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Previous research (Aharoni et al., 2013, 2014) found that hemodynamic activity in the dorsal anterior cingulate
cortex (dACC) during error monitoring predicted non-violent felony rearrest in men released from prison. This
article reports an extension of the Aharoni et al. (2013, 2014) model in a sample of women released from state
prison (n = 248). Replicating aspects of prior work, error monitoring activity in the dACC, as well as psychopathy
scores and age at release, predicted non-violent felony rearrest in women. Sex differences in the directionality of

dACC activity were observed—high error monitoring activity predicted rearrest in women, whereas prior work
found low error monitoring activity predicted rearrest in men. As in prior analyses, the ability of the dACC to
predict rearrest outcomes declines with more generalized outcomes (i.e., general felony). Implications for future
research and clinical and forensic risk assessment are discussed.

1. Introduction

Rates of incarceration have been steadily increasing among women on
a global scale (Harmon and Boppre, 2018; Reynolds, 2008). Indeed, the
growth rate of the women’s prison population in the U.S. is nearly double
that of the male population in recent decades (Harmon and Boppre, 2018;
Kelly, 2015; Reynolds, 2008). Despite increasing representation, limited
systematic research has focused on incarcerated women. It is known that
women who are incarcerated have increased rates of psychopathologies
compared to incarcerated men and non-incarcerated women (Bronson &
Berzofsky, 2017; Karlsson & Zielinski, 2020). Psychopathologies are often
linked to alterations in brain-behavior relationships, many of which are
relevant when considering antisociality. For instance, depression, Post-
Traumatic Stress Disorder (PTSD), Borderline Personality Disorder
(BPD), and Substance Use Disorder (SUD) diagnoses, are all elevated in
women who are incarcerated, and these psychopathologies are subse-
quently related to heightened impulsivity (Bronson & Berzofsky, 2017;
Jakubczyk et al., 2012; Karlsson & Zielinski, 2020; Kozak et al., 2019;
Lawrence et al., 2010; Morris et al., 2020).

These psychopathologies are associated with abnormalities in the
dorsal anterior cingulate cortex (dACC), a brain region associated with
inhibition, error monitoring, and response selection (de Bruijn et al.,
2006; Holroyd & Coles, 2002; Kiehl et al., 2000; Kosson et al., 2006;
Malejko et al., 2021; Mathalon et al., 2003; van Rooij & Jovanovic,
2019; van Veen & Carter, 2002; Vega et al., 2015; Yang et al., 2021;
Zilverstand et al., 2018). Prior studies have also linked individual dif-
ferences in dACC activity with risk for criminal re-offending. Aharoni
et al. (2013; 2014) reported that low activity in the dACC during error
monitoring prospectively predicted non-violent felony rearrest in a
sample of men released from prison.’ This work reinforced previous
research suggesting the importance of paralimbic dysfunction as a
mediator between cognitive control and antisocial behavior (Kiehl,
2006). Though criminal behavior is the result of complex interactions of
innumerable environmental, psychological, and biological factors, the
extent to which sex may influence brain-behavior relationships con-
cerning error monitoring and re-offending is an open question, as the
relationship has only been assessed in males thus far (Aharoni et al.,
2013; 2014).

* Corresponding author at: Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA.

E-mail address: kkiehl@mrn.org (K.A. Kiehl).

1 In the U.S., a felony is commonly defined as a crime of high-seriousness than may be punishable by death or a year or more in prison. Felonies can be further
broken down into non-violent felonies (e.g., major larceny/theft, fraud, and drug offenses) and violent felonies (e.g., murder, battery, and assault).
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Sex differences in error monitoring related brain activity have been
demonstrated in multiple studies (Garavan et al., 2006; Liu et al., 2013;
Weafer & de Wit, 2014; see Weafer, 2020 for a comprehensive review),
all of which suggest a greater level of activation during response inhi-
bition and error monitoring in women compared to men. Yet, the rele-
vance of sex differences in the relationship between error monitoring
activity and trait impulsivity is unclear, heightening the import of in-
vestigations concerning the influence of sex on relationships between
error monitoring and impulsivity related outcomes.

While neurobiological measures appear to aid in the prediction of
impulsive outcomes (Delfin et al., 2019; Kiehl et al., 2018; Pardini et al.,
2014), this study marks the first attempt to conduct an out-of-sample
extension of the Aharoni et al. (2014) error monitoring model in
women—assessing potential sex differences in the relation of error
monitoring and impulsive outcomes. As in previous studies, error
monitoring activity was captured via a classic Go/NoGo task designed to
test one’s ability to inhibit prepotent motor responses—and was defined
as the contrast between commission errors versus correct hits. Our
predictions were that for felony rearrest and non-violent felony rearrest
in women,2 (1) the dACC will exert an incremental predictive effect
above and beyond other established risk factors (e.g., age and psycho-
pathic traits), and (2) a multivariate model that includes the dACC will
predict better than models without the dACC.

