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Abstract— In this work, we investigate the problem of incre-
mentally solving constrained non-linear optimization problems
formulated as factor graphs. Prior incremental solvers were
either restricted to the unconstrained case or required periodic
batch relinearizations of the objective and constraints which
are expensive and detract from the online nature of the algo-
rithm. We present InCOpt, an Augmented Lagrangian-based
incremental constrained optimizer that views matrix operations
as message passing over the Bayes tree. We first show how
the linear system, resulting from linearizing the constrained
objective, can be represented as a Bayes tree. We then propose
an algorithm that views forward and back substitutions, which
naturally arise from solving the Lagrangian, as upward and
downward passes on the tree. Using this formulation, In-
COpt can exploit properties such as fluid/online relinearization
leading to increased accuracy without a sacrifice in runtime.
We evaluate our solver on different applications (navigation
and manipulation) and provide an extensive evaluation against
existing constrained and unconstrained solvers.

I. INTRODUCTION

We address the problem of solving for hard constraints
within incremental factor graph optimizers. State estimation
and Simultaneous Localization and Mapping (SLAM) are
typically formulated as factor graph inference problems
where variable nodes represent states and factor nodes en-
code priors or observation likelihoods as soft constraints. In
many scenarios, both priors and observations are better mod-
eled as hard constraints. For instance, contact observations
when a robot finger touches an object are better modeled as
a constraint. How do we efficiently perform inference in the
presence of such hard constraints?

Prior work has formulated this problem as incremental
constrained smoothing (ICS) [1]. The key idea behind ICS
is to solve for a constrained optimization objective incremen-
tally, i.e. as new observations arrive at each time step, with-
out having to re-solve from scratch. It does so by leveraging
primal-dual methods like the Augmented Lagrangian [2] to
split the constrained objective into two alternating primal
and dual steps, each of which can be solved efficiently by
leveraging sparse, incremental matrix factorization. However,
a key limitation of ICS is that it assumes a fixed linearization
point for earlier states in the matrix factorization. This makes
it unsuitable for nonlinear problems that require frequent
relinearizations. These limitations are addressed by iSAM2
[3] that exploits a connection between graphical models
and sparse linear algebra. It replaces the sparse matrix
factorization with a Bayes tree structure. Incremental edits
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Fig. 1: Unconstrained and constrained factor graph solutions for planning
a manipulator to move around obstacles. (a) Unconstrained objectives as
solved by iISAM2 invoke a single downward pass on the Bayes tree to
compute primal solutions. (b) Constrained objectives as solved by InCOpt
invoke multiple alternating upward and downward passes on the Bayes tree
to solve for both primal and dual variables until convergence.

can be made to the Bayes tree directly allowing fluid/online
relinearization. However, iSAM2 does not handle hard con-
straints and only works with unconstrained objectives.

We propose Incremental Constrained Optimization (In-
COpt), that leverages the Bayes tree data structure to handle
hard constraints with online relinearizations. Our key insight
is that the matrix updates in the primal-dual steps can be
translated to message passing operations on the Bayes tree.
Specifically, each iteration performs alternating upward and
downward passes on the Bayes tree, which are equivalent
to a forward and backward matrix substitution respectively.
Unlike ICS, we do not need to maintain a full matrix, but
instead, maintain sub-matrices within each node of the Bayes
tree. This is key to enabling online relinearization and more
efficient updates.

Our main contributions are:

1) A primal-dual constrained optimization framework for-
mulated as message passing on a Bayes tree.

2) A novel algorithm to efficiently solve the constrained
objective with online relinearization without having to
recompute solutions from scratch at every time step.

3) Open-source code along with empirical evaluation on
different tasks such as navigation and manipulation®.

