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Abstract—The classic BGW algorithm of Ben Or, Goldwasser

and Wigderson for secure multiparty computing demonstrates

that secure distributed matrix multiplication over finite fields is

possible over 2t+ 1 computation nodes, while keeping the input

matrices private from every t colluding computation nodes. In

this paper, we develop and study a novel coding formulation

to explore the trade-offs between computation accuracy and

privacy in secure multiparty computing for real-valued data,

even with fewer than 2t+1 nodes, through a differential privacy

perspective. For the case of t = 1, we develop achievable

schemes and converse arguments that bound ✏ — the differential

privacy parameter that measures the privacy loss — for a given

accuracy level. Our achievable coding schemes are specializations

of Shamir secret sharing applied to real-valued data, coupled with

appropriate choice of evaluation points. We develop converse

arguments that apply for general additive noise based schemes.

Index Terms—Differential privacy, privacy-utility tradeoff, mean

square error, secure multiparty computation, coded computing,

distributed matrix multiplication.

I. INTRODUCTION

The task of accurate and efficient distributed data processing
while preserving data privacy is among the most important
engineering problems in modern machine learning. The desire
to keep data private inevitably requires the source adding some
noise to the data before sharing it with the computation nodes.
Secure multiparty computing (MPC) is a paradigm that ensures
that data remains private from any t computing nodes, in
the semi-honest adversary setting, yet it guarantees accurate
computation of functions of the data [1]. The celebrated BGW
algorithm [2] provides a method to perform information-

theoretically private computation of a wide class of functions
building on Shamir’s secret sharing technique [3], which, in
turn, builds on Reed Solomon codes. Consider two random
matrices A,B 2 FL⇥L

, where F is a field, and a set of P

computation nodes. Let Ri,Si, i = 1, 2, . . . , t be statistically
independent L⇥L random matrices. In Shamir’s secret shar-
ing, node i receives inputs Ãi = p1(xi), B̃i = p2(xi), where,
x1, x2, . . . , xP are distinct non-zero scalars and p1(x), p2(x)
are matrix-valued polynomials:

p1(x) = A+
tX

j=1

Rjx
j
, p2(x) = B+

tX

i=1

Sjx
j
.
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If the field F is finite, and the entries of Ri,Si, i = 1, 2, . . . , t
are chosen randomly i.i.d. uniformly over the elements of
the field, then the input to any subset S of t nodes is
independent of the data (A,B). If node i computes Ãi + B̃i,

then observe that the sum A + B — which is the constant
in the polynomial p1(x) + p2(x) — can be recovered from
the computation output of any t + 1 of the P nodes by
polynomial interpolation. Observe, similarly, that ÃiB̃i can
be interpreted as an evaluation at x = xi of the degree 2t
polynomial p1(x)p2(x), whose constant term is AB. Thus,
the matrix product AB can be recovered from any 2t + 1
nodes via polynomial interpolation. The BGW algorithm uses
the above coding scheme to perform secure MPC for the
universal class of computations that can be expressed as sums
and products, while maintaining (perfect) data privacy among
every set of t nodes. Because of its universality, the BGW
algorithm forms the basis of several secure MPC protocols.
Notably, an overhead of 2t + 1 computation nodes (i.e.,
t + 1 redundant nodes) are required to keep the data private
from any t computation nodes and perform multiplications,
as compared to mere data access as in Shamir secret sharing,
or addition/aggregation wherein the computation output can
be recovered from t + 1 computation nodes. In fact, for
more complex functions, the overhead can be prohibitively
large inevitably leading to multiple communication rounds [2],
or more redundant nodes [4]. For instance, for polynomial
computations (of which multiplication is a special case), the
number of redundant nodes required to enable single round
computations can scale linearly as the polynomial degree [4].

We study the canonical and fundamental operation of multipli-
cation, and aim to answer the following question: Can codes
be developed to enable a set of fewer than 2t + 1 nodes to
compute the matrix product while keeping the data (matrices)
private from any t nodes? While impossibility results preclude
this possibility if we aim for the dual goals of exact recovery
of the matrix product and perfect privacy, we study the
question through a novel coding formulation that allows for
approximations on both fronts, and thereby enables a study of
their trade-off.

For machine learning applications that inevitably operate over
real-valued data, approximate computation of the output typi-



cally suffices. Further, a prevalent1 paradigm for data privacy
in machine learning applications in practice is differential

privacy (DP) [7], which aims to keep small perturbations
of the data private. In particular, it requires that the extent
of privacy loss (see Sec. II) be bounded by a non-negative
parameter ✏; the smaller the ✏, the lesser the privacy loss.
The case of matrices A,B being independent of the nodes’
input corresponds to the special case of ✏ = 02. While the
DP framework allows us to tune the degree of privacy, to
effectively use the framework in practice, it is important to
understand how to set parameter ✏ based on the application at
hand (See [8]); our paper aims to bring this understanding to
the context of secure matrix multiplication.

A. Summary of Contributions

Our main contribution is an explicit analytical characterization
of the trade-off between computation accuracy and privacy for
the case of t = 1, that is, where the data is kept private from
every single computation node in the system. We consider the
following problem. Assume that a computation node gets an
input of the form A+R,B+ S and multiplies them, where
R,S are random noise matrices that independent of (A,B)
designed to ensure data privacy. The goal of the decoder is to
recover an estimate C̃ of the product AB from N computation
outputs at a certain accuracy level. The noise R,S should
ensure that the data (A,B) is ✏-differentially private (✏-DP)
from the input to every t = 1 computation node.

