
Factorized Deep Generative Models for End-to-End Trajectory
Generation with Spatiotemporal Validity Constraints
Liming Zhang

lzhang22@gmu.edu
George Mason University
Fairfax, Virginia, USA

Liang Zhao
liang.zhao@emory.edu

Emory University
Atlanta, Georgia, USA

Dieter Pfoser
dpfoser@gmu.edu

George Mason University
Fairfax, Virginia, USA

ABSTRACT
A growing number of research areas such as location-based social
networks, intelligent transportation systems, and urban computing
utilize large amounts of trajectory data for benchmarking data
management approaches and analysis methods. Given the general
lackness of available large datasets, realistic synthetic trajectory
datasets become important. This work proposes deep generative
models for trajectory data that can learn disentangled models for
sophisticated latent patterns. Existing methods rely on predefined
heuristics and cannot learn the unknown underlying generative
mechanisms. The proposed novel deep generative VAE-like models
factorize global and local semantics (habits vs. random routing
change). We further develop new inference strategies based on
variational inference and constrained optimization to encapsulate
spatiotemporal validity. New deep neural network architectures
are developed to implement generative and inference models with
dynamic latent priors. The proposed methods represent significant
quantitative and qualitative improvements over existing approaches
as demonstrated by extensive experiments. The software is made
publicly available 1.

CCS CONCEPTS
• Information systems → Data mining; Location based ser-
vices.

KEYWORDS
end-to-end trajectory generation, deep generative models,
spatiotemporal-validity constraint, variational autoencoders

ACM Reference Format:
Liming Zhang, Liang Zhao, and Dieter Pfoser. 2022. Factorized Deep Gener-
ative Models for End-to-End Trajectory Generation with Spatiotemporal
Validity Constraints. In The 30th International Conference on Advances in
Geographic Information Systems (SIGSPATIAL ’22), November 1–4, 2022, Seat-
tle, WA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3557915.3560994

1https://github.com/tongjiyiming/TrajGen

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9529-8/22/11.
https://doi.org/10.1145/3557915.3560994

1 INTRODUCTION
Advances in positioning technology have led to an unprecedented
increase in available moving objects data such as GPS traces from
vehicles or tourist check-in data from Location-based services. In
each case, a series of temporally ordered and interpolated object
locations can be represented as a spatiotemporal trajectory. Mining
such trajectory data is important to a broad range of applications
including location-based social networks, intelligent transporta-
tion systems, and urban computing [35]. Trajectory data mining
involves three important tasks: 1) trajectory prediction, i.e., pre-
dicting the future locations based on past locations [18, 32], 2)
trajectory representation learning, i.e., encoding trajectory data in
(low-dimensional) vector space [6, 7, 20], and 3) trajectory genera-
tion [2, 3, 17, 25, 27, 28, 35]. Such approaches model the underlying
distribution and mechanism of the trajectory generative process,
which is crucial for tasks such as mobility simulation [3, 25], indi-
vidual mobility privacy preservation [1], and data augmentation
for prediction tasks [8, 41]. For example, traffic simulations for
autonomous vehicles could use a generative model to generate
high-fidelity temporal traffic conditions [3]. It could also be used to
address privacy concerns when used to release trajectory datasets
to the public [1]. The original data is replaced with generated data
that follows the statistics and patterns of the original data. For data
augmentation, Web-scale companies like Uber could use synthetic
trajectories to obtain more data to train a large model linking users
and trajectories [8]. Many relevant application contexts consider
that trajectories have been quite difficult to generate due to so-
phisticated patterns and unknown mechanisms that are hard for
traditional hand-crafted generation rules to handle. Today, thanks
to the availability of large number of trajectory datasets, expressive
deep generative models provide a promising way to learn the gen-
eration rules in a more end-to-end fashion. Trajectory generation
approaches [3, 25, 27, 28, 35] have focused on conventional rule-
based trajectory generation that is limited to prescribed rules and
predefined distributions [21, 24, 25]. Such methods are tailored to-
wards predefined principles and properties of movement. However,
in most of the cases, the mechanism underlying movement and thus
trajectory generation are too complex to be fully known a priori,
or to be explicitly modeled. To address these issues, an emerging
research topic is end-to-end trajectory generation, which extends
deep generative models to trajectory data, and towards expressive
generative models that are able to learn sophisticated distributions
from collected trajectory data in a data-driven end-to-end fashion.

Although end-to-end strategies, such as deep learning methods
have been widely used for trajectory representation learning and
prediction, end-to-endmethods have not beenwell exploredwhen it
comes to trajectory generation [35]. Few works [2, 4, 14, 23, 31] are

https://doi.org/10.1145/3557915.3560994
https://doi.org/10.1145/3557915.3560994
https://github.com/tongjiyiming/TrajGen
https://doi.org/10.1145/3557915.3560994

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Zhang, et al.

Figure 1: Trajectory examples (a) for different days, multiple route
choices (local semantics, e.g., a traffic accident blocking a road) exist
for the same origin-destination pairs (global semantics, e.g., user ac-
tivities); (b) evenly distributed probability density of unconstrained
generative models (red crosses are trajectory points, gray zone is
probability density envelop of a generative model); (c) probability
density envelope (grey zone) for a specific road constraint.

based on slightly tweaked generative models from other domains
without holistically considering the major challenges for trajectory
data, including Challenge 1: Difficulty in factorizing global
movement semantics from local movement semantics. The
global semantics refer to the general purpose of a trajectory, such as
“Work commute”, “Strolling around”, or “Airport pickup”, as shown
in each of the three rows of Fig. 1 (a). Once the global semantics
are determined, local semantics specify the detailed movement to
achieve the overall purpose, such as which specific road and route
to choose for “Work commute” or “airport pickup” (cf. Fig. 1 (a)).
Factorizing global against local semantics is important and neces-
sary for characterizing a trajectory in a holistic way, something
existing works fall short in disentangling or modeling. Challenge
2: Lacking an expressive prior to handle the interdependent
noise of different parts of a trajectory. Trajectories have strong
interdependencies between location samples and hence priors that
can characterize such interdependencies are imperative for genera-
tive models. Challenge 3: Difficulty ensuring spatiotemporal
validity of generated trajectories. A generated trajectory is rea-
sonable only if it satisfies necessary geometrical, physical, and
social principles. Deep models are good at mimicking patterns from
inputs; however, they cannot strictly avoid irrational cases that
violate those principles since they assume a continuous distribu-
tion. For example in Fig. 1 (b), the learned smooth distributions
of four positions covered the area outside of roads, although the
probabilities of sampling a point away from a road are very low.
Expected distributions should be limited to the geometry of the
road, as shown in Fig. 1 (c) such that the probability of a location
sample outside the road geometry is zero. All trajectory points (for
cars) should be constrained by road geometries and the movement
speed should be within a reasonable range. Therefore, although dif-
ficult, it is important to decrease the probabilistic density of invalid
patterns.

To address the above issues, we propose new factorized deep
generative models for trajectory generation with spatiotemporal
validity constraints, namely our “End-to-End Trajectory Genera-
tion with spatiotemporal validity constraints” (EETG) framework.
Through factorized latent sequential deep generative models, we
can disentangle global from local semantics, while learning the

representation of trajectories in an end-to-end manner. Newly-
generalized dependent priors for latent sequential variables are
proposed, which is in contrast to conventional independent priors
in sequential models. With a novel constrained optimization solu-
tion, this reduces the probability of generating irrational and invalid
vehicle trajectories. Extensive experiments including quantitative
ablation studies and case studies will show the quantitative and
qualitative effectiveness of the factorization latent structure, newly-
generalized dependent priors, and the constrained optimization
approach.

The outline of the remainder of this paper is as follows. Section 2
discusses related work. Section 3.1 gives the basic formulation of the
problem. Section 3 presents our generative methods for trajectory
data. The experimental evaluation of Section 4 shows the advantage
of our EETG approach over existing methods. Finally, Section 5
concludes and presents directions for future work.

2 RELATEDWORK
2.1 Rule-based trajectory generation/synthesis
This research domain has a long history (cf. [35]) and representative
methods include GSTD [27, 34] using predefined speed, agility, di-
rection, and clustered behavior, Oporto [30] relying on agent-based
movement estimation, plausible synthesis [1] with mined semantic
location similarity, and Hermoupolis [25] relying on urban points of
interests. Recent approaches to mobility simulations include SUMO
[21] and Ditras [24]. All of these approaches are designed with a
specific purpose in mind such as spatial-temporal indexing, and
inherit more or less the rule-based simulation paradigms observed
in the physical world. Such rule-based simulations can become
quite involved like in the case of Hermoupolis [25]. All these mod-
els are not end-to-end models, i.e., trajectory data-driven, which
is what our approach strives for. The typical workflow involves
generating user origin-destination pairs, or the so-called “scenarios”
in SUMO in transportation planning [21]. A second step synthe-
sizes route samples on a road network. Such approaches are hard
to emulate since they use specific city/infrastructure features and
require special domain knowledge.

We would like to emphasize that even though some of these
efforts also take advantage of machine learning models like Hidden
Markov Model [1, 24], LSTM [32], or recent spatiotemporal point
process [37], deep models in each case are just a subpart of a whole
pipeline. Such recently-developed models fall into the paradigm of
rule-based models by pipelining different tasks, which is different
from end-to-end trajectory generation discussed in this paper.

