

De Novo Asymmetric Approach to Aspergillide-C: Synthesis of 4-*epi*-seco-Aspergillide-C

Yalan Xing^[b] and George A. O'Doherty*^[a]

[a] Dr. G. A. O'Doherty
Department of Chemistry and Chemical Biology
Northeastern University
360 Huntington Avenue, Boston 02115, USA
E-mail: g.odoherty@neu.edu

[b] Dr. Y. Xing
Department of Chemistry
William Paterson University
Wayne, New Jersey 07470, USA

Supporting information for this article is given via a link at the end of the document.

Abstract: An asymmetric approach toward the synthesis of the marine natural product aspergillide-C has been developed. The convergent asymmetric synthesis uses two asymmetric Noyori transfer hydrogenations to enantioselectively prepare the two key fragments, a C-1 to C-7 pyranone fragment and a C-8 to C-14 β -keto-sulfone fragment. The absolute stereochemistry of the pyranone fragment was established by a Noyori reduction of β -furylketoester to form a furyl alcohol. An Achmatowicz rearrangement was used to stereoselectively convert the furyl alcohol in to the key pyranone fragment. The absolute stereochemistry of the β -keto-sulfone fragment was established by a Noyori reduction of an ynone to form a propargyl alcohol. An alkyne zipper isomerization was used to stereospecifically convert the propargyl alcohol in to the β -keto-sulfone fragment. Finally, a Pd-catalyzed C-glycosylation was used to diastereoselectively couple the two fragments, which when combined with a reduction and Julia-Kocienski type elimination formed a protected variant of the 4-*epi*-seco-acid of aspergillide-C.

Introduction

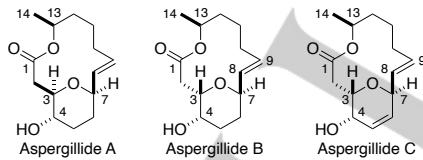
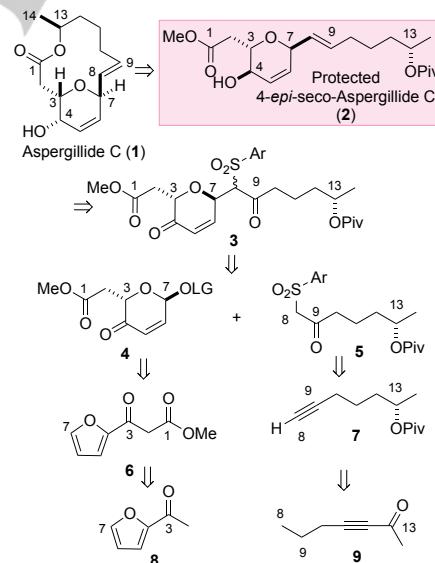
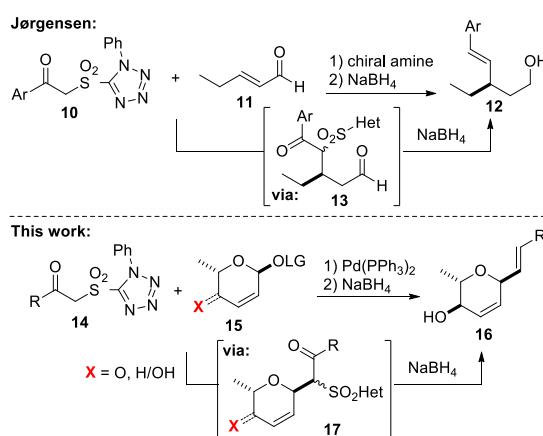



Figure 1. The aspergillides A, B and C

The aspergillides A, B, and C are a class of 14-membered macrocides isolated by Kusumi in 2007 from the marine-derived fungus *Aspergillus ostianus* strain 01F313 (Figure 1).^[1] The structures and absolute configurations of aspergillides were determined by analyses of NMR spectra and modified Mosher's method. In addition to the 14-membered lactone, all three aspergillides share a 2,3,5-tri-substituted pyran and a C-8/9 trans-alkene. Of the three aspergillides, aspergillide-A and aspergillide-B are C-3 epimer, with aspergillide-A being a 1,3-cis-fused pyran and aspergillide-B being a 1,3-trans-fused pyran. Aspergillide-C shares the stereochemical features with aspergillide-B but differs in that it has extra unsaturation in the pyran at C-5/6. Despite these differences, all three aspergillides possess significant

