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A B S T R A C T   

Durability of carbon-supported Fe single-atom catalysts has remained a critical issue for metal-air batteries. 
Herein, Fe single atoms with adjacent Fe nanoclusters supported on nitrogen-doped carbon aerogels (NCA/ 
FeSA+NC) are prepared via a facile two-step pyrolysis procedure using biomass hydrogels as the precursor and 
template. The Fe atomic centers are found to exhibit an increased 3d electron density and decreased magnetic 
moment by the nanoclusters. This markedly enhances the oxygen reduction reaction activity and anti-oxidation 
stability of the FeN4 sites, as compared to the nanocluster-free counterparts. With NCA/FeSA+NC as the cathode 
catalysts, a flexible zinc-air battery delivers a remarkable performance even at −40 ◦C, with an open circuit 
voltage as high as 1.47 V, power density 49 mW cm−2, and excellent durability after 2300 continuous 
recharging/charging cycles. The performance is even higher at ambient temperature. These results highlight the 
significance of electronic manipulation in enhancing the durability of single atom catalysts.   

1. Introduction 

Electrocatalysis of oxygen reduction reaction (ORR) is a cornerstone 
of a range of electrochemical energy technologies, such as fuel cells and 
metal-air batteries [1–4]. Whereas platinum-based composites have 
been the benchmark catalysts for ORR, development of nonprecious 
metal catalysts has become imperative for cost and sustainability rea-
sons [5,6]. In fact, transition metal−nitrogen−carbon (M−N−C) com-
posites have been recognized as viable alternatives thanks to their high 
activity and low costs [7–10]. Among these, single (metal) atom cata-
lysts (SACs) have been attracting extensive attention, where manipula-
tion of the configurations of the atomically dispersed metal sites can be 
exploited for the optimization of the electrocatalytic activity [11–16]. In 
particular, Fe SACs, with FeNx moieties embedded within porous 

carbon, have been found to exhibit a high ORR activity, where the 
half-wave potential (E1/2) is comparable to that of commercial Pt/C in 
both acidic and alkaline media [17,18]. Yet, carbon-based SACs are 
known to exhibit apparent degradation during prolonged electrode re-
actions, due to demetallation, carbon oxidation and bulk carbon corro-
sion, leading to poor stability [19,20], which has become a major 
obstacle in practical applications. 

To mitigate such issues, research has primarily focused on two 
strategies, increased graphitization of the carbon scaffold and stabili-
zation of the metal active sites. For example, carbon corrosion can be 
alleviated by integrating metal sites into highly graphitic graphene or 
carbon nanotubes [21,22]. Additionally, a second metal element can be 
incorporated into SACs to impede the undesired Fenton reactions [23, 
24]. Nevertheless, whereas these strategies indeed yield improved 
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stability, drawbacks are clear, as increasing graphitization diminishes 
carbon defects and compromises electrocatalytic activity, and structural 
engineering of the metal sites requires tedious operations. Thus, devel-
opment of facile and effective strategies to enhance the stability and 
concurrently retain the high activity of SACs is highly desired. This is the 
main motivation of the present study. 

Herein, we describe an effective strategy based on electronic regu-
lation by adjacent metal nanoclusters to improve the stability of Fe SACs 
without compromising the ORR activity. Fe–N–C nanocomposites typi-
cally contain both durable and non-durable FeNx sites [19]. In the 
former, the metal centers retain the Fe(II) valency during electrode re-
actions, while in the latter, the metal centers switches between the 
oxidation state of Fe(III) and Fe(II) and can be easily transformed into 
ferric oxides. This suggests that the stability of the FeNx sites can be 
strengthened by impeding the oxidation of Fe(II) to Fe(III). Theoretical 
studies have shown that electron-rich metallic nanoparticles in the close 
proximity may inhibit the oxidation of the FeNx sites via 
electron-transfer interactions [25]; yet, such electron transfer has to be 
relatively weak so as not to impair the ORR activity [26–29]. Thus, it is 
anticipated that the FeNx stability can be improved by introducing 
adjacent small-sized metal nanoclusters, where the weak/indirect elec-
tron transfer bridged by carbon atoms helps suppress the oxidation of Fe 
(II) to Fe(III). Notably, metal nanoclusters may also endow the nano-
composites with bifunctional oxygen catalytic activity, with a good 
performance towards oxygen evolution reaction (OER) as well, an 
essential feature for rechargeable metal-air batteries [30]. 

Experimentally, Fe nanoclusters were introduced to the proximity of 
the FeNx single atom sites embedded within N-doped carbon aerogels 
(NCA/FeSA+NC) via a facile two-step pyrolysis method using biomass 
hydrogels as the precursor and template [31]. First principles calcula-
tions show an increased 3d electron density and reduced magnetic 
moment of the Fe centers, suggesting positive effects on the ORR activity 
and anti-oxidation stability of the FeN4 sites. Electrochemically, the 
NCA/FeSA+NC composites indeed exhibited not only an excellent ORR 
performance, with a half-wave potential (E1/2) of +0.92 V versus 
reversible hydrogen electrode (RHE), but also remarkably enhanced 
stability, as compared to that without Fe nanoclusters (NCA/FeSA). With 
the NCA/FeSA+NC as the cathodic catalysts, the assembled flexible Zn-air 
battery exhibited a high power density and remarkable durability at 
both ambient and even sub-zero temperatures (down to −40 ◦C). These 
results offer an effective strategy in optimizing both electrocatalytic 
activity and stability of M−N−C composites, a critical step in advancing 
commercialization of electrochemical energy technologies. 