2. Methods
2.1. Participants

Participants were 248 incarcerated women ranging in age from 21 to
58 y (M = 35.03, SD = 7.70). Approximately 10 % were left-hand—do-
minant. Based on National Institutes of Health racial classification, 82.7
% of the sample self-identified as white, 7.7 % as black/African Amer-
ican, 6.9 % as American Indian, and 1.6 % as mixed/other. Ethnically,
58.5 % identified as Hispanic, 38.7 % as Not Hispanic, and 2.8 % chose
not to respond.

All 248 participants were determined to have no history of major
traumatic brain injury (as defined by a loss of consciousness for longer
than 24 h),’no lifetime history of a psychotic disorder, and had an
estimated general IQ of greater than 65 (as estimated by the vocabulary
and matrix reasoning subscales of the Wechsler Adult Intelligence Scale;
see Ryan & Ward, 1999) (see Table 1 for additional demographic de-
scriptives). Participants reported having normal hearing, and visual
acuity was normal or corrected to normal with the use of contact lenses
or magnetic resonance imaging (MRI) compatible glasses. Volunteer
research participants were paid an hourly rate commensurate with
standard pay for work assignments at their facility. Participants
completed several psychological and behavioral assessment measures
and an fMRI-based inhibition task using the Mind Research Network’s
Mobile MRI system before release from one of two New Mexico state
correctional facilities. After being released, the participants in the
sample were tracked from 2007 to 2019. Participants provided written
informed consent in protocols approved by the institutional review
board by the Independent Review (E&I) Services for the Mind Research
Network.

2 Violent felony rearrests within this sample were uncommon (n = 29), thus
no analyses were conducted on violent outcomes due to low base rate. See
supplementary materials for exploratory analyses concerning general rearrest
(i.e., arrests of any severity).

3 Six participants had a history of moderate TBI (as defined by a loss of
consciousness longer than 30 min). Primary effects observed in the full sample
(n = 248) were also observed in a sample excluding those with moderate TBI (n
= 242).

Neurolmage: Clinical 36 (2022) 103238

Table 1
Participants demographic, PCL-R scores, and Substance Use Disorder Rates.

Mean SD Min. Max.  Overall sample endorsed

(%)

Age (years) 35.0 7.7 21 58

1Q 94.7 10.3 66 123

PCL-R total scores 18.6 6.1 2.2 34.0

Factor 1 scores 4.4 2.6 0 11.0

Factor 2 scores 12.2 3.8 0 20.0
Handedness (right) 90.0
Alcohol use disorder 72.1
Substance use 95.1

disorder

Note: For alcohol and substance use disorder, input values are 1 = absent, 2 =
history of abuse, and 3 = history of dependence. Percentage of sample endorsed
represent those that have a history of abuse for alcohol, or at minimum one
substance category (out of: sedatives, cannabis, stimulants, opioids, cocaine, and
hallucinogens).

2.2. Covariate risk assessment

Data from additional risk factors (Hare’s Psychopathy Checklist —
Revised [PCL-R] and the participant’s age at release) were obtained to
examine the incremental predictive validity provided by the established
ROI—the exact dACC error monitoring coordinates used in Aharoni
et al. (2013; 2014)—thus providing an out-of-sample test of the model
used in Aharoni et al. (2014) (Hare, 2003). These additional variables
have been previously found to predict antisocial behavior in incarcer-
ated populations (Aharoni et al., 2014; Olver & Wong, 2015). Scores
from the Hare PCL-R—a semistructured interview and archival analysis
which assesses psychopathy in incarcerated, forensic, psychiatric, and
normal populations—were included as primary risk factors. These as-
sessments were conducted by trained raters. 2.4 % of the sample (n =
248; M = 18.60; SD = 6.11) met the pre-established criteria for a
diagnosis of psychopathy (score of >30). The PCL-R further splits into
two separate clusters of traits: factor 1 includes interpersonal/affective
traits (such as glibness and lack of empathy) and factor 2 includes
antisocial behavioral traits (such as impulsivity and early behavioral
problems). As in Aharoni et al. (2014), these factors and their interaction
were entered individually into the overall predictive models, not
including total PCL-R score (due to high collinearity).*