cytotoxicity against the mouse lymphocytic leukemia cell line (L1210) ($LD_{50} = 2.1$ for aspergillide-A, 71.0 for aspergillide-B, and 2.0 g/mL for aspergillide-C). Because of a combination of structural uniqueness and biological activity of the aspergillides, the synthesis of aspergillides has attracted much attention in synthetic community.^[2,3,4,5,6,7] Herein we disclose our efforts at the *de novo* asymmetric synthesis of a C-4 epimer of the seco-acid of aspergillide-C. The synthetic approach that we envisioned was one ultimately aimed at the synthesis of aspergillide-C (Scheme 1).

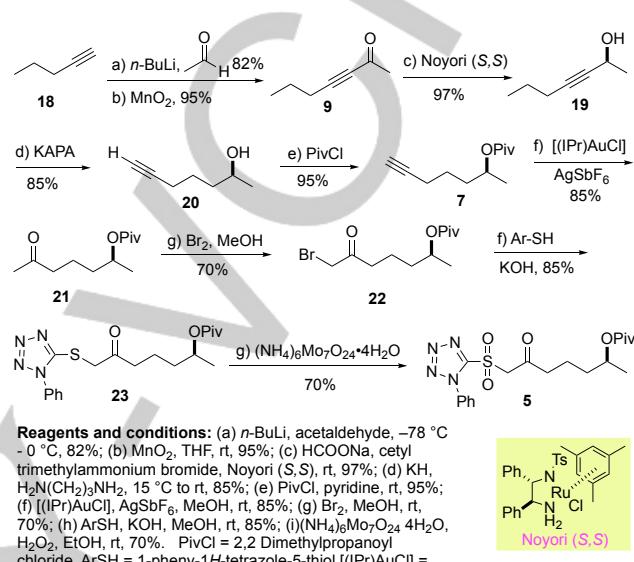


Scheme 1. Proposed retrosynthetic approach to aspergillide-C

There have been three syntheses of aspergillide-A,^[3,4] six syntheses of aspergillide-B^[3,5] and five syntheses of aspergillide-C.^[6] The effort we envision hews most closely to the synthesis accomplished by Srihari,^[5a] where they prepared a protected seco-acid like **2** via a Lewis acid catalyzed alkylation of a pyranone (e.g., **4**). More specifically, we were interested in the synthesis of pyranone **4**, which could serve as a Pd-glycosyl donor in a C-glycosylation reaction with β -keto-sulfone **5** to form **3**, a protected precursor to seco-acid of aspergillide-C. Key to this approach is the recognition that β -keto-sulfone **5** could function as a vinyl anion equivalent for Pd- π -allyl electrophiles. The

RESEARCH ARTICLE

inspiration of this transformation builds upon the discovery of Jørgensen et al.^[8] that keto-sulfones similar to **5** functioned as vinyl anion equivalents in Michael addition reactions. The synthesis of **4** in turn would result from a Noyori/Achmatowicz/acylation approach from β -ketoester **6**. Finally, β -ketoester **6** could be formed from 2-acetyl furan **8** by a one-step carboxymethylation. Herein we describe our efforts to develop a convergent asymmetric synthesis of aspergillide-C from achiral acylfuran **8** and ynone **9**. This synthetic approach is part of a larger effort aimed at exploring the stereochemical structure activity relationship (S-SAR) study of pyran containing polyketide natural products.^[9]

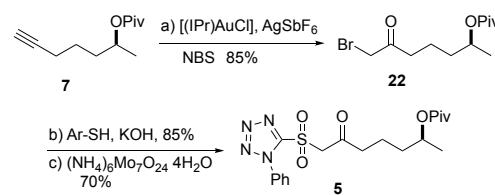

Scheme 2. Jørgensen asymmetric Michael/Julia-Kocienski and a variation

In the course of this effort, Jørgensen reported a novel use of the Julia-Kocienski type β -keto-sulfone **10** as vinyl anion equivalent in the chiral amine catalyzed asymmetric Michael addition to α/β -unsaturated enals, like **11** (Scheme 2). To complete the transformation the Michael addition product, the mixture of diastereomers, was treated with excess NaBH₄ to reduce the two carbonyl functionalities and subsequently induce a Julia-Kocienski type elimination to form alkene **12**. In this context, we similarly hypothesized that β -keto-sulfones could function as a vinyl anion equivalent to Pd- π -allyl cations. Specifically, β -keto-sulfones, like **14**, should couple with pyranone **15** via a Pd- π -allyl intermediate to form **17**, which upon reduction with excess NaBH₄ should produce **16** via a Julia-Kocienski type elimination. In the case of C-4 ketone oxidation state, the ketone would also be reduced by the excess NaBH₄.

