

Research Article

Achmatowicz approach to the asymmetric synthesis of (+)- and (−)-monanchorin

Yuzhi Ma ^{a,1}, Rajender Vemula ^{a,1}, Qi Zhang ^{b,1}, Bulan Wu ^{c,*}, George A. O'Doherty ^{a,*}^a Department of Chemistry and Chemical Biology, Northeastern University, Boston MA 02115, United States^b Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston MA 02118, United States^c Division of Natural Sciences, College of Natural & Applied Sciences, University of Guam, Mangilao GU 96923, United States

ARTICLE INFO

Keywords:

Monanchorin
Asymmetric synthesis
Achmatowicz
Pd-glycosylation
Reductive amination
Guanidine natural product
Alkaloid natural product

ABSTRACT

The full account of our development of a *de novo* asymmetric total synthesis of (+)-monanchorin has been reported. The optimized synthesis provided access to either enantiomer of the guanidine alkaloid natural product in nine steps from the commodity chemicals furan and caproic acid. The route relied upon the asymmetric Noyori hydrogen transfer reduction of an achiral acylfuran to introduce the absolute stereochemistry. In addition, an Achmatowicz rearrangement, a diastereoselective palladium-catalyzed glycosylation, a reductive amination and an acid-catalyzed bicyclic guanidine mixed acetal formation were used to complete the synthesis.

1. Introduction

In an effort to find natural products that selectively inhibit mast cell function, (+)-monanchorin was identified as a possible candidate in 2004 [1]. The novel bicyclic guanidine marine alkaloid was isolated from the sponge *Monanchora unguiculata*, which was collected off the coast near the Maldives islands by McKee and coworkers. Monanchorin was found to possess significant cytotoxicity ($IC_{50} = 11.7 \mu\text{g/mL}$) in an NCI high-throughput murine IC2 mast cell differential cytotoxicity assay [1]. In addition to this anticancer activity, it is believed that compounds like (+)-monanchorin have a therapeutic potential to restore normal immune responses in cancer patients [2–6].

2. Results and discussion

In combination with its promising activity, the unique shape and charge of (+)-monanchorin makes it a compelling structure for further medicinal chemistry exploration [7]. In particular, for its use in a medicinal chemistry study that focuses on the stereochemical structure-activity relationship (S-SAR) studies. For example, it has been suggested that these spherical ionic natural products could act as cellular mimics of cations, which suggests a potentially interesting activity for the enantiomer of monanchorin (*ent*)-1. Thus, our interest in monanchorin

and related stereoisomers is as potential inhibitors of ion pumps (e.g., Na^+/K^+ -ATPase or Ca^{2+} -ATPase) [8–12]. In addition, we were also interested in monanchorin ability to stabilize the pro-apoptotic protein PDCD4 [13], which may also be the origins of its effects on mast cells. Previously, we [14–16] and others [17–19], have been interested in a polyketide based PDCD4 stabilizers, cryptocaryol, which showed interesting stereochemical flexibility in its S-SAR [20–23] toward its PDCD4 stabilizing activity. Similarly, we hypothesized that having access to both enantiomers of monanchorin, would serve as an interesting test of the origins of the structural bases of its PDCD4 activity and ion mimicry.

Of course, all discussions of the monanchorin SAR begins with its structure, which involved questions of both absolute and relative stereochemistry, as well as regiochemistry. The issue of regiochemistry revolved around two possible bicyclic aminal regioisomers 1 vs. 2 (Fig. 1). The assignment of regiochemistry and relative stereochemistry was made by a combination of 2D NMR analysis and computational modelling [1]. Finally, in 2009, the absolute stereochemistry of monanchorin was established with the asymmetric synthesis of its enantiomer, (−)-monanchorin (*ent*)-1 by Snider [24].

There has been a total of four asymmetric syntheses of monanchorin reported in the literature (Scheme 1). Snider's synthesis began with 4E-decenal 4 (3 steps from hexanal) and used a combination of Shi epoxidation and azide opening to establish asymmetry [24]. The second

^{*} Corresponding authors.E-mail addresses: wubulan@triton.uog.edu (B. Wu), G.O'Doherty@neu.edu (G.A. O'Doherty).¹ These two authors contributed equally to this work.

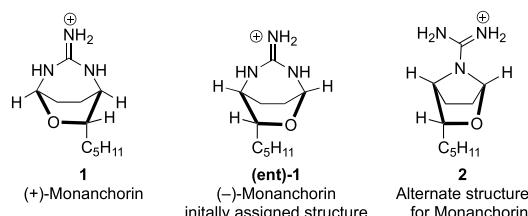
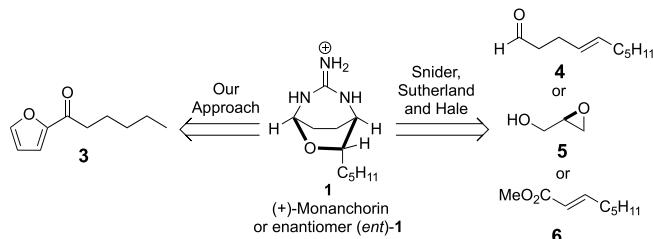
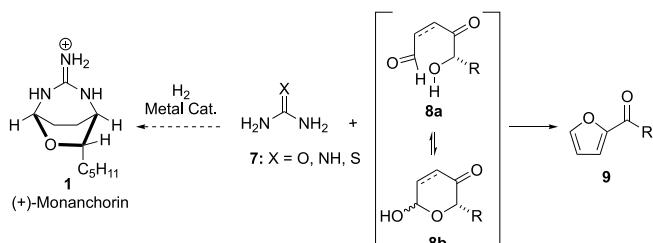
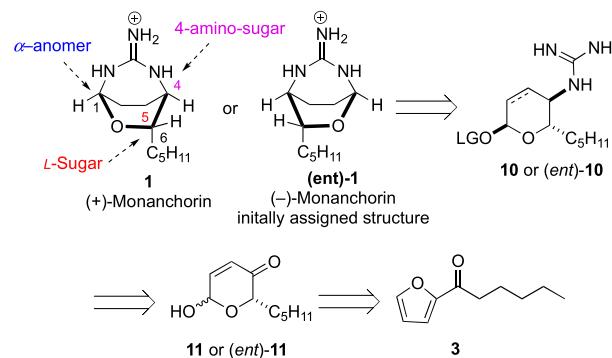



Fig. 1. (+)-Monanchorin and its enantiomer and regiosomer.