Additional exploratory correlational analyses were also conducted
with the following variables (see Table S4): the participant’s estimated
IQ, their alcohol/drug dependency (as assessed from the Structured
Clinical Interview for the DSM [SCID] via determinations of lifetime
abuse or dependence [scoring: 1 = no lifetime abuse/dependence, 2 =
lifetime abuse, and 3 = lifetime dependence]) (5th ed.; DSM-5; Amer-
ican Psychiatric Association, 2013),” their State-Trait Anxiety Inventory
total summed score (STAIL: Spielberger, 1983), the Barratt Impulsiveness
Scale with three subscales measuring attentional impulsivity, motor
impulsivity, and non-planning impulsivity (BIS-11; Patton et al., 1995),
their self-reported education level, incarceration history (as coded from
their PCL-R interview and institutional file review), and the presence of

4 Consistent with Aharoni et al., 201 3, we found no associations between Go/
NoGo behavioral data and any types of rearrest in univariate nor multivariate
models. Also consistent with Aharoni et al., 2014, we found models including
behavioral task data increased Somer’s D statistics, indicating the occurrence of
overfitting being driven by the behavioral data specifically. Due to these rea-
sons, and a priori model specification from Aharoni et al., 2014, we focus
instead on the reduced predictive model.

5 Scoring for drug abuse/dependence is computed via an averaging across
abuse/dependence in the following individual drug classes: sedatives, cannabis,
stimulants, opioids, cocaine, and hallucinogens.
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traits associated with borderline personality disorder (BPD; as quanti-
fied by each participant’s sum of scores [0-2] across nine BPD trait
questions in the SCID-ID).°

2.3. Follow-Up procedure

Rearrest data, including arrest date and offense type, were obtained
from the New Mexico’s Administrative Office of the Courts, which col-
lects all state and county criminal records. Approximately 39.1 % of the
sample was rearrested at least once for a felony between their release
date (ranging from 2007 to 2017) and their follow-up date (August
2019). In line with previous predictive modeling, minor parole and
probation violations were excluded from analysis, and the remaining
offenses were further classified as violent or non-violent when war-
ranted. Within our follow-up window (average time of 6 y and 9 mo), a
larger portion of the sample was first rearrested for non-violent offenses
(25.4 %) than for violent offenses (4.8 %).

2.4. Behavioral task

Behavioral impulsivity was measured during fMRI using the Go/
NoGo task. The task, modeled after the work of Kiehl et al. (2000),
presents participants with a frequently occurring target (the letter “X”;
occurrence probability, 0.84) interleaved with a less-frequent distracter
(the letter “K”; occurrence probability, 0.16) on a computer screen.
Participants were instructed to depress a button with their right index
finger as quickly and accurately as possible whenever they saw the
target (the “go” stimulus) and not when they saw the distractor (the “no-
go” stimulus). Because targets are more frequent than distracters in this
task, a prepotent response toward the targets is elicited. When a dis-
tractor is presented, participants are required to inhibit their button
response, which increases the rate of commission errors. Successful
performance on this task requires the ability to monitor error-related
conflicts and to selectively inhibit the prepotent go response on cue.
Before their scan session, participants completed a brief practice session
of ~10 trials.

2.5. Experimental design

The experimental design used on all participants was adopted from
Kiehl et al. (2000) and is identical to that of Aharoni et al.’s (2013). Two
scanning runs, each composed of 246 visual stimuli, were presented to
participants using Presentation, a computer-controlled visual and
auditory software (Neurobehavioral Systems). Stimuli were displayed
on a rear-projection screen mounted at the rear entrance to the magnet
bore. Each stimulus appeared for 250 ms in white text within a
continuously displayed rectangular fixation box.

The stimulus onset asynchrony (SOA) between go stimuli varied
pseudorandomly among 1,000, 2,000, and 3,000 ms, subject to the
constraint that three go stimuli were presented within each consecutive
6-s period. The no-go stimuli were interspersed among the go stimuli in a
pseudorandom manner subject to three constraints: the minimum SOA
between a go and a no-go stimulus was 1,000 ms; the SOA between
successive no-go stimuli was in the range of 10 & 15 s; and no-go stimuli
had an equal likelihood of occurring at 0, 500, or 1,000 ms after the
beginning of a 1.5-s acquisition period. By jittering stimulus presenta-
tion relative to the acquisition time, the hemodynamic response to the
stimuli of interest was sampled effectively at 500-ms intervals.

Behavioral responses were recorded by using an MRI-compatible
fiberoptic response device—created by Lightwave Medical. Correct
hits were defined as go (i.e., X-stimuli) events that were followed by a

© Note: Twenty participants were missing BPD data. Thus, supplementary
correlational and regression analyses utilizing this variable have a sample size
of n = 228.
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button press within 1,000 ms of stimulus onset. Correct rejections were
defined by an absence of a motor response within 1,000 ms of the no-go
stimulus. Commission errors were defined as the presence of a response
within 1,000 ms of the onset of a no-go stimulus.

