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ABSTRACT
Augmented reality/virtual reality (AR/VR) has extended beyond
3D immersive gaming to a broader array of applications, such as
shopping, tourism, education. And recently there has been a large
shift from handheld-controller dominated interactions to headset-
dominated interactions via voice interfaces. In this work, we show a
serious privacy risk of using voice interfaces while the user is wear-
ing the face-mounted AR/VR devices. Specifically, we design an
eavesdropping attack, Face-Mic, which leverages speech-associated
subtle facial dynamics captured by zero-permission motion sensors
in AR/VR headsets to infer highly sensitive information from live
human speech, including speaker gender, identity, and speech con-
tent. Face-Mic is grounded on a key insight that AR/VR headsets
are closely mounted on the user’s face, allowing a potentially ma-
licious app on the headset to capture underlying facial dynamics
as the wearer speaks, including movements of facial muscles and
bone-borne vibrations, which encode private biometrics and speech
characteristics. To mitigate the impacts of body movements, we de-
velop a signal source separation technique to identify and separate
the speech-associated facial dynamics from other types of body
movements. We further extract representative features with respect
to the two types of facial dynamics. We successfully demonstrate
the privacy leakage through AR/VR headsets by deriving the user’s
gender/identity and extracting speech information via the develop-
ment of a deep learning-based framework. Extensive experiments
using four mainstream VR headsets validate the generalizability,
effectiveness, and high accuracy of Face-Mic.

CCS CONCEPTS
• Security and privacy → Hardware attacks and countermea-
sures.
∗Yingying Chen is the corresponding author.
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1 INTRODUCTION
With the capability of creating 3D virtual worlds, which users can
immerse in and interact with, augmented reality/virtual reality
(AR/VR) devices have attracted millions of users. The market size
is expanding drastically and is expected to reach 12.3 billion dollars
by 2023 [36]. The rapid expansion of face-mounted devices (e.g.,
VR headsets) facilitates a broad array of AR/VR applications, in-
cluding immersive multi-people gaming [40], virtual shopping [5],
and banking [9]. As the AR/VR domain extends beyond 3D im-
mersive gaming to a broader array of applications, the control
logic of AR/VR devices has been largely shifting from controller-
dominated interactions (which are mainly designed for gaming)
towards headset-dominated interactions via voice user interfaces.
For example, Oculus Quest supports voice dictation for entering
web addresses [19], controlling the headset, and exploring commer-
cial products [6, 26]. However, the frequent emerging usage of voice
interface in AR/VR scenarios could result in severe privacy leakage
if malicious actors can listen onto this communication medium.
For instance, an adversary can snoop on sensitive information dur-
ing AR/VR voice communications, such as credit card numbers
and private healthcare/bank transaction information. Moreover,
the personally identifiable information of headset wearers, such as
gender and identities, could be leaked to the adversary, which may
be leveraged for targeted advertising and fraud.

Due to these voice-related privacy concerns, the vendors of
AR/VR headsets have rigorous policies on voice access and require
explicit permission to use microphones. Given the privacy policies
on smartphone-based Operating Systems (e.g., Android and iOS),
low-cost cardboard headsets naturally require the highest level of
permission to access microphones [2]. Similar policies are used
in the operating systems of high-end standalone headsets [23, 28].
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Figure 1: Illustration of the proposed eavesdropping attack
leveraging facial dynamics (i.e., speech-associated facial
movements and bone-borne vibrations) captured by AR/VR
headsets’ built-in motion sensors.

Therefore, it is not easy for a misbehaving app running on these
headsets to gain access to the microphone and listen onto voice
communications. In contrast, accessing the built-in motion sensors
in VR headsets usually does not require user permission [27], since
almost all AR/VR applications need to utilize the motion sensors
to track the user’s head motions and simulate the corresponding
movements in the virtual environment. Can these zero-permission
motion sensors be used by an adversary to infer the live speech and
speaker privacy of the headset user?

In this paper, we explore this question and demonstrate a new
eavesdropping attack targeting AR/VR devices, Face-Mic. Our key
insight is that the headset is closely mounted on the user’s head and
presses different parts of the face as shown in Figure 1. This unique
and fundamental characteristic exists in both low-cost cardboard
headsets (e.g., Google Cardboard [12]) and high-end standalone
headsets (e.g., Oculus Quest, HTC Vive), and it makes the head-
set susceptible to the dynamics of the underlying facial muscles,
which can reflect speech content as well as the wearer’s unique pri-
vate biometrics (e.g., behaviors of speaking and tissue properties).
Furthermore, during the pronunciation of speech, the conductive
vibrations (i.e., bone-borne vibrations) produced by the vocal cords
can propagate through cranial bones, thereby vibrating the AR/VR
headsets. By analyzing the captured facial dynamics, we show that
for both cardboard headsets and standalone headsets, the adver-
sary can easily infer the sensitive speech and speaker information,
which raises extreme privacy concerns.

Fundamental Differences from Existing Attacks. Face-Mic
exhibits several crucial differences compared to prior attacks [1,
4, 22]. First, it is the first motion sensor-based speech eavesdrop-
ping attack that targets AR/VR headsets, which represents a threat
against a new emerging user interaction paradigm gaining rapid
momentum in the real-world. Second, Face-Mic is designed to cap-
ture the live human speech of the device’s wearer while prior attacks
can only capture the speech, via smartphone motion sensors, that
has been replayed by: (1) external loudspeakers [22], whose asso-
ciated vibrations reach the smartphone through a shared surface
propagation [1], or (2) in-built speakers of the smartphone [4] that
create reverberations through the body of the smartphone. Smart-
phone motion sensors do not generally get impacted by the device
user’s live speech [1], which prevents these prior attacks from
eavesdropping on the aerial speech of the wearer. Third, Face-Mic
extracts the speech and speaker information via the subtle facial

dynamics produced as the headset’s wearer speaks, which is far
more challenging due to the significant interference introduced
by the user’s body movements in immersive AR/VR scenarios (a
challenge that we are able to overcome).

Challenges Addressed in Eliciting Speech via Facial Dy-
namics. To realize such an eavesdropping attack relying on built-in
motion sensors, we face several challenges in practice: 1) Significant
Impact Caused by Body Motion Artifacts: In AR/VR scenarios, the
headset wearer usually interacts with the virtual worlds through
large-scale bodymovements. Therefore, Face-Mic needs to eliminate
these motion artifacts to enable reliable facial dynamic extraction.
2) Unclear Response to Speech and Speaker Characteristics: The re-
lationship between the facial dynamics and the speaker/speech
characteristics is not clear, so we need to explore the relation-
ship between facial movements/bone-borne vibrations and speech.
3) Low-sampling Rate of Motion Sensors: The built-in motion sen-
sors in AR/VR headsets have limited sampling frequencies, which
renders detecting live speech vibrations and its harmonics across
85𝐻𝑧 ∼ 20𝑘𝐻𝑧 [24] highly challenging.

Proposed Face-Mic via Facial DynamicsCaptured byAR/VR
Motion Sensors. Based on the collected motion sensor data, Face-
Mic first removes the artifacts of human body movements with a
signal source separation technique, which utilizes time-frequency
analysis to disentangle speech-associated facial movements among
other types of body movements. Our attack system then separates
the facial muscle movements and bone-borne vibrations based on
their unique frequency bands. Through studying the characteristics
of facial muscle movements and bone-borne vibrations, we extract
two sets of features from the headsets’ 3D acceleration, speed, and
displacement, which capture the victim’s unique private biometrics
and sensitive speech content. Given the extracted features, Face-Mic
performs gender detection, user identification, and speech recog-
nition by developing a deep-learning based framework. Our main
contributions are summarized as follows:

• To the best of our knowledge, Face-Mic is the first attack that
infers private and sensitive information leveraging the facial
dynamics associated with live human speech while using face-
mounted AR/VR devices. By using zero-permission built-in mo-
tion sensors, Face-Mic can disclose the headset wearer’s gen-
der/identity and extract speech information.