2.2 End-to-end trajectory generation/synthesis
The current emerging trend for trajectory generation is to use deep
generative models in a data-driven end-to-end fashion. Deep gen-
erative models for trajectory generation are not widely explored
until now as indicated by a recent survey paper in trajectory data
mining [35]. As a new research domain, existing work in end-to-
end trajectory generation used plain or slightly-tweaked generative
models from universally adapted models. One type of work con-
verts trajectories to images first and applies image-based GANs
for generation tasks [23, 31]. Such an approach loses information
including time, speed, and direction. Other efforts [2, 14] utilize a
variational autoencoder [16] to generate a trajectory via a single

Factorized Deep Generative Models for End-to-End Trajectory Generation with Spatiotemporal Validity Constraints SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

sequence-level variable based on a Gaussian distribution, which
cannot jointly encode spatiotemporal-variant and -invariant infor-
mation (traffic jams vs. work commute). Other generative models
[20, 31] are used for anomaly detection with a slightly tweaked
sequence-level variable that is more expressive, such as Mixture
of Gaussian [20] or Infinite Gaussian Mixture [31]. This kind of
randomness mixes global and local patterns into simplified black-
box models without sufficient semantic disentanglement. Lastly,
some approaches [20, 23] are strictly not end-to-end approaches
because they map real-valued coordinates to grid cells that cannot
be recovered to real-valued coordinates. Overall, deep generative
models that can comprehensively take care of static and dynamic
patterns in trajectories while ensuring spatiotemporal validity in
continuous space are so far missing.

2.3 Spatiotemporal constraints
Studies of trajectories consider spatiotemporal validity constraints,
such as vehicular motion [3], turn restrictions [33], and speed and
heading rate constraints [29]. Many of these approaches adopt first-
principled physics rules of moving objects, and utilize agent-based
models to perform a simulation that tries to mimic the physical
world. Deep learning models capture only statistical patterns, so
such constraints are not trivial to be integrated in deep generative
models. This presents amajor challenge to the generation of realistic
trajectories using neural networks.

2.4 Disentangled and factorized models
Disentangled deep generative models are a promising approach for
many domains. The notion of disentanglement and factorization is
to separate out the underlying disentangled factors responsible for
variations of the data. The generative representations learned in
this way are relatively resilient to existing complex variants [12].
They can be used to enhance interpretability, generalizability, and
explainability. Additional inductive biases could be considered by
using particular data properties, such as factorizing graph data into
node and edge patterns [10, 11, 36], dynamic graph features [39],
and factorizing video data into object and motion patterns [19]. Al-
though suchmodels show promising outputs for graphs, images and
video data, they lack customized designs for end-to-end trajectory
generation.

3 END-TO-END TRAJECTORY GENERATION
This section introduces our “End-to-End Trajectory Generation
with spatiotemporal validity constraints” (EETG) framework, which
addresses the aforementioned three challenges through each sec-
tion of details: (1) the general problem formulation for end-to-end
trajectory generation in Section 3.1, (2) the overall design of EETG
through a novel Bayesian generative process of trajectories with
validity constraints as introduced (Section 3.2), (3) a VAE-based
formula for latent variables of the generative process and detailed
inferences address Challenge 1 by learning global and local se-
mantics in a factorized manner (Section 3.2), (4) a deep encoder
and decoder architecture (Section 3.4) provides comprehensive and
special neural network layers to handle stochastic latent state mod-
eling and solves Challenge 2 involving lacking dynamic expressive
priors, and (5) spatiotemporal validity constraints are transformed
into a learnable reformulation that could use a gradient descent

technique together with original trajectory generation objectives
(cf. Section 3.5) to address Challenge 3.

3.1 Problem formulation
What follows is a description of the essential concepts and a defini-
tion of the problem addressed in this work.
Definition 3.1 (Trajectory). A trajectory 𝑠1:𝑇 is defined as a length
𝑇 sequence of spatiotemporal points {𝑠1, 𝑠2, · · · , 𝑠𝑇 } at time steps
1, 2, · · · ,𝑇 , where 𝑠𝑡 = (𝑥𝑡 , 𝑦𝑡) is a point at time 𝑡 with a continuous
coordinate 𝑥𝑡 , 𝑦𝑡 in 2D space, and the time interval in between GPS
samples is 𝜖 seconds with a sampling rate 1

𝜖 . A trajectory dataset is
a set of trajectories S with 𝑠1:𝑇 ∈ S.
Definition 3.2 (End-to-End Trajectory Generation). The prob-
lem of end-to-end trajectory generation is to generate a synthetic
trajectory 𝑠1:𝑇 typically using deep learning models based on the
underlying distribution 𝑠1:𝑇 ∼ 𝑝 (S) from the real trajectories S,
where 𝑝 represents a deep model.

3.2 Overall design of the generative process
Existing works in the trajectory domain consider generative pro-
cesses to include either a single global variable [2, 14, 20, 31] (shown
in Fig. 2 (a)), while other domains, like video and speech, with se-
quential data consider additional latent variables for time stamps
[5, 13], which we base our novel generative process on (shown in
Fig. 2 (b)). Therefore, to address the unique challenges mentioned
above, the proposed generative method (shown in Fig. 2 (c)) focuses
on a novel generative process that factorizes the semantics of a
trajectory into three aspects: (1) global semantics 𝑓 , (2) local se-
mantics 𝑧𝑡 related to a specific location and time. Global semantics
cover the reasons for a trip, e.g., commuting, a stroll downtown,
airport pickup, and local semantics capture spatiotemporal autore-
gressive patterns and guide how the next location sample and point
in a trajectory is dependent on the previous one, and (3) dynamic
priors Θ𝑡 introduce a more reasonable inductive bias and expres-
siveness by considering the dependencies of close-by trajectory
points and removing the i.i.d. assumption between {𝑧1, · · · , 𝑧𝑇 }.
Before introducing the details of model inference (Section 3.3) and
architecture for each component (Section 3.4), we summarize the
complete generative process, shown in Fig. 2 (c) as follows:
• Draw a sequence of priors {Θ1, · · · ,Θ𝑇 } for time-step random
noise Θ0, based on conditional probability: Θ𝑡 ∼ 𝑝 (Θ𝑡 |Θ𝑡−1),
where 𝑝 (Θ0) is a predefined distribution such as a unit Gaussian.

• For each trajectory, draw a variable 𝑓 as the general semantic
from 𝑝𝜃 (𝑓) such as a unit Gaussian;

• For each trajectory, draw the time-step random variable 𝑧1 for
the first time point 𝑡 = 1 from Θ1.
– For each time point 𝑡 ≥ 1, draw the underlying time-step ran-
domvariable 𝑧𝑡 with the conditional probability 𝑧𝑡 ∼ 𝑝 (𝑧𝑡 |𝑧𝑡−1,Θ𝑡).

– For each 𝑡 , draw the observed variable 𝑠𝑡 ∼ 𝑝 (𝑠𝑡 |𝑧𝑡 , 𝑓), ∀𝑠𝑡 ∉
C, constrained by the violation function in C.

We want to point out that given the case of Θ0 being generated
from 𝑓 instead of a unit Gaussian and chain-randomness removed,
our model reverts to a baseline SVAE model (cf. [14]) and 𝑧𝑡 ,Θ𝑡

would become internal parameters and states that have are insignif-
icant. Section 4 provides the respective ablation studies to illustrate
the use of dynamic factors 𝑧1:𝑇 with its priors Θ0:𝑇 (more details of
model evolution are in Supplement A.1).

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Zhang, et al.

Figure 2: Plate notations of the evolution of existing and proposed
deep generative models : (a) Sequential variational model [14] with
one latent variable 𝑓 for the entire sequence. This model is widely
adopted by existing works [14, 20, 23, 31]; (b) State space model [5]
capturing local semantics in sequential random variables 𝑧1:𝑇 . This
model has not been used by trajectory generation, but by other se-
quential data domains; (c) (Proposed) EETG model extending exist-
ing works and additionally uses dynamic priors Θ0:𝑇 for better dy-
namic induction of 𝑧𝑡 .

3.3 VAE-like model inference
Since the proposed generative model is intractable to infer, we
propose to solve it based on variational inference used to train varia-
tional autoencoders.We initially establish a posterior𝑞𝜙 (𝑧1:𝑇 , 𝑓 |𝑠1:𝑇)
to approximate the original distribution 𝑝 (𝑧1:𝑇 , 𝑓 |𝑠1:𝑇). Two possi-
ble choices of 𝑞𝜙 are

𝑞𝜙 (𝑓 , 𝑧1:𝑇 |𝑠1:𝑇) =
{
𝑞𝜙 (𝑓 |𝑠1:𝑇)𝑞𝜙 (𝑧1:𝑇 |𝑠1:𝑇) (factorized)
𝑞𝜙 (𝑓 |𝑠1:𝑇)𝑞𝜙 (𝑧1:𝑇 |𝑓 , 𝑠1:𝑇) (full)

𝑧1:𝑇 ∼ Θ0:𝑇 (1)

where the level of variances of 𝑧1:𝑇 could change depending on 𝑓 in
the full model. For example, if most roads between home and work
are highways, then there is almost no variance when it comes to
route choice, while the level of noise of 𝑧1:𝑇 in the factorized model
does not depend on 𝑓 . Such a model could reflect the different road
networks in cities. Following 𝛽-VAE [12], the objective is developed
as follows:

min
𝜓,𝜙

L(𝑝𝜓 , 𝑞𝜙) = −E𝑞𝜙 [log 𝑝𝜓 (𝑠1:𝑇 |𝑧1:𝑇 , 𝑓 ,Θ0:𝑇)]

+𝛽 𝐾𝐿(𝑞𝜙 (𝑧1:𝑇 , 𝑓 ,Θ0:𝑇 |𝑠1:𝑇) | |𝑝𝜓 (𝑧1:𝑇 , 𝑓 ,Θ0:𝑇)) (2)

where 𝛽 is a hyper-parameter to control disentanglement in 𝛽-
VAE, 𝐾𝐿 is short for Kullback–Leibler divergence [12],𝜓 and 𝜙 are
sets of neural network parameters. 𝑧1:𝑇 , 𝑓 ,Θ0:𝑇 are multi-variant
Gaussians with their own distribution parameters of means and
variances, (𝜇𝑧𝑡 , 𝜎𝑧𝑡), (𝜇𝑓 , 𝜎𝑓), (𝜇Θ𝑡