Results and Discussion

Our approach to aspergillide-C began with the asymmetric synthesis of the β -keto-sulfone fragment **5** (Scheme 3). Key to installing the asymmetry was the ability of the Noyori reduction in combination with the alkyne zipper isomerization to convert achiral ynone **9** into enantiomerically enriched ynone **19**.^[10] This effort began with a practical and scalable synthesis of ynone **9**, via the lithium acetylide addition to acetaldehyde of the anion from alkyne **18** to give racemic **19**. A MnO₂ oxidation of (*rac*)-**19** gave ynone **9** in excellent overall yield. Exposure of **9** to the Noyori hydrogen transfer asymmetric reduction gave propargyl alcohol **19** in excellent yield (97%) and high enantiopurity.^[11] Treatment of **19** to the alkyne-zipper reagent KAPA pioneered by Brown^[12]

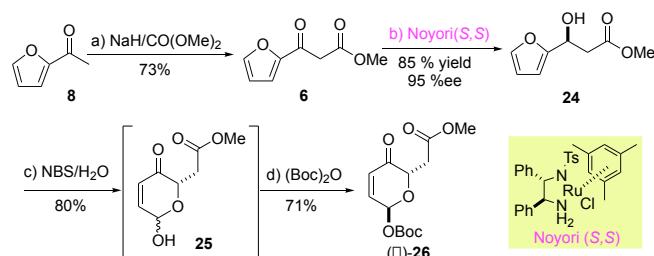
gave excellent yield of **20** with no erosion of enantiomeric purity. The secondary alcohol of **20** was protected as a pivalate (PivCl, pyridine) to form **7** in excellent yield (95%) and then the alkyne in **7** was hydrated via gold catalysis (IPrAuCl in aqueous MeOH, 85%) to give ketone **21**. Next the methylketone in **21** was mono-brominated (Br₂, MeOH) to give **22**, which was then displaced with a thiolate anion to give β -keto-sulfide **23**. A per-oxidation of the sulfide in **23** with ammonium molybdate gave the desired β -keto-sulfone **5** in good yield (70%).



Reagents and conditions: (a) *n*-BuLi, acetaldehyde, $-78\text{ }^{\circ}\text{C}$ $- 0\text{ }^{\circ}\text{C}$, 82%; (b) MnO₂, THF, rt, 95%; (c) HCOONa, cetyl trimethylammonium bromide, Noyori (S,S), rt, 97%; (d) KH, H₂N(CH₂)₃NH₂, $15\text{ }^{\circ}\text{C}$ to rt, 85%; (e) PivCl, pyridine, rt, 95%; (f) [(IPr)AuCl], AgSbF₆, MeOH, rt, 85%; (g) Br₂, MeOH, rt, 70%; (h) ArSH, KOH, MeOH, rt, 85%; (i) (NH₄)₆Mo₇O₂₄ 4H₂O, H₂O₂, EtOH, rt, 70%. PivCl = 2,2 Dimethylpropanoyl chloride, ArSH = 1-phenyl-1*H*-tetrazole-5-thiol [(IPr)AuCl] = Chloro[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]gold(I)

Scheme 3. Alkyne zipper approach to the synthesis of β -ketosulfone **5**

We next looked to improve the efficiency of the synthesis of **5** via an oxidative hydration of **7** (Scheme 4). This began with the exposure of **7** to a variant of the conditions developed by Hammond.^[13] Specifically, exposure of **7** to the same gold catalyst system in the presence of NBS gave bromoketone **22**. The bromo-ketone produced under these conditions reacted similar to the potassium thioate to give **23** and then oxidized with ammonium molybdate to give β -keto-sulfone **5**.

