. 7).

This result indicates that within-snapshot changes were
almost certainly happening as well. We would need much
shorter snapshots to remove this within-snapshot change.
However, EASEE already seeks minimal sufficient intervals to
avoid undersampling. Thus, when all neighboring snapshots
have very low similarity, this likely indicates that there is
no safe trade-off between under- and oversampling: Static
snapshots cannot reasonably represent the underlying data. We
recommend testing for this case, e.g. for when most similarities
are below a given threshold.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3223614

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Periods with high
proportion same edges...

interrupted by periods
with internal similarity

D
ay

s

72

150

225

294

369

437

523

592

665

Sufficient Snapshot Index
0 20 40 60 80

(a) GameX Messages

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
ou

rs

2.5

5.1

7.9

11

14

17

20

22

25

Sufficient Snapshot Index
150 300 450 600 750 900 1050 1200 1350

(b) LANL First Day

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

Monday

Tuesday

Wednesday

Inset period

D
ay

s

1

2

2.9

3.9

4.9

5.9

6.8

7.7

Sufficient Snapshot Index
1350 2700 4050 5400 6750 8100 9450 10800

(c) LANL First 10 Days

Fig. 16: Sufficient snapshot edge similarity for (a) the GameX Messages and (b, c) parts of the LANL Network datasets. Both
show considerable periods of similarity in both neighboring and separated intervals. The LANL dataset has a shifted color
scheme because of high similarity.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
2/26/2010
11/12/2010
5/09/2011
9/28/2011
2/20/2012
6/15/2012
9/29/2012
1/08/2013
4/03/2013
6/24/2013
9/12/2013
11/27/2013
2/07/2014
4/08/2014
6/21/2014
9/10/2014
12/05/2014
2/26/2015
5/06/2015
7/09/2015
9/16/2015
11/22/2015
2/03/2016

0 500 1000 1500

Fig. 17: Sufficient snapshot edge similarity for StackOverflow.
Although the full image appears to have low similarity values,
the inset in the upper right (just over 100 snapshots) shows
that there is considerable similarity for neighboring snapshots.

Summary: In this section, we demonstrated the following:

• Using a synthetic dataset with a known change point,
and a variety of rates and change times, we showed that
EASEE is able to rapidly identify the changes if they are
large, or smaller changes if they don’t occur too close
to EASEE initialization. It can’t find changes that are
too close to initialization and don’t change as much data.
ADAGE does not identify these change points at all.

• We demonstrated that identifying these changes is critical
to accurate community detection. EASEE provided similar
community detection scores (AMI) to an oracle, while
correct-sized blocks that miss the change point do not.

• We showed that EASEE rapidly identifies exactly the
same split indices after few sufficient snapshots even
when initialized at very different points in the EA stream.

• We provide a visualization of merging results for EASEE
against most of our datasets.

• We discuss how EASEE identifies that two of the datasets
should not be used for static snapshot analysis.

VII. DENSIFICATION

Now that we have demonstrated EASEE’s accuracy and
robustness, and shown several anecdotal results from EASEE’s
merge analysis, we use EASEE for down-stream analysis.
Leskovec, et al. analyzed a variety of graph types that change
over time, including two communication graphs (emails and
autonomous systems) [13]. They used either cumulative interval
sizes, or fixed-size sliding intervals. In their email dataset,
Leskovec, et al. considered only edges that reciprocated (A talks
to B, B responds at some point to A). While that does change
the resulting graph (effectively eliminating all single-occurrence
EAs and many low-occurrence EAs that were always the same
direction), we include all data in our analysis. They found that
as graphs age, they increase in density, and decrease in diameter.
We now further that analysis for graphs from communication
data by using EASEE to identify graph snapshots compared
to the sliding interval graphs used by Leskovec, et al. As
Reddit and GameX Combat were found to be problematic
when forming static snapshots, we do not include them in this
analysis.