, 𝜎Θ𝑡
), etc. The first term in Eq. 2

is typically used for minimizing the reconstruction loss as follows:

−𝐸𝑞𝜙 (𝑧1:𝑇 ,𝑓 |𝑠1:𝑇) [𝑙𝑜𝑔(𝑝𝜃 (𝑠1:𝑇 |𝑧1:𝑇 , 𝑓))] =
∑𝑇

𝑡=1
| |𝑠𝑡 − 𝑠𝑡 | |2 (3)

where | | · | |2 calculates the 𝐿2 norm. We can use Monte Carlo
sampling to obtain 𝑠𝑡 . The other term in the second line of Eq. 2
helps regularize the learned posterior close to the prior distributions.
More specifically, the term can be expanded as:

𝐾𝐿(𝑞𝜙 (𝑧1:𝑇 , 𝑓 ,Θ0:𝑇 |𝑠1:𝑇) | |𝑝𝜓 (𝑧1:𝑇 , 𝑓 ,Θ0:𝑇)) (4)
=𝐾𝐿(𝑞𝜙 (𝑓 |𝑠1:𝑇)𝑞𝜙 (𝑧1:𝑇 |𝑓 , 𝑠1:𝑇) | |𝑝𝜓 (Θ0:𝑇)𝑝𝜓 (𝑧1:𝑇 , 𝑓 ,Θ0:𝑇))
=𝐾𝐿((𝑞𝜙 (𝑓 |𝑠1:𝑇) | |N (000, 𝐼𝐼𝐼)))

+𝐾𝐿((𝑞𝜙 (𝑧1:𝑇 |𝑓 , 𝑠1:𝑇) | |
𝑇∏
𝑡=1

N(𝜇Θ𝑡
(Θ<𝑡 ,𝜓), 𝜎Θ𝑡

(Θ<𝑡 ,𝜓))N (𝜇Θ0 , 𝜎Θ0))

= − 1
2𝑁

(1 + 𝑙𝑜𝑔(𝜎𝑓) − 𝜇2𝑓 − 𝜎𝑓)

− 1
2𝑁

∑𝑇

𝑡=1
(1 − 𝑙𝑜𝑔(𝜎Θ𝑡

) + 𝑙𝑜𝑔(𝜎𝑧𝑡) − 𝜎𝑧𝑡 +
(𝜇𝑧𝑡 − 𝜇Θ𝑡

)2

𝑙𝑜𝑔(𝜎Θ𝑡
))

where N(𝜇Θ0 , 𝜎Θ0) is from the prior 𝑝𝜓 (Θ0) and follows an unit
Gaussian distribution. The prior sequence generator 𝑞𝜙 (Θ0:𝑇) is
an independent network without inputs from a real trajectory 𝑠1:𝑇 ,
𝜇Θ𝑡

is a function that outputs the mean value of Θ𝑡 , and 𝜎Θ𝑡
is a

function that outputs the variance value of Θ𝑡 . In the last line, to
simplify the notation, 𝜇Θ𝑡

and 𝜎Θ𝑡
are the actual mean and variance,

while 𝜇Θ𝑡
and 𝜎Θ𝑡

in the 𝐾𝐿(| |) represent a function.

3.4 Deep encoders and decoders architecture
We are ready to introduce the detailed architecture for our proposed
EETG framework. For a trajectory 𝑠1:𝑇 , its abstracted operations are
shown in Fig. 3. They follow a VAE-like design with encoders and
decoders. Corresponding to Eq. 4, our encoder 𝑞𝜙 (𝑧1:𝑇 , 𝑓 ,Θ0:𝑇 |𝑠1:𝑇)
is decomposed into three sub-parts that are explained as follows:

1) Global-semantics encoder 𝑞(𝑓 |𝑠1:𝑇). It consumes the sequence
that captures the stochastic whole-sequence representation 𝑓 de-
tailed in the upper left corner of Fig. 3. Specifically, the “Coordinate
encoding” module is denoted as 𝑀𝐿𝑃𝑠 (·), which is a multi-layer
perceptron that converts two-dimensional points (𝑥𝑡 , 𝑦𝑡) into a
high-dimensional representation 𝑒𝑡 . Then, a Bidirectional LSTM [9]
denoted as 𝐵𝑖𝐿𝑆𝑇𝑀𝑓 is used to encode all representations 𝑒𝑡 with
forward and backward information for a time step. The first and
last cells’ output vectors 𝑜1 and 𝑜𝑇 are concatenated and encoded
as the mean 𝜇𝑓 and variance 𝜎𝑓 of variable 𝑓 .

2) Local-semantics encoder with factorized modeling alternative
𝑞(𝑧1:𝑇 |𝑠1:𝑇) and full modeling alternative 𝑞(𝑧1:𝑇 |𝑓 , 𝑠1:𝑇) takes each
coordinate representation to step-wise generate a stochastic poste-
rior representation 𝑧𝑡 (detailed in the lower left corner of Fig. 3). It
utilizes another Bidirectional-LSTM to capture the bi-directional
information flow. It is followed by an RNN [16] to encode each
time-step variable 𝑧𝑡 . In the deep architecture of EETG shown in
Fig. 3, the factorized alternatives can be obtained by removing the
dashed blue lines starting from 𝑓 and the 𝐶𝑜𝑛𝑐𝑎𝑡 () operations.

3) Prior generator takes an initial noiseΘ0 and generates priorΘ𝑡

step by step, utilizing a variational recurrent structure of a VRNN
[5] to handle dynamic sequential randomness (shown in the lower
right corner of Fig. 3). Corresponding to Eq. 4, it models the dynamic
priors as N(𝜇Θ𝑡

(Θ<𝑡 ,𝜓), 𝜎Θ𝑡
(Θ<𝑡 ,𝜓)))), which means that Θ𝑡+1

is generated conditioned on Θ𝑡 instead of a i.i.d. sampling.
4) The Joint-factor decoder 𝑝𝜓 (𝑠1:𝑇 |𝑧1:𝑇 , 𝑓) combines during the

training phase sampled 𝑓 and 𝑧𝑡 , to stochastically generate coor-
dinates 𝑠𝑡 (shown in the right part of Fig. 3), and minimizes our
training loss. It first concatenates 𝑓 and 𝑧𝑡 to a new vector 𝑐𝑡 as the
high-dimensional representation of spatial information. Then, an-
other “coordinate decoding” module is used to transform 𝑐𝑡 to two-
dimensional map coordinates. In the following, we use 𝑀𝐿𝑃∗ (·) to

Factorized Deep Generative Models for End-to-End Trajectory Generation with Spatiotemporal Validity Constraints SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

Figure 3: Deep architecture of EETG. It shows the complete ar-
chitecture for DSVAE in our ablation study. Removing blue dashed
lines and𝐶𝑜𝑛𝑐𝑎𝑡 () operations becomes FDSVAE alternative.

denote different multi-layer perceptrons for “coordinate decoding”.

All operations can be summarized as follows:
Global-semantic encoder:

𝑒𝑡 = 𝑀𝐿𝑃𝑠 (𝑥𝑡 , 𝑦𝑡);𝑜𝑡+1 = 𝐵𝑖𝐿𝑆𝑇𝑀𝑓 (𝑒𝑡 , 𝑜𝑡)
𝑜 = 𝑜1 | |𝑜𝑇 , 𝜇𝑓 = 𝑀𝐿𝑃𝜇𝑓 (𝑜), 𝜎𝑓 = 𝑀𝐿𝑃𝜎𝑓

(𝑜), 𝑓 ∼ N(𝜇𝑓 , 𝜎𝑓)
Local-semantic encoder:{

factorized: 𝑎𝑡+1 = 𝐵𝑖𝐿𝑆𝑇𝑀𝑧 (𝑒𝑡 , 𝑎𝑡)
full: 𝑎𝑡+1 = 𝐵𝑖𝐿𝑆𝑇𝑀𝑧 (𝑒𝑡 | |𝑓 , 𝑎𝑡)

𝑎𝑡+1 = 𝑅𝑁𝑁𝑧 (𝑎𝑡)
𝜇𝑧𝑡 = 𝑀𝐿𝑃𝜇𝑧𝑡 (𝑎𝑡), 𝜎𝑧𝑡 = 𝑀𝐿𝑃𝜎𝑧𝑡 (𝑎𝑡), 𝑧𝑡 ∼ N(𝜇𝑧𝑡 , 𝜎𝑧𝑡)

Prior generator:
Θ0 ∼ N(000,111)

𝑏𝑡+1 = 𝑉𝑅𝑁𝑁Θ (Θ𝑡 , 𝑏𝑡)
𝜇Θ𝑡

= 𝑀𝐿𝑃𝜇Θ (𝑏𝑡), 𝜎Θ𝑡
= 𝑀𝐿𝑃𝜎Θ (𝑏𝑡),Θ𝑡+1 ∼ N(𝜇Θ𝑡+1 , 𝜎Θ𝑡+1)

Joint-factor decoder:
𝑥𝑡 ;𝑦𝑡 = 𝑀𝐿𝑃𝑠 (𝑐𝑡), 𝑐𝑡 = 𝑓 | |𝑧𝑡

where | | is the concatenation operation of vectors, ∼ is the sampling
operation, which uses the re-parameterization trick [16] to allow
gradient back-propagation. The other output vectors of the LSTM
models are omitted for simplicity reasons in all operations and
in Figures 3 and 4. 𝑜∗, 𝑎∗, 𝑏∗ are outputs for either the 𝐵𝑖𝐿𝑆𝑇𝑀∗,
𝑅𝑁𝑁∗, or 𝑉𝑅𝑁𝑁∗ modules, respectively. Omitting parts of the
architecture indicated by dashed blue lines, the approach reverts
to a factorized encoder alternative. Including those connections
means introducing a concatenation operation for 𝑒𝑡 | |𝑓 and we have
a full alternative encoder. The𝑉𝑅𝑁𝑁∗ module is a unique recurrent
network. Its input for 𝑡 + 1 cell includes a randomly sampled value
Θ𝑡 , instead of a deterministic state. For step 𝑡 + 1, it uses an LSTM
cell to take previous Θ𝑡 and hidden state𝑚Θ𝑡

as inputs and outputs
𝑏𝑡 . Two 𝑀𝐿𝑃∗ modules are used to transform the 𝑏𝑡 into a mean
𝜇Θ𝑡+1 and variance 𝜎Θ𝑡+1 of Θ𝑡+1. Θ𝑡+1 is sampled from a Gaussian
distribution N(𝜇Θ𝑡+1 , 𝜎Θ𝑡+1). Θ0 is sampled from an unit Gaussian
noise. Training phase: Utilizes the objective function of Eq. 2 and
performs a gradient back-propagation with selected optimizer.