For N < 3, we characterize via an achievable coding
scheme and a converse, the trade-off between mean square
error ||C̃ � AB||F and the DP parameter ✏. For both the
achievable coding scheme and the converse, we follow a two
step procedure. We first develop bounds on the mean square
error in terms of the second moments of Frobenius norm and
singular values of the noise matrices R,S. In a second step, we
bound the DP parameter ✏ in terms of these second moments,
applying a specific distribution for our achievable scheme,
and bounding ✏ over all distributions for the converse. For
the case where A,B are scalars, our first step translates to
a tight characterization between the mean square error and
the standard deviations of R,S. Our achievable scheme is a
specialization of the Shamir secret sharing technique applied
for real numbers with a careful choice of evaluation points,
followed by a DP analysis. Our converse makes only mild
assumptions on the structure of codes, applies to a general
class of schemes for additive noise.

B. Related Work

Differential Privacy and Secure MPC: Several prior works
are motivated like us to reduce computation and communica-
tion overheads of secure MPC by connecting it with the less

1See, for example, Google’s Tensorflow Privacy Framework [5], [6].
2The Shamir secret sharing in fact can be applied for real-valued data as

well. Specifically, by allowing evaluation points xi to grow arbitrarily large,
the DP parameter ✏ can be made arbitrarily small and still allow for perfectly
accurate decoding of the matrix product from any 2t+ 1 nodes.

stringent privacy guarantee offered by DP. References [9]–
[12] provide methods to reduce communication overheads for
sample aggregation algorithms, label private training private
record linkage, private distributed median computation. In
comparison we aim to reduce the overhead of t redundant
nodes for multiplication and use the DP framework to develop
an analytical accuracy-privacy tradeoff.

Coded Computing: The emerging area of coded computing
enables the study of codes for secure computing that enable
data privacy. Our framework resonates with the coded comput-
ing approach, as we abstract the algorithmic/protocol related
aspects into a master node, and highlight the role of the error
correcting code in our model. Coded computing has been
applied to study code design for secure multiparty computing
in [4], [13]–[18]. These references effectively extend the
standard BGW setup by imposing memory constraints on the
nodes, or other constraints, that effectively disable each node
storing information equivalent to the entire data sets. Under
the imposed constraints, these references develop novel codes
and characterize regimes for exact computation and perfect
privacy. In particular, codes for secure MPC over real-valued
fields have been studied in [13], [19] extending the ideas of
[4] to understand the loss of accuracy due to finite precision.
In particular, reference [13] casts the effect of finite precision
in a privacy-accuracy tradeoff framework. In contrast to all
previous works in coded computing geared towards secure
MPC, we operate below the threshold of perfect recovery, and
characterize the trade-off between them. Our incorporation of
differential privacy for this characterization is a novel aspect
of our set up. We do not impose any memory constraints
on the nodes, and imposition of such constraints can lead to
interesting areas of future study.

Privacy-Utility Trade-offs. There is a fundamental trade-
off between DP and utility (see [20]–[22] for examples in
machine learning and statistics). The optimal ✏-DP noise-
adding mechanism for a target moment constraint on the
additive noise was characterized in [23]. For approximate DP,
near-optimal additive noise mechanisms under `1-norm and
variance constraints were recently given in [24]. Our converse
makes use of a lower-bound on the variance of an ✏-DP noise
mechanism that is looser, albeit simpler than [23, Thm. 7].

II. SYSTEM MODEL AND PROBLEM STATEMENT

Notations: We define [n] , {1, 2, · · · , n}. We use bold
fonts for vectors and matrices. We define (x)i to be the i

th

component of a vector x and (X)k,l be the (k, l)th element
of a matrix X. Denote (X), ||X||2 and ||X||F to be the
minimum singular value, `2 norm and Frobenius norm of a
matrix X respectively. We use X ⇠ Q to say that the random
variable X has the probability distribution Q.

A. System Model

We consider a computation system with P computation nodes.
A,B 2 RL⇥L are random matrices, and node i 2 [P ] receives:

Ãi = A+Ri, B̃i = B+ Si



where Ri,Si 2 RL⇥L are random matrices such that
(R1,R2, . . . ,RP ,S1,S2, . . . ,SP ) is statistically independent
of (A,B). We denote by R,S 2 RL⇥PL

, the following:

R =
⇥
R1 R2 . . . RP

⇤

S =
⇥
S1 S2 . . . SP

⇤
.

In this paper we assume no shared randomness between R,S,
i.e., they are statistically independent: PR,S = PRPS. We
denote by PR,S as the set of all possible joint distributions
of R,S where R,S are independent.

For i 2 [P ], computation node i outputs

C̃i = ÃiB̃i. (2.1)

A decoder receives the computation output of an arbitrary set
S of N nodes and performs a map: dS : (RL⇥L)|S| ! RL⇥L

that is linear over R. That is, the decoder outputs:

eCS = dS(C̃i|i2S) =
X

i2[|S|]

wi,SC̃i (2.2)

where the coefficients wi,S 2 R, i 2 [|S|] specify the linear
map dS . A (P,N) coding scheme for positive integers P �
N consists of the joint distribution PR,S 2 PR,S, and the
decoding maps

Q
S✓P :|S|=N{dS : (RL⇥L)|S| ! RL⇥L}. The

performance of a coding scheme is measured by two metrics:
privacy and accuracy.

Remark 1. The standard secure multiparty computing set up
assumes that P = N . We keep our system model general
and allow P to be larger than N . When P is larger than N ,
the developed schemes have the benefit of tolerance to P �
N failures/stragglers, in addition to data privacy and accurate
computations.