II. RELATED WORK

Factor graphs for SLAM: Simultaneous Localization and
Mapping (SLAM) has been a central focus for roboticists
and others for several decades [4]. Initial solutions used an
Extended Kalman Filter which proved to be unscalable due
to the curse of dimensionality [S], [6]. [7] and [8] capitalized
on the inherent sparsity of the SLAM problem to handle large
numbers of variables. However, these methods still required
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factorizing large matrices (i.e. Jacobians) at each time step
and were dependent on good initialization points.
Incremental unconstrained solutions: Incremental
Smoothing and Mapping (iSAM) [9] viewed the problem as
probabilistic inference over factor graphs, proposed updating
existing jacobians with new measurements, and performing
single batch updates only at predefined optimizer steps
which allowed for real-time performance. However, the
accuracy of the solution was highly dependent on the quality
of the linearizations at any time step. iISAM2 [3] moved
away from the matrix view to represent the linearized
system as a Bayes tree [10]. Now on-time relinearization
and partial state updates can be done leading to increased
accuracy without a sacrifice of runtime. However, iSAM2
is an unconstrained solver not suited for handling hard
constraints that may arise in different robotics applications
(especially with factor graphs gaining traction in areas such
as planning [11], [12] [13] and control [14], [15], [16]).
Batch constrained solutions: [16] used Sequential
Quadratic Programming (SQP) to solve a factor graph con-
taining both soft and hard equality constraints and [17]
proposed solving an equality-constrained factor graph using
a hybrid elimination procedure. [18] introduced an active-
set method to solve for both equality and inequality con-
straints within a factor graph framework. [19] proposed
splitting large-scale non-linear inference problems (focus-
ing on SLAM) into subgraphs with equality constraints
between separator variables allowing for distributed opti-
mization using ADMM. [20] viewed incremental SLAM as
a constraint/cycle selection problem with loop closure cycles
represented as constraints. However, [16]-[20] either solve
batch constrained optimization problems or are not easily
amenable to incremental constrained optimization on factor
graphs where previous matrix factorizations are reused. ICS
[1] extended iSAM to handle hard constraints. However, it
only allowed for batch relinearizations at specific intervals
and hence, suffers a performance hit when frequent lineariza-
tions of the objective and constraints are required. In this
paper, we propose InCOpt which tackles these limitations.

III. PROBLEM FORMULATION AND NOTATION

Consider the following nonlinear least-squares objective
subject to a set of nonlinear hard equality g(-) and inequality
h(-) constraints:
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where each f;, g4, hp is a non-linear function of a subset of
variables x;, 74, 2, of x and ||e||4 £ eI S~ te is the squared
Mabhalanobis distance with covariance ¥~ . We linearize mea-
surement functions f;(-), gq(-), hp(-) about a linearization
point 2° to get the subproblem:
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where A; =X, 2 F;, b; =X, % (2; — fi(2?)), with F; being
the measurement function Jacobian, A the state update vec-
tor, G, and H,, the Jacobians of the equality and inequality
constraints, and g(2°), h(x°) the constraints evaluated at the
linearization point 2 (see [1] for more details).
We define the set of all non-linear factors:

F = f Um where:
f={f:} (@ll soft constraints)
m = {g, U hy} (all hard constraints).

and define the set of all linearized factors as:

OF = 0f UOdm where:
of ={(4i,bi)}
Om = {(My,my,(2°))} = {(Gy, 94(«°)} U {(Hp, hy(2°))}

We also denote as Mj the partial derivative of the hard
constraint m;, with respect to variable j evaluated at x°.

We now write the Augmented Lagrangian [2] for the
constrained objective in Eq. 2:
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where p, and p, are the penalty terms, v, u, the dual
variables associated with each equality, inequality constraint
respectively, v, u their concatenation, and the max operator
applied element-wise. We follow the derivation from ICS [1]
to get the iterative primal-dual updates in matrix form,

RTy =GTv+ Hu (4a)
RA=d -y (4b)
vt =04 p(GA + g(z)) (40)
ut =max (0,u+ p(HA + h(z°))) (4d)

where [R | d] results from the QR factorization of the system
[A | b] with A,b constructed by collecting all A;,b; into a
single large system. Similarly, [G | g], [H | h] are constructed
by collecting all G4,g, and Hp, hy. In ICS, Egs. 4a—4d
are solved as full matrix updates (see example of the fully
constructed matrices in Fig. 2). However, this can cause ICS
to accumulate errors in its estimates since it assumes a fixed
linearization point when constructing these matrices.

IV. APPROACH

We propose InCOpt which leverages the Bayes tree data
structure as introduced in iISAM2 [3] to handle hard con-
straints with online relinearizations. Our key insight is that
the matrix updates in the primal-dual steps in Eq. 4 can be
translated to message passing operations on the Bayes tree.

A. Augmented Gaussian Factor Graph

In iISAM2, linearizing a non-linear factor graph encoding
an unconstrained objective (i.e no hard constraints) at some
value 2V results in a Gaussian Factor Graph (GFG) represent-
ing the linear objective L(A) = Z||AA — b||3. Each factor
in the GFG encodes a linearized constraint [A; | b;]. For the
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Fig. 2: The matrices typically constructed to perform the iterative update in
Eq. 4 (corresponding to the example in Fig. 3). We will show how InCOpt
performs these calculations by operating directly on the Bayes tree.

Augmented Lagrangian in Eq. 3 we now additionally need
to include quadratic augmentation terms 3_, 5(|GjA, +
g4(x°)|I5 and 37, || max(H,A, + hy(2°),0)[[3 in the
GFG. At time step n, an inequality constraint is inactivated
(by setting H, = 0 and h,(z°) = 0) if it is satisfied (i.e.
h,(x°) < 0) and activated otherwise. Hence, the inequality
augmentation term is equal to:

{0 hp(2°) <0

. )
B HpAp + hp(20)[[3 hp(2®) >0

Each linearized equality and inequality constraint can then
be encoded as a factor in the GFG with A, = %Gq,

by = —/%0q(2°) and A, = /2, b, = = [%h, (a).