Figure 4: Generator for synthesis: a dynamic sequential generator
to sample from sequential meta-priors replacing 𝑧1:𝑇 with its priors
Θ0:𝑇 with a recurrent dependence.

Synthesis phase:With the dynamic expressive priors generator
and factorized semantics, we have more control over trajectory
generation. For example, we can control the global semantic 𝑓 to be
fixed and study how the local semantics 𝑧𝑡 changes and vice versa.
The other uniqueness is that because we propose a dynamic chain
of priors, the synthesis phase in Fig. 4 is slightly different from
a regular VAE model and needs special treatment. In the case of
regular VAEs, samples from the prior distribution replace posterior
distributions for the decoder module to generate synthetic data
[16]. The prior distribution of latent variable 𝑓 is a unit Gaussian
noise N(000,111) as is also the case for regular VAEs. However, the
𝑧1:𝑇 variables are not i.i.d. distributions and could not use N(000,111)
to sample noise over each time step. This involves two steps: (1)
an initial noise for Θ0 is sampled as N(000,111); (2) the trained Prior
generator module usesΘ0 to generate the chain priorsΘ1:𝑇 , and the
generated Θ1:𝑇 are used as inputs to replace 𝑧1:𝑇 . The operations
can be summarized as follows:

𝑓 ∼ N(000,111),Θ0 ∼ N(000,111)
𝑏𝑡+1 = 𝑉𝑅𝑁𝑁Θ (Θ𝑡 , 𝑏𝑡)

𝜇Θ𝑡+1 = 𝑀𝐿𝑃𝜇Θ (𝑏𝑡), 𝜎Θ𝑡+1 = 𝑀𝐿𝑃𝜎Θ (𝑏𝑡),Θ𝑡 ∼ N(𝜇Θ𝑡
, 𝜎Θ𝑡

)
𝑥𝑡 ;𝑦𝑡 = 𝑀𝐿𝑃𝑠 (𝑐𝑡), 𝑐𝑡 = 𝑓 | |Θ𝑡

3.5 Spatiotemporal-validity constraints
Although the generative model learned by Eq. 2 could effectively
characterize the underlying process of trajectory generation, the
trajectories sampled from the learned generative model may not re-
semble real-world trajectories, i.e., obeymotion physics. Embedding
such an inductive bias can effectively increase the model generaliz-
ability and strengthen the robustness w.r.t. noise as introduced by
measurement and sampling errors (cf. [26]). The central contribu-
tion is imposing spatiotemporal validity constrains in optimizing
the loss function L in Eq. 2 as follows:
min𝜓,𝜙 L(𝑝𝜓 , 𝑞𝜙), 𝑠 .𝑡 .∀𝑠1:𝑇 ∉ C : 𝑝𝜓 (𝑠1:𝑇 |𝑧1:𝑇 , 𝑓 ,Θ0:𝑇) = 0 (5)

where C denotes the set of all trajectory patterns that satisfy the
spatial validity constraints, which can be specified by the user based
on the practical needs. For example, if the constraint states all tra-
jectories must be on roads, then C1 = {[𝑥1, · · · , 𝑥𝑇] |𝑥𝑡 ∈ R}, with
R denoting roads as spatial regions. The constraint could also relate
to phenomena such as the speed limits, meaning the trajectory’s

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Zhang, et al.

moving speed must be achievable. This could be denoted as C2 =
{[𝑥1, · · · , 𝑥𝑇] | |Δ𝑥𝑡 | ≤ S}, with |Δ𝑥𝑡 | denoting the object’s speed at
time 𝑡 and S is the speed limit. Another pattern could be turn angles
between two consecutive segments of a trajectory. In many situa-
tions, it is unlikely to have many consecutive sharp turns. To avoid
this behavior, we could have C3 = {[𝑥1, · · · , 𝑥𝑇] |

∑
𝑡 𝑐𝑜𝑠 (𝑥𝑡−1 −

𝑥𝑡 , 𝑥𝑡+1 − 𝑥𝑡) < 𝜆}, where 𝑐𝑜𝑠 (𝑥𝑡−1 − 𝑥𝑡 , 𝑥𝑡+1 − 𝑥𝑡) denotes the
cosine similarity of the two vectors, each representing movement
in two-dimensional Euclidean space.

Moreover, the spatial constraint C can also be composed of the
logical combinations amongmultiple rules, such asC = C2

⋂(C1
⋃C3).

For example, we can combine speed limits and turn angles with such
a logical operation. Directly solving complex constrained problems
using conventional ways, such as a Lagrangian has been demon-
strated to be inefficient for deep neural networks. Here, we extend
a recent deep constrained optimization framework [22] to address
this by reformulating Eq. 5 as follows:

L̃(𝑝𝜓 , 𝑞𝜙 , 𝛾) = L(𝑝𝜓 , 𝑞𝜙) + 𝛾 [
∫

1(𝑔(𝑧1:𝑇 , 𝑓 ,Θ0:𝑇) ∉ C)

· 𝑝𝜓 (𝑧1:𝑇 , 𝑓 ,Θ0:𝑇) d𝑧1:𝑇 d𝑓 dΘ0:𝑇]
1
2

where C is the set of validity functions, and 1(·) is an indicator
function that outputs 1 if a generated trajectory is invalid, otherwise
it outputs 0. We can reduce the integral term using Monte Carlo
Sampling in VAE [16]. To allow gradient flow over the regularization
term, constraint functions in C must have gradients.

The above represents the complete learning objective of our
EETG framework, while the implementation details are shown in
Section 4.2.

4 EXPERIMENTS
To demonstrate the superior reconstruction and constraint perfor-
mance of EETG, we compare it to competing and ablation methods
using quantitative and qualitative results with three real world and
one synthetic dataset. All experiments were conducted on a 64-bit
i9 Intel computer using an NVIDIA 1080ti GPU.

4.1 Datasets
Reference datasets The first dataset was collected by 442 taxis in
Porto, Portugal capturing awhole year (from 01/07/2013 to 30/06/2014)
2. Position samples do not have timestamps, but the data was gener-
ated using a fixed 15𝑠 sampling interval. The second dataset is the
T-Drive data consisting of 10,357 taxis collected during one week.
This data includes timestamps 3. Pre-processing steps are used to
clean the data, including Noise Filtering and Stay Point Detection
[35]. The third data set is Gowalla check-in data 4, of which we
select the Dallas metropolitan area.

Synthetic dataset We generated a Points-of-Life (POL) dataset of
10,000 students living on a university campus using a geospatial
agent-based simulation [15]. The agents mimic real-world contact
and check-in patterns based on predefined living and social pref-
erence settings. All datasets use a respective projected coordinate
system. We split the data using a 0.9/0.1 ratio into training and
testing sets for evaluation purpose.

2www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data
3www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
4snap.stanford.edu/data/loc-Gowalla.html

4.2 Constraints setting
4.2.1 Physics-induced constraints: Since the sampling time interval
𝜖 is small (15𝑠), (1) the average speed constraint 𝛾𝑡 = | |𝑠𝑡−𝑠𝑡−1 | |2

𝜖 is
higher than a threshold 𝛾 = 60𝑘𝑚/ℎ,(2) to avoid sharp turns, we
cannot observe a preceding angle 𝜂𝑡 (in cosine value) smaller than
a threshold 𝜂 and 𝜂𝑡 = (𝑠𝑡−𝑠𝑡−1) ·(𝑠𝑡−1−𝑠𝑡−2)

| |𝑠𝑡−𝑠𝑡−1 | |2 | |𝑠𝑡−1−𝑠𝑡−2 | |2 . This regularization
imposes penalties only if the angle is smaller than 𝜂𝑡 > 𝜂 and
the segment is larger than 𝛾𝑡 > 𝛾 . We show such patterns in the
Porto dataset in Fig. 5 (red dashed region in second row), which is
formulated as follows:

𝜆

𝑁

∑𝐽 ∑𝑇

𝑡=2
𝑐 (𝜖, 𝑠1:𝑇) =

𝜆

𝑁

∑𝐽 ∑𝑇

𝑡=2
(𝛾𝑡 − 𝛾)+ (𝜂𝑡 − 𝜂)+

where ()+ is the Relu function and 𝜆 is a hyper-parameter. Notice
that a total of 𝑇 − 2 constraints for each trajectory are possible.

4.2.2 Behavior-induced constraints: They are derived from human
behavior and do not necessarily violate basic physics principles. For
example, when driving, one does not make two u-turns within 5𝑠 ,
in other words, two consecutive sharp angles (less than 30 degrees)
are improbable. Such a constraint can be seen in the T-Drive dataset
(red dashed regions in the first row) in Fig. 5. This regularization
penalizes the case that an angle is smaller than a threshold 𝜂𝑡 > 𝜂
if its preceding angle is also sharp and violates the angle threshold
𝜂𝑡−1 > 𝜂. The formula is as follows:

𝜆

𝑁

∑𝐽 ∑𝑇

𝑡=3
𝑐 (𝑠1:𝑇) =

𝜆

𝑁

∑𝐽 ∑𝑇

𝑡=3
(𝜂𝑡 − 𝜂)+ (𝜂𝑡 − 𝜂)+

where 𝜂 is the cosine value of angles. Notice that a total of𝑇 −3 con-
straints for each trajectory are possible. Other potential constraints
will be discussed in future work.