Privacy of a (P,N) coding scheme

Definition 2.1. (t-node ✏-DP) Let ✏ � 0. The distribu-
tion PR,S satisfies t-node ✏-DP if, for arbitrary matrices

A0,B0,A1,B1 2 RL⇥L that satisfy
����

����


A0

B0

�
�

A1

B1

�����

����
max


1,

P
⇣
Y(0)

T 2 A
⌘

P
⇣
Y(1)

T 2 A
⌘  e

✏
, (2.3)

for all subsets T ✓ [P ], |T | = t, for all subsets A ⇢ R2L⇥tL

in the Borel �-field, where

Y(`)
T ,


A` +Ri1 A` +Ri2 . . . A` +Ri|T |

B` + Si1 B` + Si2 . . . B` + Si|T |

�
, ` = 0, 1

where T = {i1, i2, . . . , i|T |}.

We denote by P✏,t
R,S, the set of all possible joint distributions

PR,S 2 PR,S that satisfy t-node ✏-DP. Note that (2.3) depends
only on the joint distribution PR,S and does not depend on
the distributions of A,B, since the definition applies for
arbitrary vectors A0,B0,A1,B1 — that is, those that are not
necessarily drawn from PA,B.

Accuracy of a (P,N) coding scheme

The main goal of this paper is to characterize the trade-off
between privacy and accuracy of estimation of the matrix-
product AB. In particular, we develop schemes that guarantee
a certain level of DP (i.e., a certain value of parameter ✏),
irrespective of the distribution of the inputs. It is, however,
necessary (and standard, see [13], [17], [25], [26]) to account
for the data distribution and its parameters when evaluating the
accuracy of coding schemes. The accuracy guarantees of the
coding schemes developed in this paper rely on the following
key assumptions:

Assumption 2.1. A and B are statistically independent ran-
dom matrices. Moreover, there is a parameter ⌘ > 0 such that:

E
⇥
||A||2F

⇤
= E

⇥
||B||2F

⇤
 ⌘.

We measure the accuracy of a coding scheme via the mean
square error. Specifically, we define:

Definition 2.2 (Linear Mean Square Error (LMSE)). For a
(P,N) coding scheme � consisting of joint distribution PR,S

decoding maps
Q

S✓P :|S|=N{dS : (RL⇥L)|S| ! RL⇥L}, the
LMSE for subset S ✓ [P ], |S| = N is defined as:

LMSES(�) = E[||AB� bCS ||2F ]. (2.4)

where bCS is defined in (2.2). The LMSE of the coding scheme
� is defined to be:

LMSE(�) = max
S

LMSES(�).

It is worth noting that the expectation in the above definition is
over the joint distributions of the random variables A,B,R,S.
In particular, the accuracy of a coding scheme can depend on
the parameters3 of the joint distribution of A,B. Sometimes
we will explicitly denote the distribution in the LMSE notation
as: LMSE

PA,B(�)
S or LMSEPA,B(�).

Definition 2.3 (Optimal Mean Square Error
(LMSE⇤(P,N, ✏, t)).

LMSE⇤(P,N, ✏, t) = inf
�

LMSE(�) (2.5)

where the infimum is over the set of all possible (P,N) coding
schemes � whose joint distribution PR,S satisfies t-node ✏-DP.

The goal of this paper is to characterize LMSE⇤(P,N, ✏, t).
It is a simple exercise to verify that, if for N � 2t +
1, coding schemes used by the BGW algorithm achieve
LMSE⇤(P,N, ✏, t) = 0 for all ✏ > 0. That is, perfect privacy4

and perfect accuracy are achievable for N � 2t + 1 nodes.
Thus, we aim to characterize LMSE⇤(P,N, ✏, t) for N  2t.

3It can be readily verified from the LMSE definition that the accuracy
simply depends on the means, variances and pairwise correlations of all the
random variables involved in A,B,Ri|Pi=1,Si|Pi=1.

4More precisely, ✏ can be made arbitrarily small by adding Laplacian noise
of correspondingly large variances, and yet the LMSE can be kept 0.



III. SUMMARY OF RESULTS

The main contribution of this paper is the characterization of
an explicit tradeoff between accuracy (LMSE) and privacy
(✏) for distributed matrix multiplication for the case5where
t = 1, N = 2. The key to our approach is to utilize the
variance of the noise as proxy metric for DP, and develop a
sharp relation between privacy and accuracy under this metric.
Then, the obtained results are translated to bounds on the
privacy-accuracy trade-off for ✏-DP.

We present two technical results. The first is an achievability
result that shows that there exists a (P,N) coding scheme
with random variables (R,S) with E[||Ri||2F ],E[||Si||2F ] �
�
2
Ach, 8i 2 [P ], such that

LMSE(�)  ⌘
2

⇣
1 + ⌘

�2
Ach

⌘2 +�

for every � > 0. The second is a converse that states that, for
any S ✓ [P ], |S| = 2 :

LMSES(�) �
⌘
2

⇣
1 + ⌘

�2
Con

⌘2 .

so long as the minimum singular values of both Ri,Si are
such that: E[(Ri)2],E[(Si)2] � �

2
Con, 8i 2 [P ].

The parameters �
2
Ach and �

2
Con intuitively determine the (min-

imum) variance of the noise added to the inputs at the nodes,
and therefore they indirectly control the degree of privacy.
In particular, larger values of �Ach and �Con corresponds to
greater amount of privacy, and correspondingly poorer LMSE.
We next discuss details behind the achievability and converse
stated above. Our discussions also include bounds implied on
the LMSE in terms of the DP parameter ✏. We provide some
proof sketches here; all missing theorem proofs and details
can be found in the supplemental paper [27].