• We thoroughly study the relationships between the speaker and
speech characteristics and three types of vibrations captured by
AR/VR headsets’ motion sensors, including speech-associated
facial movements, bone-borne vibrations, and airborne vibrations.
We find that the speech effects exhibited in the motion sensor
readings are dominated by the facial movements and bone-borne
vibrations.

• We design a series of techniques to infer the headset wearer’s
gender, identity and simple speech, such as body motion artifact
removal algorithm, feature extraction based on facial dynamics,
and deep-learning-based sensitive information derivation.

• We validate the proof-of-concept attack by conducting extensive
experiments with 4 mainstream VR headsets and 45 volunteers.
The results show that Face-Mic can derive the headset wearer’s
gender, identity, and simple speech information.
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Figure 2: Illustration of facial dynamics involved in human
speech production.

2 PRELIMINARIES
2.1 Speech-related Facial Dynamics
There are three types of speech-associated facial dynamics that
could be captured by AR/VR motion sensors: speech-associated
facial movements, bone-borne vibrations, and airborne vibrations.

Speech-associated Facial Movements. Human’s facial mus-
cles contract and relax regularly during speech production, which
encodes both speech information (e.g., phoneme, tempo, loudness)
and biometric characteristics (e.g., behaviors of speaking, face shapes,
muscle, and tissue properties). Specifically, as shown in Figure 2(a),
a subset of 12 pairs of muscles are involved in human speech, which
can be categorized into two groups: upper face muscles and perio-
ral muscles. Upper face muscles are the muscles that surround the
eye socket, including corrugator, corrugator supercilli, etc. When
wearing AR/VR headsets, these muscles are in direct contact with
the device, and thus the muscles’ contractions/relaxation while the
user is speaking can directly move and rotate the headset in the 3D
space, which can be captured by the built-in motion sensors. On the
other hand, perioral muscles are the group of muscles that encircle
the mouth, including depressor anguli oris, zygomatic major, etc.,
which are usually not in direct contact with the AR/VR headset.
Yet during speech production, the strong contractions/relaxation of
these muscles around the mouth could propagate to facial tissues
that are in contact with the headset, thereby influencing AR/VR
motion sensor readings in an indirect way.

Bone-borne Vibrations. Bone-conduction vibrations are the
acoustic vibrations generated by human vocal folds and then propa-
gate through cranial bones [21]. As a key organ in creating sounds,
when humans speak, the vocal folds modulate the flow of air being
expelled from the lungs during phonation. The vibrations are then
filtered and modulated by the vocal tract, rendering human recog-
nizable speech. Part of the vibration signal propagates through the
cranial bones, and thus the vibrations can be measured by the built-
in motion sensors in AR/VR headset that are closely mounted on
the user’s head as shown in Figure 2(b). Since the vibration signals
are directly produced by the human sound production system, they
are highly correlated with the human recognizable speech signals.
Additionally, the bone-borne vibrations can also capture unique
biometrics in users’ sound production systems.

Airborne Vibrations. The airborne vibrations are the acoustic
vibrations propagating over the air. Existing studies (e.g., [34, 41])
have shown that the accelerometer in smartphones and smart-
watches can respond to airborne human voice at a close distance
(e.g., 30cm for smartwatches [34]). Therefore, it is very likely that

(a) Setup to capture live human speech

Oculus Quest Google Cardboard

(b) Setup to study airborne vibrations 

Simulating human speaking 
with a phone’s speaker

Figure 3: Experimental setup to study the impacts of speech-
associated facial movements, bone-borne and airborne vibra-
tions captured by the motion sensors.

the AR/VR motion sensors can also capture such minute airborne
vibrations given the short physical distance between the user’s
mouth and the AR/VR headset.

2.2 Capturing Facial Dynamics via Motion
Sensors in AR/VR Headsets

Most AR/VR devices are equipped with motion sensors, typically
including a three-axis accelerometer and a three-axis gyroscope.
Besides measuring the acceleration/angular velocity of the devices,
these motion sensors also pick up conductive [1] and aerial vibra-
tions [34], making the AR/VR headsets capable of capturing the
three types of aforementioned facial dynamics. To demonstrate the
feasibility of using built-in motion sensors to eavesdrop on live
human speech, we conduct preliminary experiments by examining
the speech effects on two representative AR/VR headsets: a card-
board headset (Google Cardboard with Nexus 6) and a standalone
headset (Oculus Quest) with sampling rates of 227𝐻𝑧 and 1000𝐻𝑧
for their motion sensors, respectively.

Capturing Live Human Speech via AR/VR Headsets. To ex-
amine the effects of live human speech, we ask a volunteer to wear
the two headsets, as shown in Figure 3 (a), and speak a couple of
words (i.e., "one", "oh"). The raw accelerometer and gyroscope read-
ings of Oculus Quest and Google Cardboard are shown in Figure 4
(a) and (b), respectively. We can find that with the headset mounted
on the user’s face, the built-in accelerometer and gyroscope can
respond to the subject’s speech, showing significant signal fluctu-
ations. Such signal fluctuations can be observed across all three
axes of the two sensors, showing their high sensitivity to speech
associated facial dynamics. We then analyze the speech in the time-
frequency domain by applying short-time Fourier transform to the
motion sensor readings and obtain the spectrogram as shown in
Figure 5(a). For Oculus Quest, we find that besides the strong re-
sponses in the low-frequency range (e.g., <100Hz), the spectrogram
also shows high energy at high frequencies (i.e., 100 ∼ 500𝐻𝑧).
Meanwhile, Google Cardboard can only capture responses below
114𝐻𝑧 due to the low sampling rate.

Response Verification for Facial Dynamics. To further iden-
tify what types of facial dynamics are captured in the motion sen-
sor readings, we conduct an experiment by asking the subject to
perform facial movements of words "one" and "oh" without pro-
nouncing, so that only facial movements are involved. We show
the corresponding spectrograms of Oculus Quest and Google Card-
board in Figure 5 (b). An interesting finding is that compared to
the spectrograms in Figure 5 (a), only the low-frequency responses
remain, while the high-frequency responses (>100Hz) disappear.
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Figure 4: The response of accelerometer and gyroscope in
two types of AR/VR headsets to live human speech.

Therefore, we can safely attribute the low-frequency responses of
motion sensors to the facial movements. Furthermore, to study the
influence of airborne vibrations, we replay the speech (i.e., "one",
"oh") towards the headset mounted on a mannequin head as shown
in Figure 3 (b), without any physical contact between the playback
device (i.e., a smartphone’s speaker) and the headsets. As shown
in Figure 5 (c), only weak energy at the high-frequency band of
100 ∼ 500𝐻𝑧 can be observed. Compared to the spectrograms in
Figure 5 (a) with all three types of facial dynamics, and also Figure 5
(b) where only facial movements are involved, we could find that
bone-borne and airborne vibrations have overlapping responses,
while the response of bone-borne vibrations is much stronger than
the corresponding airborne counterparts.