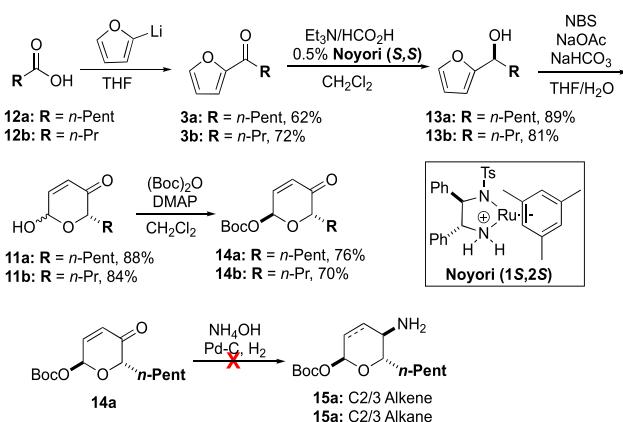


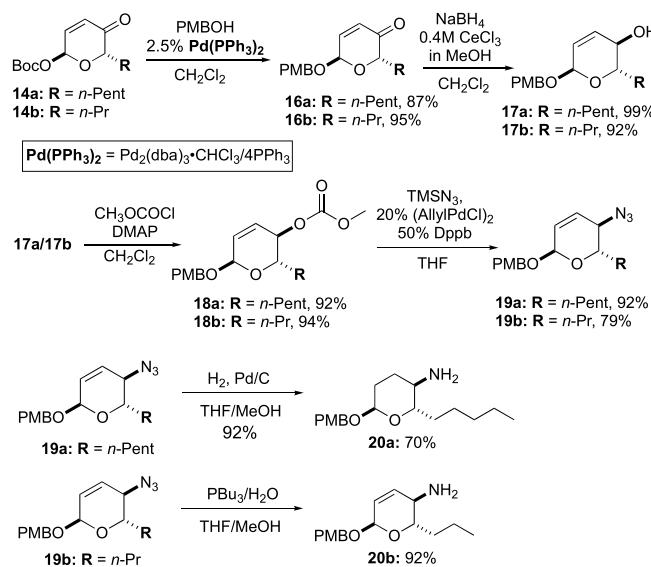
Scheme 1. Approaches to (+)-monanchorin.


synthesis of monanchorin and the first route to the natural enantiomer, (+)-monanchorin, was completed by Sutherland [25], who started from (*R*)-glycidol 5 [26]. In 2014, Hale [27] reported an asymmetric synthesis of monanchorin from enoate 6 that used a Sharpless asymmetric dihydroxylation and azide opening of cyclic sulfate to establish the key amino-alcohol stereochemistry [28]. Most recently, in 2015, we communicated our asymmetric synthesis of monanchorin from achiral furan 3 [29], which used a Noyori hydrogen transfer reaction to establish its asymmetry [30–32].

A Noyori/Achmatowicz approach, in theory, should be a natural fit for the synthesis of monanchorin (Scheme 2). In theory, an idealized approach to monanchorin could be derived from the reductive amination reaction between guanidine or guanidine surrogate and Noyori/Achmatowicz [33–35] product 8. Unfortunately, when the Achmatowicz products, like 8, were exposed to amine and guanidine type nucleophiles only a complex mixture of Maillard like reaction products were observed [36]. We revised our approach building from the previous syntheses of monanchorin which relied upon azide ring-opening reactions to establish the C-4/5 amino alcohol stereochemistry (Scheme 3). Specifically, we envisioned that the key C-4/5 amino alcohol stereochemistry was coming from a C-4 aminosugar (Scheme 3), which in turn could enable control of the C-1 anomeric stereochemistry [37–39]. Thus, the stereochemistry of monanchorin could be viewed as possessing the stereochemistry of a C-4 amino-*l*-amictose. Herein we describe the full account of our efforts to develop a *de novo* asymmetric synthetic route to both enantiomers of monanchorin.

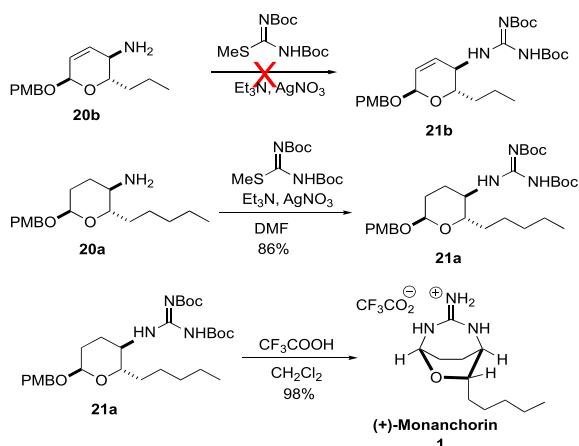
Our revised retrosynthetic analysis envisioned monanchorin 1 would result from the cyclization/intramolecular glycosylation of a C-4 guanidine intermediate like 10 (Scheme 3). The stereochemistry of guanidine 10, which in turn could come from a C-4 amination of 11. Finally, pyranones like 11 can be readily assembled from acylfurans like 3.


Scheme 2. Idealized Achmatowicz approach to (+)-monanchorin.


Scheme 3. Revised Achmatowicz retrosynthesis for (+)-1.

Our synthetic efforts began with the synthesis of pyranones 14a and 14b with a C-5 *n*-Pent and *n*-Pr group, respectively (Scheme 4). This synthesis started with the addition of excess 2-lithiofuran to carboxylic acids 12a/b to form acylfuran 3a/b (62%/72% yields). Noyori hydrogen transfer reduction of furyl ketones 3a/b (0.5 mol% (*S,S*)-Noyori's catalyst, 1:2 (Et3N/HCO2H) [40] led to high yields (89%/81% yields) of furan alcohols 13a/b with an excellent enantioselectivity (>96% ee) [41–44]. The furan alcohols 13a/b were oxidatively rearranged under the typical Achmatowicz conditions (NBS in buffered THF/H2O) to give pyranones 11a/b (88%/84% yields). We diastereoselectively protected/activated the anomeric position with a *t*-butylcarbonate group ((Boc)2O/DMAP) which provided the Boc-protected pyranones 14a/b (4:1 α/β -ratio) in excellent yields (76%/70%, for α -isomer). Unfortunately, all our efforts to perform a reductive amination of 14 lead to decomposition. This is presumably due to the base sensitivity of pyranones like 14, with anomeric leaving groups.

We next turned to a more stereocontrolled approach to install the C-4 amine functionality. To accomplish this, we decided to explore the use of Pd- π -allyl chemistry to control stereochemistry at C-1 and C-4 (Scheme 5). This began with a Pd-catalyzed glycosylation (14a/b to 16a/b) to diastereoselectively protect the anomeric position (5% triphenylphosphine, PMBOH and 1.25% Pd2(dba)-CHCl3) as a *p*-methoxybenzyl acetal (87%/95% yields) [45–49]. We next investigated the stereoselective reduction of the C-4 ketones of 16a/b with NaBH4 (CH2Cl2/MeOH, -78 °C) forming the equatorial allylic alcohol 17a/b in excellent yields (99%/92%). We then looked to convert the C-4 allylic alcohol of 17a/b into a Pd-leaving group. This began with a carbonate formation with methyl chloroformate (MeCO2Cl, DMAP) to form the mixed carbonates 18a/b (92%/94% yields). The desired C-4 azide was then installed in 19a/b upon exposure of 18a/b to the Sinou conditions for Pd- π -allylic substitution (TMSN3, (Pd(allyl)Cl)2/1,4-bis(diphenylphosphino)butane) [50–54]. This afforded both allylic azides 19a/b as single regio- and

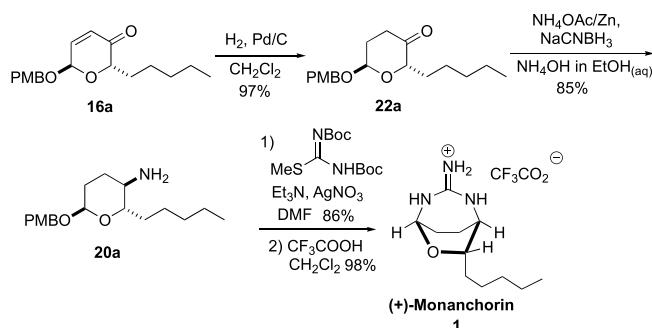

Scheme 4. Synthesis of pyranone 14 and attempted reductive aminations.