A. Achievability

Theorem 3.1. Let ⇤,⇥ be L ⇥ L independent zero-mean

random matrices with i.i.d. entries each with a variance of

1/L2
. For any �,�Ach > 0 there exist scalars ui, i 2 [P ] with

|ui| � �Ach such that, if Ri = ui⇤,Si = ui⇥, i 2 [P ], then

there is a (P,N = 2) coding scheme � with distribution PR,S

such that, for every PA,B satisfying Assumption 2.1,

LMSE(�)  ⌘
2

⇣
1 + ⌘

�2
Ach

⌘2 +�. (3.1)

Proof Sketch (Missing details in [27] ). For simplicity of no-
tation, we sketch the argument for the subset S = {1, 2}; the
same argument readily extends to an arbitrary two-element

5The case of t = 1, N = 1 is simple to analyze along the arguments of
this paper, and is presented in [27] .

subset of [P ]. As stated in theorem statement, we show an
achievable scheme for the subset of distributions (R,S),

R =
⇥
u1 . . . uP

⇤
⌦⇤,S =

⇥
u1 . . . uP

⇤
⌦⇥.

Node i 2 [P ] gets evaluations as,

Ãi = A+⇤ui, B̃i = B+⇥ui,

where |ui| � �Ach, 8i 2 [P ]. For convenience of illustration
we drop the dependence on S for decoding weights, i.e.,
w1,S , w2,S will be written as w1, w2 respectively. Thus,

bCS = w1Ã1B̃1 + w2Ã2B̃2.

Then, it can be shown that from the independence
of A,B,⇤,⇥ and from the theorem hypothesis that
E[⇤],E[⇥] = 0, E[||⇤||2F ], E[||⇥||2F ] = 1 that:

LMSES(�) = E[||AB� bCS ||2F ]

= (w1+w2� 1)2⌘2+2⌘(w1u1+w2u2)
2+(w1u

2
1+w2u

2
2)

2
.

Then minimizing the above expression over w1, w2 and then
substituting back, we get the following expression,

min
w1,w2
u1 6=u2

LMSES(�) =
2⌘2u2

1u
2
2

2u2
1u

2
2 + ⌘(u1 + u2)2 + 2⌘2

(3.2)

so long as u1, u2 are distinct. By choosing distinct ui, i 2 [P ]
arbitrarily close to �Ach, we obtain, for any � > 0,

LMSES(�) 
⌘
2

⇣
1 + ⌘

�2
Ach

⌘2 +�

It is worth noting that the achievable coding scheme is indeed
Shamir secret sharing over real field with an appropriate choice
of evaluation points. An intriguing aspect of the theorem proof
is that the choice of evaluation points ui is arbitrarily close
to �Ach. Consider the case where u2 = �Ach, and examine
the LMSE with respect to u1. When u1 is equal to �Ach, the
computation of both nodes 1, 2 are identical, and this would
lead to a poor mean square error. But even a small deviation
translates to a near optimal choice of u1. Consequently, the
minimum LMSE is, in fact, a discontinuous function of u1 at
u1 = �Ach.

We translate the result of Theorem 3.1 to ✏-DP by restricting
⇤,⇥ to independent Laplace distributions. We implement the
widely used Laplace noise distribution here, as it gives a
simple achievable scheme that is readily extended to matrices.
Our results can potentially be improved, esp. for L = 1, 2
by applying the optimal noise distribution under variance
constraints studied in [23].

Theorem 3.2. Let ⇤,⇥ be independent zero-mean random

matrices with i.i.d. Laplacian distributed entries each with a

variance of 1/L2
. For any � > 0, ✏ � 0 there exist scalars

ui, i 2 [P ] such that, if Ri = ui⇤,Si = ui⇥, i 2 [P ], then



there exists a (P,N = 2) coding scheme with distribution

PR,S 2 P✏,1
R,S such that, for every PA,B satisfying Assumption

2.1:

LMSE(�)  ⌘
2

⇣
1 + ⌘✏2

8L6

⌘2 +�.

The proof given in [27] uses the standard argument that
Laplacian mechanisms satisfy ✏-DP [7].

B. Converse

We derive converse results that lower bound the LMSE for a
fixed level of privacy. Similar to our approach to achievability,
we first derive a lower bound in Theorem 3.3 in terms of the
expected singular values of the noise distributions.

Theorem 3.3. For any (P,N = 2) code � whose distribution

PR,S satisfies E
⇥
(Ri)2

⇤
, E
⇥
(Si)2

⇤
� �

2
Con, 8i 2 [P ],

there exists a distribution PA,B satisfying Assumption 2.1 such

that

LMSES(�) �
⌘
2

⇣
1 + ⌘

�2
Con

⌘2 .

The above converse is translated to a bound in terms of ✏-the
DP parameter. It is worth noting that the converse does not
necessarily assume Laplace distributions, and is applicable to
any distribution PR,S that satisfies ✏-DP.

Theorem 3.4.

LMSE⇤(P, 2, ✏, 1) � ⌘
2

�
⌘
e✏�1
L2 + 1

�2 (3.3)

Proof Sketch (Missing details in [27] ). We observe that
lower bounding �

2
Con in Theorem 3.3 should give us the

desired relation. We show a proof sketch for the scalar case
L = 1, the general proof is given in [27] . Without loss of
generality assume k

th node attains the minimum variance
�
2
Con = E[R2

k]. Denote the pdf of Rk to be pRk . Then we can
write from the DP Definition 2.1,

pRk(r � 1)

pRk(r)
 e

✏
.

�
2
Con =

Z 1

�1
r
2
pRk(r)dr (3.4)

� e
�✏

Z 1

�1
r
2
pRk(r � 1)dr (3.5)

= e
�✏

Z 1

�1
(r + 1)2pRk(r)dr (3.6)

= e
�✏(�2

Con + 1) (3.7)

=) �
2
Con �

1

e✏ � 1
(3.8)

Substituting the above in the result of Theorem 3.3 gives us
the desired relation.

(a) LMSE vs ✏

Figure 1: The privacy-accuracy trade-offs of Theorems 3.2 and
3.4 for ⌘ = 1. The LMSE is plotted in logarithmic scale.