We hence end up with an Augmented Gaussian Factor
Graph (A-GFG) encoding a linearized objective %HAA —
B||3 where B = {b;,by,b,} includes all error terms and
A = {A4;,A;, Ay} includes all quadratic costs as well
as augmentation terms associated with equality/inequality
constraints. We can now re-write the Lagrangian in Eq. 3
as an A-GFG along with linear dual terms:

LA, v,u) = %HAA “ B2+ 07 (GA + g(2%)) +
u” (HA + h(2)) (6)

Fig. 3a shows an example of a constrained objective encoded
as a non-linear factor graph and Fig. 3c shows its associated
A-GFG.

B. Bayes Tree Construction

Now that we have an A-GFG representation of the prob-
lem, how do we construct the Bayes tree? We start with
a brief summary of how iSAM?2 converts the GFG into a
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Fig. 3: (a) An example of a constrained non-linear factor graph. Each
factor is assigned a global index k£ (¢) The A-GFG. Each factor en-
codes the linearization of a non-linear factor. (b) shows the equivalent
linear system represented by the A-GFG where the elimination order is:
T1,%5,%2,T3,T4

Bayes tree. The GFG is first converted into a Bayes net
using variable elimination. The resulting Bayes net has a
special property of being chordal that is exploited to find
a tree structure over its cliques. This results in the Bayes
Tree which allows for efficient inference not possible with
the original factor graph structure. The Bayes tree 7T is
composed of nodes N each representing a clique C in the
underlying Bayes net. We use the subscript c to refer to node-
specific elements throughout this paper. Each node contains a
conditional density P(F.|S.) over a set of frontal variables
F,. given a set of separator variables S.. Under Gaussian
assumptions, this conditional density P(F,|S.) is effectively
a factorized matrix [R. | d.] stored in the node.

In InCOpt, the process of converting an A-GFG to a Bayes
tree is the same. However, in addition to the factorized matrix
[R. | d.], each node also stores the latest linearization Om,
of all constrained factors m. used to form the clique C
in addition to a list of indices, I., globally indexing these
factors. These indices are used to retrieve factor-specific
information such as the associated Lagrange multiplier u or
v and penalty term p (example in Fig. 4a).

C. Bayes Tree Updates and Fluid Relinearization

Now that we have a Bayes tree, we would like to be able
to update variables in the tree online as their linearization
points change. The Bayes tree 7 can be effectively seen as
a replacement for the full sparse matrix [R | d] from Eq.
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(b) Upward pass

(a) Tree construction

(c) Downward pass

Fig. 4: (a) The Bayes tree computed from the A-GFG in Fig. 3. We store the latest linearization of all hard constraints Om. as well as the list of factor
indices I in the corresponding node. (b) Upward pass at inner iteration ¢. Each node computes its local vector y. and passes the residual D and all partials
with respect to separator variables to the parent. (¢) Downward pass at inner iteration ¢. Each node updates its A, as well as the Lagrange multiplier of
all constraints whose index is in I. using A. U Agep. We assign the following dual terms to each constraint: b1 < u1, g1 < v1,92 < v2



4. With the matrix form, there was this limitation that we
could not relinearize select variables on the fly. However,
unlike columns of a matrix, nodes in the tree are sufficiently
decoupled to relinearize subsets of variables as needed.
With Fluid/Online Relinearization, a variable is marked for
relinearization if the deviation of its current estimate from
the linearization point is greater than a threshold /3. At update
time n, a set of variables marked for linearization V, is
first computed. Then a list of orphan nodes N, is generated
where the orphans and their descendants, together, form the
subtree 7,*~! that remains unchanged. The complementary
subtree 7;”_1, consists of all nodes N, that contain one or
more variables in V... These nodes are updated to obtain the
subtree 7. The original Bayes tree is finally updated as
T™ =T U T L For more details about the update step,
we refer the reader to Alg. 6 in [3].

In InCOpt, we use the same relinearization machinery as
iSAM2. However, we additionally update the linearization of
all hard constraints stored inside nodes N,.. We do this by
viewing the Bayes tree at update time n, as a set of nodes
{NP=1} satisfying:

T = NSNS e TP IS e T (D)

Now, VY N~1 € T"~1 the associated non-linear factors are
relinearized and the QR factorization ([R. | d.]), as well as
Om, and I, are recomputed. Hence, each node will always
contain the latest linearization of the constraints at any time
step as determined by the mechanism of fluid relinearization.

D. Bayes Tree Solution Overview

While in iISAM2, updating A at time step n involves a
single pass from the root of the Bayes tree to its leaves
(equivalent to a single back-substitution), InCOpt handles
constraints by performing alternating upward and downward
passes (equivalent to forward and back-substitutions) to
update A and the dual variables until a termination condition
is satisfied. We next describe one upward and downward
passes corresponding to a single inner iteration step t of the
algorithm.