With all the above observations, we conclude that the speech-
associated facial movements mainly influence the low-frequency
(<100Hz) motion sensor readings, while the bone-borne vibrations
strongly impact the sensor readings at high frequencies (e.g., >100Hz).
Note that although vocal folds of male speakers can produce sound
as low as 85𝐻𝑧, the human skull only responds to sound vibrations
at much higher frequencies, usually over 250Hz [13]. Therefore,
bone-borne vibrations do not have strong energy below 100𝐻𝑧.
Since airborne vibrations share similar physical characteristics and
time-frequency patterns with bone-borne vibrations, but the re-
sponses are much weaker, we consider these two vibrations to-
gether as bone-borne vibrations. Thus, in the rest of the paper, we
exploit the facial movements and bone-borne vibrations (include
the airborne vibrations) to realize Face-Mic.

3 ATTACK OVERVIEW AND THREAT MODEL
Privacy Leakage. Face-Mic can reveal private information associ-
ated with the user identity, such as the user’s favorite AR/VR games,
AR/VR travel histories, and watching/shopping preferences, which
can be lucrative for advertising companies [25]. To derive the iden-
tity information, the adversary can eavesdrop on speech in various
AR/VR scenarios, such as conversations during multi-player gam-
ing and AR/VR meeting. At the same time, the adversary can also
detect the gender of the victim, which can be used for advertising
gender-specific products or analyzing gender-specific behaviors
during AR/VR shopping [5], Internet surfing, or AR/VR social me-
dia usage [29], without the user’s permission. More importantly,
Face-Mic can derive simple speech content, i.e., digits and words.
These two types of speech content can be used to infer a broad array
of sensitive information, such as social security numbers, phone
numbers, passwords, transactions, and healthcare information. Ex-
posing such information could lead to identity theft, credit card

(b) Speech-associated facial movements captured by accelerometer (z-axis)

(a) Live human speech captured by accelerometer (z-axis)

(c) Airborne vibrations captured by accelerometer (z-axis)

One Oh

One Oh

One Oh

One

One

One

Figure 5: The frequency responses of accelerometer (z-axis)
of the standalone headset Oculus Quest (on the left) and the
cardboard headset (on the right). The facialmovements, bone-
borne vibrations, and airborne vibrations can be captured in
the accelerometer readings of both headsets.

fraud, confidential and healthcare information leakage, which puts
the user’s security and privacy at high risk. To obtain such sensitive
speech information, the adversary can launch the attack when the
victim is using voice dictation or chatting with other people during
virtual communication.

Adversary’s Capability.We assume the adversary has a mali-
cious app installed on the victim’s AR/VR device, either through
fooling the victim to install the app or posting the app on app stores.
The malicious app collects motion sensor data in the background
and sends the data to the remote adversary for gender/speaker detec-
tion and speech recognition. Since accessing the motion sensor does
not require any permission, the app can be disguised as any AR/VR
app (e.g., AR/VR games, web browsers). Such a malicious-app-based
threat model has shown its effectiveness in smartphones [4, 22],
and it can be directly applied to the cardboard headsets using smart-
phones as the central processing units. Our study on two main-
stream AR/VR programming platforms (Oculus [27], OpenVR [37])
also confirms that such a threat model is feasible for standalone
headsets. We built an AR/VR app based on Oculus SDK (v23) and
successfully used the function 𝑜𝑣𝑟_𝐺𝑒𝑡𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑆𝑡𝑎𝑡𝑒 () to record
Oculus Quest’s accelerometer/gyroscope data in the background
without user permission. We also confirm that such an app can be
easily programmed with OpenVR, which supports a broader range
of headsets (e.g., manufactured by HTC, Valve, and most Windows
Mixed Reality headset manufacturers). In OpenVR, the app uses
𝐺𝑒𝑡𝑅𝑎𝑤𝑇𝑟𝑎𝑐𝑘𝑒𝑑𝐷𝑒𝑣𝑖𝑐𝑒𝑃𝑜𝑠𝑒𝑠 () to collect the motion sensor data,
also without user permission.

Attack Scenarios. We study the following three representative
scenarios that could happen in practical environments:

Scenario-1: Attack with prior victim data. The adversary has op-
portunities to get access to the victim’s motion sensor data (e.g., via
the malicious app) and labels ahead of time. For gender detection
and speaker identification, the labels are the victim’s gender and
identity, respectively. For speech recognition, the labels are the
audio data of the victim. In practice, these labels can be obtained in
several ways. For instance, the adversary is a friend of the victim
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Table 1: Three attack scenarios studied in this work.
Require the

victim’s data and
corresponding labels
(e.g., gender, identity,
or audio data) before
launching attacks?

Leverage the
motion sensor data
collected during
attack phase to
adapt the model
to the victim?

Possible inference
tasks

Scenario-1 ✔ ✕
Gender detection;

Speaker identification;
Speech recognition

Scenario-2 ✕ ✔
Gender detection;
Speech recognition

Scenario-3 ✕ ✕
Gender detection;
Speech recognition

and he/she knows the victim’s gender and identity. If the adver-
sary has a chance to be in the same room when the victim uses the
AR/VR headset, the adversary can collect the victim’s motion sensor
data via the malicious app and at the same time record the victim’s
audio data using a microphone. The adversary may also record
the victim’s speech remotely in some AR/VR scenarios, where the
adversary is communicating on a shared audio channel with the
victim, such as multi-player AR/VR gaming or virtual meeting. In
this case, the adversary can collect audio data from the shared au-
dio channel using a microphone. The adversary then correlates the
motion sensor data and the labels to train Face-Mic’s deep learn-
ing model for gender detection, speaker identification, and speech
recognition. We note that most security studies [1, 4, 22] in this
line of research (motion-sensor-based privacy leakage) have been
reported under this attack scenario. We also note that speaker iden-
tification can only be launched under this scenario as the adversary
needs to know the victim’s identity as a priori.

Scenario-2: Adaptive training during attack phase.The adversary
will leverage the victim’s motion sensor data collected during the
attack phase to perform adaptive training. Particularly, the adver-
sary has a pre-trained deep learning model, built on other people’s
data. During the attack phase, the collected motion sensor data
will be utilized to update the parameters of the pre-trained model,
making the model better fit the victim’s facial features. Then, the
adapted model will be utilized to perform gender detection and
speech recognition.

Scenario-3: Real-time attack without prior victim data.This is the
most challenging attack scenario. Once the victim’s motion sensor
data is collected, the adversary will directly use the pre-trained
model built on other people’s data to perform gender detection and
speech recognition. This scenario does not use the collected motion
sensor data to perform adaptive training as in Scenario-2 and thus
the sensitive information can be inferred in real time.

We would like to point out that in most of such attacks, the
adversary does not need to infer the sensitive information in real
time. So the attack under Scenario-2 is a more acceptable attack
under practical constraints (e.g., without the direct access to victim’s
labeled data). We summarize the three attack scenarios in Table 1.

4 ATTACK DESIGN
4.1 Challenges
Significant Impact Caused byBodyMotionArtifacts. In AR/VR
scenarios, the headset wearer usually interacts with the virtual

Gender/Identity/Possible Speech Content
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Figure 6: System overview of Face-Mic.

worlds through large-scale bodymovements, such as movingwithin
the play area, rotating the head, and moving the controllers. Such
unpredictable movements produce a significant amount of artifacts
in the motion sensors’ readings. Thus, we need to eliminate these
motion artifacts to enable reliable facial dynamic extraction.

Deriving Speech and Speaker Characteristics from Facial
Dynamics. The relationship between the facial dynamics and the
speaker/speech characteristics remains unclear. We need to explore
the relationship between facial movements/bone-borne vibrations
and speech, and extract representative features that carry unique
private biometrics and speech characteristics.