2. Experimental section 

2.1. Sample preparation 

Details of chemicals are included in the Supporting Information. In a 
typical reaction, a blood-red dispersion was prepared by mixing gelatin 
(180.0 mg), nano-SiO2 (90.0 mg), FeCl2⋅4H2O (23.9 mg) and 1,10-phe-
nanthroline monohydrate (PM, 71.4 mg) into 7.5 mL of ultrapure water 
in a 60 ℃ water bath for 20 min. The resulting mixture was self- 
assembled into a hydrogel in a −4 ℃ refrigerator, which was denoted 
as G-Si/FePM. 

The lyophilized G-Si/FePM hydrogel was then used to prepare NCA/ 
FeSA and NCA/FeSA+NC by following two slightly different routes. For the 
former, G-Si/FePM was pyrolyzed at 900 ℃ at a heating rate of 5 ℃ 
min−1 under a mixed atmosphere (97% Ar + 3% H2) for 3 h. The 
resulting product was then subject to chemical etching by 4% HF to 
remove the SiO2 nanoparticle templates and the Fe clusters, and dried at 
60 ℃ in vacuum for 1 h, affording NCA/FeSA. 

To prepare NCA/FeSA+NC, the lyophilized G-Si/FePM hydrogel was 
pyrolyzed at 500 ℃ at a heating rate of 5 ℃ min−1 under an argon at-
mosphere for 2 h, followed by etching in 0.5 M NaOH at 80 ℃ to remove 
SiO2 (denoted as NCA/Fe-500). The NCA/Fe-500 powders were then 

subject to a second pyrolysis at a heating rate of 5 ℃ min−1 to 900 ◦C 
under a mixed atmosphere (3% H2 + 97% Ar) for 3 h to produce NCA/ 
FeSA+NC. The gas flow rates during pyrolysis were all set at 100 mL 
min−1. 

Four additional control samples were prepared in the same manner 
as that for NCA/FeSA+NC except for the following variations: NCAA/ 
FeSA+NC and NCAC/FeSA+NC by using agar and chitosan instead of 
gelatin, respectively; whereas NCA/FeSA+NC-L and NCA/FeSA+NC-H by 
using 60 mg and 120 mg SiO2, respectively. 

Experimental details about the synthesis of polyacrylic acid (PAA) 
hydrogel and polyacrylamide (PAM) organohydrogel electrolytes, elec-
trochemical measurements (Fig. S1), as well as theoretical calculations 
were included in the Supporting Information. 

2.2. Construction and testing of flexibility quasi-solid Zn-air battery 

Quasi-solid Zn-air battery entailed a typical sandwich configuration 
(Fig. S2), with the air cathode and Zn plate placed on the two opposite 
sides of the PAA hydrogel electrolyte. The air cathode was composed of a 
catalyst layer, a gas diffusion layer and a Ni foam layer. The catalyst 
layer was prepared by thoroughly mixing the aerogel catalyst, acetylene 
black and polytetrafluoroethylene (PTFE) emulsion at a mass ratio of 
6:1:3 in ethanol. Then, the catalyst layer, Ni foam and gas diffusion layer 
were compressed by a roller press to produce the air electrode, which 
was dried at 60 ℃ in vacuum for 3 h and cut into pieces of 1.0 cm × 1.0 
cm before use. As a comparison, a reference cathode was prepared in the 
same manner but with commercial Pt/C-RuO2. A low-temperature Zn- 
air battery was assembled in the same manner except that the PAA 
hydrogel electrolyte was replaced by the PAM oranohydrogel 
electrolyte. 

The active material films on the electrode surfaces for various elec-
trochemical measurements ranged from 0.05 to 0.2 mm in thickness, 
with a mass loading up to 15 mg cm−2, as listed in Table S1. More details 
about the tests of the battery performance can be found in the Sup-
porting Information. 

3. Results and discussion 

3.1. Synthesis and structural characterization 

In the synthesis of NCA/FeSA+NC nanocomposites (Fig. 1a), a gelatin 
hydrogel containing Fe-phenanthroline (Fe-PM) complex and nano-SiO2 
was firstly prepared by a freeze-thawing method at −4 and 20 ℃. The 
obtained freeze-dried hydrogel showed a 3D honeycomb-like structure 
(Fig. S3), which was then transformed into a N-doped carbon aerogel 
decorated with atomically dispersed Fe sites by pyrolysis at 500 ℃ 
followed by removal of the SiO2 templates by NaOH etching. A second 
pyrolysis was carried out at 900 ℃, where part of the Fe atoms that were 
weakly bound to the carbon skeletons were aggregated into nanoclusters 
near the Fe single atoms, producing NCA/FeSA+NC. For comparison, 
direct pyrolysis of the hydrogel precursor at 900 ℃ and etching by HF 
yielded N-doped carbon aerogels with dispersion of Fe single atoms only 
(NCA/FeSA). 