2.6. Image acquisition

MRI acquisition parameters were identical to those discussed in
Aharoni et al. (2013) and will only briefly be described here. Images
were collected with a mobile Siemens 1.5-T Avanto system with
advanced SQ gradients (max slew rate, 200 T/m/s; 346 T/m/s vector
summation, rise time 200 ps) equipped with a 12-element head coil. The
echoplanar image gradient-echo pulse sequence (repetition/echo times,
2,000/39 ms; flip angle, 75°; field of view, 24 x 24 cm; 64 x 64 matrix;
3.4 x 3.4-mm in-plane resolution; 5-mm slice thickness; 30 slices)
effectively covers the entire brain (150 mm) in 2,000 ms. Head motion
was limited by using padding and restraint.

2.7. Preprocessing

Functional images were reconstructed offline at 16-bit resolution and
manually reoriented to approximately the anterior commissure/poste-
rior commissure plane. The functional images were despiked using
ArtRepair and motion corrected using INRIAlign—a motion correction
procedure unbiased by local signal change (Freire, Roche, & Mangin,
2002). Functional images were spatially normalized to the Montreal
Neurological Institute template via EPInorm (an affine transform fol-
lowed by a nonlinear registration of the EPI image to an EPI template in
standard space) and spatially smoothed (12 mm full-width half
maximum) in SPM12 (Calhoun et al., 2017). High frequency noise was
removed by using a low-pass filter (cutoff, 128 s).

2.8. Individual and group level analysis

As in Aharoni et al. (2013), response types (correct hits and com-
mission errors) were modeled as separate events. Event-related re-
sponses were modeled using a synthetic hemodynamic response
function composed of two gamma functions. The first gamma function
modeled the hemodynamic response using a peak latency of 6 s. A term
proportional to the derivative of this gamma function was included to
allow for small variations in peak latency. The second gamma function
and associated derivative was used to model the small “overshoot” of the
hemodynamic response on recovery. A latency variation amplitude-
correction method was used to provide a more accurate estimate of
the hemodynamic response for each condition that controlled for dif-
ferences between slices in timing and variation across regions in the
latency of the hemodynamic response (Calhoun et al., 2004).

Individual runs were modeled together at first level of analysis, and
functional images were computed for each participant that represented
hemodynamic responses associated with commission errors and correct
hits, relying on a previously established set of coordinates to constrain
the second level analysis within the present sample (Aharoni et al.,
2013; Steele et al., 2014a). General linear models included regressors to
model motion (six parameters).

2.9. Analytic strategy

The primary hypothesis—that the dACC will exert an incremental
predictive effect above and beyond other established risk factors—was
evaluated by using Cox proportional-hazards regression (Cox, 1972). A
Cox regression is a semiparametric test that investigates the effect of
variables of interest on the time it takes for an event to happen—in this
case, rearrest—while also estimating time courses of those that have yet
to reach that event (censored cases). The dependent variable is the
proportion of cases surviving the event (the cumulative survival func-
tion). In order to interpret the effect of individual variables on the
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cumulative survival function, hazard ratios (i.e., exp[B]) are computed.
These hazard ratios characterize an individual’s relative odds of reach-
ing the event for every-one unit change in the risk factor (e.g., error
monitoring brain activity), while controlling for other covariates.
Additionally, supplementary analyses providing convergent support for
Cox proportional-hazards regression results include binomial logistic
regressions testing the univariate and multivariate relationship between
the variables of interest and group membership (i.e., not rearrested vs
rearrested, not rearrested for felony vs rearrested for felony, and not
rearrested for non-violent felony vs rearrested for non-violent felony)
across four different time periods (1, 2, 3, and 4 years) (see Table S3).

The secondary hypothesis—that a multivariate model that includes
the dACC will predict better than models without the dACC—was
evaluated by using receiver operating characteristic (ROC) curves which
describe the differences between those who were and were not rear-
rested as a function of the predictors in the model (i.e., discrimination).
While most assessments of ROC curves are time independent, our ana-
lyses of AUC characteristics are evaluated per model at a variety of time
points (6, 12, 24, & 36 mo) by utilizing Heagerty and Zheng’s time-
dependent ROC curve function as found in the risksetROC package in
R, version 3.60 (Heagerty and Zheng, 2005). This analysis yields an AUC
per time point in order to evaluate each model’s ability to discriminate
those who were and were not re-arrested across a series of time scales.