Low-sampling Rate of Motion Sensors. The built-in motion
sensors in AR/VR headsets have only around 200𝐻𝑧 for Google
Cardboard and 1000𝐻𝑧 for Oculus Quest, while the human voice
and its harmonics span across 85𝐻𝑧 ∼ 20𝑘𝐻𝑧 [24]. Such low sam-
pling frequencies mean themotion sensor only captures low-fidelity
speech characteristics. To realize an effective attack, Face-Mic needs
to derive reliable measurements to best capture the embedded
speech-associated facial dynamics.

4.2 System Overview
The basic idea of Face-Mic is to capture speech associated facial
dynamics to reveal the encoded gender, identity, and speech in-
formation. As illustrated in Figure 6, the malicious app monitors
the motion sensor in the background and detects human speech
based on the high-frequency bone-borne vibrations, which are
only present during speech pronunciation. Upon detecting human
speech, the app segments the motion sensor data associated with
speech and sends the segmented data to a remote adversary for
data processing. To deal with motion artifacts (e.g., head rotations)
that contaminate the sensors’ readings, we then develop a signal
source separation technique based on time-frequency analysis to
disentangle the measurements associated with facial movements
from the contaminated accelerometer/gyroscope data.
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(b) Accumulated spectrogram energy over 100Hz

(a) Summed spectrogram on x, y, z axes of the accelerometer

One Two Three

Figure 7: Illustration of speech detection and segmentation
(i.e., on Oculus Quest) based on the high-frequency bone-
borne vibrations (i.e., over 100Hz).

Next, Face-Mic separates facial muscle movements and bone-
borne vibrations from the pre-processed data and extract effective
features from them, respectively. Since facial muscle movements
and bone-borne vibrations reside in different frequency bands as
discussed in Section 2, we use a filter to separate these two types
of facial dynamics. Then for facial muscle movements, we first cal-
culate 3D speed and displacement/rotation by applying numerical
integration on the three-axis accelerometer/gyroscope readings,
which characterize the headset’s spatial movements involved in
speaking. On top of that, a set of 11 time-domain features and 2
frequency-domain features are extracted. For bone-borne vibrations,
we explore the time-frequency representations (i.e., spectrogram)
as the feature map to capture high-frequency patterns.

Based on the features of facial dynamics, we develop a deep-
learning-based framework to derive speaker- and speech-related
sensitive information. Two convolutional neural network (CNN)
models are used to derive the feature representations of facial move-
ments and bone-borne vibrations, and the derived feature repre-
sentations are then concatenated and fed to a SoftMax layer for
the three inference tasks. If the victim’s motion sensor data and
labels can be obtained ahead of time, Face-Mic correlates the motion
sensor data and the labels to train the CNN model for gender detec-
tion, speaker identification, and speech recognition (i.e., Scenario-1).
Otherwise, Face-Mic could utilize the victim’s motion sensor data
collected during the attack phase to adapt the pre-trained CNN
model built on other people to the victim’s feature space to im-
prove the inference accuracy (i.e., Scenario-2). To realize such an
attack, we design an adaptive training scheme based on domain
adaptation to update the parameters of the pre-trained CNN model,
making the knowledge learned from the pre-trained model to be
transferred to the inference task targeting the victim. The adver-
sary can also directly apply the pre-trained CNN model without
adaptive training (i.e., Scenario-3), enabling the adversary to infer
sensitive information in a real-time manner.

5 DATA PREPROCESSING
5.1 Speech Detection and Segmentation
To conduct a practical eavesdropping attack, we first need to detect
the presence of human speech based on the motion sensor readings.
In AR/VR scenarios, the built-in motion sensor of the headset can

(a) Conducting head movements

Head up and head down

(b) Conducting body movements

Turning around

Figure 8: Demonstration of removing the motion artifact
entangled in the spectrogram of facial movements (i.e., asso-
ciated with "one" and "oh").

capture other body movements, thereby making it very difficult to
perform speech detection. To circumvent this issue, we leverage
the fact that most human body movements reside in low-frequency
bands [8] and detect human speech through examining the presence
of high-frequency bone-borne vibrations, which are only present
during speech pronunciation as demonstrated in Section 2. We
empirically find that the accelerometer is more sensitive to speech-
associated vibrations than the gyroscope, which is also supported
by existing studies [1, 34, 39], so we use it for speech detection and
segmentation. Particularly, we calculate the spectrograms of x, y,
z axes of the accelerometer by applying Short-Time Fast Fourier
Transform (STFT) and conduct element-wise summation on their
magnitude. Based on the summed spectrogram, we accumulate the
energy across frequencies over 100𝐻𝑧 to detect speech.

We conduct an experiment by asking a subject to wear the Oculus
Quest and speak three words (i.e., "one", "two", "three"), and the
summed spectrogram and the accumulated spectrogram energy
of the three words are shown in Figure 7 (a) and (b). We observe
that the accumulated energy exhibits high values within the area
of speech. We are thus inspired to utilize a threshold-based method
to detect the starting point and the ending point of the speech.
Figure 7 (b) shows that our method can correctly locate the starting
and ending points of the speech, which confirms its effectiveness.

5.2 Body Motion Artifact Removal
To achieve reliable facial dynamic extraction, we need to remove the
motion artifacts contaminating the motion sensor data. Since hu-
manmovements normally impact the motion sensor readings below
60𝐻𝑧 [8], a straight-forward approach is to employ a high-pass filter
to remove the low-frequency artifacts. However, finding an optimal
cut-off frequency is challenging, since the speech-associated facial
movements are also captured in readings below 60𝐻𝑧. Therefore,
we develop a body motion artifact removal (BMAR) approach based
on signal source separation techniques [3], which were used to
separate the mixed speech of multiple speakers in audio recordings,
to extract the sensor readings of facial movements.

Wemodel the problem of signal source separation as a regression
problem (i.e., estimating the "clean" motion sensor data based on the
noisy readings distorted by human movements), and develop a deep
regression model. The regression model takes the spectrogram of
the accelerometer/gyroscope readings as input. Particularly, we use
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(a) "One" (b) "Two"

Figure 9: 3D headset speeds from twowearers are distinguish-
able when each wearer speaks "one" and "two".

the spectrogram across all available frequencies (e.g., 0 ∼ 500𝐻𝑧 for
Oculus Quest), so that the more robust bone-borne vibrations can
help in separating signals of facial movements from noisy motion
sensor readings. Given the spectrogram of motion sensor readings,
𝑋 (𝑡, 𝑓 ), the objective of the deep regression model is to estimate a
mask 𝑀̂𝑠 (𝑡, 𝑓 ) that reconstructs the spectrogram of speech:

𝑋 (𝑡, 𝑓 ) = 𝑀̂𝑠 (𝑡, 𝑓 ) ◦ 𝑋 (𝑡, 𝑓 ), (1)
where ◦ denotes the element-wise product of the two operands.
An inverse short time Fourier Transform can then be applied to
reconstruct the "clean" motion sensor data. To realize such a re-
gression model, we build a deep neural network consisting of two
fully-connected layers for representation derivation and a regres-
sion layer for spectrogram mapping. A dropout layer is attached to
each fully-connected layer to prevent over-fitting.

To train the deep regression model, we collect motion sensor
data of speech (i.e., no body movement involved) and a set of repre-
sentative body movements (e.g., head rotations, body movements)
without speaking, separately, and then mix them to generate the
training data. The sensor data of speech is used as the target re-
gression variables. By using this approach, our attack can produce
a huge amount of training data at a very low cost. Both the gen-
erated training data and the target regression variables are fed to
the deep regression model for training. We use the mean square
error as the loss for the optimization. Figure 8 (a) and (b) show the
effects of noise removal for a head movement and a body move-
ment. We can observe that the energy of these two movements is
significantly reduced after passing our regression model, though
minor energy remains. The results confirm the effectiveness of the
proposed BMAR approach based on deep regression.