4.3 Competitor methods and ablation study
Rule-based: This model utilizes Ditras [24], which uses a Hidden
Markov Model for origin-destination generations. The model is
based on discretized grids. Road networks are used for generating
GPS points.

LSTM : a plain LSTM model that can take any start point as input
without any latent variable for stochastic modeling.

IGMM-GAN : an image-like GAN-based model [31], not a sequen-
tial model, using a single variable (cf. Fig. 2 (a)).

SVAE-f : uses a single latent variable and a VAE model [14]. It
corresponds to the sequential variational model of Fig. 2 (a). This
method is considered in the ablation study by using 𝑓 without 𝑧1:𝑇 .

SVAE-z-naive: it corresponds to the state space model of Fig. 2 (b).
It does not represent existing work in trajectory generation, but it
is an intuitive ablation model to EETG.

SVAE-z: simplified EETG model without using 𝑓 (cf. Fig. 2 (c)).
An ablation model to demonstrate the effects of 𝑧1:𝑇 and Θ0:𝑇 .

Disentangled SVAE (DSVAE): the complete model with 𝑓 , 𝑧1:𝑇 ,
and Θ0:𝑇 (cf. Fig. 2 (c)).

Factorized Disentangled SVAE (FDSVAE): the factorized alterna-
tive of the complete model shwon in Fig. 2 (c).

Models with spatiotemporal validity use the “-S” suffix, such as
SVAE-f-S, SVAE-z-S, DSVAE-S, FDSVAE-S. Spatial constraint do
not apply to check-in trajectories and respective experiments are
omitted.

 www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data
www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
snap.stanford.edu/data/loc-Gowalla.html

Factorized Deep Generative Models for End-to-End Trajectory Generation with Spatiotemporal Validity Constraints SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

4.4 Evaluation metrics
A generative model should avoid either creating totally random
data (learning useless models) or simply replicating the training
data (triggering mode collapse in a generative model). Our basic
metric isMean Distance Error (MDE), which measures the Euclidean
or Harversine Distance [14, 31]. We also utilize a dedicated met-
ric for complex data generation evaluation called Maximum Mean
Discrepancy (MMD). MMD is used for example used in image gen-
eration [40] and graph generation [38]. MMD is a function that
measures a distribution distance similar to KL-divergence distance.
Defined as𝑀𝑀𝐷 (S, Ŝ) ↦→ [0, 1] outputs 0 for exact similarity and
1 for non-similarity, where spatial features of trajectories are used
in𝑀𝑀𝐷 calculation (detailed in Supplement A.4). In many other
deep generative model evaluations, another important performance
factor is novelty, which means that generated samples should not be
exact replicas of original samples. Since our models are developed
for continuous-valued coordinates, it is almost impossible to sample
the same continuous real value. To perform this analysis, we have to
convert real-valued points to grid cells. Each trajectory is projected
onto a raster. Each trajectory point is mapped to a corresponding
cell and grid index (𝑖, 𝑗). The raw trajectory (𝑥1, 𝑦1), ..., (𝑥𝑡 , 𝑦𝑡) is
converted to a sequence (𝑖1, 𝑗1), ..., (𝑖𝑡 , 𝑗𝑡), where 𝑡 is the time stamp.
If the sequence of a generated trajectory cannot be exactly matched
to the training set, it is considered a “novel” trajectory. Finally, the
novelty score is calculated as 𝑁 /𝑀 , where 𝑀 is total number of
generated trajectories and 𝑁 is the number of novel trajectories.
However, a complete random guess or small grid size could also
result in a perfect score of 1, which shows the disadvantage of this
metric.

“Violation Score” (VS) is a method proposed in this paper to
evaluate the results with respect to adhering to constraints. It is the
ratio of the number of violation cases to the number of all cases. A
lower VS score indicates a better results in terms of spatiotemporal
validity. The metric is defined as follows:

𝑉𝑆 =

∑𝑁
𝑖

∑𝑇
𝑡=𝑡∗ 111𝑐 (𝜖, 𝑠

(𝑖)
1:𝑇)

𝑁 × (𝑇 − 𝑡∗)
,111𝑐 (·) :=

{
1 if 𝑐∗ (·) ∧ . . .
0 else

where 𝑐∗ (·) is a logic form rule that returns True if a condition is
satisfied, 𝑡∗ is the start step defined for 𝑐∗ (·), for example, 𝑡∗ = 2
for the length of the segment and 𝑡∗ = 3 for the angles of consecu-
tive segments. We could have a rule 𝑐∗ (·) that checks if the angle
between consecutive segments is larger than 15 degree or not. We
start at 𝑡∗ = 2 since the first segment does not have predecessors.

4.5 Quantitative results
The performance of the various methods is shown in Table 1 using
the MDE metric and MMD distance scores between actual and
reconstructed trajectories in terms of angle distribution, segment
length distribution, total length distribution, and grid point count
distribution.

Reconstruction performance: EETGmodels outperform other deep
generative methods and rule-based methods for most metrics (cf.
Table 1). The rule-based model performs worse than all deep gen-
erative models. This model performs orders of magnitude worse
than EETG for all metrics. For deep generative models, the improve-
ment of VAE-based models and IGMM-GAN over LSTM is quite
significant. For metrics such as angles and grid point density in

MMD, LSTM performs worse than others by orders of magnitude
as well. This is caused by the lack of randomness in rule-based
and LSTM models, which demonstrates the important role of latent
variables. Specifically, comparing simple SVAE-f and SVAE-z to
our proposed DSVAE and FDSVAE in Table 1, the MMD metric
shows that DSVAE performs best for both taxi datasets. The spatial
constraint versions normally improve over non-constraint ones
and DSVAE-S and FDSVAE-S perform best for most metrics. An
exception being the SVAE-z-S method with respect to angles for
Porto, and total length and grid points for the T-Drive MMD metric.
Interestingly, IGMM-GAN shows the best performance in three
MMDs for the POL dataset. This might be due to the relatively
small size of POL data for VAE-like models to learn well.

All the methods, including EETG (versions) and comparison
methods, have very high novelty scores (typically over 0.85). This
indicates that they are indeed generating instead of copying trajecto-
ries. Note that a very trivial random trajectory generator can easily
achieve a novelty score very close to 1. Therefore, purely having a
high novelty score does not necessarily indicate high-quality gen-
eration. Comparing to purely random generation, a good generator
usually generates more realistic trajectories and hence its genera-
tion may have a better chance to “coincide” with true and observed
trajectories, which can lead to a lower novelty score. Moreover,
the version with spatial constraints further increases the chance of
such a “coincidence” (since it precluded many unrealistic ones) and
could have a slightly lower novelty score. To sum up, an extremely
high novelty score is not necessarily the best outcome. The novelty
score only reflects one aspect of a generator’s quality on whether
it is simply copying the training set or suffers from serious “mode
collapse”. A reasonably high score (like the above results of all the
methods) can well indicate that the generator is not trivially copy-
ing and does not suffer from serious “mode collapse” (high but not
perfect score).

Constraints: By comparing models without constraints to models
with constraints in Table 2, the proposed spatial regularization
terms help generate much fewer violation cases for all models
since VS consistently decreases when adding constraints. The rule-
based model has no violation cases since it follows a agent-based
simulation on a network with predefined rules. The distribution of
related features in Fig. 5 shows more white space (indicating a zero
number of samples) in red dashed areas, which indicate violation
zones following the addition of constraints.

4.6 Qualitative results
Point distributions: Fig. 6 show the density of trajectory points
as heatmaps to indicate the quality of the generated trajectories.
The study areas are subdivided using a regular spatial grid and all
generated and reference trajectory points are counted for each cell.
The darker a cell, the more points are located in it. Rule-based mod-
els perform worst and we cannot find any meaningful patterns. We
can see that all VAE-derived models with/without constraints per-
form generally better than LSTM. IGMM-GAN models also create
patterns comparable to the reference trajectories. However, IGMM-
GAN and other simplified models such as VAE-y and VAE-z, and

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Zhang, et al.

Table 1: Experimental results using Mean Distance Error (MDE)
and Maximum Mean Discrepancy (MMD).

dataset Method
Metrics MDE+ Novelty Angles

in
MMD

Segment
lengths
inMMD

Total
lengths
in MMD

Grid point
density in
MMD

Porto

Rule-based NaN 0.975 0.68 0.03 0.11 0.252
LSTM 13.6525 0.9022 0.5243 0.4976 0.4136 0.1135
IGMM-GAN 11.1488 0.9348 0.0772 1.0 0.3779 0.0429
SVAE-f 1.2422 0.8758 0.0430 0.0034 0.0655 0.0244
SVAE-z-naive 1.7474 0.8993 0.0222 0.0144 0.3669 0.0384
SVAE-z 1.73782 0.9122 0.0081 0.0069 0.3303 0.0279
DSVAE 0.9018 0.9076 0.0649 0.0041 0.2439 0.0208
FDSVAE 1.7415 0.9187 0.0380 0.0019 0.0497 0.0294
SVAE-f-S 1.9755 0.8721 0.0795 0.1009 0.6947 0.0647
SVAE-z-S 1.1896 0.8409 0.0054 0.0055 0.2593 0.0106
DSVAE-S 0.8059 0.8953 0.0628 0.0032 0.2133 0.0208
FDSVAE-S 1.2281 0.9072 0.0273 0.0004 0.0495 0.0105