Scheme 5. Stereospecific synthesis of C-4 aminosugars 19 and 20.

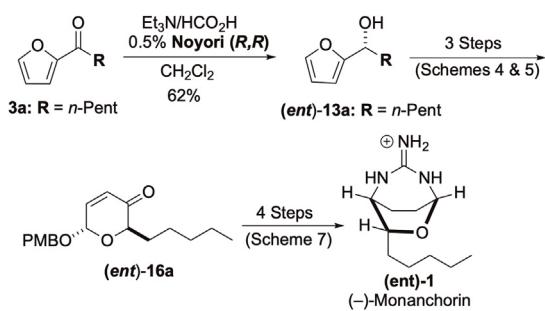
stereo-isomer and in good yields (92%/79%). The allylic azide intermediates could then be converted into the desired C-4 aminosugar both with a C-2/3-alkene 20b and without 20a. Thus, exposing allylic azide 19a to hydrogenolysis (Pd/C, H₂, MeOH) in one-pot reduction reduced both the azide and allylic double bond, while leaving behind the PMB-group to give the 4-amino-amecito-sugar 20a in 70% yield. In contrast, the azide in 19b, was selectively reduced with PPh₃ in THF/MeOH/H₂O to give 20b in 92% yield.

We next explored the stepwise installation of the C-4 guanidine group and the corresponding ring closure at the anomeric position to make the monanchorin bicyclic (Scheme 6). This began with the reaction of C-4 amine 20b with *N,N*-bis-Boc-*S*-methylisothiourea. Unfortunately, under these reaction conditions, no evidence of the desired product 21b was observed. We surmised that the presence of the C-2/3 alkene made the anomeric position too susceptible to hydrolysis. Thus, we decided to explore the same transformation on C-4 amine 20a, which lacked the C-2/3 alkene. To our delight, amine 20a reacted with *N,N*-bis-Boc-*S*-methylisothiourea in the presence of silver nitrate and trimethylamine to give the desired bis-Boc-protected guanidine 21a in 86% yield. The asymmetric synthesis of (+)-monanchorin completed when in one pot guanidine 21a was treated with TFA to remove both Boc-protecting groups and to induce the final ring-closure furnishing (+)-monanchorin (1) in excellent yield (98%). The synthetic monanchorin so obtained had spectral data (¹H and ¹³C NMR, IR and optical rotation) consistent with

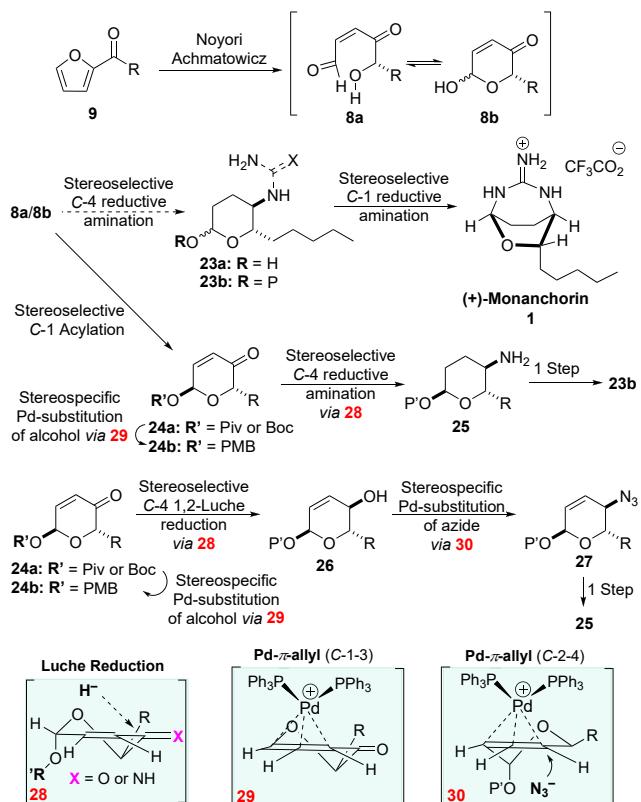
Scheme 6. Synthesis of (+)-monanchorin.


that recorded for the natural material [1].

With a synthesis of monanchorin in hand, we next looked to improve the efficiency of the overall route (Scheme 7). This began with an effort to review the number of steps required for the conversion of 16a to 20a, which required 4 steps (Scheme 5). In theory, this should be accomplished in one step with the reductive amination of 16a. Unfortunately, in our hands, we were never able to isolate 20a in a good yield and in stereochemically pure form from the direct reductive amine of 16a. In contrast, a very practical two-step reduction/reductive amination alternative was developed (Scheme 7). To our delight, the double bond in pyranone 16a was successfully reduced (Pd/C, H₂, CH₂Cl₂) to cleanly give 22a in excellent yield (97%). After a significant degree of screening of conditions for the reductive amination, we eventually found that the best results were obtained when ketone 22a was exposed to both Zn and NaCNBH₃ [55]. Specifically, when exposing ketone 22a to this combination of reducing agents (Zn and NaCNBH₃, NH₄OAc/NH₄OH, EtOH), 4-amino-amecito-sugar 20a was produced in an 85% yield [56].


We then looked to extend the route to the synthesis of the enantiomer (−)-monanchorin (Scheme 8). This began with the asymmetric Noyori reduction of 3a with the (R,R)-Noyori catalyst to provide the furyl alcohol (*ent*)-13a in excellent yield and enantioselectivity. Following an identical three steps protocol (Achmatowicz/t-Bu carbonate formation/Pd-glycosylation) (*ent*)-13a was converted into pyranone (*ent*)-16a in an excellent yield. Similarly, pyranone (*ent*)-16a was converted in 4 steps (hydrogenation/reductive amination/guanidine formation/cyclization) into the natural product enantiomer, (−)-monanchorin. Enantiomeric monanchorin possessed spectral data (¹H and ¹³C NMR, IR) and opposite optical rotation as that for the isolated monanchorin.