6 FEATURE EXTRACTION FOR FACIAL
MOVEMENT AND BONE-BORNE
VIBRATION

Given the denoised motion sensor data, we use a low-pass filter
and a high-pass filter, with the same cut-off frequency of 100𝐻𝑧, to
extract facial movements and bone-borne vibrations, respectively.

Feature Set for Facial Movements. Based on the accelerom-
eter readings, we calculate the 3D speed and displacement of the
VR/AR headset through the first- and second-order numeric in-
tegration, which depict the geometric kinematics model of facial
muscle movements when a specific user speaks specific content.
Since raw motion sensor readings involve substantial hardware
noises that bring linearly increasing integration errors over time,

(a) "One" (b) "Two"

Figure 10: 3D headset displacements from two wearers are
distinguishable when each wearer speaks "one" and "two".

we take the starting and ending point of a data segment as refer-
ences and then calculate and subtract the average integration error
from each data point in the segment. We show the calibrated speed
and displacement of two digits (i.e., "one", "two") in Figure 9 and
Figure 10, respectively. We observe for the same digit, both speed
and displacement exhibit different 3D trajectories between the two
users, showing that such measurements may embed personal char-
acteristics. Furthermore, for the same user, the distinctive speed
and displacement trajectories between the two digits are different,
which also confirm the existence of content-related patterns.

Face-Mic extracts 11 time-domain features and 2 frequency do-
main features from short frames of 3D acceleration, speed, displace-
ment, as well as angular velocity. A sliding time window with a
length of 128𝑚𝑠 and a step size of 16𝑚𝑠 is used to sample the short
frames. The time-domain features include variance, maximum, min-
imum, range, mean, root mean square, median, interquartile range,
mean crossing rate, skewness, and kurtosis. These statistic fea-
tures encode the magnitude and speed of facial muscle movements
and properties (e.g., size and strength of facial muscles). In addi-
tion, we extract frequency domain features by applying FFT on
the accelerometer/gyroscope readings of each frame. The FFT co-
efficients are used to derive frequency-domain features, including
mean and entropy of energy, which capture the periodic nature
of speech/speaking behaviors. In total, we extract 234 time- and
frequency-domain features from each frame.

Feature Set for Bone-borne Vibrations. Since bone-borne
vibrations are only present in high-frequency ranges, we calculate
the spectrogram of accelerometer and gyroscope readings and use
them as features. We do not extract time-domain features from the
bone-borne vibrations, since the high-pass filter used to extract the
vibrations can significantly distort the time-domain characteristics
(e.g., mean) in low-frequency sensor readings, rendering the time-
domain features not stable. Given sensor readings of accelerometer
and gyroscope, Face-Mic computes spectrogram based on the sensor
readings of x, y, z axes, and removes the frequency components
below 100𝐻𝑧. To provide fine-grained frequency representations,
we compute the spectrogram by applying 1000 − 𝑝𝑜𝑖𝑛𝑡 FFT in each
128𝑚𝑠 Hanning window, shifting 16𝑚𝑠 each time.

7 DEEP LEARNING-BASED SENSITIVE
INFORMATION DERIVATION FRAMEWORK

Given the extracted features, we develop a deep-learning-based
framework to perform sensitive information derivation. If the vic-
tim’s motion sensor data and labels (gender, identity, or audio data)
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can be obtained ahead of time, Face-Mic correlates the motion sen-
sor data and the labels to train a deep learning model based on
CNN (i.e., Scenario-1). Otherwise, Face-Mic will only leverage the
motion sensor data collected during the attack phase to adapt the
pre-trained deep learning model built on other people’s data, to
the victim’s feature space to improve the accuracy. We build an
adaptive training scheme (Section 7.2) grounded on domain adap-
tation, which transfers the knowledge learned from the pre-trained
model to the inference tasks targeted at the victim (i.e., Scenario-
2). The adversary can also directly utilize the pre-trained model
to perform sensitive information derivation, without utilizing the
victim’s motion sensor data for adaptive training (i.e., Scenario-3).

7.1 CNN-based Sensitive Information
Derivation

Representation Extractor. Since the features of facial movements
and bone-borne vibrations have very different properties and di-
mensions, we use two CNN models to process the features of these
two types of facial dynamics as shown in Figure 11. For both CNNs,
a batch normalization layer is applied to the input features to re-
move the mean and scale the features to unit variance, aiming to
mitigate small-scale variations across data samples. To process the
features of facial movements, we use a CNN consisting of 3 con-
volutional layers with 2D kernels to calculate feature maps. The x,
y, z axes of the accelerometer/gyroscope are considered as 3 sepa-
rated channels of the CNN. For the bone-borne vibration, due to
the large size of the spectrograms, we attach a max-pooling layer to
each convolutional layer for dimension reduction. The 2D feature
maps of the two CNNs are then flattened and compressed with
two fully-connected layers. The concatenated outputs of the two
CNNs are used as feature representations to perform the attack.
The activations of all layers are ReLU.

Sensitive Information Classifier. To derive sensitive infor-
mation, we feed the feature representations to a classifier, which
consists of two fully-connected layers and a SoftMax layer to map
the feature representations into the probabilities over different
classes (e.g., different speakers). During training, we use categorical
cross-entropy as the loss function, which examines the differences
between the model predictions and the labels. Based on the adver-
sary’s objective, the sensitive information classifier can be easily
modified to perform the three inference tasks (i.e., gender detection,
speaker identification, and speech recognition).

7.2 Unsupervised Domain Adaptation
The facial dynamics usually contain substantial information specific
to the headset wearer, including unique biometric characteristics
(e.g., face shapes, tissue properties) and behaviors of speaking. The
adversary may not able to obtain a sufficiently large dataset to
build a general model to suppress such individual variations. To
enable an effective attack while circumventing the training require-
ment, we apply a domain adaptation technique that can effectively
transfer the knowledge learned from the pre-trained model to a
specific inference task targeting the victim. Specifically, we employ
domain adversarial training [43] to remove the speaker-dependent
characteristics embedded in the facial features, by leveraging the
victim’s motion sensor data collected during the attack phase.
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Figure 11: Deep learning-based framework used to derive,
gender, identity, and speech content.

The key components of our scheme are a set of domain discrimi-
nators that adaptively update the parameters of the representation
extractor as shown in Figure 11. We define a wearer (non-victim) as
an individual involved in the training of the pre-trained model, and
we build a domain discriminator (i.e., with 2 fully-connected layers
and a SoftMax layer) for each wearer-victim pair, which adaptively
transfers shared features from each wearer to the victim’s feature
space. By taking the representations from the representation ex-
tractor as input, each domain discriminator predicts the domain
label (i.e., the victim or the corresponding wearer). Then, by ap-
plying a generative adversarial loss [11], we can use the domain
discriminator to guide the representation extractor to learn speaker-
independent representations. The idea is to apply a negative factor
−𝜆 to the domain loss during the optimization, so that the represen-
tation extractor is trained to "confuse" each domain discriminator.
Given 𝐾 wearer-victim pairs (i.e., between each of the 𝐾 wearers
and the victim), the loss function to optimize the representation
extractor is defined as:

𝐿𝑓 = 𝑙𝑜𝑔

𝐾∑︁
𝑘=1

𝑒𝑥𝑝 (𝐿𝑠
𝑘
− 𝜆𝐿𝑑

𝑘
), (2)

where 𝐿𝑠
𝑘
denotes the loss of the classifier computed using the data

of the 𝑘𝑡ℎ wearer, and 𝐿𝑑
𝑘
is the loss of the 𝑘𝑡ℎ domain discrimina-

tor. The log-sum-exp trick adaptively combines the losses of all 𝑘
wearer-victim pairs and smooths the final loss for accelerating the
convergence. The factor 𝜆 is used to balance the trade-off between
the representations’ transferability and the distinctiveness.