Remark 2. For the case where we are multiplying scalars
(L = 1), the smallest and largest singular values are the
same. For this case, Theorems 3.1 and 3.3 combine to give
a tight characterization of the trade-off between LMSE and
the standard deviation of additive the noise, that is:

inf
�

LMSE(�) =
⌘
2

�
1 + ⌘

�2

�2 . (3.9)

where the infimum is over all coding schemes � whose
probability distribution PR,S satisfies6

E
⇥
R

2
i

⇤
,E
⇥
S
2
i

⇤
� �

2
, 8i 2 [P ].

IV. CONCLUSION

This work opens a new direction via the search of codes
that optimize privacy-utility trade-off for secure multiparty
computing. There are several open questions motivated by our
work. First, the study of optimal code design for t � 1 is
a natural open question. While an achievable scheme can be
developed along the same lines as our paper by assessing the
Shamir secret sharing scheme with arbitrary close evaluation
points, development of a tight characterization (even for the
scalar case of L = 1, with the standard deviation measure
on the privacy loss) is an open problem. Second, our coding
schemes do not assume shared randomness, that is, they
assume R,S are statistically independent. The question of
whether shared randomness can improve the accuracy-privacy
trade-off is an interesting open question. Finally, because our
schemes require evaluation points that are arbitrarily close to
each other, the computation nodes need to perform compu-
tations at a high level of precision. This can involve hidden
computation and storage costs (see, a similar phenomenon in
[28], [29]). An explicit characterization of these hidden costs
is an interesting area of future work.

6We have dropped the boldface notation in the subsequent equation to
indicate that the quantities are scalars
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APPENDIX A
PROOFS

In this section we provide proofs for the achievability and
converse theorems stated in Section III.

A. Achievability

We prove the Theorems 3.1 and 3.2 in the following.

Let the subset S = {i, j}. As stated in Theorem 3.1, we show
an achievable scheme for a subset of distributions (R,S),
where node i gets evaluations as,

Ãi = A+⇤ui, B̃i = B+⇥ui.

We pick P⇤,⇥ such that E[⇤] = E[⇥] = 0 and |ui| � �Ach.
For convenience of illustration we drop the dependence on S
for decoding weights, i.e., w1,S , w2,S will be written as w1, w2

respectively. Thus,

bCS = w1ÃiB̃i + w2ÃjB̃j .

Let

Ē(w1, w2, ui, uj) , (w1 + w2 � 1)2⌘2 + 2⌘(w1ui + w2uj)
2

+ (w1u
2
i + w2u

2
j )

2
.

We will now prove an upper bound on Ē(w1, w2, ui, uj) which
will be used to prove Theorem 3.1.

Lemma A.1. For any � > 0 there exist some w
⇤
1 , w

⇤
2 2 R

and ui, uj 2 R satisfying |ui|, |uj | � �Ach such that

Ē(w⇤
1 , w

⇤
2 , ui, uj) 

⌘
2

(1 + ⌘
�2
Ach

)2
+�.

Proof. We find w
⇤
1 , w

⇤
2 by minimizing Ē(w1, w2, ui, uj) over

w1, w2. Equating the Jacobian of Ē(w1, w2, ui, uj) with re-
spect to w1, w2 to 0 and solving for w1, w2 gives,

w
⇤
1 =

⌘(�uiu
2
j � u

3
j � 2⌘uj)

(ui � uj)
�
2u2

iu
2
j + ⌘(ui + uj)2 + 2⌘2

� (A.1)

w
⇤
2 =

⌘(u2
iuj + u

3
i + 2⌘ui)

(ui � uj)
�
2u2

iu
2
j + ⌘(ui + uj)2 + 2⌘2

� . (A.2)

Observe that Ē(w1, w2, ui, uj) is a convex quadratic in
w1, w2. Substituting w

⇤
1 , w

⇤
2 in Ē(w1, w2, ui, uj).

min
w1,w22R

Ē(w1, w2, ui, uj) = Ē(w⇤
1 , w

⇤
2 , ui, uj)

=
2⌘2u2

iu
2
j

2u2
iu

2
j + ⌘(ui + uj)2 + 2⌘2

(A.3)

Now, let ✏1 = ⌘
�2
Ach

� ⌘
u2
i

, ✏2 = ⌘
�2
Ach

� ⌘
u2
j

and ✏3 = (ui � uj)2.

To bring about the desired relation, we do the following,

1
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Ē(w⇤
1 , w

⇤
2 , ui, uj)

=
1

2

(ui � uj)2

⌘u2
iu

2
j

 1

2⌘�4
Ach

✏3

(A.4)

1

⌘2

✓
1 +

⌘

�2
Ach

� ✏1

◆✓
1 +

⌘

�2
Ach

� ✏2

◆
� 1
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(A.6)

=) Ē(w⇤
1 , w

⇤
2 , ui, uj) 

⌘
2

(1 + ⌘
�2
Ach

)2 � h
. (A.7)

Remark 3. We ideally want h to be close to 0. Observe that
picking |ui| and |uj | close to �Ach makes ✏1, ✏2, ✏3 close to 0
which gives h close to 0.

Taylor series expansion about h = 0 gives

Ē(w⇤
1 , w

⇤
2 , ui, uj) 

⌘
2

(1 + ⌘
�2
Ach

)2
+O(h). (A.8)

Taking � = O(h) gives,

=) Ē(w⇤
1 , w

⇤
2 , ui, uj) 

⌘
2

(1 + ⌘
�2
Ach

)2
+�. (A.9)

We now use the above result to prove Theorem 3.1

Proof of Theorem 3.1.