This evolving synthetic effort offered an opportunity to evaluate our initial and revised retrosynthetic design (Scheme 9). Specifically, we could ask how good these approaches were at accessing monanchorin and how stereochemistry was installed. In this regard, all the successful approaches to monanchorin recognize the need to install the C-4/5 aminoalcohol stereochemistry. These stereocenters in turn can be used to control the bicyclic aminal formation (*i.e.*, 23 to 1). Our first-generation approach hoped to use the C-5 alcohol stereochemistry, from the Noyori/Achmatowicz reaction, in 8a/b to control the C-4 amine stereochemistry in a comprehensive reductive amination/bicyclic aminal formation. This effort failed, presumably due to the competing reactivity of the two carbonyls in 8a. Our response was to use the C-5 stereocenter to control the C-1 α -stereochemistry (8b to 24a then 24b via 29), which in turn could be used to control the C-4 stereochemistry *via* a highly selective Luche reduction (24b to 26; *via* 28).


This newly installed C-4 alcohol stereochemistry in 26 was then stereospecifically converted into azide 27 (*via* a carbonate formation and Pd- π -allyl substitution; 26 to 27 *via* 30). Then the C-4 azide in 27 can be reduced into the C-4 amine in 25. This revised approach to 25 was fully stereocontrolled but at a cost of the addition of additional steps. In our final optimized approach, we found that the high facial selectivity of the Luche reduction (24b to 25 *via* 28, X = O) held true to when we changed the enone reduction into a stereoselective reductive amination of the

Scheme 7. Optimized synthesis of (+)-monanchorin.

Scheme 8. Synthesis of (−)-monanchorin.

Scheme 9. Stereochemical considerations.

enone **24b** to directly form **25** (via **28**, $X = \text{NH}$). The amine in **25** was then primed for guanidine introduction and bicyclic aminal formation to complete the synthesis of monanchorin.

3. Conclusion

In conclusion, a *de novo* asymmetric total synthesis of both enantiomers of the guanidine alkaloids natural product (+)-monanchorin (**1**) has been achieved in eight steps and 34% overall yield from achiral acyl furan **3a**. The route develops from the recognition that (+)-monanchorin (**1**) possesses a stereochemical relationship with α -L-amicetose amino-sugar. As a result, either enantiomer can be equally prepared in the enantiomerically pure form via a Noyori/Achmatowicz approach. The synthesis compares favorably in terms of length and overall yield with the previously reported routes. Our efforts to explore the biological properties of both enantiomers of monanchorin are ongoing and will be reported in due course.

4. Material and methods

4.1. General methods

Triethylamine, ether, tetrahydrofuran, methylene chloride and methanol were dried by passing through an activated alumina column with argon. Hexanes refer to the petroleum fraction of boiling point 40–60 °C. Air- and/or moisture-sensitive reactions were carried out under an atmosphere of argon or nitrogen using oven-dried glassware and standard syringe/septa techniques. Commercial reagents were used without purification unless otherwise noted. Flash chromatography was performed using the indicated solvent system on silica gel standard grade 60 (230–400 mesh). R_f values are reported for analytical TLC using the specified solvents and 0.25 mm silica gel 60 F254 plates that were visualized by UV irradiation (254 nm) or by KMnO_4 or anisaldehyde staining. ^1H and ^{13}C spectra were recorded on 500 MHz and 150 MHz spectrometers. Chemical shifts are reported relative to CDCl_3 (δ : 7.26 ppm) for ^1H and CDCl_3 (δ : 77.0 ppm) for ^{13}C . Optical rotations were obtained using a digital polarimeter at sodium D line (589 nm) and were reported in the concentration of g/100 mL at 25 °C. IR was recorded on FT-IR spectrometer. Melting points are uncorrected.

4.2. Experimental procedures

Included below are the experimental procedures for all newly reported compounds. Full experimental details are included in the supporting information.

4.2.1. 1-(Furan-2-yl)butan-1-one (3b)

To 330 mL of furan (4.54 mol) was dropped $n\text{-BuLi}$ (480 mL, 1.06 mol) at 0 °C. Then let it warm up to room temperature and the resulting solution was stirred at room temperature for 12 h. Then 400 mL of anhydrous THF was added to dissolve the solid mixture at RT, which was then transferred to butyric acid **12b** (48.3 mL, 0.528 mol) in 50 mL of THF at –78 °C. Then the resulting solution was stirred for 30 min at –78 °C followed by warming and stirring at 0 °C for another 12 h. Then into the reaction mixture, 30 mL of acetone was added to quit the reaction, followed by the addition of EtOAc (600 mL). At 0 °C 400 mL of saturated $\text{NH}_4\text{Cl}_{(\text{aq})}$ was added to wash the organic layer. The aqueous layer was extracted with EtOAc (2×600 mL). The pooled organic layer was washed with 50 mL saturated brine, dried over Na_2SO_4 and then concentrated under reduced pressure to give a residue. Flush chromatography on silica gel eluting with 5% Et_2O /hexane gave furan acetone **3b** (52.27 g, 72%): light yellow oil; $R_f = 0.69$ (2:1 (v/v) hexane/ EtOAc); IR (thin film, cm^{-1}): 3132, 2964, 2876, 1674, 1568, 1467, 1394, 1159, 1020, 881, 760; ^1H NMR (600 MHz CDCl_3): δ 7.51 (dd, $J = 1.8, 0.6$ Hz, 1H), 7.10 (dd, $J = 3.6, 1.2$ Hz, 1H), 6.45 (dd, $J = 3.6, 1.8$ Hz, 1H), 2.72 (dd, $J = 7.8, 7.2$ Hz, 2H), 1.68 (qdd, $J = 7.8, 7.8, 7.2$ Hz, 2H), 0.91 (dd, $J = 7.8, 7.2$ Hz, 3H); ^{13}C NMR (150 MHz, CDCl_3): δ 189.6, 152.9, 146.2, 116.8, 112.1, 40.4, 17.8, 13.8.

4.2.2. (S)-1-(Furan-2-yl)butan-1-ol (13b)

To a solution of aqueous HCOONa (672 mL, 2.0 mol/L) was added furan ketone **3b** (52.27 g, 1.344 mol) and CH_2Cl_2 (34 mL). CTAB (13.6 g, 37.3 mmol) was then added. The mixture was stirred for 5 min. Noyori asymmetric transfer hydrogenation catalyst (*R*)-Ru(η^6 -mesitylene)-(S,S)-TsDPEN (0.218 g, 0.1 mol%). The resulting solution was stirred at room temperature under argon for 24 h. Then the mixture was extracted with Et_2O (3×300 mL). The combined organic layer was washed with 50 mL saturated aqueous NaHCO_3 , 50 mL saturated brine, dried over Na_2SO_4 and then concentrated under reduced pressure to give a residue. Flush chromatography on silica gel eluting with 10% Et_2O /hexane gave furan alcohol **13b** (42.16 g, 81%): Colorless oil; $R_f = 0.59$ (2:1 (v/v) hexane/ EtOAc); $[\alpha]_D^{21} -26$ (c 1.5, CH_2Cl_2); IR (thin film, cm^{-1}): 3343, 2959, 2935, 2873, 1505, 1466, 1149, 1007, 732; ^1H NMR (600 MHz CDCl_3): δ 7.36 (dd, $J = 1.8, 0.6$ Hz, 1H), 6.32 (dd, $J = 3.0, 1.8$ Hz, 1H), 6.22 (d, $J = 3.0$,

1H), 4.68 (dd, $J = 7.2, 6.6$ Hz, 1H), 1.95 (s, 1H), 1.83 (m, 2H), 1.50–1.41 (m, 1H), 1.39–1.31 (m, 1H), 0.94 (dd, $J = 7.8, 7.2$ Hz, 3H); ^{13}C NMR (150 MHz, CDCl_3): δ 157.1, 142.0, 110.3, 105.9, 67.8, 37.8, 18.9, 14.0.