8 ATTACK EVALUATION
We validate Face-Mic on two standalone headsets (i.e., Oculus Quest
and HTC Vive Pro) and two low-cost cardboard headsets (i.e., Card-
board headsets with Nexus 6 and Samsung Galaxy 6 smartphones).

8.1 Experimental Setup
Face-mounted AR/VR headsets.
• Operating Systems: VR/AR headsets normally run on smartphone
and computer operating systems. Particularly, HTC Vive Pro is
connected to a desktop with i7-8700 CPU and GeForce RTX 2080
Graphics Card (8G), running on Windows 10. Similarly, the host
computer of Oculus Quest runs on Window 10 installed with
Oculus Platform. For the cardboard headsets, we use Nexus 6 and
Samsung Galaxy 6 running on Android.
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Figure 12: Performance of gender detection under Scenario-1,
Scenario-2, and Scenario-3.

• Motion Sensors:HTCVive Pro and SamsungGalaxy 6 are equipped
with the samemotion sensormodule, i.e, InvensenseMPU-6500 [14],
with the sensitivities of accelerometer and gyroscope range 2048
/4096/8192/16384 𝐿𝑆𝐵/𝑔 and 16.4/32.8/65.5/131 𝐿𝑆𝐵/◦/𝑠𝑒𝑐 , re-
spectively. Nexus 6 equips a Bosch Sensortec BMI160 motion
sensor [7], with the same accelerometer/gyroscope sensitivity.
Oculus Quest uses an original motion sensor board, 330-00193-
03 1PASF8K, designed by Facebook, but the specifications was
not published. Although the motion sensor chips support high
sampling frequencies (e.g., around 8𝐾𝐻𝑧), the vendors constrain
the sampling rates to ensure low power consumption, i.e., 227𝐻𝑧
for Nexus 6, 203𝐻𝑧 for Samsung Galaxy 6, and 1000𝐻𝑧 for both
Oculus Quest and HTC Vive Pro. Note that we select the two
low-end smartphones with the objective of demonstrating Face-
Mic’s generalizability, since the motion sensors in most current
smartphones have similar or even higher sampling rates.

Speech Datasets.

• Digit Dataset: Digits can be associated with a wide range of
highly sensitive information (e.g., SSN, credit card number). To
evaluate Face-Mic, we collect digit datasets consisting of 11 digits
borrowed from the TIDigits corpus [31]. Besides digits 0 ∼ 9, the
pronunciation “oh", a synonym of digit 0, is also collected.

• PGP Word Dataset: To evaluate the performance of our attack on
inferring more generalized words, such as private and sensitive
information in group voice chats, we apply a subset of the PGP
words list [16]. Specifically, we select 20 frequently used words
from the PGP word list with different length and syllables to
evaluate Face-Mic’s generalizability to different words.

Participants & Data Collection.We collect digit/word datasets
with the 4 aforementioned AR/VR headsets by involving 45 partic-
ipants in total, aging from 24 to 36. Particularly, the experiments
involve 15 participants for Oculus Quest (11 males and 4 females),
10 participants for HTC Vive Pro (8 males and 2 females), 10 par-
ticipants for the cardboard headset with Nexus 6 (7 males and
3 females), and 20 participants for the cardboard headsets with
Samsung Galaxy 6 (13males and 7 females). Note that the 10 partic-
ipants involved in the Cardboard (Nexus) dataset are also involved
in the Oculus Quest dataset. Each participant is asked to wear the
headset and speak the aforementioned digits and words 10 times.
During the experiments, we measure the sound pressure levels
(SPLs) when the participants speak using a sound level meter [35],
which is placed at around 30cm to the participant’s mouth, and
the measured SPLs are around 67𝑑𝐵 ∼ 73𝑑𝐵. The experiments are
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Figure 13: Performance of speaker identification under dif-
ferent feature sets of facial dynamics under Scenario-1. Note
that speaker identification needs the victim’s identity during
training, so speaker identification only applies to Scenario-1.

conducted in 6 different environments, including 3 university of-
fices, 2 residential apartments, and an outdoor environment, which
involve different acoustic noises (e.g., conversations, air-condition
noises). We found that these acoustic noises have limited impacts
on the motion sensor readings, which is consistent with the find-
ings from prior work [1]. In all our experiments, we let participants
wear headsets by themselves in a comfortable way, and we did not
limit the movements of the participant. In total, we collect 4, 650
data segments for Oculus Quest, 3, 100 segments for HTC Vive Pro,
3, 100 segments for the cardboard headset with Nexus 6, and 6, 200
segments for the cardboard headset with Samsung Galaxy 6. The
data collection procedures were approved by our university’s IRB.

Evaluation Methodology. We examine gender detection and
speaker identification by measuring attack success rate. For gender
detection, the success rate is defined as the percentage of segments
correctly detected as belonging to male or female, while for speaker
identification, the attack success rate is the percentage of segments
correctly identified as belonging to the corresponding victims. For
more challenging tasks for speech recognition, we define attack suc-
cess rate by employing the top-N accuracy. The top-N accuracy is
defined as the probability that the actual digits/words are within the
top N classes predicted by our deep learning model. We use top-1,
top-2, and top-3 accuracies to quantify the attack’s effectiveness.

To evaluate Face-Mic under Scenario-1, we partition a digit/word
dataset (i.e., including both motion sensor data and labels) involving
all users randomly into 10 subsets with equal size, with 9 subsets
used for training and the remaining 1 subset for testing. To ex-
amine our attack’s effectiveness under Scenario-2, which does not
require the victim’s labels for training, we take turns considering
each participant as the victim, and leverage the labeled data of all
remaining participants to pre-train a deep learning model. We then
leverage the victim’s motion sensor data to adapt the pre-trained
model based on the proposed unsupervised domain adaptation
method. For Scenario-3, we directly apply the pre-trained model on
the victim’s data, without applying domain adaptation.

8.2 Gender Detection
Attacks via High-end Standalone Headsets. The gender detec-
tion performance on the two high-end standalone headsets under
the three attack scenarios is shown in Figure 12(a). We find that
our attack has prominent performance on both headsets, with over
99% success rates under Scenario-1. Furthermore, we find that even
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Figure 14: Performance of speech recognition under different
feature sets of facial dynamics under Scenario-1.

under more challenging scenarios without leveraging the victim’s
labels (i.e., gender) for training (i.e., Scenario-2 and Scenario-3), Face-
Mic can still achieve over 85% success rates on gender detection,
which shows the effectiveness of the proposed attack.

Attacks via Low-cost Cardboard Headsets.Next, we examine
the gender detection performance of Face-Mic on the two cardboard
headsets with Nexus 6 and Galaxy S6 smartphones, with the perfor-
mance of the three attack scenarios shown in Figure 12(b). We find
that even with much lower sampling rates (around 200𝐻𝑧), Face-Mic
can still achieve remarkable gender detection accuracies, with over
99% attack success rates under Scenario-1. An encouraging finding
is that the designed unsupervised domain adaptation scheme can
enable high attack success rates under Scenario-2, with over 98%
success rates, which are comparable with the results of Scenario-1.
In addition, we observe that even without applying domain adap-
tation (i.e., Scenario-3), Face-Mic can still achieve over 75% gender
detection performance. The results demonstrate the effectiveness
of Face-Mic on detecting the gender of cardboard headset wearers.