E. Tree Solution: Upward Pass

To solve for y in Eq. 4a (referred to as the dual remainder),
InCOpt performs an upward pass on the Bayes tree. First, we
distribute the blocks of y across the Bayes tree where each
node N, only stores the block required to compute its clique-
A, during the downward pass. Now, forward substitution
can be viewed as equivalent to a post order traversal over
the Bayes tree (i.e. process all children of a node before
processing the node itself) with specific operations performed
by each node and messages passed from children to parents.

In essence, each node N, updates its local vector y, as:

R:{yi = vat_l + H;‘Fuf’_1 —et (8)

where R. is the node clique conditional, ef: is a residual

vector computed from the product of the children’s separator
matrices with their local ¢!, ;. GI and HI are computed
using both local information stored inside the node (Om.)
as well as cached gradients passed to the node by its
immediate children. v*~!,u*~! are the corresponding dual
terms constructed via queries using the per-factor global
index stored in I.. As explained in section IV-C, only a
subset of the nodes N,. € 7. are relinearized at any optimizer

step. Hence, the upward pass can be significantly sped up by
ending the post order traversal at the orphan nodes N,. See
Algorithm 2 for more details and Fig. 4b for an example.
F. Tree Solution: Downward Pass

In InCOpt, the A update (Eq. 4b) and dual ascent steps
(Eq. 4c and Eq. 4d) are computed by traversing the Bayes
tree from root to leaves. Each node N first updates its A,
by solving:

RoAL = d, —y! — S,AL,, ©)
where Agep is the state update vector corresponding to each

separator variable of N.. Compared to iSAM2 where each
node N, updates its local A, by solving:

R.AL =d, — S.A!

sep (10)
Eq. 9 depends on y’, computed in the upward pass.

In InCOpt, once N, updates its AZ, it then com-
putes the new constraint violation CV}, for each constraint
{me, | mc, € m. and Index(m.,) = k € I.} using the
updated A! and Af_ , followed by the dual ascent step:

sep?

uf, = max(0, u’;g_l + pZ_ICVZ); if me, is an inequality
v,i = v,tc_l + p2_1CVZ; if me,, is an equality (11)

Finally, a new penalty term p} is computed using the
following adaptation scheme: pf = 02—1 X %, v > 1if
an inequality constraint is satisfied at time ¢, pi = pZ_l X
r” r"” > 1 if the constraint violation decreases by less than
a minimum change factor for both equalities and inequalities,
and pl = pfjl otherwise. See Algorithm 3 for more details
and Fig. IV-F for an example.

G. One step of InCOpt

Algorithm 1 One step of InCOpt

Initialization: 7 = 0, F = 9,0 = &

Known at step n — 1: Bayes tree 7™ ', non linear factors F, linearization
point ©" "1, A, Lagrange Multipliers ™%, v™ 1, penalty terms p™~*, nliter,
€primal> MaxDeltaThreshold T’

Input at step n: New non linear factors 7' = m’ U f’, New variables ©’

1) Add new factors F := F U F’
2) Initialize any new variables ©’ and add © := © U ©’
3) V Factors F; € m/, initialize u; or v; and p;
4) Fluid Relinearization as described in subsection IV-C
5) Redo top of Bayes tree + update the per-node linearizations of constrained factors
Om and the global index list I, as described in subsections IV-B and IV-C
6) Solve for A:
While ¢ < maxNumlInnerlter
upwardPass(7T")
primalResidual = downwardPass(7T)
Al =min(A}, T)V j € Dim(A")
if (||AllL > T || primalResidual < €primar) break; else t =t + 1
7) Current estimate given by © € A

The InCOpt algorithm is summarized in Algorithm 1. At
time step n, a new set of factors F containing soft (and
possibly hard constraint) are added to the non-linear least
square problem in Eq. 1. Variables are relinearized using
fluid relinearization and the Bayes tree is updated. The new
A is then computed using the proposed iterative process (an
upward pass followed by a downward pass). We cap the
values of A by a maximum threshold 7" to ensure that the
linearized constraints Jm remain a good approximation of
the non-linear factors m until they are next relinearized. This
inner loop is terminated if 1) the primal residual is less than
a predefined € (i.e at convergence) or 2) if any value in A
is greater than T'. Finally, the updated solution to Eq. 1 is
given by © @ A with @ being the retraction operator.



Algorithm 2 Tree Solution - Upward pass at inner iteration ¢

Algorithm 3 Tree Solution - Downward Pass at inner iteration ¢

PostOrderTreeTraversal(Bayes tree 7°)

In: Bayes tree node N, Orphan nodes N,

chlds = N .children

e =0 .