T-Drive

Rule-based NaN 0.9934 0.71 0.03 0.11 0.253
LSTM 16.0594 0.9422 0.4005 0.6447 0.4080 0.3717
IGMM-GAN 0.9577 0.9134 0.0556 0.7280 0.1052 0.003
SVAE-f 0.6073 0.9215 0.3844 0.3563 0.1409 0.1360
SVAE-z-naive 1.2258 0.8945 0.0317 0.0298 0.1285 0.0007
SVAE-z 0.9849 0.8644 0.0178 0.0074 0.0437 0.0005
DSVAE 0.5916 0.8931 0.1310 0.0788 0.1448 0.1040
FDSVAE 1.1136 0.9103 0.3635 0.0076 0.7308 0.1594
SVAE-f-S 1.5179 0.9379 0.4316 0.3456 0.1288 0.1207
SVAE-z-S 0.9138 0.8857 0.0200 0.0079 0.0436 0.0002
DSVAE-S 0.5130 0.8910 0.0047 0.0087 0.0852 0.0088
FDSVAE-S 0.6118 0.8954 0.0088 0.0018 0.0610 0.0660

POL

Rule-based NaN 0.9577 0.2407 0.0033 0.002 0.0121
LSTM 34.5681 0.9608 0.5921 0.9292 0.9915 0.9835
IGMM-GAN 0.8872 0.9027 0.1957 0.0003 0.0004 0.0023
SVAE-f 10.6391 0.9428 0.2107 0.6874 0.0067 0.4426
SVAE-z-naive 1.7419 0.8975 0.2958 0.0394 0.0277 0.0030
SVAE-z 1.4154 0.8921 0.2403 0.0129 0.0044 0.0041
DSVAE 0.3811 0.8376 0.2259 0.0042 0.0016 0.0001
FDSVAE 0.3487 0.8310 0.2348 0.0193 0.0142 0.0002

Gowalla

Rule-based NaN 0.9910 0.0181 0.0026 0.0011 0.0033
LSTM 629.07 1.000 0.0325 NaN NaN NaN
IGMM-GAN 101.32 0.9820 0.0351 0.1015 0.0431 0.0163
SVAE-f 90.292 0.9233 0.0111 0.0430 0.0017 0.0030
SVAE-z-naive 101.60 0.9761 0.0742 0.0654 0.0028 0.0026
SVAE-z 40.2241 0.9016 0.0067 0.0328 0.0002 0.0026
DSVAE 2.7645 0.8631 0.0065 0.0196 0.0002 0.0036
FDSVAE 1.7714 0.8511 0.0102 0.0144 0.0001 0.0025

*NaN: models could not finish in acceptable time or not doable for MMD computing.
+: MDE unit are different here. Porto and T-Drive are kilometer. POL and Govalla are meter.

Table 2: Constraints: Violation Score (VS) results.
dataset Methods VS Constrained Methods VS

Porto

Rule-based 0.0 - -
LSTM 0.045219 - -
IGMM-GAN 0.02624 - -
SVAE-f 0.034881 SVAE-f-S 0.004960
SVAE-z 0.018214 SVAE-z-S 0.002749
DSVAE 0.027971 DSVAE-S 0.003682
FDSVAE 0.021269 FDSVAE-S 0.001180
Raw data 0.001718 - -

T-Drive

Rule-based 0.0 - -
LSTM 0.004753 - -
IGMM-GAN 0.055332 - -
SVAE-f 0.008197 SVAE-f-S 0.033250
SVAE-z 0.009581 SVAE-z-S 0.006895
DSVAE 0.010779 DSVAE-S 0.003263
FDSVAE 0.054197 FDSVAE-S 0.007847
Raw data 0.003395 - -

VAE-z-naive are not as “clean” as DSVAE(-S) and FDSVAE(-S) mod-
els. This indicates that these models do not capture small variances
in data distributions.

The grid point count heatmaps for check-in trajectories in Fig. 7
also confirm that DSVAE, FDSVAE, and SVAE-z capture the patterns
from the reference trajectories. Notice that generating POL data is
a comparatively easier task since it is only based on 1, 000 users.
For rule-based methods, slightly clearer patterns of concentrations
can be found since the underlying distributions are simpler. Most
deep models perform well except LSTM and SVAE-f. However,

Figure 5: Constraints: results for T-Drive and Porto datasets with
red-dashed areas indicating violation zones.

Figure 6: Point count heatmap comparison for GPS trajectories.

for Gowalla data, LSTM almost produces no data at all since the
generated points are not within the required geographic bounds.
The wired nature of rule-based models is due to converting data
from theWGS84 reference system to a projected coordinate system.
IGMM-GAN and other simplified VAE models capture the overall
spatial trend in the whole region, but they failed to model the
small variances of different sub-regions. Our proposed DSVAE and
FDSVAE models generate point distributions that are very similar
to the reference trajectories.

Factorized Deep Generative Models for End-to-End Trajectory Generation with Spatiotemporal Validity Constraints SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

Figure 7: Point count heatmap comparison for check-in data.

Figure 8: Comparing the effect of a chain of priors Θ1:𝑇 to the dy-
namic generation of trajectories by two simplifiedmodels: (a) SVAE-
z-naive model; (b) SVAE-z model. Different colors indicate differ-
ent time stamps. Black crosses indicate a point generated using the
Gaussian distribution’s mean for each time stamp.

Dynamic priors and their effect: This experiment illustrates
the effect of the chain of priors constraint Θ1:𝑇 on the spatiotempo-
ral dynamic pattern generation by comparing SVAE-z-naive (shown
in the Fig. 8 (a)) and SVAE-z (shown in the Fig. 8 (b)). Each figure
shows the 128 trajectories’ first four points as colored dots. All 128
trajectories use the same fixed initial noise (inputs of Θ0 are fixed).
The black crosses in the two figures are the mean coordinates gener-
ated with the mean vectors of generated 𝑧1:4 variables. The reason
for the black crosses not to be directly located in the center of the
point clouds is due to the non-linear decoding through different
𝑀𝐿𝑃∗ layers. The points of the same color relate to the same time
stamp. The blue, orange, green, and red colors correspond to time
stamps 1, 2, 3, and 4, respectively. We can see that the SVAE-z-
naive model learned a point distribution with a fixed mean since
all black crosses are exactly at the same location. However, SVAE-z
with chain-randomness learned a chain of dynamic patterns with
slightly different means for each generated trajectory. This is the
advantage of a more powerful stochastic process modeled by the
chain of priors Θ𝑡 . In Table 1, the SVAE-z model also performed
best for a range of metrics, such as the MDE of 1.4154 compared to
the 1.7419 for the SVAE-z-naive model.

Figure 9: Disentangled factors studies. Using the Porto dataset
with FDVAE-S model, each row shares the same spatiotemporal-
invariant 𝑓 factor, and different rows have a slightly different 𝑓 .
Each column shares the same spatiotemporal-variant 𝑧𝑡 factor, and
different 𝑧𝑡 are used in different columns.

Disentanglement analysis: This experiment provides a quali-
tative analysis showing that separating spatiotemporal-variant and
spatiotemporal-invariant factors achieves better interpretability as
shown in Fig. 9. We use the FDVAE-S model for the Porto dataset
as an example. The x-axis shows the sampled 𝑧1:𝑇 vectors’ second
dimension replaced with values ranging from 1 to 9. Along the
y-axis, we randomly sampled nine different 𝑓 vectors from the
distribution N(000,111). We can see that 𝑓 controls the overall trend
of trajectories since trajectories in the same row show very similar
patterns. Trajectories in the same row show small variances due to
different noise (𝑧𝑡). For the same column, it shows that 𝑧𝑡 could
control high-dimensional geometric dynamics, though it is hard to
visually conclude any specific geometric factor that 𝑧𝑡 controls.

5 CONCLUSIONS AND FUTUREWORK
We propose a novel “End-to-End Trajectory Generation with spa-
tiotemporal validity constraints” (EETG) framework for trajectory
synthesis. The experimentation shows that our framework achieves
superior performance not only for a conventional Mean Distance
Error metric that computes the error between a pair of raw and
generated trajectories, but also over feature distributions (MMD
metrics), including angle distribution (angles between segments),
and others for real-world and synthetic reference trajectory data. In
terms of future work, an interesting direction is to increase explain-
ability by incorporating deep layers for real-world factors, such
as Point-of-Interests and road networks in an end-to-end manner.
Another direction is that EETG can also be used for mobility mining
tasks, e.g., map construction, and in other domains such as animal
migration, ant movement, and sports analytics.

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation (NSF)
Grant No. 1755850, No. 1841520, No. 2007716, No. 2007976, No.
1942594, No. 1907805, No. 1637541, 2109647, 2127901, Department
of Defense grant HM02101410004, a Jeffress Memorial Trust Award,

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Zhang, et al.

Amazon Research Award, NVIDIA GPU Grant, and Design Knowl-
edge Company (subcontract number: 10827.002.120.04).

REFERENCES
[1] Vincent Bindschaedler and Reza Shokri. 2016. Synthesizing plausible privacy-

preserving location traces. In 2016 IEEE Symposium on Security and Privacy (SP).
IEEE, 546–563.

[2] Xinyu Chen, Jiajie Xu, Rui Zhou, Wei Chen, Junhua Fang, and Chengfei Liu.
2021. TrajVAE: A Variational AutoEncoder model for trajectory generation.
Neurocomputing 428 (2021), 332–339.

[3] Ronald Choe, Javier Puig, Venanzio Cichella, Enric Xargay, and Naira Hov-
akimyan. 2015. Trajectory generation using spatial Pythagorean Hodograph
Bézier curves. In AIAA Guidance, Navigation, and Control Conference. 0597.

[4] Seongjin Choi, Jiwon Kim, and Hwasoo Yeo. 2020. Trajgail: Generating ur-
ban trajectories using generative adversarial imitation learning. arXiv preprint
arXiv:2007.14189 (2020).

[5] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville,
and Yoshua Bengio. 2015. A recurrent latent variable model for sequential data.
In Advances in neural information processing systems. 2980–2988.

[6] Chongming Gao, Zhong Zhang, Chen Huang, Hongzhi Yin, Qinli Yang, and Jun-
ming Shao. 2020. Semantic trajectory representation and retrieval via hierarchical
embedding. Information Sciences 538 (2020), 176–192.