8.3 Speaker Identification
Attacks via High-end Standalone Headsets.We then evaluate
Face-Mic on identifying speakers with Oculus Quest and HTC Vive
Pro, with the results shown in Figure 13(a). We find that when
leveraging both facial muscle movements (i.e., Combined), Face-
Mic can achieve over 97% and 93% attack success rates on Oculus
Quest and HTC Vive Pro, respectively. For both headsets, the attack
success rates on the word datasets are generally higher than the
success rates on the digit datasets. We believe this is due to the
longer length and richer syllables of words, which encodes more
biometric characteristics.

Attacks via Low-cost Cardboard Headsets. The speaker iden-
tification performance of Face-Mic on the two cardboard headsets
with Nexus 6 and Galaxy S6 smartphones is shown in Figure 13(b).
Although the motion sensors’ sampling rates are much lower in the
cardboard headsets (around 200𝐻𝑧), Face-Mic can still achieve over
94% success rates for both headsets when using both facial mus-
cle movements and bone-borne vibrations (i.e., Combined), which
demonstrates the effectiveness of Face-Mic with low-cost cardboard
headsets. Furthermore, compared to the high-end standalone head-
sets, we find that the cardboard headsets have higher success rates
on bone-borne vibrations. Such results can be attributed to the
lower vibration damping ratio of the cardboard headsets, as the
stand-alone headsets are normally equipped with thick face covers
pad for comfort, which greatly attenuate the bone-borne vibrations.
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Figure 15: Performance of speech recognition with top-1, top-
2 and top-3 accuracies under Scenario-2.
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Figure 16: Performance of speech recognition with top-1, top-
2 and top-3 accuracies under Scenario-3.

8.4 Speech Recognition
Performance under Scenario-1.We then evaluate Face-Mic on
deriving simple speech content, including digits and PGP words.
The attack success rates of Oculus Quest and HTC Vive Pro un-
der Scenario-1 are shown in Figure 14(a). It is encouraging that for
both Oculus Quest and HTC Vive Pro, Face-Mic achieves over 99%
top-1 accuracies when using both facial muscle movements and
bone-borne vibrations (i.e., Combined). We also separately exam-
ine the impact of feature sets (i.e., facial muscle movements and
bone-borne vibrations) on the attack, and the average top-1 accura-
cies are 89% and 96%, respectively. The bone-borne vibrations are
directly generated by vocal folds, and thus they are encoded with
rich phoneme characteristics, leading to higher speech recognition
performance. We also evaluate the speech recognition performance
under Scenario-1 leveraging the two low-cost cardboard headsets,
with the results shown in Figure 14(b). We find that even with
much lower sampling rates, Face-Mic can achieve over 93% top-1
accuracies for speech recognition when using both feature sets. The
results demonstrate the effectiveness of Face-Mic under Scenario-1.

Performance under Scenario-2. The attack performance of
standalone headsets under Scenario-2 is shown in Figure 15(a). We
find that even the victim’s labels (i.e., audio data) are not available,
Face-Mic achieves on Oculus Quest with (54%, 48%) top-1, (70%,
60%) top-2 and (81%, 68%) top-3 accuracies on digit recognition
and word recognition, respectively, on Oculus Quest. As a compari-
son, the random guess probabilities of recognizing these digits and
words are only 9.1% and 5%, respectively. For HTC Vive Pro, the
attack performance are (44%, 39%) top-1, (58%, 50%) top-2 and (69%,
62%) top-3 accuracies. These results indicate that the attack perfor-
mance is comparable when using the standalone headsets under the
adaptive retraining. As shown in Figure15(b), for the same attack
scenario, both cardboard headsets achieve around (32%,30%) top-1,
(43%,42%) top-2 and (53%,49%) top-3 accuracy on digit recognition
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and word recognition, respectively. The top-3 success rates of both
headsets reach 50%, which can allow the adversary to extract some
speech content. Although the accuracies are lower on the cardboard
headsets, the digit and word recognition accuracies are still 2× and
3× over the corresponding random guess accuracies in top-1 and
5× and 9× over the random guess in top-3.

Performance under Scenario-3. For the most challenging sce-
nario, as shown in Figure 16(a), Face-Mic can still obtain (44%,40%)
top-1, (62%,55%) top-2 and (72%,62%) top-3 accuracies for digit and
word recognition on Oculus Quest. The results are 4× (top-1) to
8× (top-3) and 7× (top-1) to 12× (top-3) over the random guess
(i.e., 9.1% for digit recognition and 5% for word recognition).These
results show that Face-Mic has the capability to extract speech in-
formation even without any data from the victim. We find HTC
Vive Pro achieves a slightly lower performance, (33%,30%) top-1,
(49%,43%) top-2 and (60%,51%) top-3 for digit and word recognition.
Under the same scenario, as shown in Figure 16(a), the results of the
two cardboard headsets are lower with (24%,21%) top-1, (36%,31%)
top-2 and (46%,39%) top-3 accuracies for digit and word recognition.

8.5 Impacts of Body Movements
To evaluate the robustness of Face-Mic under motion interference,
we conduct a case study by asking 5 participants (3 males and 2
females) to wear Oculus Quest and Google Cardboard with Nexus 6
smartphone, and conduct large-scale body movements while speak-
ing digits (i.e., "Oh", 0 ∼ 9). Particularly, we collect digit datasets
for two representative movements in real-world AR/VR scenarios:
1) Head Movements: the participant moves his/her head upward or
downward when speaking each digit, and 2) Body Movements: the
participant moves one step forward and one step backward when
speaking each digit. We do not constrain the postures of the par-
ticipants during the experiments. Table 2 shows the attack success
rates on detecting gender, identifying users, and recognizing digits.
We find that Face-Mic is much more effective in eavesdropping the
sensitive informationwhen using the proposed bodymotion artifact
removal (BMAR) approach (introduced in Section 5.2). Specifically,
given the large-scale body movements, BMAR improves the suc-
cess rates for user identification and digit recognition by 8.3% and
13.3%, respectively. Even higher improvements can be observed for
the cardboard headset, with 25.4% and 34.9% higher success rates
for identifying users and recognizing digits. The gender detection
model is less susceptible to body movements. In general, the BMAR
approach can greatly improve the eavesdropping performance of
Face-Mic. Such improvements are brought by the well-designed
BMAR model that mitigates the impacts of motion artifacts.

8.6 Impact of Training Data Size
We consider the affect of training size deriving the headset wearer’s
gender, identity, and simple speech information, taking a least
knowledge approach to evaluate attack success (using 1 ∼ 10 sam-
ples for training/testing) under Scenario-1. Figure 17 shows a line
graph comparing the attack success rates of four available devices
as the training size is varied. The x-axis represents the number of
samples that is used for training. For both low-cost headsets, gender
and speaker identification accuracy can reach 92% with only two
training samples. For Samsung Galaxy S6, Face-Mic achieves almost
100% gender detection accuracy. For Oculus Quest and HTC Vive

Table 2: Comparing the performance of Face-Mic with and
without body motion artifact removal (BMAR).