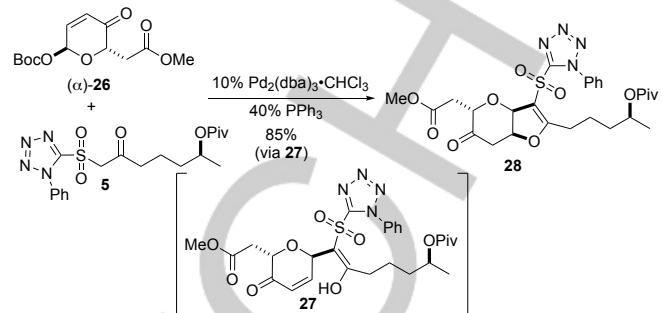

Reagents and conditions: (a) [(IPr)AuCl], AgSbF₆, NBS, MeOH, $65\text{ }^{\circ}\text{C}$, 85%; (b) ArSH, KOH, MeOH, rt, 85%; (c) (NH₄)₆Mo₇O₂₄ 4H₂O, H₂O₂, EtOH, rt, 70%. PivCl = 2,2-Dimethylpropanoyl chloride, ArSH = 1-phenyl-1*H*-tetrazole-5-thiol [(IPr)AuCl] = Chloro[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]gold(I)

Scheme 4. Improved synthesis of β -ketosulfone **5**

Recently we reported an efficient asymmetric synthesis of α -enone **26** from commercially available **8** via a Noyori/Achmatowicz sequence (Scheme 5).^[14,15] The synthesis began with the base promoted conversion of acetyl furan **8** into β -

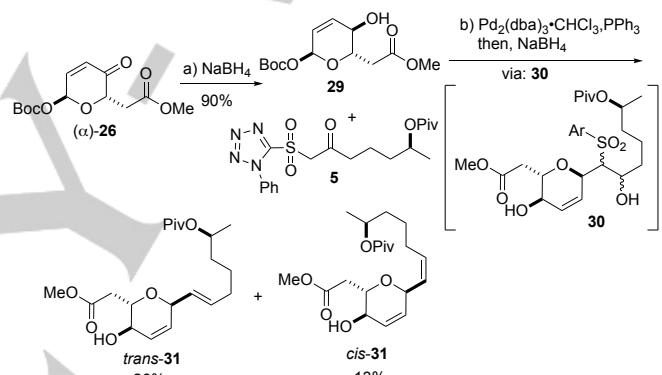
RESEARCH ARTICLE

ketoester **6**. We have explored many different ways to achieve this transformation^[16] but have found this is most practically accomplished on scale with the use of NaH as base in the presence of excess dimethylcarbonate. Under these conditions (NaH/CO(OMe)₂ in THF) β -ketoester **6** can be prepared in very good yield (73%). Exposure of furylketone **6** to the asymmetric Noyori hydrogen transfer reduction (HCOONa, (S,S)-Noyori) converted it into a furan alcohol **24** in excellent yield (85%) and enantiomeric excess (>95% ee).^[17] The furan alcohol **24** was oxidatively hydrated under the Achmatowicz conditions (NBS in buffered THF/H₂O) to give pyranone **25** as a mixture of anomers. Finally, the pyranone **25** as a crude mixture of anomers was diastereoselectively converted into the Boc-protected (α)-pyranone **26** in 71% yield.^[18]


Reagents and conditions: (a) NaH, CO(OMe)₂, THF, 50 °C, 73%; (b) HCOONa, cetyltrimethylammonium bromide, Noyori (S,S), rt, 85%; (c) NBS, NaHCO₃, NaOAc·3H₂O, THF/H₂O, 0 °C, 80%; (d) DMAP, (Boc)₂O, CH₂Cl₂, -78 °C, 71%. DMAP = 4-Dimethylaminopyridine, (Boc)₂O = Di-*t*-butyl dicarbonate

Scheme 5. Synthesis of Pd-pyranone donor α -enone **26**

We next looked to explore the fragment coupling of **5** and α -enone **26** via a catalytic Pd- π -allyl intermediate (Scheme 6). Our previous experiences with the Pd-catalyzed glycosylation of pyranones involved mostly oxygen^[19] and nitrogen nucleophiles.^[20] These catalytic Pd-glycosylation require a Pd- π -allyl intermediate that can be generated from pyranones like **26** by its exposure to a catalytic amount of Pd(PPh₃)₂ mixture created from a 1:2 ratio of a Pd to phosphine mixture of 10% Pd₂(dba)₃·CHCl₃ and 40% PPh₃.^[19,20] When a 1:1 mixture of **5** and **26** was exposed to our usually “Pd(PPh₃)₂” catalyst system, an excellent yield of a bicyclic coupling product **28** was formed, which lacked the vinyl protons in the ¹H NMR that one would associate with the desired product **27**. Presumably the dihydrofuran ring in **28** was formed from a base catalyzed 1,4-addition of the enol in **27**. Unfortunately, despite our best efforts to carefully monitor the reaction, we could not find any conditions that produced **27**. Similarly, we did not detect the formation of **27** via β -elimination upon the treatment of **28** with various bases.