3. Results
3.1. Group level neuroimaging analysis

Hemodynamic differences between commission errors and correct
hits were extracted from an a priori 14 mm radius sphere (Aharoni et al.,
2013; Steele et al., 2014a) centered around the seed coordinate in the
ACC (x = -3,y = 24, z = 33: See Fig. 1a for seed coordinate and Fig. 1b
for group level activation map) in the form of a mean p-values for each
participant via the MarsBaRs plugin for SPM (Brett et al., 2002).” Addi-
tionally, a group level analysis of 32 ROIs was conducted to assess the
reliability of error monitoring activation compared to previous literature
(Steele et al., 2014a: see Table S1 for full replication of hemodynamic
activity).

3.2. Survival analysis

A multivariate Cox proportional-hazards regression was used to
examine the shared and unique influence of the dACC among other
predefined risk factors (release age, PCL-R factor 1, PCL-R factor 2, and
PCL-R factor interaction) on days to non-violent and general felony
rearrest (see Table 2; see Table S2 for general rearrests; see Figure S1 for
Kaplan-Meier curves for all rearrest outcomes). For multivariate ana-
lyses, predefined risk factors were entered into the regression in the first
block, to assess whether the dACC exerted significant influence on the
model after controlling for the other variables of interest.

3.2.1. Is Neurobiological Error Monitoring Information Associated with
Non-Violent Rearrest in Women?

To test our primary hypothesis (that the dACC will exert an incre-
mental effect above and beyond other established risk factors in the
prediction of non-violent and general felony rearrest—see Table S2 for
general rearrests), we tested the Aharoni et al. (2014) mod-
el—henceforth referred to as the error monitoring model—including
previously defined risk factors: 1) the women’s release age, PCL-R factor

7 Participants averaged 8.45 commission errors during the task. Three par-
ticipants were identified as outliers based on their high rate of commission
errors (as assessed by a value higher than 3rd quartile + (1.5 x interquartile
range). Primary effects observed in the full sample (n = 248) were also observed
in a sample excluding those identified as outliers (n = 245).
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1, PCL-R factor 2, their interaction, and the dACC’s mean p-values for
commission error versus correct hit trials in the sample of incarcerated
women, n = 248.

For non-violent felony rearrest, a significant overall effect was ob-
tained for the multivariate model (p < 0.001). As expected, a lower age
at release and higher PCL-R factor 2 scores were each significantly
associated with days to non-violent rearrest (p = 0.001). Also, as pre-
dicted, dACC activity exhibited a significant association with non-
violent felony rearrest above and beyond these other risk factors, mir-
roring previous findings in male samples (Aharoni et al., 2013, 2014;
Steele et al., 2015) (see Figure S2 for visualization of effect). For every-
one unit increase in dACC activity, there was a 0.72 increase in the
probability of rearrest for a non-violent crime (p = 0.018) (see Table 2 &
Table S3).

For general felony rearrest, a significant overall effect (p < 0.001)
was obtained for the multivariate model (see Table 2).° As expected, a
lower age at release and higher PCL-R factor 2 scores were each
significantly associated with days to felony rearrest (p = 0.003 and p =
0.001, respectively) (Eisenbarth, Osterheider, Nedopil, & Stadtland,
2012; Huebner, DeJong, & Cobbina, 2010). dACC activity exhibited a
marginally significant association with felony rearrest above and
beyond these other risk factors (p = 0.088) (see Table S3 for further
convergent support and Figure S2 for visualization of effect).

3.2.2. Does the Inclusion of Neurobiological Error Monitoring Information
Increase the Accuracy of Statistical Models in Predicting Non-Violent
Rearrest in Women?

The receiver operating characteristic (ROC) curve is a direct way to
test a model’s accuracy—indicating the true positive (sensitivity) and
false positive (1 - specificity) ratio of a model. An area under the curve
(AUC) analysis was conducted to discriminate between those women
rearrested and not rearrested as functions of the error monitoring model.

In order to test our secondary hypothesis (that a multivariate model
of non-violent rearrest that includes the dACC will outperform one that
doesn’t), we fitted the multivariate model with and without dACC ROI
data at a six-month time point.’ As predicted, the multivariate model
without dACC activity reports an AUC of 0.683, and an improved AUC of
0.701 when including the dACC factor. The accuracy of the model was
found to be relatively stable over a span of six to thirty-six months (with
values ranging from 0.700 to 0.701).

Overall, we find that predictions of non-violent felony rearrest are
incrementally benefited from the inclusion of dACC activity.