The morphological and structural details of the obtained carbon 
aerogels were first probed by scanning electron microscopy (SEM) and 
transmission electron microscopy (TEM) measurements. Fig. S4 shows 
two representative SEM images, where the carbon aerogels can be seen 
to retain the 3D structures with abundant pores that might help impede 
the excessive aggregation of metal atoms into large nanoparticles. This is 
indeed manifested in the TEM images in Fig. 1b, where no large metal 
nanoparticle (over 10 nm in diameter) can be observed in the NCA/ 
FeSA+NC sample. In high-angle annular dark field-scanning transmission 
electron microscopy (HAADF-STEM) measurements, the NCA/FeSA+NC 
composites can be found to consist of both metal nanoclusters (under 
10 nm in diameter) and single atoms (red cycles) (Fig. 1c), where the 
nanoclusters exhibited clearly-defined lattice fringes, with the 
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interplanar distances of 2.13 Å and 1.84 Å respectively arising from the 
(100) and (101) planes of metallic Fe (PDF#34–0529) (Fig. 1d and inset, 
Fig. S5a). The formation of both metallic Fe nanoclusters and single 
atoms in the carbon aerogel is also confirmed in elemental mapping 
analysis based on energy-dispersive X-ray spectroscopy (Fig. 1e). For 
comparison, for NCA/FeSA that was prepared by one-step pyrolysis, only 
single Fe atoms were resolved (Fig. S5b-c). 

In N2 adsorption-desorption measurements, both the NCA/FeSA+NC 
and NCA/FeSA composites exhibited a Type IV isotherm [32], indicating 
the formation of a complex porous network dominated by mesopores 
ranging from 5 to 15 nm (Fig. S6 and inset). The specific surface area 
was estimated to be 899 m2 g−1 of NCA/FeSA, and decreased to 574 m2 

g−1 for NCA/FeSA+NC, likely because part of the nanopores in NCA/FeSA 
were blocked by the metal nanoclusters. In X-ray diffraction (XRD) 
measurements (Fig. S7a), both NCA/FeSA+NC and NCA/FeSA can be 
observed to exhibit a broad diffraction peak at 2θ ≈ 25◦, arising from the 
(002) diffraction of graphitic carbon (PDF#65–6212), suggesting 
effective graphitization of the hydrogel precursors into aerogels [33]. 
Two additional diffraction peaks can be resolved at 42.5◦ and 50.1◦ for 
NCA/FeSA+NC but absent in NCA/FeSA, which can be ascribed to the 
(100) and (101) facets of hexagonal Fe (PDF#34–0529), in excellent 
agreement with the lattice spacings (2.13 and 1.84 Å) observed in the 
above HRTEM measurements (Fig. 1c, S5a and inset). In Raman spec-
troscopic measurements (Fig. S7b), both NCA/FeSA+NC and NCA/FeSA 
exhibited a D band at 1348 and a G band at 1590 cm−1 [34], with a 
slightly lower peak intensity ratio for the former (ID/IG = 0.89) than for 
the latter (0.92), suggesting a somewhat higher degree of graphitization. 

This is consistent with the sharper carbon (002) diffraction peak of 
NCA/FeSA+NC (Fig. S7a), and can facilitate electron transfer and elec-
trocatalytic reactions (vide infra) [35,36]. 

X-ray photoelectron spectroscopy (XPS) measurements were then 
conducted to examine the elemental composition and valence state of 
the carbon aerogels. From the survey spectra in Fig. S8, the elements of C 
1s, N 1s, O 1s and Fe 2p electrons can be clearly resolved at about 284, 
400, 530, and 710 eV in both NCA/FeSA+NC and NCA/FeSA carbon aer-
ogels, with a Fe content of 1.8 and 1.0 wt%, respectively. Consistent 
results were obtained from inductively coupled plasma-optical emission 
spectroscopy (ICP-OES) measurements (Table S2). Fig. 2a shows the 
high-resolution scans of the Fe 2p electrons. One can see that NCA/ 
FeSA+NC contains three doublets, 708.0/721.2 eV (blue peaks) for Fe(0), 
709.8/723.2 eV (magenta peaks) for Fe(II) and 713.9/727.3 eV (orange 
peaks) for Fe(III); by contrast, only the Fe(II) and Fe(III) species can be 
resolved in NCA/FeSA. This is consistent with the formation of both Fe 
nanoclusters and single atoms in the former, whereas only Fe single 
atoms in the latter. Notably, the Fe(II) and Fe(III) binding energies of 
NCA/FeSA+NC were about 0.2 eV lower than those of NCA/FeSA 
(Table S3), suggesting electron-enriched Fe centers in the former likely 
due to electron-donation from the nearby Fe nanocluster, which may 
facilitate ORR electrocatalysis (vide infra). In addition, the atomic ratio 
of Fe(II) to Fe(III) was markedly higher in NCA/FeSA+NC (1.5) than in 
NCA/FeSA (1.1), suggesting enhanced anti-oxidation stability of the 
former [19]. In the O 1 s spectra (Fig. S9), the C––O and C−O/O−H 
peaks can be resolved at ca. 531.8 and 532.0 eV, respectively, but no 
metal−O (M−O) peak under 530 eV for both aerogel composites. 