We next looked to prevent the unwanted 1,4-addition by removing the α -enone in **26** (Scheme 7). This was most easily accomplished by reducing the ketone in **26** under the Luche conditions (NaBH₄/CeCl₃, 90% yield) to give allylic alcohol **29** as a single diastereomer. When a 1:1 mixture of pyran **29** and β -keto-sulfone **5** was exposed to the same Pd(0) conditions as before gave a coupling product, presumably compound **30**, that was difficult to isolate. When the crude product was exposed to NaBH₄/MeOH, a 2:1 mixture of alkene stereoisomers was isolated in a 39% yield. The *trans*-alkene isomer *trans*-**31**, which is a protected 4-*epi*-seco-aspergillide-C, could be isolated from this mixture by silica chromatography in a 26% yield. The alkene stereochemistry of *trans*-**31** was confirmed by ¹H NMR with a

coupling constant between the hydrogens at C-8 and C-9 (15.6 Hz). A similar coupling constant analysis of the ¹H NMR for the minor isomer *cis*-**31** revealed values consistent with a *cis*-alkene (10.4 Hz).

Reagents and conditions: Pd₂(dba)₃·CHCl₃ (10 mol%), PPh₃ (40 mol%), CH₂Cl₂, 0 °C, 85%. dba = dibenzylideneacetone

Scheme 6. Pd-catalyzed fragment coupling/annulation

Reagents and conditions: (a) NaBH₄, CeCl₃, CH₂Cl₂, -78 °C, 90%; (b) Pd₂(dba)₃·CHCl₃ (10 mol%), PPh₃ (40 mol%), CH₂Cl₂, 0 °C, then NaBH₄, MeOH, -78 °C. *trans*-31 26%, *cis*-31 13%. dba = dibenzylideneacetone

Scheme 7. Synthesis of a protected 4-*epi*-seco-aspergillide-C, *trans*-31

Conclusion

In conclusion, a convergent asymmetric synthesis of a protected seco-4-*epi*-aspergillide-C *trans*-**31** has been achieved in twelve total steps (7 longest linear steps) from achiral starting materials, furan **6** and ynone **9**. The route featured a novel use of β -keto-sulfone **5** as formal “alkene anion” Pd- π -allyl-nucleophile in a convergent coupling reaction that brings together the two key fragments for seco-aspergillide-C. The asymmetry of the two fragments was introduced with a Noyori hydrogen transfer reaction of achiral acetyl furan **6** and ynone **9**. Further efforts to develop this chemistry for complete total synthesis are ongoing and will be reported in due course.

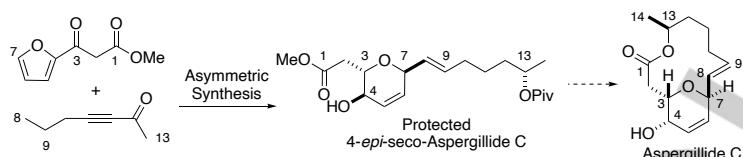
Supporting information summary

General methods, experimental procedures, and ¹H/¹³C NMR spectra can be found in supporting information.

RESEARCH ARTICLE

Acknowledgements

This research was funded by NIH (AI142040 and AI154860) and NSF (CHE-2102649). Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund (PRF#58838-UNI1) for support of this research.