For each Bmck € Om, and each (M}Z, mk(aco)) S Bmck
FrontMap|f] = {(M,Jc,mk(:vo)7 k)| f € Front(N;),k € I., 5= f}
SepMap|s] = {(Mi,mk(wo)Jf) | s € Sep(Ne),k €I, j=s}

if N & Leaf(T)

FrontMap = FrontMap U {Vchlds.SepMap|f] if f € Front(N.)}
SepMap = SepMap U {Vchlds.SepMap|s] if s ¢ Front(N.)}
el = collectETerm(N)

Gf, HCT ,t T Wt = constructJacobian(FrontMap)

Solve for yz Rzyz = GZ‘vtfl + H;rutf1 — GZ

Vs € Sep(Ne) . .

Nc.D[s] = 5. [sly. + > onias chlds.Dls

If Ne E[/]\f,, brea[k;]y Lchta b

Note: Front(N.) and Sep(N..) return the frontal and separator variables of node
N respectively, Leaf(T) are the leaves of the Bayes tree. N...children return the
children of N.. Index k in m. i 18 the global index of the constraint factor M.
M7 is the partial derivative of my, with respect to variable j evaluated at z0. Dls]
holds the accumulated residual terms corresponding to variable s (term D in Fig.
4b) and will be accessed by N\s parent. 0 is a zero vector

procedure COLLECTETERM

In: AV,. Init: e}, = 0

For each f € Frontal(N.) and each chld € N..children
el .block(f) += chld.D[s] if s = f Vs € chld.D

return ez

end procedure

Note: ez.block( f) returns a vector view corresponding to frontal variable f as
determined by the clique node N variable ordering.

procedure CONSTRUCTJACOBIAN
In: FrontalMap. Tnit: G, HY = 0, v*=*, u'~' =0
For each f € FrontalMap and each (M}{, k) € FrontalMap| f)
if my, is an equality constraint
Set G block(f, k) = M} and v*~ .block(k) = v
else if my, is an inequality constraint
Set HI .block(f, k) = M} and u'~'.block(k) = ul*
return GL, HY o'~ ot 7t
end procedure

Note: u!~1.block(k) and v*~.block(k) return the vector view corresponding to
the factor with index k. GT .block(f, k) and HF .block(f, k) return a view of the
matrices with start row corresponding to frontal variable f (as determined by the
clique node frontal variable ordering) and start column k. O is a zero matrix

V. RESULTS AND EVALUATION

We evaluate InCOpt against constrained and unconstrained
solver baselines on three different applications. InCOpt is

Constraint Violation

InOrderTreeTraversal(Bayes tree 7°)
In: N. €T, A;’w
Solve:
R.AL =de —yl — ScAL,
Al =alunl,,
For each O, € Ome.
Sum =0 .
For each (Mi,mk(xo)) € Ime,,
Sum += M} A, [j]
CVt = Sum + my (z)
p}‘fl = getPenalty(m., )
If mc, is an inequality constraint
uﬁ;l = getDual(m., )
u} = max(0, uf;l + p;:ICVk)
if CVi, <0
oh = %,p;’;l, return;
else if me, is an equality constraint
vlt;l = getDual(m., )
v,tC = vi_l + pz_lCV;c
if [CVE| < L|CVET | set pl, = pi " x "’ else ph, = pi !

implemented with the GTSAM [21] C++ library.

A. 2D Navigation

We evaluate InCOpt against ICS (constrained) and iISAM2
(unconstrained) on a simulated 2D navigation setting where a
point robot navigates from a start to an end position (Fig. 5a).
ICS is configured to perform a batch relinearization every
100 optimizer steps with the maximum number of inner itera-
tions maxNumlinnerlter set to 100. Random mazes are gener-
ated then solved using a backtracking algorithm to obtain the
ground-truth path (GT). We assume a constant scale in which
the width of the traversable region in pixels equals 1 meter.
Noisy odometry and prior pose measurements are computed
by adding a random noise ~ N (0, diag([0.05,0.05])) to the
GT. Fig. 5f shows the factor graph used by ICS and InCOpt:
[ are noisy odometry measurements and k% (z;), hi (x;) are
two inequality constraints that enforce a lower and upper
bound on the estimate at z; (L;< x; <U; i.e. box constraints).

With iSAM2, the hard constraints h% (z;), ke (z;) are
replaced with soft constraints f% (z;), f (z;) taking the form
of a hinge loss (= 0 if the constraint is satisfied and > 0
otherwise). In practice, these constraints could reflect a prior
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Fig. 5: (a) Exam]()l(l of a generated
random maze for a point robot
navigating from the green to the red
cells (b) The path estimated from
noisy measurements by the different
algorithms. GT: Magenta, Red:
iSAM2, Blue: ICS, Green: InCOpt.
(c) and (d) show the std and mean
constraint violation and std and
mean tracking error (in m) at each
time step. Stats were averaged over
100 randomly generated mazes.