4.2.3. (S)-6-Hydroxy-2-propyl-2H-pyran-3(6H)-one (11b)

To a solution of 3.67 g furan alcohol **13b** (26.2 mmol) in 106 mL $\text{THF-H}_2\text{O}$ (3:1) was added 4.4 g NaHCO_3 (52.4 mmol), 3.56 g $\text{NaOAc}\cdot\text{H}_2\text{O}$ (26.2 mmol), and 4.66 g NBS (26.2 mmol) at 0 °C. The reaction mixture was kept stirring at this temperature for 1 h, then at 0 °C 60 mL saturated NaHCO_3 was added to quench the reaction. The reaction mixture was directly extracted with Et_2O (3 × 100 mL) and the organic layer was pooled, washed by 30 mL saturated brine, dried over Na_2SO_4 and then concentrated reduced pressure to give a residue, which was rapidly subjected to flush chromatography on silica gel. Elution with 20% EtOAc/hexane afforded pyranone alcohol **11b** (3.43 g, 84%): Colorless oil; $R_f = 0.41$ (2:1 (v/v) hexane/EtOAc); $[\alpha]_D^{21} +12$ (c 1.6, CH_2Cl_2); IR (thin film, cm^{-1}) 3399, 2959, 2961, 2874, 1683, 1084, 1022, 968; ^1H NMR (600 MHz, CDCl_3) major isomer: δ 6.88 (dd, $J = 10.2, 3.0$ Hz, 1H), 6.07 (d, $J = 10.2, 1$ H), 5.62 (s, 1H), 4.54 (dd, $J = 8.4, 4.2$ Hz, 1H), 3.83 (s, 1H), 1.89–1.83 (m, 1H), 1.70–1.63 (m, 1H), 1.47–1.36 (m, 2H), 0.91 (dd, $J = 7.8, 7.2$ Hz, 3H); ^{13}C NMR (150 MHz, CDCl_3) major isomer: δ 197.2, 144.9, 127.7, 87.7, 74.1, 31.8, 18.4, 13.9.

4.2.4. (2S,6S)-t-Butyl-5,6-dihydro-6-propyl-5-oxo-2H-pyran-2-yl carbonate (14b)

To a solution of 4.0 g pyranone alcohol **11b** (25.8 mmol) in 26 mL CH_2Cl_2 was added 315 mg DMAP (2.58 mmol) at –78 °C. A pre-cooled solution of 11.2 g $(\text{Boc})_2\text{O}$ (51.6 mmol) in 15 mL CH_2Cl_2 was added drop wise into the reaction mixture via a cannula. The reaction mixture was stirred at –78 °C for 12 h. The reaction was quenched by 150 mL saturated NaHCO_3 and then extracted with Et_2O (300 mL × 3). The organic layers were pooled, then washed by 50 mL saturated NaCl, dried over Na_2SO_4 and concentrated under reduced pressure to give a residue. Flush chromatograph on silica gel eluting with 5% Et₂O/hexane gave 5.61 g (85%) of two diastereomers of Boc-protected pyranone **14b** (α) and **14b** (β) in 2.7:1 ratio.

α -pyranone 14b: $R_f = 0.76$ (3:1 (v/v) hexane/EtOAc); $[\alpha]_D^{21} +55$ (c 1.2, CDCl_3); IR (thin film, cm^{-1}) 2964, 2876, 1749, 1698, 1459, 1370, 1274, 1253, 1155, 1054, 936, 844; ^1H NMR (600 MHz, CDCl_3): δ 6.86 (dd, $J = 10.2, 3.6$ Hz, 1H), 6.33 (d, $J = 3.6$ Hz, 1H), 6.19 (d, $J = 10.2$ Hz, 1H), 4.51 (dd, $J = 8.4, 4.2$ Hz, 1H), 1.92 (dd, $J = 14.4, 9.0, 7.8, 3.6$ Hz, 1H), 1.70 (dd, $J = 14.4, 7.8, 7.8, 7.8$ Hz, 1H), 1.51 (s, 9H), 1.48–1.40 (m, 2H), 0.91 (dd, $J = 7.8, 7.2$ Hz, 3H); ^{13}C NMR (150 MHz, CDCl_3): δ 195.8, 152.0, 141.0, 129.1, 89.4, 83.7, 75.6, 31.5, 27.9, 18.1, 13.8; HRMS (CI): calcd. for $[\text{C}_{13}\text{H}_{20}\text{O}_5 + \text{Na}]^+$: 279.1203, Found: 279.1204.

β -pyranone 14b: $R_f = 0.70$ (3:1 (v/v) hexane/EtOAc); $[\alpha]_D^{21} -78$ (c 1.3, CHCl_3); IR (thin film, cm^{-1}) 2963, 2875, 1743, 1683, 1468, 1370, 1284, 1252, 1158, 1058, 946, 847; ^1H NMR (600 MHz, CDCl_3): δ 6.85 (dd, $J = 10.2, 3.0$ Hz, 1H), 6.36 (dd, $J = 3.0, 1.2$ Hz, 1H), 6.20 (dd, $J = 10.2, 1.2$ Hz, 1H), 4.23 (dd, $J = 10.2, 4.2$ Hz, 1H), 1.94–1.87 (m, 1H), 1.79–1.73 (m, 1H), 1.52 (s, 9H), 1.56–1.51 (m, 1H), 1.49–1.41 (m, 1H), 0.95 (dd, $J = 7.8, 7.2$ Hz, 3H); ^{13}C NMR (150.8 MHz, CDCl_3): δ 196.2, 152.1, 142.0, 128.5, 89.6, 83.7, 79.7, 35.6, 27.9, 18.9, 13.8; HRMS (CI): calcd. for $[\text{C}_{13}\text{H}_{20}\text{O}_5 + \text{Na}]^+$: 279.1203, Found: 279.1204.