[7] Chongming Gao, Yi Zhao, Ruizhi Wu, Qinli Yang, and Junming Shao. 2019.
Semantic trajectory compression via multi-resolution synchronization-based
clustering. Knowledge-Based Systems 174 (2019), 177–193.

[8] Qiang Gao, Goce Trajcevski, Fan Zhou, Kunpeng Zhang, Ting Zhong, and Fengli
Zhang. 2019. DeepTrip: Adversarially Understanding Human Mobility for Trip
Recommendation. In Proceedings of the 27th ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems. 444–447.

[9] Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification
with bidirectional LSTM and other neural network architectures. Neural networks
18, 5-6 (2005), 602–610.

[10] Xiaojie Guo and Liang Zhao. 2020. A systematic survey on deep generative
models for graph generation. arXiv preprint arXiv:2007.06686 (2020).

[11] Xiaojie Guo, Liang Zhao, Zhao Qin, Lingfei Wu, Amarda Shehu, and Yanfang Ye.
2020. Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement.
arXiv preprint arXiv:2006.05385 (2020).

[12] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. 2016. beta-vae:
Learning basic visual concepts with a constrained variational framework. (2016).

[13] Wei-Ning Hsu, Yu Zhang, and James Glass. 2017. Unsupervised learning of
disentangled and interpretable representations from sequential data. In Advances
in neural information processing systems. 1878–1889.

[14] Dou Huang, Xuan Song, Zipei Fan, Renhe Jiang, Ryosuke Shibasaki, Yu Zhang,
Haizhong Wang, and Yugo Kato. 2019. A Variational Autoencoder Based Gener-
ative Model of Urban Human Mobility. In 2019 IEEE Conference on Multimedia
Information Processing and Retrieval (MIPR). IEEE, 425–430.

[15] Joon-Seok Kim, Hyunjee Jin, Hamdi Kavak, Ovi Chris Rouly, Andrew Crooks,
Dieter Pfoser, Carola Wenk, and Andreas Züfle. 2020. Location-based Social Net-
work Data Generation Based on Patterns of Life. In IEEE International Conference
on Mobile Data Management (MDM’20)(to appear). IEEE.

[16] Diederik P Kingma and Max Welling. 2019. An introduction to variational
autoencoders. arXiv preprint arXiv:1906.02691 (2019).

[17] Qingzhe Li, Jessica Lin, Liang Zhao, and Huzefa Rangwala. 2017. A uniform
representation for trajectory learning tasks. In Proceedings of the 25th ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems. 1–4.

[18] Xiucheng Li, Gao Cong, and Yun Cheng. 2020. Spatial transition learning on
road networks with deep probabilistic models. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 349–360.

[19] Yingzhen Li and Stephan Mandt. 2018. Disentangled sequential autoencoder.
arXiv preprint arXiv:1803.02991 (2018).

[20] Yiding Liu, Kaiqi Zhao, Gao Cong, and Zhifeng Bao. 2020. Online anomalous
trajectory detection with deep generative sequence modeling. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE). IEEE, 949–960.

[21] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-
Pang Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter
Wagner, and Evamarie Wießner. 2018. Microscopic traffic simulation using sumo.
In 2018 21st International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2575–2582.

[22] Tengfei Ma, Jie Chen, and Cao Xiao. 2018. Constrained generation of semantically
valid graphs via regularizing variational autoencoders. In Advances in Neural
Information Processing Systems. 7113–7124.

[23] Kun Ouyang, Reza Shokri, David S Rosenblum, and Wenzhuo Yang. 2018. A
Non-Parametric Generative Model for Human Trajectories.. In IJCAI. 3812–3817.

[24] Luca Pappalardo and Filippo Simini. 2018. Data-driven generation of spatio-
temporal routines in human mobility. Data Mining and Knowledge Discovery 32,

3 (2018), 787–829.
[25] Nikos Pelekis, Christos Ntrigkogias, Panagiotis Tampakis, Stylianos Sideridis,

and Yannis Theodoridis. 2013. Hermoupolis: a trajectory generator for simulating
generalized mobility patterns. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer, 659–662.

[26] Dieter Pfoser and Christian S. Jensen. 1999. Capturing the Uncertainty of Moving-
Object Representations. In SSD ’99: Proceedings of the 6th International Symposium
on Advances in Spatial Databases. Springer-Verlag, 111–132.

[27] Dieter Pfoser and Yannis Theodoridis. 2003. Generating semantics-based trajec-
tories of moving objects. Computers, Environment and Urban Systems 27, 3 (2003),
243–263.

[28] Jinmeng Rao, Song Gao, Yuhao Kang, and Qunying Huang. 2020. LSTM-TrajGAN:
A Deep Learning Approach to Trajectory Privacy Protection. arXiv preprint
arXiv:2006.10521 (2020).

[29] Wei Ren and RandyWBeard. 2004. Trajectory tracking for unmanned air vehicles
with velocity and heading rate constraints. IEEE Transactions on Control Systems
Technology 12, 5 (2004), 706–716.

[30] Jean-Marc Saglio and Jose Moreira. 2001. Oporto: A realistic scenario generator
for moving objects. GeoInformatica 5, 1 (2001), 71–93.

[31] Daniel Smolyak, Kathryn Gray, Sarkhan Badirli, and George Mohler. 2020. Cou-
pled IGMM-GANs with Applications to Anomaly Detection in Human Mobility
Data. ACM Transactions on Spatial Algorithms and Systems (TSAS) 6, 4 (2020),
1–14.

[32] Xuan Song, Hiroshi Kanasugi, and Ryosuke Shibasaki. 2016. Deeptransport:
Prediction and simulation of human mobility and transportation mode at a
citywide level. In Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence. 2618–2624.

[33] Shawn Stephens, Satyanarayana GManyam, DavidWCasbeer, Venanzio Cichella,
and Donald L Kunz. 2019. Randomized Continuous Monitoring of a Target
by Agents with Turn Radius Constraints. In 2019 International Conference on
Unmanned Aircraft Systems (ICUAS). IEEE, 588–595.

[34] Yannis Theodoridis and Mario A Nascimento. 2000. Generating spatiotemporal
datasets on the WWW. ACM SIGMOD Record 29, 3 (2000), 39–43.

[35] Sheng Wang, Zhifeng Bao, J Shane Culpepper, and Gao Cong. 2020. A Sur-
vey on Trajectory Data Management, Analytics, and Learning. arXiv preprint
arXiv:2003.11547 (2020).

[36] Shiyu Wang, Yuanqi Du, Xiaojie Guo, Bo Pan, and Liang Zhao. 2022. Controllable
Data Generation by Deep Learning: A Review. arXiv preprint arXiv:2207.09542
(2022).

[37] Guolei Yang, Ying Cai, and Chandan K Reddy. 2018. Recurrent spatio-temporal
point process for check-in time prediction. In Proceedings of the 27th ACM Inter-
national Conference on Information and Knowledge Management. 2203–2211.

[38] Jiaxuan You, Rex Ying, Xiang Ren, William L Hamilton, and Jure Leskovec. 2018.
Graphrnn: Generating realistic graphs with deep auto-regressive models. arXiv
preprint arXiv:1802.08773 (2018).

[39] Wenbin Zhang, Liming Zhang, Dieter Pfoser, and Liang Zhao. 2021. Disentangled
dynamic graph deep generation. In Proceedings of the 2021 SIAM International
Conference on Data Mining (SDM). SIAM, 738–746.

[40] Wenju Zhang, Xiang Zhang, Long Lan, and Zhigang Luo. 2020. Maximum Mean
and Covariance Discrepancy for Unsupervised Domain Adaptation. Neural
Processing Letters 51, 1 (2020), 347–366.

[41] Fan Zhou, Qiang Gao, Goce Trajcevski, Kunpeng Zhang, Ting Zhong, and Fengli
Zhang. 2018. Trajectory-User Linking via Variational AutoEncoder.. In IJCAI.
3212–3218.

Factorized Deep Generative Models for End-to-End Trajectory Generation with Spatiotemporal Validity Constraints SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

A APPENDIX
A.1 Evolution of VAE-like models
To better illustrate the novelty of this work, we first present a
discussion of the evolution of generative models for trajectory data
and why they can or cannot solve the three challenges motivating
this work.

Existing work fails to address the first challenge because of
limitations of the model shown in Fig. 2 (a)) and used by either
VAE-based models [2, 14, 20] or GAN-based models [23, 28, 31] in
the trajectory domain. This sequential variational model applies a
Markovian-treatment of the sequence with a single latent variable
𝑓 that captures mixed global and local semantics for the entire
sequence. In other domains, such as for videos [19] and graphs
[39], models consider the latent state variables 𝑧1:𝑇 of temporal
samples, called “state space model“ [5], as illustrated in Fig. 2 (b).
They consider each time step to be dependent on a correspond-
ing latent state 𝑧𝑡 . Combining 𝑓 and 𝑧1:𝑇 models could solve the
first challenge and be more powerful than existing efforts since 𝑓
and 𝑧1:𝑇 capture global semantics and local semantics, respectively.
Such a model, i.e., each trajectory point is determined jointly by a
current latent state 𝑧𝑡 and the prior 𝑓 could factorize global seman-
tics (e.g., origin-destination pair types) with local semantics (e.g.,
road condition changes). 𝑓 utilizes a prior distribution, such as an
isotropic Gaussian, while all 𝑧𝑡 share another independent single
prior distribution, such as another isotropic Gaussian.

The second challenge relates to lacking a dynamic inductive bias
and a basic state space model still fails to inject randomness when
it generates 𝑧𝑡+1 from 𝑧𝑡 . For example, using a typical LSTM model
as a state space model, we get the same latent state matrix for 𝑧𝑡
with the same latent state 𝑧𝑡+1 for the next time step. To allow for
better dynamic induction, we expect that the latent state in 𝑧𝑡+1
could be stochastically sampled from the same input 𝑧𝑡 . With such
a dynamic inductive bias that is reflected in Θ𝑡 , we can expand the
modeling power of spatiotemporal dynamics. Such an architecture
has been introduced in [5], however, it still requires a special deep
neural network architecture design, which we propose to achieve
end-to-end trajectory generation.