We see that InCOpt better satisfies the constraints both qualitatively and quantitatively leading to a lower RMSD error (e) Constraint
satisfaction per optimizer step for a single maze solve. InCOpt constraint violation remain low over all optimizer steps while ICS’s
constraint violation increases thendrops once a periodic batch relinearization occurs (¢ = 400). (f) Factor graphs used by ICS and
InCOpt. With iISAM2, the hard box constraints % and h% are replaced by soft constraints f% and f2.



knowledge of the map and are a way to inject additional
information into the estimation framework: the estimated
trajectory of a robot should not run through obstacles.

TABLE I: Averaged metrics over 100 randomly generated mazes. iSAM2

(unconstrained, online relinearization), ICS (constrained, batch relineariza-
tion), IncOpt (constrained, online relinearization)

iSAM2 ICS InCOpt
Avg RMSD in x (m) 0.254 £0.118 | 0.215 £0.082 | 0.147 £0.029
Avg RMSD in y (m) 0.287 £0.146 | 0.209 £0.080 | 0.149 +0.033
Avg total runtime (s) 0.048 0.062 0.079
Avg num linearizations 69 437 474

We show that incorporating hard constraints leads to
better trajectory estimates compared to using soft constraints.
In table I, we report the averaged smoothed root mean
square deviation (RMSD) between the GT and the estimated
trajectory of each algorithm where:

T
1
RMSD (smoothing) = — > RMSD(Trajt], GT]t])
t=1

with Traj[t] and GTJ[t] being respectively, the estimated and
ground-truth trajectories at time ¢. Fig. 5S¢ shows the average
constraint violation and Fig. 5d shows the average RMSD of
each algorithm at each time step. All statistics are averaged
over 100 randomly generated mazes. From table I, we note
that incorporating inequality hard constraints in both ICS
and InCOpt leads to better trajectory estimates compared
to soft constraints as specified with iISAM2. In addition,
InCOpt produces better estimates compared to ICS. This is
due to InCOpt leveraging fluid relinearization to relinearize

each variable immediately once the deviation of its current
estimate from the linearization point is above a threshold.
On the other hand, ICS performs a single batch relin-
earization only every 100 optimizer step which may cause
the linearized objective to become a poor approximation of
the original non-linear problem. This is illustrated in Fig.
Se which shows the constraint violation of each algorithm
for a single maze solve. ICS’s constraint violation continues
to increase until a batch relinearization occurs (at t
400) at which point the constraint violation decreases. For
InCOpt, the constraint violation remains small across all time
steps demonstrating the benefits of performing just-in-time
relinearization. Finally, we also report in table I the average
total runtime of all algorithms. iSAM? has the fastest average
runtime as it is an unconstrained solver. ICS runtime is
slightly lower than InCOpt at the expense of lower accuracy.

B. 2D Planar Pushing

Our second application of interest is 2D planar pushing:
a probe is in permanent contact with an object and our
objective is to estimate the trajectory of the object using
noisy contact measurements. Fig. 6a shows sample ground
truth trajectories generated using the PyBullet simulator and
Fig. 6g shows the factor graphs used by ICS, InCOpt, and
iSAM2 to solve the estimation problem. Noisy odometry
measurements f; are computed by adding a random noise ~
N (0, diag([7.5e-3, 7.5e-3, 5e-3])) to the GT. We add a unary
Contact Factor at each pose (see [22]) which minimizes the
distance between the probe and the object to ensure that they
are in constant contact at the boundary.

In ICS and InCOpt, the contact factor is a hard equality

TABLE II: Metrics for 7 generated planar pushing trajectories. InCOpt is able to achieve the lowest RMSD over most trajectories while having a comparable
runtime. Runtime is correlated with number of online relinearizations. InCOpt performs more relinearizatons compared to ICS but achieves higher accuracy.

Traj | Traj 2 Traj 3 Traj 4 Traj 5 Traj 6 Traj 7
iISAM| ICS InCOpt iSAM2 ICS InCOpt iSAM2 T ICS InCOpt iSAM2 ICS | InCOpt iSAM2 ICS InCOpt iSAM2 ICS InCOpt iSAM2 ICS InCOpt
RMSD in x (m) 0.073 0.083 0.026 0.053 0.035 0.014 0.097 0.018 0.012 0.061 0.034 0.016 0.063 0.011 0.010 0.040 0.019 0.010 0.039 0.017 0.018
RMSD in y (m) 0.069 0.133 0.042 0.121 0.061 0.030 0.027 0.027 0.026 0.030 0.031 0.029 0.0364 | 0.0349 | 0.0348 0.079 0.035 0.021 0.067 0.172 0.033
RMSD in 6 (rad) 0.029 0.045 0.012 0.087 0.065 0.050 0.025 0.023 0.024 0.0183 | 0.0182  0.0180 0.027 0.024 0.026 0.062 0.047 0.041 0.0230 | 0.0505 | 0.0231
Constraint violation 0.222 0.097 0.090 0.416 0.060 0.030 0.411 0.050 0.028 0.397 0.156 0.044 0.890 0.024 0.021 0.263 0.054 0.023 0.176 0.068 0.053
Runtime (s) 0.253 0.268 0.293 0.244 0.260 0.431 0.251 0.266 0.302 0.252 0.265 0.265 0.240 0.260 0.290 0.245 0.261 0.433 0.252 0.267 0.272
Num linearization 263 303 353 266 303 862 242 303 380 262 303 263 248 303 365 259 303 819 266 303 265
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(a) Sample ground truth trajectories
generated using the PyBullet Simulator