4.2.5. (2S,6R)-6-(4-Methoxybenzyloxy)-2-propyl-2H-pyran-3(6H)-one (16b)

To a solution of 7.74 g of 4-methoxybenzyl alcohol (56.0 mmol) and 7.18 g pyranone **14b** (28.0 mmol) in 17 mL CH_2Cl_2 was added a solution of 0.724 g $\text{Pd}_2(\text{dba})_3\cdot\text{CHCl}_3$ (0.70 mmol) and 0.734 g PPh_3 (2.80 mmol) in 3 mL CH_2Cl_2 at 0 °C. The reaction mixture was stirred at 0 °C for 10 h and then quenched by 35 mL saturated NaHCO_3 , followed by extraction with Et_2O (100 mL × 3). The organic layer was pooled, then washed by 30 mL saturated NaCl, dried over Na_2SO_4 and concentrated under reduced pressure to give crude product. Chromatograph on silica gel, eluting with 10% EtOAc/hexane gave glycosylated pyranone **16b** (7.33

g, 95%): White solid, mp: 46.2–47.0 °C; $R_f = 0.72$ (2:1 (v/v) hexane/EtOAc); $[\alpha]_D^{21} 10$ (c 1.41, CHCl_3); IR (thin film, cm^{-1}) 2960, 2873, 1693, 1612, 1513, 1464, 1247, 1090, 1026, 820; ^1H NMR (600 MHz, CDCl_3): δ 7.29 (d, $J = 8.4$ Hz, 2H), 6.90 (d, $J = 9.0$ Hz, 2H), 6.80 (dd, $J = 10.2, 3.6$ Hz, 1H), 6.07 (dd, $J = 10.2, 0.6$ Hz, 1H), 5.26 (d, $J = 3.6$ Hz, 1H), 4.76 (d, $J = 11.4$ Hz, 1H), 4.59 (d, $J = 11.4$ Hz, 1H), 4.44 (dd, $J = 8.4, 3.6$ Hz, 1H), 3.80 (s, 3H), 1.96 (dd, $J = 13.8, 9.6, 6.0, 3.6$ Hz, 1H), 1.69–1.63 (m, 1H), 1.59–1.51 (m, 1H), 1.50–1.41 (m, 1H), 0.97 (dd, $J = 7.8, 7.2$ Hz, 3H); ^{13}C NMR (150 MHz, CDCl_3): δ 196.8, 159.8, 143.6, 130.0, 129.3, 128.0, 114.1, 91.9, 74.1, 70.4, 55.4, 31.7, 18.6, 14.0; HRMS (CI): calcd. for $[\text{C}_{16}\text{H}_{20}\text{O}_4 + \text{Na}]^+$: 299.12538, Found: 299.12584.

4.2.6. (2S,3R,6R)-6-(4-Methoxybenzyloxy)-2-propyl-3,6-dihydro-2H-pyran-3-ol (17b)

A solution of 6.56 g pyranone **16b** (23.7 mmol) in 40.0 mL $\text{CH}_2\text{Cl}_2\text{-MeOH}$ (3:1) was cooled down to –78 °C, then 0.90 g NaBH_4 (23.7 mmol) was added. The reaction mixture was kept stirring at –78 °C for 3 h. The reaction was then quenched by 10 mL saturated NaHCO_3 , followed by extraction with Et_2O (3 × 30 mL). The organic layer was washed by 10 mL saturated NaCl, dried over Na_2SO_4 , and concentrated under reduced pressure to give crude product. Chromatography on silica gel eluting with 30% EtOAc/hexane gave allylic alcohol **17b** (6.05 g, 92%): colorless oil; $R_f = 0.38$ (2:1 (v/v) hexane/EtOAc); $[\alpha]_D^{21} -51$ (c 1.34, MeOH); IR (thin film, cm^{-1}) 3420, 3049, 2957, 2872, 1613, 1514, 1464, 1248, 1022, 821; ^1H NMR (600 MHz, CD_3OD): δ 7.23 (d, $J = 9.0$ Hz, 2H), 6.86 (d, $J = 9.0$ Hz, 2H), 5.87 (ddd, $J = 10.2, 1.2, 1.2$ Hz, 1H), 5.66 (ddd, $J = 9.6, 3.0, 2.4$ Hz, 1H), 4.97 (ddd, $J = 1.2, 1.2, 0.6$ Hz, 1H), 4.66 (d, $J = 11.4$ Hz, 1H), 4.45 (d, $J = 11.4$ Hz, 1H), 3.75 (ddd, $J = 9.6, 3.0, 1.8$ Hz, 1H), 3.60 (ddd, $J = 9.0, 8.4, 2.4$ Hz, 1H), 3.75 (s, 3H), 1.84–1.79 (m, 1H), 1.66–1.58 (m, 1H), 1.46–1.37 (m, 2H), 0.96 (dd, $J = 7.2, 7.2$ Hz, 3H); ^{13}C NMR (150 MHz, CD_3OD): δ 161.0, 135.5, 131.4, 130.8, 127.3, 114.9, 94.6, 72.6, 70.7, 68.8, 55.8, 35.3, 20.0, 14.6; HRMS (CI): calcd. for $[\text{C}_{16}\text{H}_{22}\text{O}_4 + \text{H}]^+$: 279.15909, Found: 279.15954.

4.2.7. (2S,3R,6R)-6-(4-Methoxybenzyloxy)-2-propyl-3,6-dihydro-2H-pyran-3-yl methyl carbonate (18b)

To a solution of allylic alcohol **17b** (50 mg, 0.18 mmol) in dry CH_2Cl_2 (1.0 mL) at 0 °C, was added pyridine (73 μL , 0.90 mmol), DMAP (1.1 mg), and methyl chloroformate (87 mg, 0.90 mmol). After stirring 12 h at room temperature, water (1 mL) was added and then the mixture was extracted with EtOAc (3 × 5 mL), dried (Na_2SO_4), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 10% EtOAc/hexane to give carbonate **18b** (57.0 mg, 94%) as colorless oil. $R_f = 0.63$ (2:1 (v/v) hexane/EtOAc); $[\alpha]_D^{21} -99.6$ (c 0.99, CHCl_3); IR (thin film, cm^{-1}) 3010, 2958, 2879, 1747, 1514, 1441, 1260, 1026, 1004, 820, 790; ^1H NMR (600 MHz, CDCl_3): δ 7.28 (d, $J = 8.4$ Hz, 2H), 6.88 (d, $J = 8.4$ Hz, 2H), 5.92 (ddd, $J = 10.2, 1.2, 1.2$ Hz, 1H), 5.81 (ddd, $J = 10.2, 2.4, 1.8$ Hz, 1H), 5.04 (dd, $J = 1.2, 0.6$ Hz, 1H), 4.94 (ddd, $J = 9.0, 1.8, 1.8, 1.2$ Hz, 1H), 4.74 (d, $J = 11.4$ Hz, 1H), 4.49 (d, $J = 11.4$ Hz, 1H), 3.94 (ddd, $J = 9.0, 9.0, 1.8$ Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 1.70–1.61 (m, 2H), 1.52–1.38 (m, 2H), 0.97 (dd, $J = 7.8, 6.6$ Hz, 3H); ^{13}C NMR (150 MHz, CDCl_3): δ 159.6, 155.6, 129.89, 129.88, 129.4, 128.4, 114.1, 93.1, 73.5, 69.8, 68.3, 55.5, 55.2, 34.2, 18.8, 14.2; HRMS (CI): calcd. for $[\text{C}_{18}\text{H}_{24}\text{O}_6 + \text{Na}]^+$: 359.14651. Found 359.14695.