Our technique largely matches Leskovec, et al.’s: We began
by analyzing densification directly as they did; later, we
analyzed density change against real-world time. Given a series
of graph snapshots, we counted the number of unique nodes
and unique edges in each snapshot, and plotted nodes against
edges. We fitted the model

unique edges ∝ (unique nodes)𝛼 (17)

to the networks, and studied the exponent 𝛼. For a given
network, if the exponent 𝛼 is larger than 1, the network is said to
be densifying. We computed 𝛼 by performing a linear regression
(or a robustified linear regression) on the log of both edge
and node counts. We compared these results for fixed-interval
sliding intervals, a cumulative interval (growing from the start

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3223614

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 16

of data to a given time), and EASEE’s sufficient snapshots
(output from Alg. 1). We used sufficient snapshots as their
interval sizes are more consistent than merged interval sizes
(which can vary wildly with the underlying data’s consistency).
This was the more fair comparison to fixed-size results. For the
sliding intervals, we use overlapping, rolling periods of fixed
temporal duration (as specified in results) – moving forward a
single EA for each new snapshot.

Network Interval Size 𝛼 𝛼, robust Coefficient of Variation
regression of Edges

Nodes
EU E-Mails EASEE 1.271 1.335 0.047
EU E-Mails 2 months 2.484 2.84 0.093
EU E-Mails 4 months 1.449 1.449 0.025
EU E-Mails 8 months 1.159 1.125 0.015
EU E-Mails Cumulative 4.082 4.642 0.315
Enron EASEE 1.081 1.028 0.109
Enron 2 months 1.138 1.124 0.106
Enron 4 months 1.124 1.07 0.093
Enron 8 months 1.098 1.001 0.073
Enron Cumulative 1.170 1.123 0.112
GameX Messages EASEE 1.767 1.782 0.124
GameX Messages 2 months 1.803 1.687 0.110
GameX Messages 4 months 1.594 1.622 0.094
GameX Messages 8 months −0.052 −0.259 0.090
GameX Messages Cumulative 1.654 1.586 0.260
StackOverflow EASEE 0.926 1.083 0.328
StackOverflow 2 months 0.646 0.642 0.247
StackOverflow 4 months 0.646 0.642 0.267
StackOverflow 8 months 0.64 0.639 0.263
StackOverflow Cumulative 0.949 0.943 0.081
LANL EASEE 1.447 1.441 0.173
LANL 1 second 1.055 1.082 0.154
LANL 1 minute 1.34 1.35 0.121
LANL 1 hour 0.274 0.295 0.284
LANL 1 day 0.203 0.199 0.285
LANL 3.5 days 11.432 10.615 0.073
LANL 1 week 5.501 1.109 0.059
LANL Cumulative 0.849 0.886 0.197

TABLE III: Densification Experiment Results

Table III shows our results for the exponent 𝛼. For
each network, the exponent can vary wildly depending how
communication events are combined into snapshots. Enron’s
exponents are only slightly larger than 1. StackOverflow
has exponents smaller than 1 independent of the temporal
segmentation – although cumulative and EASEE both get close
to 1. Oddly, LANL exhibits wildly varying change in exponent
– approximately 1 at very small intervals; much smaller than 1
for medium intervals; and much larger than 1 for very large
intervals. Thus, statements about the densification of a network
are extremely sensitive to dataset and interval size.

One feature we saw in the plots that led to Table III’s results
is that in most datasets, more dense snapshots were not built
from later data. That is, the latest snapshots were not the densest
snapshots in any but the cumulative intervals. As the EASEE
model has shown, densifying EAs (N0-Type) are the most
common new-edge type when you don’t take any snapshots
(see Fig. 5). Thus, cumulative snapshots becoming denser with
larger cumulative intervals is not a particularly surprising result.
However, when snapshots are taken, later snapshots are not
necessarily more dense than earlier snapshots.

To demonstrate this result further, we show a complementary
view of density. Specifically, we studied the ratio edges/nodes
for EASEE snapshots in order. In Table III, we report this
quantity’s coefficient of variation: It is generally low. That is,

the density as measured by the ratio of unique edges to unique
nodes does not exhibit a significant range. Fig. 18 shows these
results for EASEE on each dataset. GameX Messages is the
only dataset with even a minor increase in density (vertical
axis) with time (horizontal axis). Enron and LANL are largely
flat; the density of StackOverflow drops considerably at the
beginning and then slowly decreases with time.