Fig. 1. (a) Schematic illustration of the preparation of NCA/FeSA+NC. (b) TEM and (c) HAADF-STEM images of NCA/FeSA+NC. (d) HRTEM image of a typical metal 
cluster in NCA/FeSA+NC. Inset is the Fourier transform of the red region in (d). (e) HAADF-STEM image and elemental maps of NCA/FeSA+NC. 
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Deconvolution of the corresponding N 1 s spectra yielded 5 species, 
pyridinic (398 eV), metal−N (M−N) (399 eV), pyrrolic (400 eV), 
graphitic (401 eV), and oxidic N (403 eV) (Fig. 2b and Table S4) 
[37–40], suggesting that the Fe single atoms in the carbon aerogels were 
most likely chelated to the N dopants forming FeNx moieties. Of note is 
that the Fe−N species in NCA/FeSA+NC show a decrease of the binding 
energy by 0.4 eV as compared to that in NCA/FeSA, again, consistent 
with the electron-enriched Fe centers in the former likely due to electron 
transfer from the adjacent Fe nanoclusters. 

The coordination configuration of the FeNx moieties was then probed 
by X-ray absorption spectroscopy (XAS) measurements. Fig. 2c depicts 
the Fe K-edge X-ray absorption near-edge structure (XANES) profiles of 
the series of samples, where the white-line intensity can be seen to vary 
in the order of Fe foil < NCA/FeSA+NC ≈ iron(II) phthalocyanine (FePc) 
< NCA/FeSA< Fe2O3, consistent with the formation of both Fe nano-
clusters and Fe single atoms in NCA/FeSA+NC but only Fe single atoms in 
NCA/FeSA. This variation can also be found in the absorption edge en-
ergy (Fig. 2c inset). Fig. 2d displays the corresponding Fourier trans-
forms of the extended X-ray absorption fine structure (EXAFS) profiles. 

FePc, NCA/FeSA+NC and NCA/FeSA all exhibited a primary peak for 
Fe−N bonds at ca. 1.4 Å (no Fe−O bonds were formed, as suggested by 
the above XPS measurements); and for NCA/FeSA+NC a second peak 
appeared at ca. 2.2 Å, likely due to the Fe−Fe bonds, in accord with the 
formation of Fe nanoclusters in the sample — this peak was clearly 
defined with Fe foils. The coordination numbers (CN) and bond lengths 
of Fe−N and Fe−Fe were then estimated by fitting the EXAFS spectra 
(Fig. 2e-f and S10). As listed in Table S5, the Fe−Fe path of NCA/FeS-
A+NC can be seen to exhibit a bond length of 2.50 Å, consistent with that 
of Fe foil, but the CN is markedly lower (2 vs. 8), due to the formation of 
small-sized metal clusters [41]. For the Fe−N path, NCA/FeSA+NC 
showed a CN of 3.6 and a bond length of 1.91 Å, slightly smaller than 
that of NCA/FeSA (4.2 and 1.99 Å), likely due to electron transfer to the 
FeN4 sites from Fe clusters in the close proximity. Collectively, these 
results confirm that NCA/FeSA+NC is composed mostly of FeN4 moieties 
and adjacent Fe clusters, whereas only FeN4 in NCA/FeSA. 

Consistent results were obtained in 57Fe Mössbauer spectroscopy 
measurements [42]. Generally, carbon composites containing FeNxCy 
moieties exhibit at least two distinct doublets, D1 and D2 that are 

Fig. 2. High-resolution XPS scans of the (a) Fe 2p and (b) N 1s electrons of NCA/FeSA+NC and NCA/FeSA. (c) Normalized Fe K-edge XANES spectra and (d) Fourier 
transform k3-weighted Fe K-edge EXAFS spectra of NCA/FeSA+NC, NCA/FeSA, Fe foils, FePc and Fe2O3. Inset to panel (c) is the zoom in of the absorption edge. EXAFS 
fittings of (e) NCA/FeSA+NC and (f) NCA/FeSA. 57Fe Mössbauer spectra of (g) NCA/FeSA and (h) NCA/FeSA+NC. (i) EPR spectra of NCA/FeSA+NC and NCA/FeSA. 
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empirically ascribed to high-spin Fe(III) and medium/low-spin Fe(II), 
respectively, with a similar isomer shift (δ) of 0.30 − 0.45 mm s−1 and 
quadrupole splitting energy (ΔEQS) of about 1.0 and 2.5 mm s−1, 
respectively [43]. As shown in Fig. 2g-h, both D1 and D2 can be resolved 
in NCA/FeSA+NC and NCA/FeSA, with an additional peak (D3, 
δ = −0.06 mm s−1) for NCA/FeSA+NC due to Fe nanoclusters. Table S6 
lists the percentage of D1 and D2 in the two carbon aerogels. One can see 
that D2 accounts for 50.7% in NCA/FeSA, and is markedly higher at 
58.1% for NCA/FeSA+NC, suggesting effective chemical interaction be-
tween Fe single atoms and nanoclusters in the latter, in accord with 
results from the above XPS measurements. It should be noted that the D2 
moieties exhibit better ORR stability than D1 [19], thus the higher 
fraction of D2 in NCA/FeSA+NC is anticipated to lead to enhanced sta-
bility as compared to NCA/FeSA (vide infra). 