LMSES(�) = E[||AB� bCS ||2F ]
= E[||w1(AB+ (⇤B+A⇥)ui +⇤⇥u

2
i )

+ w2(AB+ (⇤B+A⇥)uj +⇤⇥u
2
j )�AB||2F ]

(A.10)
= E[||(w1 + w2 � 1)AB+ (w1ui + w2uj)(⇤B+A⇥)

+ (w1u
2
i + w2u

2
j )⇤⇥||2F ] (A.11)



Since A,B,⇤,⇥ are independent and ⇤,⇥ are zero mean,
the cross products vanish,

= (w1 + w2 � 1)2E[||AB||2F ]
+ (w1ui + w2uj)

2(E[||⇤B||2F ]
+ E[||A⇥||2F ]) + (w1u

2
i + w2u

2
j )

2E[||⇤⇥||2F ] (A.12)

From system model and from theorem statement we know
E||A||2F ],E[||B||2F ]  ⌘,E[||⇤||2F ] = E[||⇥||2F ] = 1 and using
sub-multiplicative property of Frobenius norm and indepen-
dence of A,B,⇤,⇥ gives,

 (w1 + w2 � 1)2⌘2 + 2⌘(w1ui + w2uj)
2 + (w1u

2
i + w2u

2
j )

2

(A.13)

From Corollary A.1

 ⌘
2

(1 + ⌘
�2
Ach

)2
+� (A.14)

Since the analysis was applied to arbitrary set {i, j}, the
analysis holds for every N = 2 element subset S .

Making the distributional assumptions given in Theorem 3.2,
we provide a relation between �Ach and ✏.

Proof of Theorem 3.2. Observe that for the i
th node if

(⇤i)m,n ⇠ Laplace(0, 1p
2L

), then the distribution of (Ri)m,n

is,

f(Ri)m,n
(z) =

Lp
2|ui|

exp

✓
�
p
2L

|z|
|ui|

◆
(A.15)

Similarly,

f(Si)m,n
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Lp
2|ui|

exp
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�
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2L

|z|
|ui|

◆
(A.16)

Let’s evaluate the ratio in Definition 2.1 at a point Ȳ =
Ȳ0 2 RL⇥L

Ȳ1 2 RL⇥L

�
i.e., let A = {Ȳ}. Let Xl =


Al

Bl

�
.

P(Y(0) 2 A)
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(A.17)
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2L |(Ȳ1)k,l�(B1)k,l|

|ui|

⌘ (A.18)
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exp
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◆

exp

✓p
2L
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◆
(A.19)

Since |ui| � �Ach and letting �k,l = |(A0)k,l � (A1)k,l| +
|(B0)k,l � (B1)k,l|,


Y

k,l2[L]

exp

 p
2L

�Ach
�k,l

!
(A.20)

= exp
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@
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�Ach
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A (A.21)

 exp

 
2
p
2L3

�Ach
||X0 �X1||max

!
(A.22)

 exp

 
2
p
2L3

�Ach

!
= exp(✏) (A.23)

Thus, we take �
2
Ach = 8L6

⌘✏2 . We obtain the last equation by
letting �Ach = 2

p
2L3

✏ . Finally, plugging this �Ach in equation
(3.1) completes the proof.

B. Converse

In this subsection we prove the Theorems 3.3 and 3.4.

Proof of Theorem 3.3.

Consider a (P,N) coding scheme � which satisfies
E((Ri)2) � �

2
Con and E((Si)2) � �

2
Con for all i. Similar to

achievability section we do the analysis for some two nodes
i and j, which can be applied to any two nodes. Thus let the
subset S = {i, j}.

Pick a distribution PA,B such that

A =

2

64
a 0 . . . 0
...

...
0 0 . . . 0

3

75

B =

2

64
b 0 . . . 0
...

...
0 0 . . . 0

3

75

where E[a] = E[b] = 0,E[a2] = E[b2] = ⌘. Observe that
E[||A||2F ],E[||B||2F ] = ⌘ and E[A] = E[B] = 0.

Again for convenience of illustration we drop the dependence
on S for decoding weights, i.e., w1,S , w2,S will be written as
w1, w2 respectively. Thus,

bCS = w1ÃiB̃i + w2ÃjB̃j .

In the following we use MATLAB inspired notation in several
places. For example, for a matrix A, the notation A[i, :]
would mean a row vector constituting i

th row of A, while
A[:, i] is a column vector constituting i

th column of A. The
notation A[i, j] means (i, j)th element of A. The notation
A[i, j : k] means a row vector constituting elements j through
k including k of ith row. Also for any two matrices A and B
horizontal contatenation operation is denoted by the notation
[A B].



LMSES(�) = E[||AB� bCS ||2F ]
= E[||(w1 + w2 � 1)AB+ (w1Ri + w2Rj)B

+A(w1Si + w2Sj) + (w1RiSi + w2RjSj)||2F ]
(A.24)

Since A,B, [Ri Rj ], [Si Sj ] are independent and A,B are
zero mean, the cross products vanish,

= (w1 + w2 � 1)2E[||AB||2F ] + E[||(w1Ri + w2Rj)B||2F ]
+ E[||A(w1Si + w2Sj)||2F ]
+ E[||w1RiSi + w2RjSj ||2F ] (A.25)

First, let us look at the last term of (A.25),

E[||w1RiSi + w2RjSj ||2F ] (A.26)
� E[(w1Ri[1, :]Si[:, 1] + w2Rj [1, :]Sj [:, 1])

2] (A.27)
= Var(w1Ri[1, :]Si[:, 1] + w2Rj [1, :]Sj [:, 1])

+ E[(w1Ri[1, :]Si[:, 1] + w2Rj [1, :]Sj [:, 1])]
2 (A.28)

Clearly taking E[Ri[1, :]] = E[Sj [:, 1]] = 0, reduces LMSE.
Let the autocorrelation matrix of Ri[1, :] be KRi[1,:]. We now
derive a bound on KRi[1,:]. For any unit vector x 2 RL⇥1,

�
2
Con  E[(Ri)

2] (A.29)
(1)
 E[([1 0 . . . 0]Rix])

2] (A.30)
= E[x>Ri[1, :]

>Ri[1, :]x] (A.31)
= x>KRi[1,:]x. (A.32)

=) KRi[1,:] < �
2
ConI (A.33)

Inequality (1) comes from the fact that for any matrix ⇤,
(⇤)  x>⇤y for all unit vectors x,y. Without loss of
generality we take Ri,Rj ,Si,Sj to be gaussian random
matrices, that is, elements are non-iid gaussian distributed. We
are able to do choose a distribution without losing generality
because LMSE depends only on second order statistics, this
is seen by expanding the Frobenius norms in (A.25) and
observing that it consists of only variances and covariances.