Lest any argue that these results are specific to EASEE,
we present fixed-interval and cumulative results for the
StackOverflow network in Fig. 19. Although the cumulative
case has a slope of around 1 in the standard equation used by
Leskovec (Eq. 17), the cumulative graphs increase in density
drastically at first, but then decrease in density. This was the
only case where the cumulative interval did not always increase
in density. Furthermore, for all fixed-width intervals, the density
largely decreases over time.

VIII. DISCUSSION AND CONCLUSION

EASEE provides a variety of insights into graphs built from
communication event streams.
Densification: Leskovec, et al. [13] found that graphs that
grow over time increase in density and shrink in diameter
as the interval increases. Although our work studies only a
subclass of their data,10 our results support and add caveats to
Leskovec’s results.

First, EASEE explicitly monitors EAs that cause
densification (N0-type) and those that could increase diameter
(N1-type and N2-type). As shown in Fig. 5, as more EAs arrive,
N1- and N2-types are generally a very small fraction, while
N0-type EAs often remain a non-trivial proportion. (Although
absolute values vary, the trend of more N0-type than N1-
or N2-type is generally similar for all our datasets.) Thus,
densification generally increases as the snapshot size increases.
Furthermore, as paths are added internally (N0-type) at a much
higher rate than possible outside edges (N1-, N2-types), the
diameter should decrease. Each internal edge added decreases
path lengths for some of the nodes, eventually including the
longest path between any two nodes.

However, if the interval responds to the underlying
communication data, densification does not generally increase
with later communication data (see Fig. 18).

Second, EASEE’s merge results show that often intervals
should end. As the community-detection analysis shows,
neighboring periods can be so different that merging them
confounds later analyses – the resulting graph contains many
paths that never were active together. Thus, some of Leskovec
et al.’s results require the caveat that there are likely multiple
distinct static graphs within their larger-interval graphs. In
fact, the sufficient snapshots and fixed-interval snapshots for
StackOverflow have a clear decrease in density over time
(Figs. 18(d) and 19).
Sudden changes: Our results show that EASEE can rapidly
identify sudden changes in datastreams with low latency
(Fig. 10 and Table II). Such changes occur regularly in many
datasets (Figs. 15 and 16). Detecting these changes rapidly and

10EASEE requires repeat edges as in most communication systems; Leskovec
et al.’s analysis includes citation networks where edges never repeat.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3223614

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 17

(a) EU Emails (b) Enron (c) GameX Messages

(d) StackOverflow (e) LANL Netflow

Fig. 18: For each dataset and the EASEE algorithm, we plot the ratio of unique edges to unique nodes in the snapshots in time
order. Note that density does not generally increase with time.

(a) 2-Month Rolling Interval (b) 4-Month Rolling Interval (c) 8-Month Rolling Interval (d) Cumulative Interval

Fig. 19: Densification results for the StackOverflow dataset on rolling intervals of size 2, 4, and 8 months, and cumulative
intervals. Note that there is no evidence for increasing density with time.

creating new graph snapshots is a critical step in generating
static graphs from communication streams. However, previous
research does not handle these results: ADAGE failed to
detect any change moment directly (Sec. VI-A); fixed-width
techniques will fail as often as not which negatively affects
down-stream applications (Sec. VI-B).

Graph stability: Our results show that some communication
streams have continual underlying catastrophic shifts
(Sec. VI-E). Creating static snapshots from such data should be
considered dangerous. These results argue strongly for temporal
network analysis on such datasets, but great caution when
considering static graph analysis.

Furthermore, given a few snapshots to converge, EASEE
identifies exactly the same snapshots whether it was started
recently or many EAs earlier (Sec. VI-C).