In electron paramagnetic resonance (EPR) measurements (Fig. 2i), 
both NCA/FeSA+NC and NCA/FeSA exhibited a clear signal centered at ca. 
3500 G within the magnetic field strength of 2000–5000 G, and the 
peak-to-peak amplitude was clearly weaker for the former than for the 
latter. This further confirms a decreased spin state of FeN4 by the 
neighboring Fe nanoclusters in NCA/FeSA+NC [44]. 

3.2. Theoretical computation 

The interaction between Fe single atom sites and adjacent Fe 

nanoclusters was then examined by theoretical calculations (computa-
tional details are included in the Supporting Information), involving 
four configurations, FeN4 alone (S0 site) and FeN4-Fe13 cluster pairs at a 
distance of 3 Å (S1 site), 5 Å (S2 site) and 8 Å (S3 site) on graphitic 
carbon (Fig. 3a). From the ORR free energy diagrams (+0.90 V) (Fig. 3b 
and S11-S14), it can be seen that the first and second electron-transfer 
steps on S0, S1, S2, and S3 are all exothermic, while the third and 
fourth electron-transfer steps are endothermic, and the final step, the 
desorption of −OH, is the rating determining step (RDS) [45]. The 
desorption energy of −OH (ΔGOH*) is 0.36 eV on the S0 site, and slightly 
lower at 0.33 eV on S1, 0.30 eV on S2, 0.34 on S3. This suggests that the 
ORR electrocatalysis of the FeN4 site can be boosted by the adjacent Fe 
nanoclusters. Among the series, the S2 site shows the lowest energy 
barrier (0.30 V) and highest limiting potential (0.60 V), and is thus 
kinetically favorable for ORR (Fig. 3c). 

In recent studies [19,46–48], the electron spin states of the metal 
active sites have been found to be closely related to the activity and/or 
stability of the FeNx catalysts. Thus, density functional theory (DFT) 
calculations were performed to estimate the Fe magnetic moment of the 
FeN4 moieties on these sites to further explore the interaction with the 
Fe nanoclusters (Fig. 3d), which was 1.94 μB for the S0 site and reduced 
to 1.75 μB for S3, 1.68 μB for S2 and 1.65 μB for S3, in good accord with 
results from the above 57Fe Mössbauer measurements. This signifies 
apparent electronic regulation of the Fe single sites by the adjacent Fe 

Fig. 3. (a) Optimized configurations of the S1, S2 and S3 sites, where the distance between FeN4 and Fe nanocluster is 3 Å for S1, 5 Å for S2, and 8 Å for S3. Free 
energy diagrams of the S1, S2, S3 and S0 sites (b) at 0.90 V vs. RHE and (c) at their respective limiting potentials. (d) Magnetic moments of the S1, S2, S3 and S0 sites. 
(e) DOS of the S2 site and its Fe 3d orbitals in FeN4. (f) DOS of Fe 3d electrons in the S1, S2 and S3 sites. (g) DOS of the five Fe 3d orbitals at the S2 site. 
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nanoclusters, which became strengthened with a decreasing distance 
between them. Further insights into the electronic regulation effect can 
be obtained from the analysis of the density of states (DOS). From 
Fig. 3e, one can see that the Fe 3d electrons make the major contribu-
tions to the S2 DOS near the Fermi level (signified by the black arrow), 
indicating that the Fe atoms in the FeN4 serve as the dominant active 
site. Similar results can be obtained at the S1 and S3 sites (Fig. S15). 
Fig. 3f compares the DOS of the Fe 3d electrons at the S1, S2 and S3 sites. 
The marked states shifted negatively as the nanoclusters became 
increasingly close to FeN4, suggesting that the Fe center in FeN4 can 
readily accept electrons from the adjacent Fe nanoclusters, and the 
marked states at S2 was the closest to the Fermi level. This optimal 
configuration is in accord with the results from the free energy diagrams 
(Fig. 3b-c). The electron transfer interaction is also confirmed by anal-
ysis of the Bader charge of these sites, which varies in the order of 
S1 > S2 > S3 > S0 (Table S7). 