The third challenge of jointly ensuring spatiotemporal validity is
quite unique for trajectory data. Deep generativemodels onlymodel
a continuous distribution (e.g. the Gaussian distribution) in a space.
This does guarantee the validity even for a simple hard constraint
like a truncated Gaussian, which is a much simpler constraint than
the spatiotemporal rules we propose for trajectories. Current deep
learning models lack a framework to handle such complicated hard
constraints.

A.2 Neural network details
For the Porto and T-Drive dataset, the𝑀𝐿𝑃𝑠 (·) uses two layers of
structures with 48 and 16 neurons, respectively. For all 𝐵𝑖𝐿𝑆𝑇𝑀∗
and 𝑅𝑁𝑁∗ modules, the dimensions of the hidden states (not shown
in our paper) are set to 512. For the static pattern 𝐵𝑖𝐿𝑆𝑇𝑀𝑓 , the
dimension of recurrent input 𝑜𝑡 is 16. The𝑀𝐿𝑃𝜇𝑓 and𝑀𝐿𝑃𝜎𝑓

have
inputs of 512 × 2 dimensions, and the output dimension is 256.
For the dynamic pattern 𝐵𝑖𝐿𝑆𝑇𝑀𝑧 , the dimension of input 𝑎𝑡 is
16. The second 𝑅𝑁𝑁𝑧 module takes forward and backward hidden
states of dimension 512 × 2 as input. The hidden state of 𝑅𝑁𝑁 has

512 dimensions.𝑀𝐿𝑃𝜇𝑧𝑡 and𝑀𝐿𝑃𝜎𝑧𝑡 is set to have one layer of 64
neurons. The priors Θ include 𝜇𝑡 and 𝜎𝑡 , whose decoding modules
𝐵𝑖𝐿𝑆𝑇𝑀𝜇 and 𝐵𝑖𝐿𝑆𝑇𝑀𝜎 have the same design as 𝐵𝑖𝐿𝑆𝑇𝑀𝑧 . The
difference is that its input is a 16 dimensional 000 vector. 𝑀𝐿𝑃𝜇 and
𝑀𝐿𝑃𝜎 have each 64 neurons. The 𝑓 | |𝑧𝑡 input’s dimension is 256+64
for the decoder module 𝐵𝑖𝐿𝑆𝑇𝑀𝑠 .𝑀𝐿𝑃𝑠 has one internal layer of
128 neurons and a last layer of two neurons for two coordinate
values in 𝑠𝑡 .

There are a few differences for POL and Gowalla data. The
𝑀𝐿𝑃𝑠 (·) contains two layers with [48, 32] neurons, respectively.
For all 𝐵𝑖𝐿𝑆𝑇𝑀∗ and 𝑅𝑁𝑁∗ modules, the dimensions of the hidden
states (not shown in our paper) are set to 512. For the static pattern
𝐵𝑖𝐿𝑆𝑇𝑀𝑓 , the dimension of recurrent input 𝑜𝑡 is 32. The 𝑀𝐿𝑃𝜇𝑓
and𝑀𝐿𝑃𝜎𝑓

input dimension is 512× 2, and the output dimension is
256. For the dynamic pattern 𝐵𝑖𝐿𝑆𝑇𝑀𝑧 , the input dimension 𝑎𝑡 is
32. The second 𝑅𝑁𝑁𝑧 module takes forward and backward hidden
states of dimension 512 × 2 as input. The hidden state of 𝑅𝑁𝑁 has
512 dimensions.𝑀𝐿𝑃𝜇𝑧𝑡 and𝑀𝐿𝑃𝜎𝑧𝑡 are set to have one layer of 32
neurons. The priors Θ includes 𝜇𝑡 and 𝜎𝑡 , whose decoding modules
𝐵𝑖𝐿𝑆𝑇𝑀𝜇 and 𝐵𝑖𝐿𝑆𝑇𝑀𝜎 have the same design as 𝐵𝑖𝐿𝑆𝑇𝑀𝑧 . The
difference is that its input is a 000 vector with a dimension of 32. The
𝑀𝐿𝑃𝜇 and𝑀𝐿𝑃𝜎 have the same number of 32 neurons. The 𝑓 | |𝑧𝑡
input’s dimension is 256+ 32 for the decoder module 𝐵𝑖𝐿𝑆𝑇𝑀𝑠 . The
𝑀𝐿𝑃𝑠 has two internal layer of [64, 32] neurons and a last layer of
two neurons for two coordinate values in 𝑠𝑡 .

A.3 Additional parameter tuning
Besides the different neural network architectures, there are sev-
eral hyper-parameters to be tuned. (1) 𝛽 parameter for 𝛽-VAE to
enhance disentangling. We tested the values [1, 10, 100]. 100 is the
choice for the model in our paper. (2) 𝛾 parameter for regularization
of constraints. We tested the values [1, 10, 100]. 1 is the choice for
the presented model in the paper. (3) Other conventional parame-
ters. Learning rate is set to be 0.0002 for Porto, 0.0002 for T-Drive,
0.0002 for POL, and 0.002 for Gowalla. The training epochs are all
set to 100. The batch size is set to 128 for all datasets and models.
All the ablation competing methods use parameter tuning for 𝛽,𝛾
and learning rates of [0.02, 0.002, 0.0002] to achieve the best perfor-
mance. IGMM-GAN models are also tuned for different learning
rates of [0.01, 0.001, 0.0001] and training epochs of [5000, 10000].

A.4 Mean Distance Error (MDE) metric details
Mean Distance Error (MDE) for Haversine Distance or Euclidean
distance is the most used metric in existing end-to-end trajectory
generation work [14, 31]. It is defined as 1

𝑛

∑𝑁
𝑖 | |𝑠𝑡 − 𝑠𝑡 | |2, where

| | · | |2 denotes the L2 norm. This metric could not be used by Ruled-
based models since there is no mapping from real inputs 𝑠𝑡 to its
synthetic output 𝑠𝑡 . Since MDE only computes a reconstruction
loss for the distribution mean, we propose to directly evaluate
the whole distributions of spatial features using “Maximum Mean
Discrepancy (MMD)”, a sophisticated evaluation framework used
in recent approaches for different complex high-dimensional data
generation problem, such as image [40] and graph [38] generation.
It is a recently-developed alternative to replace conventionalmetrics
like KL-divergence, which computes the function 𝑀𝑀𝐷 (𝐷, 𝐷̃) ↦→
[0, 1]. It outputs 1 for no similarity and 0 for matching distributions,
where the rows of matrix 𝐷 are spatial features of real trajectories

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Zhang, et al.

Figure 11: Effects of 𝑓 (rows) and 𝑧𝑡 (columns) over T-Drive dataset

Figure 12: Effects of 𝑓 (rows) and 𝑧𝑡 (columns) over POL dataset

Figure 13: Effects of 𝑓 (rows) and 𝑧𝑡 (columns) over Gowalla dataset

Figure 10: Effects of 𝑓 (rows) and 𝑧𝑡 (columns) over Porto dataset

and the rows of matrix 𝐷̃ are corresponding spatial features of
generated trajectories. Alternative methods toMMD include Jensen-
Shannon Divergence [23] and KL-divergence, a less sophisticated
method belongs to the same family as MMD. Taking an example of
spatial features, a trajectory has a feature vector𝑑1:𝑇−1 representing
lengths of two consecutive points in a trajectory sequence sample
𝑠1:𝑇 . The original length set is represented as 𝐷 ∈ R𝑁×(𝑇−1) for
a total of 𝑁 trajectory sequences and 𝑇 − 1 segments, and 𝐷̃ ∈
R𝑁̃×(𝑇−1) for 𝑁̃ generated trajectories. For this paper, the chosen
spatial features include segment lengths of two consecutive points,
angles of two consecutive segments, total segment lengths, and
point density on a spatial grid. Point density is a grid-based metric
to compare trajectories visually [23].

A.5 Additional experimental results
We conducted an extensive case study for different datasets to illus-
trate the effectiveness of our factorization approaches. Each row is
generated with a fixed 𝑓 , and each column is generated with a fixed
𝑧1:𝑇 sequence. We can see that for both taxi trajectories and check-
in trajectories, 𝑓 controls a static pattern (similar patterns in each
row), while 𝑧𝑡 controls the variances for each trajectory in such a
row. We can see that for both GPS trajectories and Check-in trajec-
tories our proposed EETG framework could factorize a consistent
general semantic because each row shows the same overall trend
but a dynamic ad-hoc semantic. Different cells show small vari-
ances within the same row. However, for the local semantics across
different columns, it is hard to tell the meaning of a spatiotemporal
dynamic emerging from the 𝑧𝑡 variable. ,

	Abstract
	1 Introduction
	2 Related Work
	2.1 Rule-based trajectory generation/synthesis
	2.2 End-to-end trajectory generation/synthesis
	2.3 Spatiotemporal constraints
	2.4 Disentangled and factorized models

	3 End-to-End Trajectory Generation
	3.1 Problem formulation
	3.2 Overall design of the generative process
	3.3 VAE-like model inference
	3.4 Deep encoders and decoders architecture
	3.5 Spatiotemporal-validity constraints

	4 Experiments
	4.1 Datasets
	4.2 Constraints setting
	4.3 Competitor methods and ablation study
	4.4 Evaluation metrics
	4.5 Quantitative results
	4.6 Qualitative results

	5 Conclusions and Future Work
	Acknowledgments
	References
	A Appendix
	A.1 Evolution of VAE-like models
	A.2 Neural network details
	A.3 Additional parameter tuning
	A.4 Mean Distance Error (MDE) metric details
	A.5 Additional experimental results