Repeating periods: Our results show that some communication
streams show non-neighboring periods with repeating behavior

(Figs. 15 and 16(a) and (c)). Such periods may be of
considerable interest to analysts studying the underlying
dataset: What was happening at Enron in April 2001, October
2001, and January 2002 that led to such high similarity?
Furthermore, should an off-line merging step consider merging
such snapshots?

Weighted edges: We tested neighboring sufficient snapshots
with various static graph similarity measures. We found that
neighboring unweighted snapshots were quite distinct – even
when they had high cosine similarity. This is likely because
unweighted graphs consider edges with only one advertisement
of equal weight to edges with dozens or more. As our cosine
similarity results show, these neighboring periods can still have
high weighted similarity. Thus, we recommend weighting the
edges of the final static snapshots with the number of EAs and
using weighted analyses for down-stream analyses.

Dying edges: We are aware of no technique that directly

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3223614

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 18

detects dying edges within a single snapshot. EASEE also
cannot explicitly detect dying edges as they are only shown
by their lack: There are no “edge dead” advertisements in
communications data. EASEE handles this issue by limiting
sufficient intervals to a minimal period until convergence, and
then comparing the cosine similarity of neighboring snapshots
to decide to merge them. If an edge seen in one snapshot does
not advertise in the next, then it effectively “dies.”

We tried modeling the probability distribution of EA inter-
arrival times and identifying dead edges as those which had not
advertised in a statistically unlikely period since their last EA.
However, this solution is quite complicated due to the following
issues: First, the EA inter-arrivals best followed long-tailed
distributions like Weibull or Pareto distributions. This leads
to very long periods before expecting to see a new EA with
non-trivial probability. Second, as indicated in Fig. 4, different
edges advertise at wildly differing rates. Thus, it would have
required different distributions and monitors for each edge.
Third and finally, edges that advertise only once within an
entire dataset may either have advertised exactly once ever,
or may have advertised only once within the available data –
sometimes several years long. Accurately representing such
highly infrequent advertisers is extremely difficult.
Conclusion: We presented EASEE (Edge Advertisements into
Snapshots using Evolving Expectations). EASEE runs in-line
with streaming communication data and directly monitors EA
types. Using EA types’ evolving expectations, EASEE identifies
minimal sufficient intervals where the snapshot has either
converged or the underlying data has shifted. The merging
step allows for larger snapshot intervals but explicitly monitors
for oversampling. Furthermore, off-line analysis of EASEE’s
results can identify repeating patterns.

ACKNOWLEDGMENTS

The views expressed in this article do not necessarily
represent the views of the U.S. Department of Energy or the
United States Government.

Wendt, Field, Phillips, Wilson, and Prasadan were supported
by the Laboratory Directed Research and Development program
at Sandia National Laboratories, a multi-mission laboratory
managed and operated by National Technology and Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International, Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under
contract DE-NA0003525. Soundarajan is supported by the
U.S. Army Research Office grant number W911NF1810047.
Bhowmick is supported by NSF Awards #1725566 and
#1900765.

REFERENCES

[1] J. Sun, S. Papdimitriou, P. S. Yu, and C. Faloutsos, “GraphScope:
Parameter-free mining of large time-evolving graphs,” in Proceedings of
the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2007.

[2] R. Sulo, T. Y. Berger-Wolf, and R. Grossman, “Meaningful selection of
temporal resolution for dynamic networks,” in Proceedings of the Eighth
Workshop on Mining and Learning with Graphs, 2010.

[3] G. Krings, M. Karsai, S. Bernhardsson, V. D. Blondel, and J. Saramaki,
“Effects of time window size and placement on the structure of an
aggregated communication network,” EPJ Data Science, 2012.

[4] R. S. Cáceres, “Temporal scale of dynamic networks,” Ph.D. dissertation,
University of Illinois at Chicago, 2013.

[5] S. Soundarajan, A. Tamersoy, E. Khalil, T. Eliassi-Rad, D. H. Chau,
B. Gallagher, and K. A. Roundy, “Generating graph snapshots from
streaming edge data,” in WWW ’16 Companion: Proceedings of the 25th
International Conference Companion on World Wide Web, 2016, pp.
109–110.