Let ui 2 R. Now choose a random variable r̄i such that

uir̄i = Ri[1, 1]� E[Ri[1, 1] |Ri[1, 2], . . . ,Ri[1, L]].

Essentially uir̄i is the MMSE estimation error of Ri[1, 1]
when Ri[1, 2], . . . ,Ri[1, L] are observed. Since Ri[1, :] is a
gaussian vector, this is a linear estimator, therefore we can
write, for some w̄ 2 RL�1⇥1 and c 2 R,

E[Ri[1, 1] |Ri[1, 2], . . . ,Ri[1, L]] = Ri[1, 2 : L]w̄ + c

uir̄i = [Ri[1, :] 1]

2

4
1

�w̄
�c

3

5 .

Let w̃ =


1

�w̄

�
.

u
2
i r̄

2
i = [w̃> � c]


Ri[1, :]>Ri[1, :] Ri[1, :]>
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� 
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�c

�

(A.34)
= w̃>Ri[1, :]

>Ri[1, :]w̃ � 2Ri[1, :]w̃c+ c
2 (A.35)

Since E[Ri[1, :]] = 0, c = 0 and therefore,

u
2
iE[r̄2i ] = E[(Ri[1, :]w̄)2] � �

2
Con (A.36)

Observe that E[r̄i] = 0 and thus without loss of generality we
can take E[r̄2i ] = 1, then u

2
i � �

2
Con. Let

z1 = Ri[1, :]
> � ui[r̄i 0 . . . 0]>.

Then from orthogonality principle of MMSE estimation theory
we see that E[r̄iz1] = 0L⇥1. Using a similar process for Sj [:
, 1] let

z2 = Sj [:, 1]� vj [s̄j 0 . . . 0]>,

where v
2
j � �

2
Con, E[s̄2j ] = 1, and from orthogonality principle

we see that E[s̄jz2] = 0L⇥1.

Let us look at each of four terms in (A.25).

E[||AB||2F ] = E[(ab)2] = ⌘
2 (A.37)

E[||(w1Ri + w2Rj)B||2F ] � E[||(w1Ri + w2Rj)B||22]
(1)
� E[([1 0 . . . 0](w1Ri + w2Rj)B[1 0 . . . 0]>)2] (A.38)
� E[((w1Ri[1, :] + w2Rj [1, :])B[:, 1])2] (A.39)
= E[((w1Ri[1, 1] + w2Rj [1, 1])b)

2] (A.40)
= E[(w1Ri[1, 1] + w2Rj [1, 1])

2]E[b2] (A.41)
(2)
� E[r̄i(w1Ri[1, 1] + w2Rj [1, 1])]

2
⌘ (A.42)

= ⌘(w1ui + w2uj)
2 (A.43)

where uj = E[r̄iRj [1, 1]]. Inequality (1) comes from the fact
that for any matrix ⇤,||⇤||2 � x>⇤y for all unit vectors x,y.
Inequality (2) is from Cauchy-Schwarz inequality.

Similarly,

E[||A(w1Si + w2Sj)||2F ] � ⌘(w1vi + w2vj)
2
,

where vi = E[s̄jSi[1, 1]].

For the last term in (A.25).

E[||w1RiSi + w2RjSj ||2F ] (A.44)
� E[(w1Ri[1, :]Si[:, 1] + w2Rj [1, :]Sj [:, 1])

2] (A.45)
� E[r̄i(w1Ri[1, :]Si[:, 1] + w2Rj [1, :]Sj [:, 1])s̄j ]

2 (A.46)
= (w1uiE[Si[1, 1]s̄j ] + w2E[r̄iRj [1, 1]]vj)

2 (A.47)
= (w1uivi + ujvj)

2
. (A.48)

Therefore, combining all four terms (A.25) is lower bounded



by,

(w1 + w2 � 1)2⌘2 + ⌘(w1ui + w2uj)
2

+ ⌘(w1vi + w2vj)
2 + (w1uivi + w2ujvj)

2 (A.49)
, ||M||2F (A.50)

where M is defined to be:

M =

✓
w1

p
⌘

ui

� ⇥p
⌘ vi

⇤
+ w2

p
⌘

uj

� ⇥p
⌘ vj

⇤
�

⌘ 0
0 0

�◆
.

(A.51)

Multiplying by

�vjp
⌘

�
on both sides and taking `2-norm,

����M

�vjp
⌘

�����
2

2

= (w1(vi � vj) + vj)
2
⌘
2 + w

2
1(vi � vj)

2
u
2
i ⌘

(A.52)

The above is a convex quadratic equation in w1 and is
minimized at,

w
⇤
1 =

⌘vj

(⌘ + u2
i )(vi � vj)

.