4.2.8. (2S,3R,6R)-3-Azido-6-(4-methoxybenzyloxy)-2-propyl-3,6-dihydro-2H-pyran (19b)

To a mixture of carbonate **18b** (1.05 g, 3.11 mmol), allylpalladium chloride dimer (0.114 g, 0.31 mmol) and 1,4-bis(diphenylphosphino)butane (0.53 g, 1.24 mmol) in anhydrous THF (7.0 mL) was added TMN_3 (2.1 mL, 15.5 mmol) under argon atmosphere. The solution was stirred at room temperature for 12 h. Then the mixture was evaporated under reduced pressure and purified using silica gel flash chromatography eluting with 5% EtOAc/hexane to give allylic azide **19b** (0.75 g, 79%) as colorless oil. $R_f = 0.81$ (2:1 (v/v) hexane/EtOAc); $[\alpha]_D^{21} -125$

(c 0.46, MeOH); IR (thin film, cm^{-1}) 3010, 2959, 2877, 2103, 1613, 1514, 1465, 1249, 1034, 821; ^1H NMR (600 MHz, CDCl_3): δ 7.28 (d, J = 8.4 Hz, 2H), 6.89 (d, J = 9.0 Hz, 2H), 5.96 (ddd, J = 10.2, 1.2, 1.2 Hz, 1H), 5.89 (ddd, J = 9.6, 2.4, 1.8 Hz, 1H), 5.03 (s, 1H), 4.73 (d, J = 11.4 Hz, 1H), 4.49 (d, J = 11.4 Hz, 1H), 3.81 (s, 3H), 3.75 (ddd, J = 9.6, 9.0, 2.4 Hz, 1H), 3.60 (dddd, J = 9.6, 1.8, 1.8 Hz, 1H), 1.82–1.77 (m, 1H), 1.69–1.62 (m, 1H), 1.53–1.43 (m, 2H), 1.00 (dd, J = 7.2, 7.2 Hz, 3H); ^{13}C NMR (150 MHz, CDCl_3): δ 159.6, 129.9, 129.8, 129.1, 128.8, 114.1, 92.8, 69.8, 69.5, 59.0, 55.5, 34.8, 18.9, 14.2; HRMS (CI): calcd. for $[\text{C}_{16}\text{H}_{21}\text{N}_3\text{O}_3 + \text{Na}]^+$: 326.14751. Found 326.14801.

4.2.9. (2S,3R,6R)-6-(4-Methoxybenzylloxy)-2-propyl-3,6-dihydro-2H-pyran-3-amine (20b)

To a solution of azide **19b** (39 mg, 0.13 mmol) in $\text{THF}/\text{H}_2\text{O}$ (9:1, v/v, 0.50 mL) was added PBu_3 (78 mg, 0.39 mmol), then the solution was stirred at room temperature for 1 h. Then the mixture was evaporated under reduced pressure, and the crude product was purified using silica gel flash chromatography eluting with 20% $\text{EtOAc}/\text{hexane}$ to give allylic amine **20b** (27 mg, 92%) as colorless oil. R_f (50% $\text{EtOAc}/\text{hexane}$) = 0.36; $[\alpha]_D^{21}$ −116 (c 0.87, CHCl_3); IR (thin film, cm^{-1}) 3323, 2962, 2936, 2876, 2484 (weak, broad), 1614, 1514, 1471, 1248, 1179, 1023, 1016, 824; ^1H NMR (600 MHz, CD_3OD): δ 7.26 (d, J = 8.4 Hz, 2H), 6.89 (d, J = 9.0 Hz, 2H), 5.78 (ddd, J = 10.2, 0.6, 0.6 Hz, 1H), 5.75 (ddd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.04 (s, 1H), 4.69 (d, J = 11.4 Hz, 1H), 4.49 (d, J = 11.4 Hz, 1H), 4.10 (dd, J = 9.6, 1.2 Hz, 1H), 3.78 (s, 3H), 3.61 (ddd, J = 9.6, 9.6, 1.8 Hz, 1H), 1.66–1.62 (m, 1H), 1.49–1.39 (m, 3H), 0.96 (dd, J = 7.2, 6.6 Hz, 3H); ^{13}C NMR (150 MHz, CD_3OD): δ 161.1, 134.1, 131.4, 130.9, 127.8, 115.0, 94.6, 71.7, 70.8, 55.9, 50.1, 35.6, 20.1, 14.6; CIHRMS: calcd. for $[\text{C}_{16}\text{H}_{23}\text{NO}_3\text{Na}^+]$: 300.15701. Found 300.15704.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We acknowledge the National Science Foundation (No. CHE-2102649) and the National Institutes of Health (Nos. AI142040 and AI154860) for financial support.

Appendix A. Supplementary data

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.gresc.2022.03.003>.