[6] B. Fish and R. S. Cáceres, “A supervised approach to time scale detection
in dynamic networks,” arXiv:1702.07752v1, Tech. Rep., 2017.

[7] G. K. Orman, N. Türe, S. Balcisoy, and H. A. Boz, “Finding proper
time intervals for dynamic network extraction,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2021, Mar. 2021.

[8] A. Lakhina, J. W. Byers, M. Crovella, and P. Xie, “Sampling biases
in IP topology measurements,” in Proceedings of IEEE International
Conference on Computer Communications (INFOCOM), 2003.

[9] D. Achlioptas, A. Clauset, D. Kempe, and C. Moore, “On the bias
of Traceroute sampling: or, power-law degree distributions in regular
graphs,” Journal of the ACM, vol. 56, no. 4, April 2005.

[10] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in
Proceedings of ACM Knowledge Discovery and Data Mining (KDD),
2006.

[11] A. S. Maiya and T. Y. Berger-Wolf, “Sampling community structure,”
in Proceedings of the International Conference on the World Wide Web
(WWW), 2010.

[12] ——, “Benefits of bias: Towards better characterizations of network
sampling,” in Proceedings of the ACM International Conference on
Knowledge Discovery and Data Mining (KDD), 2011.

[13] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution:
Densification and shrinking diameters,” ACM Transactions on Knowledge
Discovery from Data, vol. 1, no. 1, 2007.

[14] L. E. C. Rocha, N. Masuda, and P. Holme, “Sampling of temporal
networks: Methods and biases,” Physical Review E, vol. 96, 2017.

[15] P. Holme and J. Saramäki, “Temporal networks,” Physics Reports, vol.
519, pp. 97–125, 2012.

[16] S. Ross, A First Course in Probability. New York: McMillan, 1994.
[17] J. H. van Lint and R. M. Wilson, A Course in Combinatorics. Cambridge,

UK: Cambridge University Press, 2001.
[18] A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal

networks,” in ACM International Conference on Web Search and Data
Mining, 2017.

[19] J. Hessel, C. Tan, and L. Lee, “Science, askscience, and badscience: On
the coexistence of highly related communities,” in Proceedings of the
AAAI Conference on Web and Social Media, 2016.

[20] P. Liu, A. R. Benson, and M. Charikar, “Sampling methods for counting
temporal motifs,” in Proceedings of the ACM International Conference
on Web Search and Data Mining, 2019.

[21] M. J. M. Turcotte, A. D. Kent, and C. Hash, Unified Host and Network
Data Set. World Scientific, 2018, ch. 1, pp. 1–22.

[22] S. Ioffe, “Improved consistent sampling, weighted minhash and l1
sketching,” in 2010 IEEE International Conference on Data Mining.
IEEE, 2010, pp. 246–255.

[23] D. A. Jackson, “Stopping rules in principal components analysis: A
comparison of heuristical and statistical approaches,” Ecology, vol. 74,
no. 8, pp. 2204–2214, 1993.

[24] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for
clustering comparison: Variants, properties, normalization and correction
for chance,” Journal of Machine Learning Research, vol. 11, pp. 2837–
2854, 2010.

[25] M. E. J. Newman, “The structure and function of complex networks,”
SIAM Review, vol. 45, no. 2, pp. 167–256, 2003.

[26] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, 2008.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3223614

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

	Introduction
	Related Work
	The EASEE Model
	Forecasting near-term growth
	Detecting sufficient snapshots
	Merging neighboring snapshots
	EASEE Parameters Overview

	Data
	Model Calibration From Data
	Probabilities from Recent History
	Identifying Sufficient Snapshots
	Merging Threshold and Metric

	Experiments
	Synthetic Data 1: Varying Change Rate Detection
	Community detection
	Sensitivity of EASEE to Initial EA Position
	Comparing and Merging Sufficient Snapshots
	Warnings of building static graphs

	Densification
	Discussion and Conclusion
	References