4. Discussion

This study provides an out-of-sample extension of the Aharoni et al.
(2014) error monitoring model using a large sample of women. Our
results demonstrate modest improvement in the prediction of later
rearrest for non-violent offenses in women, using a predefined index of
functional brain activation in the dACC—a region previously implicated
in error monitoring, inhibition, and impulsivity (Bastin et al., 2016;
Kiehl et al., 2000; Orr & Hester, 2012; Spunt et al., 2012; Steele et al.,
2014a). Likewise, our results uphold previous findings in the literature,
underscoring the importance of age at release and antisocial/develop-
mental lifestyle score (PCL-R Factor 2) for predicting subsequent rear-
rest in incarcerated women (Eisenbarth et al., 2012; Huebner et al.,
2010).

Previous attempts to test neurobiologically informed risk models for
rearrest have been limited by the use of relatively small samples (by
actuarial standards) leaving them unable to test the out-of-sample utility

8 Due to our primary interest in the full multivariate model, reported results
focus on multivariate metrics.

9 Due to the marginal effect of dACC activity on general felony rearrest re-
ported in Table 2, we focus AUC analyses on non-violent felony rearrest.
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Fig. 1. a) A priori seed region (red) for hemodynamic response to commission errors vs correct hits in the dACC from a Go/NoGo task with an independent sample of
102 healthy adult nonoffenders; peak voxel x = — 3, y = 24, z = 33 (Steele et al., 2014a). b) Map of hemodynamic activity in sample of incarcerated women (n = 248)
during commission errors vs correct hits from axial view. Peak activation was located at x = 3, y = 26, z = 34, within the dACC (threshold: t > 10). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Effect of individual predictors on non-violent and general felony rearrest.
Unadjusted Hazards Adjusted Hazards

Model/Predictor B (SE) P value exp[B] (CI) B (SE) P value exp[B] (CI)
Non-Violent Felony Rearrest (n = 248, 79 rearrests)
- Age at release —0.057 (0.016) <0.001*** 0.945 (0.915-0.975) —0.052 (0.017) 0.002** 0.949 (0.918-0.981)
- PCL-R factor 1 score 0.025 (0.045) 0.570 0.975 (0.893-1.064) 0.077 (0.217) 0.721 1.081 (0.707-1.652)
- PCL-R factor 2 score 0.126 (0.033) <0.001%** 1.135 (1.064-1.210) 0.244 (0.070) 0.001** 1.251 (1.091-1.434)
- PCL-R factor interaction 0.002 (0.003) 0.517 1.002 (0.997-1.007) —0.016 (0.015) 0.275 0.984 (0.955-1.013)
- dACC 0.310 (0.136) 0.023* 1.364 (1.045-1.781) 0.334 (0.141) 0.018* 1.396 (1.058-1.842)
Felony Rearrest (n = 248, 97 rearrests)
- Age at release —0.050 (0.014) <0.001%** 0.951 (0.925-0.978) —0.044 (0.015) 0.003** 0.957 (0.930-0.986)
- PCL-R factor 1 score —0.017 (0.040) 0.677 0.983 (0.909-1.064) —0.012 (0.118) 0.949 0.988 (0.684-1.427)
- PCL-R factor 2 score 0.126 (0.029) <0.001*** 1.135 (1.071-1.202) 0.197 (0.060) 0.001** 1.218 (1.084-1.369)
- PCL-R factor interaction 0.002 (0.002) 0.324 1.002 (0.998-1.007) —0.009 (0.013) 0.464 0.991 (0.966-1.016)
- dACC 0.216 (0.124) 0.0827 1.241 (0.973-1.582) 0.220 (0.129) 0.0881 1.246 (0.968-1.604)

Results of Cox regression analyses examining the predictive effect of the dACC on non-violent and general felony rearrest. Unadjusted hazard values reflect univariate
analyses, and adjusted hazard values reflect multivariate analyses including all variables of interest. All variables are mean centered, and reported effects are two-
tailed. Table reports unstandardized B and relative risk ratio (exp[B]). { p <.10, *p < 0.05, **p < 0.01, and ***p < 0.001.

of the models more generally (Aharoni et al., 2013, 2014; Delfin et al., subjects, leaving the generalizability of these models in women an open
2019; Steele et al., 2015). These same samples have been comprised of question.
all (Aharoni et al., 2013 & Aharoni et al., 2014: n = 96; Zijlmans et al., The present study addressed these limitations by conducting a large

2021: n = 127) or mostly (Delfin et al., 2019: n = 44, 39 males) male (n = 248) out-of-sample test of the error monitoring model in an
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independent sample of women, for non-violent and general felony
rearrest. To our knowledge, the present study is the first in the literature
to demonstrate the value of impulsivity related neurobiological activity
for the prediction of rearrest in women.