Fig. 3g and S16 show the DOS of the five Fe 3d orbitals at the S1, S2 
and S3 sites, where the marked states near Fermi level can be seen to be 
mainly related to the dxz orbitals, in sharp contrast to the dxy orbital for 
the S0 site (Fig. S17). As the nanocluster became closer (from S3 to S1), 
the increasing electron donation from the nanoclusters led to the for-
mation of a filled dxy orbital and partly filled dxz orbital in FeN4. This 
suggests a distinct evolution of the electron configuration and hence 
magnetic moment from S0 to S1, S2, and S3, as a result of electron 
transfer from the Fe nanoclusters to single atoms. This is indeed man-
ifested in electrochemical measurements of the ORR activity and sta-
bility, as detailed below. 

3.3. ORR activity and durability 

The ORR activity of the aerogel composites was then evaluated in 

0.1 M KOH, with commercial Pt/C as a comparative benchmark. The 
ORR polarization curves were acquired with a rotating disk electrode 
(RDE) at 1600 rpm (Fig. 4a and S18), where NCA/FeSA+NC can be seen to 
outperform others in the sample series. From Fig. 4b, one can see that 
NCA/FeSA+NC exhibited an onset potential (Eonset) of +1.05 V and half- 
wave potential (E1/2) of +0.92 V, as compared to +1.01 and +0.90 V for 
NCA/FeSA and 0.98 and +0.86 V for commercial Pt/C. Consistent results 
were obtained in electrochemical impedance spectroscopy (EIS) anal-
ysis, where the charge-transfer resistance (Rct) of NCA/FeSA+NC (65.9 Ω) 
was markedly lower than that of NCA/FeSA (89.9 Ω) (Fig. S19). In fact, 
the ORR activity of NCA/FeSA+NC is among the best of relevant Fe-N-C 
composite catalysts [49]. In addition, the kinetic current density (Jk) 
at +0.85 V was estimated by Koutecky-Levich analysis (Fig. 4b and 
S20), which was 18.7 mA cm−2 for NCA/FeSA+NC, about 2 times higher 
than those of NCA/FeSA (10.8 mA cm−2) and Pt/C (9.5 mA cm−2). The 
corresponding Tafel slope was ca. 60 mV dec−1 for NCA/FeSA+NC, 58 mV 
dec−1 for NCA/FeSA, and much higher for Pt/C (75 mV dec−1) (Fig. 4c), 
indicating a fast reaction kinetic process. The repeatability of NCA/Fe-
SA+NC was also examined by RDE measurements with three parallel 
batches of samples (Fig. S21), where the standard deviation of E½ and 
Tafel slopes was merely 0.16% and 2.4%, respectively. 

Results from the rotating ring disk electrode (RRDE) measurements 
indicate that ORR followed the efficient 4e− pathway on NCA/FeSA+NC 
and NCA/FeSA, similar to Pt/C, and NCA/FeSA+NC exhibited the lowest 
average H2O2 yield (2.65%) and highest average electron transfer 
number (n = 3.96) in the potential range of +0.2 to +0.9 V (Fig. S22) 
[50]. This remarkable performance of NCA/FeSA+NC is most likely due to 
electronic regulation of the Fe single atom sites by the adjacent Fe 
nanoclusters. 

Acid etching was then performed to differentiate the contributions of 
Fe clusters and single atoms in NCA/FeSA+NC to ORR electrocatalysis. 

Fig. 4. (a) ORR polarization curves at the rotation rate of 1600 rpm in oxygen-saturated 0.1 M KOH. (b) Comparison of Eonset, E1/2 and Jk and (c) the corresponding 
Tafel slopes for NCA/FeSA+NC, NCA/FeSA and commercial Pt/C. (d) ORR polarization curves of NCA/FeSA+NC before and after acid etching. Durability tests of (e) 
NCA/FeSA+NC and (f) NCA/FeSA. 
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After etching in 0.5 M H2SO4, the Fe clusters vanished and concurrently 
distinct micropores appeared, as attested in TEM measurements 
(Fig. S23). The removal of Fe clusters resulted in a negative shift of E1/2 
by ca. 20 mV to +0.90 V, which was identical to that of NCA/FeSA 
(Fig. 4d). This suggests that the ORR activity was primarily due to the Fe 
single atoms and further enhanced by electronic interactions with Fe 
nanoclusters. In addition, the electrocatalytic stability of NCA/FeSA+NC 
and NCA/FeSA was evaluated and compared by cyclic voltammetry (CV) 
measurements. After 8,000 continuous cycles within the potential range 
of + 0.2 to + 1.2 V, the former displayed a negative potential shift of the 
ORR peak by only 5 mV (Fig. 4e), less than one tenth of that for the latter 
(54 mV, Fig. 4f). This confirmed that the clearly enhanced stability of 
NCA/FeSA+NC was due to the electronic regulation of the Fe nanoclusters 
(in fact, the peak potential shifted negatively by only 14 mV after 15,000 
continuous cycles, Fig. 4e). 