(b) Path estimates
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(g) Factor graph for planar pushing

Fig. 6: (a) Example of sample trajectories generated using PyBullet. (b) The path estimated from noisy measurements by the different

algorithms. GT: gray, Red: iSAM2, Blue: ICS, Green: InCOpt. (c) shows the std and mean constraint violation. (d) shows the rotational error

(in rad). (e), (f) show the translational errors in x,y respectively (in m). All plots show the averaged value of each metric at each time step

over 7 trajectories. (g) Factor graphs used by ICS and InCOpt. With iSAM2, the hard contact constraints g; are replaced by soft constraints f;



constraint: the probe has to be in contact with the object at all
times. In iISAM2, it is encoded as a soft constraint. Table II,
reports the RMSD of the GT and estimate of each algorithm
for seven sampled trajectories. Figs. 6¢,d,e, and f show the
averaged per-step constraint violation, rotational and trans-
lational (zx, y) errors over the seven trajectories respectively.
We see that InCOpt’s constraint violation remains small over
all time steps compared to ICS and iSAM?2 leading to more
accurate estimates and a lower RMSD. We note that the
largest accuracy gains with the constrained factors occurs in
the position estimates and less so in orientation. This makes
sense since enforcing equality constraints at the contact point
still retains some ambiguity in orientation estimates about a
single point of contact.

C. 3D Manipulation Planning

InCOpt’s solutions are invariant to the noise models spec-
ified for hard constraints. GPMP2 [13] is a motion planner
that frames the planning problem as probabilistic inference
over factor graphs. However, it requires manual tuning of
various noise terms/cost weights which constitutes one of
its bottlenecks. InCOpt alleviates this tuning process and
ensures satisfaction of safety constraints independently of
the specified noise model weights. We start with a summary
of the original GPMP2 algorithm and then present a new
formulation that involves hard constraints. GPMP2 defines
support states x; which are /N dimensional vectors containing
the target angle at time ¢, 67, for each joint j (N being
the number of Degrees of Freedom (DOF) of the arm).
The Gaussian Process factors f{¥ encourage smoothness
between consecutive support states. Ps. and P, are priors on
the first and last support state to ensure that the arm starts and
ends at the target configurations. The factors f°° and f2%"
are the regular and interpolated obstacle costs that try to
maximize the arm’s distance to the environment’s obstacles.
Specifically, the robot arm is represented by a set of spheres
S;, j € [1...J] as shown in Fig. 7a. The obstacle cost f°°
(and similarly for f°%7™) is then defined as:

J
0= S eldte)] s el = {1

j=1

ifd(z) <e
ifd(z) >0

where d(s;) is the distance from a sphere s; to the nearest
obstacle as encoded by a signed distance field and € is a
safety distance. We define the following metrics used to

quantify the quality of an optimized trajectory:

1
smoothness = - - (12)
S DOF
5OF Dotet 2oj || Wrap(67 — 67, )13
1 Nobrn Obini 1 Nos oo
obstacle cost = 5 7;:1 ™5 + 3 nEZI /5015 (13)

where DOF = 7 for the simulated Barrett WAM, S is the
number of support states, No, and Nopr,, are respectively,
the number of regular and interpolated obstacle factors, and
the Wrap function wraps angles to [—m,x]. In GPMP2,
the smoothness and obstacle costs need to be balanced out
by manually tuning their associated noise parameters oy
and o,,. Figs. 7b and 7c illustrate this trade-off: when
using GPMP2 with the unconstrained solvers Levenberg-
Marquardt (LM), Dogleg, or iSAM2, the optimized trajectory
has a low obstacle cost for small o, but unsmooth transitions
between support states. For a large o, the trajectory is
smooth at the expense of a high obstacle collision cost.
With GPMP2+InCOpt, we replace 7" and f°° with the
constrained factor hP%™ and h9?: these are hard inequality
constraints that force the obstacle cost of the resulting trajec-
tory to go to zero (Fig. 7d shows the updated GPMP2 factor
graph). From Figs. 7b and 7c, we see that GPMP2+InCOpt
generates a trajectory that minimizes the obstacle cost and
also remains smooth V o,;: InCOpt first pushes the trajectory
to a low obstacle cost region. Once the obstacle cost inequal-
ity constraints are satisfied, we can view the GPMP2 factor
graph as only containing the Gaussian Process factors f7”
and priors Ps., P.. which InCOpt, then, attempts to satisfy.