Overall, our results corroborate previous literature demonstrating
that theoretically-relevant measurements of functional brain activity
may improve accuracy of risk models designed to predict antisocial
outcomes (Aharoni et al., 2013; Aharoni et al., 2014; Camchong et al.,
2013; Delfin et al., 2019; Janes et al., 2010; Pardini et al., 2014; Paulus
et al., 2005; Sinha & Li, 2007; Steele et al., 2014b; Steele et al., 2015).
More specifically, our results directly replicate the previously demon-
strated (Aharoni et al., 2013, 2014; Steele et al., 2015) utility of error
monitoring activity in predicting non-violent felony rearrest above and
beyond other variables of interest (i.e., age at release and PCL-R Factor
2). Additionally, as seen in previous literature (Aharoni et al., 2013,
2014; Zijlmans et al., 2021), more modest predictive effects of error
monitoring activity on general felony rearrest were also replicated via
cox hazard and binomial logistic regression analyses (see Table 2 and
Table S3). These effects are noteworthy given the broad definition of our
outcome measure (felony rearrest). On even broader rearrest offenses (i.
e., general rearrest including arrest of any category) error monitoring
activity had no predictive utility (see Table S2 and Table S3), suggesting
a stronger relationship between error monitoring activity and specific
outcomes (i.e., non-violent felony rearrest) compared to more general
outcomes (i.e., general rearrest and general felony rearrest). Our results
also reinforce previous research suggesting the importance of paralimbic
dysfunction as a mediator between cognitive control and antisocial
behavior (Kiehl, 2006), as well as sex differences in the relationship
between these paralimbic substrates and behavioral outcomes (Liu et al.,
2013).

While prior fMRI research has suggested that increased engagement
of error monitoring is associated with decreased rates of non-violent
rearrest in men (Aharoni et al., 2013; Aharoni et al., 2014; Steele
et al., 2015), other analyses in young males have failed to replicate this
effect (Zijlmans et al., 2021). One potential explanation for this null
finding is that juveniles and younger adults exhibit decreased error
monitoring activity and inhibitory control more generally compared to
older adults (Jaeger, 2013). Considering the effects shown in adult men,
our results suggest the inverse for women: lower error monitoring ac-
tivity was associated with non-violent rearrest. Notably, previous
research utilizing the same Go/NoGo task has demonstrated not only sex
differences in limbic activations during error monitoring, with women
largely showing greater activations during failed inhibitions (Garavan
et al., 2006; Liu et al., 2013; Weafer & de Wit, 2014; Weafer, 2020), but
also sex differences in the relationship between those activations and
other impulsivity measures (Liu et al., 2013).

One potential explanation of the positive association between error
monitoring activity and rearrest within this incarcerated female sample
is that the error monitoring contrast of interest—false alarms vs correct
hits during the Go/NoGo task—may also be capturing anxiety, stress
related limbic activity, or even alternative inhibitory strategies (e.g., the
inhibition of a prepotent response versus the suppression of an already-
initiated response; Gartner & Strobel, 2021). Compared to men, women
are more likely to experience anxiety, and in turn, be diagnosed with an
anxiety disorder within their lifetime (McLean et al., 2011). During
neuroimaging, more specifically, women are more likely to experience
anxiety inducing states, such as claustrophobia (Dewey et al., 2007), and
task-induced stress has been demonstrated to engage limbic region-
s—such as the ACC—in women more than in men (Wang et al., 2007).
However, a lack of association between dACC error monitoring activity
and anxiety measurements within our sample (see Table S4) leave this
explanation wanting. Future research is needed to test these questions,
perhaps using different measures of anxiety alongside alternative inhi-
bition tasks that are sensitive to differentiation of strategic approach.

Another potential explanation of the positive relationship between
error monitoring activity and rearrest may be the increased prevalence
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of BPD traits within incarcerated women compared to samples of men
(Black et al., 2007; Sansone & Sansone, 2011). While research suggests
that error monitoring is preserved in individuals with BPD, aberrations
in the neurophysiological activity giving rise to error monitoring pro-
cesses have also been observed within BPD samples (Vega et al., 2015;
Yang et al., 2021). Individuals with BPD show increased N2 amplitudes
during the conflict monitoring state of error commission—an event-
related response originating from the dACC and often suggested to
relate to the Go/NoGo contrast used in the present work (Steele et al.,
2015; Yang et al., 2021). Accordingly, there was a significant positive
relationship between error monitoring activity and BPD traits within
this sample (see Table S4). But supplemental analyses (see Table S5)
suggest that BPD’s covariance with error monitoring activity alone
cannot account for the positive relationship to rearrest within our
sample yet may still be contributing to the overall predictive utility of
our error monitoring measure.