XPS measurements were also carried out to compare the aerogel 
structures after the long-term cycle tests (Fig. 5). From the Fe 2p spectra 
before and after 8,000 CV cycles, one can see that NCA/FeSA exhibited a 
positive shift of the binding energy of the main peak by 0.9 eV (Fig. 5a), 
whereas only 0.1 eV for NCA/FeSA+NC (Fig. 5b), indicating drastically 
enhanced anti-oxidation of the Fe species in the latter (as the presence of 
other additives such as Nafion and carbon black made it difficult to 
deconvolute the peaks, the peaks were used directly for comparison). 
Consistent results were obtained in the O 1s, N 1s and C 1s spectra 
(Fig. S24, Table S8-S10). 

As mentioned previously, the decay of the ORR performance of FeNx 
composites is largely due to the oxidation of the Fe sites and aggregation 
into metal oxide nanoparticles. TEM measurements were therefore 

conducted to examine and compare the morphological evolution of 
NCA/FeSA and NCA/FeSA+NC after the stability tests. From Fig. 5c-d, one 
can see that whereas monoclinic Fe2O3 nanocrystals can be identified in 
both NCA/FeSA and NCA/FeSA+NC, as attested in selected area electron 
diffraction (insets to Fig. 5c-d), the number of such nanoparticles is 
significantly lower in NCA/FeSA+NC than in NCA/FeSA. This further 
confirms enhanced anti-oxidation (demetalization) of NCA/FeSA+NC, 
consistent with the XPS results. 

3.4. Zn-air battery performance 

Previous studies have shown that both FeN4 sites and Fe nanoclusters 
may be active towards oxygen evolution reaction (OER) [51,52]. 
Therefore, the OER activity of these carbon aerogels and their applica-
tion as bifunctional cathode catalysts for rechargeable metal-air batte-
ries was also assessed. Fig. 6a shows the OER polarization profiles of the 
carbon aerogels in 1.0 M KOH with 90% iR correction. NCA/FeSA+NC 
exhibits not only a lower potential to reach the current density of 
10 mA cm−2 (EOER,10 = +1.57 V), but also a lower Tafel slope (71.5 mV 
dec−1), as compared to NCA/FeSA (+1.61 V and 97.1 mV dec−1) 
(Fig. S25). This suggests significant potential of NCA/FeSA+NC for OER 
electrocatalysis as well, and acid leaching experiments showed that the 
activity also arose mostly from Fe single atoms and could be enhanced 
with Fe nanoclusters (Fig. S26). In fact, the potential gap, ΔE = EOER,10 
– E1/2, is only 0.65 V for NCA/FeSA+NC, 60 mV lower than that of 
NCA/FeSA (0.71 V), and superior to most bifunctional oxygen electro-
catalysts reported recently (Fig. 6a inset) [53–58]. 

To explore the practical application of the carbon aerogels in 

Fig. 5. Fe 2p XPS spectra of (a) NCA/FeSA and (b) NCA/FeSA+NC before and after durability tests. HRTEM images of (c) NCA/FeSA and (d) NCA/FeSA+NC after 
durability tests. Insets are the selected area electron diffraction patterns of areas B and A in panel (c) and (d), respectively. 
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rechargeable metal-air batteries, flexible zinc-air batteries were assem-
bled by utilizing NCA/FeSA+NC or NCA/FeSA as the air cathode, a high- 
purity Zn plate as the anode and a PAA hydrogel as the flexible elec-
trolyte. A comparative battery was also assembled by using a combi-
nation of commercial Pt/C and RuO2 as the cathode catalysts. As 
manifested in Fig. 6b, the Zn//NCA/FeSA+NC battery exhibited an open 
circuit voltage (OCV) of 1.50 V, 30 and 120 mV higher than those of 
Zn//NCA/FeSA and Zn//Pt/C-RuO2 batteries, respectively. The Zn// 
NCA/FeSA+NC battery also exhibited a maximum power density of 
236 mW cm−2 (Fig. 6c), much greater than those of Zn//NCA/FeSA+NC 
(170 mW cm−2) and Zn//Pt/C-RuO2 batteries (119 mW cm−2). In fact, 
the Zn//NCA/FeSA+NC battery showed a markedly higher discharge 
voltage with the current density varied from 5 to 50 mA cm−2 (Fig. 6d). 
Notably, this Zn//NCA/FeSA+NC battery outperformed most flexible 
zinc–air batteries and even the liquid ones, in terms of the OCV and 
maximum power density (Fig. 6e, Table S11) [59–70]. Fig. 6f shows the 
galvanostatic charging and discharging curves with the current density 
set at 5 mA cm−2. The Zn//NCA/FeSA battery exhibited a voltage gap of 

0.90 V and a 54.1% round-trip efficiency after merely 770 continuous 
charge-discharge cycles. By sharp contrast, the voltage gap was much 
narrower at only 0.79 V for the Zn//NCA/FeSA+NC battery, and the 
round-trip efficiency higher at 59.3%, even after 1800 cycles, indicating 
markedly enhanced activity and durability. Significantly, 95% and 92% 
of the maximum power density of this Zn//NCA/FeSA+NC battery was 
retained when the PAA layer was compressed by 30% and 60%, 
respectively (Fig. 6g), and the discharge-charge voltages remained 
almost unchanged when the battery was bended by 120◦ or even 180◦

(Fig. 6h). After 1000 repetitive compressions, the Zn//NCA/FeSA+NC 
battery exhibited negligible diminishment of the discharging voltage 
(Fig. 6i). All these indicate excellent mechanical flexibility of the 
Zn//NCA/FeSA+NC battery. 