Keywords: aspergillide-C • β -ketosulfone reductive elimination • C-glycosylation • De novo asymmetric synthesis • Noyori reduction • Pd-catalyzed allylation

- [1] K. Kito; R. Ookura, S. Yoshida, M. Namikoshi, T. Ooi, T. Kusumi, *Org. Lett.* **2008**, *10*, 225–228
- [2] For a review of the syntheses of Aspergillide A/B/C, see: (a) T. Nagasawa, S. Kuwahara, *Heterocycles*, **2012**, *85*, 587–613.
- [3] For a synthesis of Aspergillide A/B, see: (a) F. Haruhiko, H. Yamaguchi, M. Sasaki, *Org. Lett.*, **2010**, *12*, 1848–1851. (b) M. Kanematsu, M. Yoshida, K. Shishido, *Angew. Chem. Int. Ed.* **2011**, *50*, 2618–2620.
- [4] For a synthesis of Aspergillide A, see: J. B. Mateus-Ruiz, A. Cordero-Vargas, *J. Org. Chem.* **2019**, *84*, 11848–11855.
- [5] For a synthesis of Aspergillide B, see: a) J. Liu, K. Xu, J. He, L. Zhang, X. Pan, X. She, *J. Org. Chem.* **2009**, *74*, 5063–5066. b) Y. Sridhar, P. Srihari, *Eur. J. Org. Chem.* **2013**, 578–587. c) B. M. Trost, M. J. Bartlett, *Org. Lett.*, **2012**, *14*, 1322–1325. d) S. M. Hande, J. Uenishi, *Tetrahedron Lett.* **2009**, *50*, 189–192
- [6] For a synthesis of Aspergillide C, see: a) P. Srihari, N. H. Krishna, Y. Sridhar, A. Kamal Beilstein, *J. Org. Chem.* **2014**, *10*, 3122–3126. b) P. Srihari, Y. Sridhar, *Eur. J. Org. Chem.* **2011**, 6690–6697. c) J. D. Panarese, S. P. Waters, *Org. Lett.*, **2009**, *11*, 5086–5088. d) T. Nagasawa, S. Kuwahara, *Org. Lett.*, **2009**, *11*, 761–764. e) H. Kobayashi, M. Kanematsu, M. Yoshida, K. Shishido, *Chem. Commun.*, **2011**, *47*, 7440–7442. f) M. Kanematsu, M. Yoshida, K. Shishido, *Tetrahedron Lett.* **2011**, *52*, 1372–1374.
- [7] For an approach to Aspergillide B, see: (a) K. Bhavani, E. GyanChander, S. Das, J. S. Yadav, *ChemistrySelect* **2018**, *3*, 3391–3393.
- [8] M. Nielsen, C. B. Jacobsen, M. W. Paixao, N. Holub, K. Jorgensen, *J. Am. Chem. Soc.* **2009**, *131*, 10581–10586
- [9] a) H.-Y. L. Wang, B. Wu, Q. Zhang, Y. Rojanasakul, G. A. O'Doherty, *ACS Med. Chem. Lett.* **2011**, *2*, 259–263. b) H.-Y. L. Wang, Y. Rojanasakul, G. A. O'Doherty, *ACS Med. Chem. Lett.* **2011**, *2*, 264–269. c) A. Iyer, M. Zhou, N. Azad, H. Elbaz, L. Wang, D. K. Rogalsky, Y. Rojanasakul, G. A. O'Doherty, J. M. Langenhan, *ACS Med. Chem. Lett.* **2010**, *1*, 326–330. d) H.-Y. L. Wang, W. Xin, M. Zhou, T. A. Stueckle, Y. Rojanasakul, G. A. O'Doherty, *ACS Med. Chem. Lett.* **2011**, *2*, 73–78. e) C. M. Goins, T. D. Sudasinghe, X. Liu, Y. Wang, G. A. O'Doherty, D. R. Ronning, *Biochemistry*, **2018**, *57*, 2383–2393. f) X. Liu, Y. Wang, R. I. Duclos, G. A. O'Doherty, *ACS Med. Chem. Lett.* **2018**, *9*, 274–278. g) X. Liu, Y. Wang, G. A. O'Doherty, *Asian J. O. C.* **2015**, *4*, 994–1009. h) M. Mulzer, B. Tiegs, Y. Wang, G. W. Coates, G. A. O'Doherty, *J. Am. Chem. Soc.* **2014**, *136*, 10814–10820.