Gender Detection
Head Movements Body Movements

Without BMAR With BMAR Without BMAR With BMAR
Google Cardboard (Nexus 6) 89.37% 93.23% 85.13% 93.47%

Oculus Quest 96.81% 98.87% 96.24% 98.56%
Speaker Classification
Head Movements Body Movements

Without BMAR With BMAR Without BMAR With BMAR
Google Cardboard (Nexus 6) 75.74% 89.74% 63.47% 88.91%

Oculus Quest 90.12% 96.75% 88.87% 97.21%
Speech Recognition
Head Movements Body Movements

Without BMAR With BMAR Without BMAR With BMAR
Google Cardboard (Nexus 6) 37.49% 56.25% 18.72% 53.71%

Oculus Quest 79.37% 89.99% 74.12% 87.49%

Pro, gender detection and speaker identification accuracies are over
96% using five training samples. For digits and word recognition,
the success rates reach 83% with six samples for training. Overall,
our results demonstrate the low training requirement of Face-Mic.

9 RELATED WORK
AR/VR Headset Security: AR/VR headsets and their potential
security vulnerabilities are gaining attention in academic research.
Roesner et al. [32] identified different security and privacy chal-
lenges of current AR/VR technology and systematizes their knowl-
edge across two factors: system scope and functionality. The authors
described that the privacy risk is much greater in AR/VR devices,
compared to conventional systems, because of specific AR/VR be-
haviors, such as continuous sensor monitoring (i.e., accelerometer,
GPS, etc.) and unrestricted sensor access. Initial research in AR/VR
privacy focused on user input security [15, 18, 33]. Specifically, they
looked at the challenges that can arise from unrestricted sensor
access (e.g., microphone, video, MEMS) and how it can be compro-
mised to infer user keystrokes. Another work explored the potential
risks of unregulated AR/VR visual output [17]. And a case study
by Chen et al. [10] revealed potential security vulnerabilities for
face-mounted VR devices, which is a key interest of our own work.
Motion Sensor Based Speech Eavesdropping: Academic re-
search has been committed to MEMS motion sensor eavesdropping
attacks on user speech. In AccelEve [4] and Gyrophone [22] the
authors demonstrated attacks that use smartphone accelerometer
and gyroscope data to compromise speech privacy. Similarly, Accel-
word [41] is a benign application designed to recognize the airborne
speech of a user. In a broader study, Anand et al. [1] analyzed the
speech privacy threat from MEMS motion sensors and found pa-
rameters such as same surface propagation medium (observed in
[22]) and loud volume speech (observed in [41]) may be required to
successfully compromise speech. In our work, we capture the facial
dynamics of the speaker (combination of bone-borne vibrations and
facial muscle movements), introducing a novel feature source for
speech classification that has yet to be explored in academia.
Bone-Borne Vibrations and Defensive Applications: Recent
work has emerged that explores bone-borne vibrations for speech
recognition. An initial study by [20] used high-fidelity piezoelec-
trical disc mounted on the nose pad of a pair of glasses to capture
vibrations and reconstruct speech. In a study by Zhang et al., the
authors explored the use of bone-borne vibrations for authentica-
tion/defense purposes and presented a continuous liveness detec-
tion system called VibLive [42]. In our work, we explore the unique
scenario when someone uses an AR/VR headset, and the headset
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Figure 17: Performance of Face-Mic under different sizes of training data.

itself allows for direct vibration propagation between the user’s
face and the inbuilt, smartphone motion sensors; capturing both
bone-borne vibrations and facial muscle movements.

10 DISCUSSION
10.1 Potential Defenses
An intuitive way to defend Face-Mic is to disable the background
use of the motion sensors. However, motion sensors need to be used
in almost all AR/VR apps to sense head movements. And even if an
app requests the background permission of motion sensor during
installation, most users will agree on the permission Moreover, it is
also possible to perturb the correlation between the motion sensor
data and the speech-associated facial dynamics to defend against
this type of attack. This can be achieved through programmatically
injecting noises to the motion sensor readings without interfering
with AR/VR motion tracking. Along this direction, the privacy risks
introduced by Face-Mic may be mitigated through designing sen-
sory noises to obfuscate the reconstruction of facial movements
and bone-borne vibrations. Alternatively, the manufacturers of
VR headsets may add ductile materials in the foam replacement
cover and the headband, which may attenuate the facial vibrations
that would be captured by the built-in accelerometer/gyroscope.
Compared to the Oculus Quest with a thin face cover, the HTC
Vive is equipped with a thick mask exhibiting much lower success
rates for eavesdropping digits and PGP words. Motivated by this
observation, we suggest the vendor of AR/VR headsets to add some
ductile materials between the headset and the user’s face to weaken
the facial vibrations. Another effective defense is to constrain the
sampling rate of the accelerometer and gyroscope in AR/VR Oper-
ating Systems (e.g., Windows for HTC Vive). However, limiting the
sampling rate may also influence the functionality and usability of
some benign apps. In addition, besides high-frequency bone-brone
vibrations, Face-Mic also leverages facial muscle movements reside
at low-frequency ranges (e.g., below 100Hz), making it still capable
of deriving some sensitive information.

10.2 Potential Attack Improvement
As the first work in this line of research, we demonstrate that Face-
Mic can classify speech content, including 11 digits and 20 PGP
words with top-1 recognition accuracies of around 99%, 54%, and
44% under Scenario-1, Scenario-2, and Scenario-3, respectively, on
the currently most popular commercial VR headset Oculus Quest.
Such a capability already allows an adversary to derive a broad
range of sensitive information, such as phone numbers, social secu-
rity numbers, and passwords. We believe that if the dataset can be
sufficiently extended (e.g., by involving data of more people), our

attack performance will be further improved. Another challenge
is that in some AR/VR scenarios (e.g., AR/VR virtual meeting), the
victim’s speech may involve a much larger set of words, making it
difficult for a pre-trained model built on a limited vocabulary to re-
construct all speech content. A possible solution is to train a general
deep learning model leveraging a huge dataset with an extensive
vocabulary, but such a method will require a significant amount
of manpower, making it infeasible in practice. Since both bone-
borne vibrations and human speech are produced by vocal folds,
it is possible to develop a speech reconstruction scheme that can
map the motion sensor readings with bone-borne vibrations into
audio signals, which resemble the microphone recordings of human
speech. Such a mapping can be realized with a deep autoencoder
network that consists of an encoder to convert bone-borne vibra-
tions into hidden representations and a decoder to transform the
representations into audio signals. Furthermore, we may use more
sophisticated network architectures (e.g., WaveNet [30], Trans-
former [38]) to improve the speech reconstruction performance.
In this way, we can directly apply an existing audio-based speech
recognition model (e.g., Google Speech-to-Text) to infer the speech
content of the victim. We leave this as our future work.

11 CONCLUSION
In this paper, we propose Face-Mic, a devastating attack on AR/VR
devices that leverages the facial dynamics captured by zero-permission
motion sensors to infer private speech and speaker information. We
determined two types of facial vibrations that capture the speech ef-
fects, namely speech-associated facial movements and bone-borne
vibrations. To render a practical attack, we developed a novel signal
source separation technique based on deep regression to elimi-
nate the impacts of human body movements. Based on the unique
characteristics of facial movements and bone-borne vibrations, we
extract two sets of features that capture unique private biometrics
and speech characteristics. A deep-learning-based framework is
developed leveraging the extracted features to derive the headset
owner’s gender/identity and possibly recover speech content. We
validate Face-Mic via extensive experiments and demonstrate its
generalizability and effectiveness. We believe that Face-Mic demon-
strates a real threat to the users of AR/VR devices, which calls for
additional research to develop defensive solutions in the future.
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