References

- [1] K.M. Meragelman, T.C. McKee, J.B. McMahon, *J. Nat. Prod.* 67 (2004) 1165–1167.
- [2] D. Ribatti, E. Crivellato, *Biochim. Biophys. Acta* 1822 (2012) 2–8.
- [3] K. Khazai, N.R. Blatner, M.W. Khan, F. Gounari, E. Gounaris, K. Dennis, A. Bonertz, F.N. Tsai, M.J. Strouch, E. Cheon, J.D. Phillips, P. Beckhove, D.J. Bentrem, *Cancer Metastasis Rev.* 30 (2011) 45–60.
- [4] S. Maltby, K. Khazaei, K.M. McNagny, *Biochim. Biophys. Acta* 1796 (2009) 19–26.
- [5] H. Nitta, Y. Wada, Y. Kawano, Y. Murakami, A. Irie, K. Taniguchi, K. Kikuchi, Y. Yamada, K. Suzuki, J. Honda, M. Wilson- Morifushi, N. Araki, M. Eto, H. Baba, T. Imamura, *Clin. Cancer Res.* 19 (2013) 2004–2013.
- [6] E.S.K. Assem, K.H. Peh, B.Y. Wan, S. Manaviazar, M.A. Walters, J.H. George, K. Hale, *J. Inflamm. Res.* 57 (Supplement 1) (2008) 21–22.
- [7] Y. Ohizumi, S. Sasaki, T. Kusumi, I.I. Ohtani, *Eur. J. Pharmacol.* 310 (1996) 95–98.
- [8] H.Y.L. Wang, B. Wu, Q. Zhang, Y. Rojanasakul, G.A. O'Doherty, *ACS Med. Chem. Lett.* 2 (2011) 259–263.
- [9] H.Y.L. Wang, Y. Rojanasakul, G.A. O'Doherty, *ACS Med. Chem. Lett.* 2 (2011) 264–269.
- [10] A. Iyer, M. Zhou, N. Azad, H. Elbaz, L. Wang, D.K. Rogalsky, Y. Rojanasakul, G.A. O'Doherty, J.M. Langenhan, *ACS Med. Chem. Lett.* 1 (2010) 326–330.
- [11] H.Y.L. Wang, W. Xin, M. Zhou, T.A. Stueckle, Y. Rojanasakul, G.A. O'Doherty, *ACS Med. Chem. Lett.* 2 (2011) 73–78.
- [12] J.M.M. Valadares, S.O. Bajaj, H. Li, H.Y.L. Wang, S.C. Silva, J.P. Garcia, D.G. Pereira, P. Azalim, L.E.M. Quintas, F. Noël, V.F. Cortes, G.A. O'Doherty, L.A. Barbosa, *J. Cell. Biochem.* 12 (2021) 1903–1914.
- [13] T. Grkovic, J.S. Blees, M.M. Bayer, N.H. Colburn, C.L. Thomas, C.J. Henrich, M.L. Peach, J.B. McMahon, T. Schmid, K.R. Gustafson, *Mar. Drugs* 12 (2014) 4593–4601.
- [14] Y. Wang, G.A. O'Doherty, *J. Am. Chem. Soc.* 135 (2013) 9334–9337.
- [15] M.F. Cuccarese, Y. Wang, P.J. Beuning, G.A. O'Doherty, *ACS Med. Chem. Lett.* 5 (2014) 522–526.
- [16] A.Z. Aljahdali, K.A. Foster, G.A. O'Doherty, *Chem. Commun.* 54 (2018) 3428–3435.
- [17] T. Grkovic, J.S. Blees, N.H. Colburn, T. Schmid, C.L. Thomas, C.J. Henrich, J.B. McMahon, K.R. Gustafson, *J. Nat. Prod.* 74 (2011) 1015–1020.
- [18] Q. Wang, Z. Sun, H.S. Yang, *Oncogene* 27 (2007) 1527–1535.
- [19] A. Palamarchuk, A. Efanov, V. Maximov, R.I. Aqeilan, C.M. Croce, Y. Pekarsky, *Cancer Res.* 65 (2005) 11282–11286.
- [20] C.M. Goins, T.D. Sudasinghe, X. Liu, Y. Wang, G.A. O'Doherty, D.R. Ronning, *Biochemistry* 57 (2018) 2383–2393.
- [21] X. Liu, Y. Wang, R.I. Duclos, G.A. O'Doherty, *ACS Med. Chem. Lett.* 9 (2018) 274–278.
- [22] X. Liu, Y. Wang, G.A. O'Doherty, *Asian J. Org. Chem.* 4 (2015) 994–1009.
- [23] M. Mulzer, B. Tiegs, Y. Wang, G.W. Coates, G.A. O'Doherty, *J. Am. Chem. Soc.* 136 (2014) 10814–10820.
- [24] M. Yu, B.B. Snider, *Org. Lett.* 11 (2009) 1031–1032.
- [25] A.M. Zaed, A. Sutherland, *Org. Biomol. Chem.* 8 (2010) 4394–4399.
- [26] J.M. Ready, E.N. Jacobsen, *J. Am. Chem. Soc.* 121 (1999) 6086–6087.
- [27] K.J. Hale, L. Wang, *Org. Lett.* 16 (2014) 2154–2157.
- [28] E.N. Jacobsen, I. Marko, W.S. Mungall, G. Schroeder, K.B. Sharpless, *J. Am. Chem. Soc.* 110 (1988) 1968–1970.
- [29] Y. Ma, G.A. O'Doherty, *Org. Lett.* 17 (2015) 5280–5283.
- [30] R. Noyori, T. Ohkuma, *Angew. Chem. Int. Ed.* 40 (2001) 40–73.
- [31] R. Noyori, M. Yamakawa, S. Hashiguchi, *J. Org. Chem.* 66 (2001) 7931–7944.
- [32] M. Li, J.G. Scott, G.A. O'Doherty, *Tetrahedron Lett.* 45 (2004) 1005–1009.
- [33] O. Achmatowicz, R. Bielski, *Carbohydr. Res.* 55 (1977) 165–176.
- [34] D. Balachari, G.A. O'Doherty, *Org. Lett.* 2 (2000) 863–866.
- [35] D. Balachari, G.A. O'Doherty, *Org. Lett.* 2 (2000) 4033–4036.
- [36] C. Dennis, F. Karim, J.S. Smith, *J. Food Sci.* 80 (2015) 472–478.
- [37] S.A. Borisova, S.R. Guppi, H.J. Kim, B. Wu, H.W. Liu, G.A. O'Doherty, *Org. Lett.* 12 (2010) 5150–5153.
- [38] H. Guo, G.A. O'Doherty, *J. Org. Chem.* 73 (2008) 5211–5220.
- [39] R.M.M. Mrozowski, Z.M. Sandusky, R. Vemula, B. Wu, Q. Zhang, D.A. Lannigan, G.A. O'Doherty, *Org. Lett.* 16 (2014) 5996–5999.
- [40] A. Fujii, S. Hashiguchi, N. Uematsu, T. Ikariya, R. Noyori, *J. Am. Chem. Soc.* 118 (1996) 2521–2522.
- [41] T. Hyodo, Y. Katayama, Y. Kobayashi, *Tetrahedron Lett.* 50 (2009) 3547–3549.
- [42] Y. Kobayashi, M. Kusakabe, Y. Kitano, F. Sato, *J. Org. Chem.* 53 (1988) 1586–1587.
- [43] M. Kusakabe, Y. Kitano, Y. Kobayashi, F. Sato, *J. Org. Chem.* 54 (1989) 2085–2091.
- [44] T. Ohkuma, M. Koizumi, M. Yoshida, R. Noyori, *Org. Lett.* 2 (2000) 1749–1751.
- [45] R.S. Babu, G.A. O'Doherty, *J. Am. Chem. Soc.* 125 (2003) 12406–12407.
- [46] R.S. Babu, M. Zhou, G.A. O'Doherty, *J. Am. Chem. Soc.* 126 (2004) 3428–3429.
- [47] R.S. Babu, G.A. O'Doherty, *J. Carbohydr. Chem.* 24 (2005) 169–177.
- [48] H. Guo, G.A. O'Doherty, *Angew. Chem. Int. Ed.* 46 (2007) 5206–5208.
- [49] H. Guo, G.A. O'Doherty, *J. Org. Chem.* 73 (2008) 5211–5220.
- [50] R.N. De Oliveira, L. Cottier, D. Sinou, R.M. Srivastava, *Tetrahedron* 61 (2005) 8271–8281.
- [51] H. Guo, G.A. O'Doherty, *Org. Lett.* 8 (2006) 1609–1612.
- [52] H. Guo, G.A. O'Doherty, *Angew. Chem. Int. Ed.* 46 (2007) 5206–5208.
- [53] H. Guo, G.A. O'Doherty, *Tetrahedron* 64 (2008) 304–313.
- [54] J.N. Abrams, R.S. Babu, H. Guo, D. Le, J. Le, J.M. Osbourn, G.A. O'Doherty, *J. Org. Chem.* 73 (2008) 1935–1940.
- [55] E.M. Dangerfield, C.H. Plunkett, A.L. Win-Mason, B.L. Stocker, M.S.M. Timmer, *J. Org. Chem.* 75 (2010) 5470–5477.
- [56] M. Allegretti, V. Berdini, M.C. Cesta, R. Curti, L. Nicolini, A. Topai, *Tetrahedron Lett.* 42 (2001) 4257–4259.