Substituting w
⇤
1 in equation (A.52) and simplifying we write,

⌘
2
v
2
ju

2
i

⌘ + u2
i


����M


�vjp
⌘

�����
2

2

(A.53)

 ||M||22(⌘ + v
2
j ) (A.54)

=) ||M||2F � ||M||22 � ⌘
2 u

2
i

⌘ + u2
i

v
2
j

⌘ + v2j

(A.55)

� ⌘
2

(1 + ⌘
�2
Con

)2
(A.56)

Therefore,

LMSES(�) �
⌘
2

(1 + ⌘
�2
Con

)2
(A.57)

Similar as in achievability, we now prove a lower bound on
�
2
Con and use it the above result.

Proof of Theorem 3.4. Consider a (P,N) coding scheme �
which satisfies E((Ri)2) � �

2
Con and E((Si)2) � �

2
Con. We

aim to lower bound �
2
Con for a given ✏, i.e., we say that given

some ✏ we cannot use �
2
Con less than some quantity and still

satisfy ✏-DP. Thus, we assume worst case inputs and derive
�
2
Con achievable for that worst case scenario. We further use

this to show that LMSE below some quantity is not achievable
given an ✏. Without loss of generality assume that �

2
Con =

E[(Rk)2], it suffices to concentrate on k
th node. Let Xl =

Al

Bl

�
. And let,

Y(0) = X0 +


Rk

Sk

�
,

Y(1) = X1 +


Rk

Sk

�
,

From differential privacy Definition 2.1, for any subset A ⇢
R2L⇥L for any ||X0 �X1||max  1 it is true that

P (Y(1) 2 A)

P (Y(0) 2 A)
 e

✏ and
P (Y(0) 2 A)

P (Y(1) 2 A)
 e

✏
.

The worst case inputs have ||X0 � X1||max = 1. Without
loss of generality we pick X0 = 02L⇥L and X1 = 12L⇥L,
where 02L⇥L and 12L⇥L are 2L⇥L matrices with all elements
0’s and 1’s respectively. For some R̄ 2 RL⇥L, pick A =⇢

R̄
RL⇥L

��
. Denote the pdf of Rk to be pRk and 1 an L⇥L

matrix with all elements to be 1. Then by independence of Rk

and Sk and from our choice of A, we can effectively ignore
the role of Sk and rewrite the above as,

pRk(R̄� 1)

pRk(R̄)
 e

✏ and
pRk(R̄)

pRk(R̄� 1)
 e

✏
.

Using post processing property [7] of differential privacy we
can use (·) map without violating ✏-DP. Denote the pdf of
(Rk) to be p(Rk). After (·) mapping we have two cases,

1) (R̄� 1)  (R̄): Take

p(Rk)((R̄� 1))

p(Rk)((R̄))
 e

✏
.

=) P ((Rk)  (R̄� 1))  e
✏
P ((Rk)  (R̄))

Using Weyl’s inequality for singular values (R̄�1) �
(R̄)� ||1||2, we write,

P ((Rk)  (R̄)� ||1||2)  e
✏
P ((Rk)  (R̄))

=)
p(Rk)((R̄)� ||1||2)

p(Rk)((R̄))
 e

✏
.

Let (R̄) = r and we know that ||1||2 = L, we write,

p(Rk)(r � L)

p(Rk)(r)
 e

✏
.

2) (R̄� 1) � (R̄): Take

p(Rk)((R̄))

p(Rk)((R̄� 1))
 e

✏
.

=) P ((Rk)  (R̄))  e
✏
P ((Rk)  (R̄� 1))

Using Weyl’s inequality for singular values , (R̄�1) 
(R̄) + ||1||2, we write,

P ((Rk)  (R̄�1)�||1||2)  e
✏
P ((Rk)  (R̄�1))

=)
p(Rk)((R̄� 1)� ||1||2)

p(Rk)((R̄� 1))
 e

✏
.

Let (R̄ � 1) = r and we know that ||1||2 = L, we
write,

p(Rk)(r � L)

p(Rk)(r)
 e

✏
.

Thus, we have shown that the above relation is true for any



r, in turn true for arbitrary choice of R̄. Now,

�
2
Con = E[(Rk)

2] =

Z 1

�1
r
2
p(Rk)(r)dr (A.58)

� e
�✏

Z 1

�1
r
2
p(Rk)(r � L)dr (A.59)

= e
�✏

Z 1

�1
(r + L)2p(Rk)(r)dr (A.60)

= e
�✏(�2

Con + L
2 + 2LE[(Rk)])

(A.61)
� e

�✏(�2
Con + L

2) (A.62)

=) �
2
Con �

L
2

e✏ � 1
(A.63)

Substituting the above in (A.57) gives us the desired relation.

APPENDIX B
ACCURACY PRIVACY TRADE-OFF FOR t = 1, N = 1 CASE.

Theorem B.1. Let ⇤,⇥ be L ⇥ L independent zero-mean

random matrices with i.i.d. entries each with a variance of

1/L2
. For any �,�Ach > 0 there exist scalars ui, i 2 [P ] with

|ui| � �Ach such that, if Ri = ui⇤,Si = ui⇥, i 2 [P ], then

there is a (P,N = 1) coding scheme � with distribution PR,S

such that, for every PA,B satisfying Assumption 2.1,

LMSE(�)  2⌘�2
Ach + �

4
Ach +�. (B.1)

Theorem B.2. For any (P,N = 1) code � whose distribution

PR,S satisfies E
⇥
(Ri)2

⇤
, E
⇥
(Si)2

⇤
� �

2
Con, 8i 2 [P ],

there exists a distribution PA,B satisfying Assumption 2.1 such

that

LMSES(�) � 2⌘�2
Con + �

4
Con.

We will not provide rigourous proofs of these theorems, since
this case is not the focus of our paper, but observe that this case
is obtained by taking w1 = 1 and w2 = 0 in Equations (A.13)
and (A.49). To obtain the relation to ✏, we use Theorems 3.2
and 3.4.
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