Sex differences in limbic regions are not limited to task-based ac-
tivity nor their relation to task performance—additional research by
Anderson and colleagues (2019) identifies the ACC as a sexually
dimorphic region of the brain, with women having significantly larger
ACC volumes than men. This line of research emphasizes that impulsive
and antisocial behaviors in women need to be investigated indepen-
dently from theories that have been established in male-dominant lit-
eratures (Anderson et al., 2019). Thus, more work is needed to
understand sex-specific differences in the anatomical and activity pro-
files of limbic regions, as well as their relationships to impulsivity, BPD,
and antisocial behavior (Greiner et al., 2015; Olson et al., 2016; Poels,
2007).

4.1. Limitations and future directions

Though our results provide support for the predictive utility of limbic
activity in rearrest behavior, we caution against overinterpretation.
Here, different measures of impulse control (PCL-R Factor 2 and dACC
activity during errors) incrementally predicted re-arrest outcomes.
However, criminal behavior is the result of a complex interaction of
factors, including innumerable environmental and psychological vari-
ables (Aharoni et al., 2019; Allen & Aharoni, 2020). The observed in-
cremental predictive utility of the dACC predicting rearrest highlights
that multiple mechanisms subserve antisocial outcomes and capturing
their complexity may benefit from a diversity of measurement
modalities.

Caution is also warranted from a legal and ethical standpoint. Using
evidence based-risk assessment techniques for “lower stake” decisions,
such as treatment and early grant parole, has shown relative success in
increasing treatment-program success and reducing antisocial behavior
(Aos et al., 2006; Andrews, 2006; MacKenzie, 2006; Taxman, 2002).
However, using risk assessment techniques against a criminal offender’s
interests is controversial (Starr, 2014). Whether the use of neurobio-
logical information presents any unique concerns above and beyond
traditional behavioral risk factors is the subject of a small but important
body of literature (see Aharoni et al., 2022; Focquaert, 2019; Jurjako
et al., 2019; Nadelhoffer et al., 2012). Ultimately, even if brain-based
risk assessments demonstrably improve upon traditional risk assess-
ment techniques, this does not necessarily mean that they ought to be
utilized in legal decision making, nor would their implementation be
straightforward process due to costs, complexity, and intrinsic vari-
ability in measure. Instead, the potential success of brain-based models
for risk assessment should highlight the importance of continued dis-
cussion about the ethical and legal standards required for their various
uses and the translational treatment value (Aharoni et al., 2022).

Outside of the legal domain, research regarding neurobiologically
informed risk assessment serves a critical basic research function by
providing a way of testing causal relationships between brain and
behavior. These causal mechanisms could prove useful in identifying
potential behavioral interventions that may be beneficial in curbing
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antisocial behavior. Indeed, previous research has suggested that tech-
nologies such as transcranial direct current stimulation (tDCS) can be
utilized to reduce self-reported aggression and even aggressive criminal
intentions (Molero-Chamizo et al., 2019; Choy et al., 2018; Sergiou
et al., 2022). While these tDCS studies report encouraging results,
clinical interventions such as these must meet high standards of reli-
ability and validity, and often warrant caution from ethical and legal
standpoints as well (Large and Nielssen, 2017).

The present study provides an important out-of-sample extension of
previous research on the neuroprediction of rearrest in a large sample of
incarcerated women (Aharoni et al., 2013, 2014; Steele et al., 2015).
Still, much work remains to be done to determine whether the predictive
utility of limbic activity for antisocial behavior will ever reach high
enough standards to warrant the practical use of neurobiologically
informed risk assessment technology. Though highly targeted null-
hypothesis testing methodologies—such as those employed in this
manuscript—are useful in testing specific theories regarding cognitive
function, such approaches are necessarily limited in scope. Follow up
research should consider the integration of alternative impulsivity/in-
hibition tasks, additional regions of interest (e.g., the ventromedial
prefrontal cortex, a region commonly implicated in aggression; Sergiou
et al., 2022), and technological improvements such as increased scanner
strength. Furthermore, data-driven approaches, such as machine
learning techniques (e.g., independent component analysis), should be
considered in order to uncover other potential neurobiologically based
metrics—alongside social and psychological measures—that may be
helpful in the prediction of antisocial behavior, including, but not
limited to machine learning guided sex-specific and crime-specific
models in large cross-validated analyses of various impulsivity/inhibi-
tion tasks and non-task based measures (Poldrack, Huckins, & Varo-
quaux, 2020). Until then, hypothesis-based neuropredictive modeling
remains a helpful tool for testing potential causal mechanisms thought
to mediate antisocial tendencies (Allen & Aharoni, 2020).
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