Notably, the carbon aerogels can even be used for low-temperature 
Zn-air batteries, which can find applications under special circum-
stances, such as polar expedition and space exploration. As the electrode 
reaction kinetics and ionic conductivity is significantly diminished at 
low temperatures, the device operation requires effective electrode 

Fig. 6. (a) OER polarization curves of NCA/FeSA+NC and NCA/FeSA in 1.0 M KOH. Inset shows the ΔE of the two aerogels. (b) OCV, (c) power density and (d) 
constant-current discharging curves of Zn//NCA/FeSA+NC, Zn//NCA/FeSA and Zn//Pt/C-RuO2 quasi-solid batteries. (e) Performance comparison of relevant flexible 
Zn-air batteries. (f) Galvanostatic charging and discharging curves at the current density of 5 mA cm−2 for Zn//NCA/FeSA+NC and Zn//NCA/FeSA batteries. (g) 
Compression, (h) repetitive bending, and (i) repetitive compression experiments of the Zn//NCA/FeSA+NC batteries. 
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catalysts that can function under the subambient conditions. A low- 
temperature Zn-air battery was then constructed by following the 
same procedure except that a PAM hydrogel containing dimethyl sulf-
oxide was used instead as the electrolyte and anti-freezing agent. As 
depicted in Fig. 7a and 7b, the resultant Zn//NCA/FeSA+NC battery 
delivered a high OCV of 1.49 V and a maximum power density of 
97.0 mW cm−2 at −20 ◦C, and 1.47 V and 49.0 mW cm−2 at −40 ◦C. 
The Zn//NCA/FeSA+NC battery also showed a stable discharge voltage 
when current density was varied widely from 0.2 to 5.0 mA cm−2, and 
reached a discharge voltage of 1.36 V at −20 ◦C and 1.31 V at −40 ◦C at 
the current density of 1.0 mA cm−2 (Fig. 7c). Table S12 lists the per-
formances of relevant low-temperature Zn-air batteries reported 
recently [71–77], and this Zn//NCA/FeSA+NC battery can be seen to 
clearly outperform most of them (Fig. 7d). Remarkably, after 2300 
continuous galvanostatic charging and discharging cycles at 
1.0 mA cm−2 at −40 ◦C, this Zn//NCA/FeSA+NC battery retained a stable 

discharging plateau with a small voltage gap of 0.32 V and a high 
round-trip efficiency of 81.4%, confirming excellent low-temperature 
adaptability and great advantage for practical application even at 
sub-zero temperatures (Fig. 7e). As depicted in Fig. 7f, only two 
Zn//NCA/FeSA+NC batteries in series were needed to power a LED 
pattern at −40 ◦C. These results corroborate the highly efficient and 
freeze-tolerant Zn-air battery assembled by the designed NCA/FeSA+NC 
catalysts. 

4. Conclusion 

In summary, Fe nanoclusters were formed in the proximity of Fe 
single atom sites embedded in N-doped carbon aerogels (NCA/FeSA+NC) 
via a facile two-step pyrolysis method using biomass hydrogels as the 
precursor and template. Spectroscopic measurements suggested 
electron-enrichment and reduced magnetic moment of the Fe single 

Fig. 7. (a) OCV, (b) power density and (c) constant-current discharging curves of Zn//NCA/FeSA+NC quasi-solid batteries at subambient temperatures. (d) Perfor-
mance comparison of flexible Zn-air batteries at low temperatures. (e) Galvanostatic charging and discharging curves at the current density of 1.0 mA cm−2. (f) 
Photographs of a LED pattern powered by two tandem Zn//NCA/FeSA+NC batteries at different temperatures (from 15 to –40 ◦C). 
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atoms by the adjacent Fe nanoclusters, as compared to the aerogels 
containing only Fe single atoms. This led to positive effects on the 
electrocatalytic activity and anti-oxidation stability, which was indeed 
attested in electrochemical measurements of the ORR and OER perfor-
mances. Consistent results were obtained from first-principles calcula-
tions. With such an excellent bifunctional activity, the NCA/FeSA+NC 
aerogels were utilized as the oxygen cathode for flexible zinc-air batte-
ries, which displayed a remarkable performance at ambient and even 
subambient temperatures (down to −40 ◦C), within the context of OCV, 
power density and durability, in comparison to those based on com-
mercial benchmarks. Taken together, these results put forward a unique 
strategy in the optimization of both stability and activity of M−N−C 
nanocomposite catalysts for electrochemical energy conversion and 
storage. 
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