D. Analysis on Runtime and Number of relinearizations

We show that InCOpt performs fewer relinearizations and
has better runtime compared to ICS while achieving similar
accuracy. We use 2D navigation (inequality constraints) and
planar pushing (equality constraints) for this analysis. Figs.
8a and 8b show the number of linearized variables and time
per optimizer step for planar pushing and Figs. 8c and 8d
show the same quantities for 2D navigation. These plots are
averaged over 10 different runs of the same maze/planar
pushing trajectory with different random seeds used for noise
generation. For ICS, we see periodic peaks corresponding to
the specified batch relinearize step. For InCOpt, the number
of relinearized variables is strictly determined by the number
of variables whose A is above the relinearization threshold

—— GPMP2 + LM
—— GPMP2 + InCOpt
—— GPMP2 + DOGLEG
—— GPMP2 + ISAM2

5

Final Trajectory: Obstacle cost

5 ¥ 0% 100 102 107 100 100 102
S Cost Obstacle Sigma
(a) (b)

ObI. ObI
h’S hIn RQbIn

Fig. 7 (a) Example of a 3D
planning scenario. A simulated
Barrett WAM need to plan
a collision-free trajectory from
points A to B. (b) Obstacle
cost of the planned trajectories
(c) smoothness of the planned
trajectories. Both plots
o s ™ ™ generated with 0, = 1 and
(c) 200 different values of oop. (d)
Constrained factor graph for
the 3D manipulation planning
problem (GPMP2) as used by
InCOpt. The original GPMP2
uses unconstrained factors fO°

and O™ instead of h?" and
HhObIn
i .

—— GPMP2 + LM
—— GPMP2 + InCOpt
—— GPMP2 + DOGLEG
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Fig. 8: (a), (b) show the number of linearized vars and runtime per optimizer
step for planar pushing. (c) and (d) show the same metrics for 2D navigation.
InCOpt performs less relinearizations and has a faster runtime compared to ICS
to achieve the same accuracy levels.

at any time step (i.e. on-time relinearizations). For both
algorithms, spikes in runtime occur at the time steps where
relinearizations are performed. As seen in Table III, InCOpt
performs less relinearizations compared to ICS leading to a
lower overall runtime for the same accuracy levels.

TABLE III: InCOpt vs ICS: number of relinearization/runtime to achieve
the same accuracy levels.

Planar Pushin Avg Num Average Translation | Rotational
8 relinearization | runtime (s) error (m) error (rad)
ICS 636 0.347 0.048 0.032
InCOpt 356 0.294 0.048 0.033
N Avg Num Average Translation
2D Navigation relinearization | runtime (s) error (m)
ICS 2603 0.184 0.202
InCOpt 393 0.076 0.209

VI. CONCLUSION AND FUTURE WORK

We proposed InCOpt, a primal-dual constrained optimiza-
tion solver formulated as message passing on the Bayes tree.
We evaluated InCOpt on online estimation problems such
as 2D navigation and planar pushing and demonstrated how
leveraging hard constraints can lead to increased accuracy
without a significant rise in runtime. We also tested our
solver on 3D manipulation planning examples and showed
how enforcing hard constraints on GPMP2’s obstacle cost
terms ensures satisfaction of safety constraints independently
of the cost weights.

We list a few limitations of our current approach that we
plan to address in future work. First, our current formulation
of the Augmented Gaussian Factor Graph may result in
an under-determined system if an inequality constraint is
satisfied and inactivated. Currently, our solution is to specify
additional factors as regularizers. However, a more general
approach would be to automatically detect such cases and
regularize the system when required. Second, a fundamental
assumption when solving a non-linear constrained objective
(Eq. 1) by solving successive linear subproblems (Eq. 2) is
that the linearized objective remains a good approximation
of the non-linear problem throughout the inner loop. This is
currently ensured by manually selecting the max A threshold
T. Correctly setting 7" was especially important for high-
dimensional problems, such as 3D arm planning, where A
encodes changes in arm joint angles. Another implication

is that the optimized trajectory may lie at a local minimum
where the inequality constraints are satisfied (obstacle cost
is minimized) but the arm is not exactly starting and ending
at the pre-specified configurations. We selected different
thresholds 7" according to the sensitivity of the obstacle cost
to a change in each joint angle. Hence, another direction for
future work is to do away with manually setting the threshold
T by devising a trust-region augmented Lagrangian method.
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