- [10] a) K. F. Avocetien, J. J. Li, X. Liu, Y. Wang, Y. Xing, G. A. O'Doherty, *Org. Lett.* **2016**, *18*, 4970–4973. b) Y. Xing, J. H. Penn and G. A. O'Doherty, *Synthesis*, **2009**, 2847–2854. c) Y. Xing and G. A. O'Doherty, *Org. Lett.* **2009**, *11*, 1107–1110. d) M. Li and G. A. O'Doherty, *Org. Lett.* **2006**, *8*, 6087–6090. e) K. Avocetien, Y. Li, G. A. O'Doherty, in *Modern Alkyne Chemistry – Catalytic and Atom-Economic Transformations*, (Eds.: B. M. Trost, C.-J. Li) Wiley-VCH Verlag GmbH & Co. KG, Weinheim, **2014**, pp. 365–393.
- [11] The enantiomeric purity of ynols **19** and **20** were made by comparison of optical rotation data (ref. 5e) and by the observation of a single diastereomer in the coupling of downstream product **5** with both (α)-**26** and **29**.
- [12] C. A. Brown, A. Yamashita, *J. Am. Chem. Soc.* **1975**, *97*, *4*, 891–892
- [13] W. Wang, J. Jasinski, G. B. Hammond, B. Xu, *Angew. Chem. Int. Ed.* **2010**, *49*, 7247–7252
- [14] a) R. Noyori and T. Ohkuma, *Angew. Chem. Int. Ed.*, **2001**, *40*, 40–73. b) R. Noyori, M. Yamakawa and S. Hashiguchi, *J. Org. Chem.*, **2001**, *66*, 7931–7944. c) Li, M., Scott, J. G., O'Doherty, G. A. *Tetrahedron Lett.* **2004**, *45*, 1005–1009.
- [15] An Achmatowicz reaction is the oxidative rearrangement of furfuryl alcohols to 2-substituted 6-hydroxy-2H-pyran-3(6H)-ones, see: (a) A. Achmatowicz, R. Bielski, *Carbohydr. Res.* **1977**, *55*, 165–176. For its use in carbohydrate synthesis see: (b) D. Balachari, G. A. O'Doherty, *Org. Lett.* **2000**, *2*, 863–866. (c) D. Balachari, G. A. O'Doherty, *Org. Lett.* **2000**, *2*, 4033–4036.
- [16] K. R. Francisco, Y. Li, B. Lindquist-Kleissler, J. Zheng, Y. Xing, G. A. O'Doherty, *J. CO₂ Utilization*, **2021**, *54*, 101774.
- [17] M. Li, J. G. Scott, G. A. O'Doherty, *Tetrahedron Lett.* **2004**, *45*, 1005–1009.
- [18] S. O. Bajaj, J. R. Farnsworth, G. A. O'Doherty, *Org. Synth.* **2014**, *91*, 338–355.
- [19] a) S. O. Bajaj, E. U. Sharif, N. G. Akhmedov, G. A. O'Doherty, *Chem. Sci.* **2014**, *5*, 2230–2234. b) H. Guo and G. A. O'Doherty, *Angew. Chem. Int. Ed.* **2007**, *46*, 5206–5208. c) W. Liu, Q. Chen, J. Liang, Z. Du, K. Zhang, X. Zheng, G. A. O'Doherty, *Synlett*, **2015**, *26*, 1683–1686. d) M. Zhou and G. A. O'Doherty, *Org. Lett.* **2006**, *8*, 4339–4342. e) R. S. Babu and G. A. O'Doherty, *J. Carb. Chem.* **2005**, *24*, 169–177. f) R. S. Babu, M. Zhou and G. A. O'Doherty, *J. Am. Chem. Soc.* **2004**, *126*, 3428–3429. g) R. S. Babu, G. A. O'Doherty, *J. Am. Chem. Soc.* **2003**, *125*, 12406–12407. h) R. S. Babu, Q. Chen, S.-W. Kang, M. Zhou, M. G. A. O'Doherty, *J. Am. Chem. Soc.* **2012**, *134*, 11952–11955.
- [20] S. R. Guppi, M. Zhou and G. A. O'Doherty, *Org. Lett.* **2006**, *8*, 293–296.

RESEARCH ARTICLE

A Table of Contents entry:

A convergent de novo asymmetric synthesis of a protected seco-acid precursor to the marine natural product aspergilide-C has been developed. A Pd-catalyzed C-glycosylation was used to diastereoselectively couple the two key chiral fragments. The two fragments were prepared asymmetrically by two distinct asymmetric Noyori transfer hydrogenation of an achiral acylfuran and ynone.

WILEY-VCH