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Abstract—In this paper, we systematically derive a finite set
of Koopman based observables to construct a lifted linear state
space model that describes the rigid body dynamics based
on the dual quaternion representation. Methods such as the
Extended Dynamic Mode Decomposition (EDMD) can compute
finite approximations of the Koopman operator for different
classes of problems but in general, they cannot offer guarantees
that the computed approximation of the nonlinear dynamics is
sufficiently accurate unless an appropriate set of observables
is available. State-of-the-art methods in the field compute
approximations of the observables by using neural networks,
standard radial basis functions (RBFs), polynomials or heuristic
approximations of these functions. However, these observables
might not yield a sufficiently accurate approximation of the
dynamics. In contrast, we first show the pointwise convergence
of the derived observable functions to zero. Next, we use the
derived observables in EDMD to compute the lifted linear state
and input matrices for the rigid body dynamics. Finally, we
show that an LQR type (linear) controller, which is designed
based on the truncated linear state space model, can steer the
rigid body to a desired state while its performance is commen-
surate with that of a nonlinear controller. The efficacy of our
approach is demonstrated through numerical simulations.

I. INTRODUCTION

We consider the problem of modeling and control of the
dual quaternion based representation of rigid body motion
using the Koopman operator framework. In particular, we
propose a systematic way to describe the rigid body dy-
namics in terms of a linear system which is defined over
a lifted state space spanned by the so-called Koopman based
observables. The main advantage of utilizing the Koopman
operator is that it explicitly accounts for nonlinearities in the
dynamics unlike methods which rely on (local) linearization
of the (nonlinear) dynamics about a point. However the lifted
state space is in general infinite-dimensional and thus any
meaningful finite-dimensional approximation (truncation) of
the lifted state space will have higher dimension than the
original nonlinear system model. The states of the lifted
(linear) model are (nonlinear) functions of the states of the
original (nonlinear) system which are known as observables.
Unfortunately, there are systematic methods for the char-
acterization of observables for general nonlinear systems.
In this paper, we derive in a systematic way a set of
observables for the rigid body motion described in terms
of dual quaternions and we subsequently propose simple
linear control design techniques based on the lifted linear
system associated with the latter observable. It turns out that
these linear controllers perform similarly with a benchmark
nonlinear controller for this particular system.
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Literature review: The motion of a rigid body (position and
attitude) can be represented in a compact manner through
dual quaternions. This representation, takes automatically
into account the natural coupling between the rotation and
translation of a rigid body which thereby allows us to design
a single controller which can control both the attitude and
position of the rigid body simultaneously. Dual quaternions
have been successfully applied to rigid body control [1]-[6],
manipulator robots [7], inverse kinematic analysis, spacecraft
formation flying [8], [9], and computer vision.

In recent years, Koopman operator has drawn attention
among the controls and robotics community [10]-[12].
Identification of Koopman-invariant subspaces using neural
networks has been explored in [13]-[15] and using data-
driven approaches in [16]-[18]. Extensions of these results /
methods for robotic applications can be found in [19]-[22],
control synthesis [23]-[25], aerospace applications [26], [27],
power systems [28], [29], control of PDEs [30] and climate
research [31]. The major challenge in using Koopman oper-
ator methods is the characterization of the observable func-
tions. State-of-the-art methods in the field, rely on heuristics
or they try to learn these functions by using machine learning
tools [19], [32]. The main advantage of using Koopman
operator based techniques for modeling and control of dual
quaternion based rigid body motion is two-fold. First, unlike
linear models obtained through linearization about a fixed
point whose accuracy is restricted in the vicinity of the latter
point, the lifted linear model obtained by applying Koopman
operator techniques provides an accurate description of the
dynamics of the original system throughout a large subset of
(if not the whole) the state space of the original system.
Second, the availability of versatile and robust tools for
analysis and control of linear systems make the analysis and
control of the rigid body motion much easier.

Main contributions: In this paper, we provide a systematic
method to derive and construct the observable functions
for the rigid body dynamics based on the dual quaternion
representation. We show that these observables are func-
tions of the dual quaternions which can form a sequence
of functions. We prove that the latter sequence converges
pointwise to the zero function. This result essentially allow us
to truncate the proposed sequence of observables and obtain
a finite-dimensional linear approximation of the rigid body
dynamics which is sufficiently accurate for modeling and
control design purposes. Further, we use these observables
to design a data-driven Koopman based LQR controller
for setpoint tracking. Through numerical simulations, we
compare the efficacy of the proposed linear controller with a
nonlinear controller [33] and show that our controller shows
equivalent performance and is able to steer the rigid body to
the desired state.

Structure of the paper: In Section II, we introduce the
quaternion and dual quaternion algebra followed by the



nonlinear rigid body dynamics. Subsequently, we provide
an overview of the Koopman operator. In Section III, we
provide the derivation of the set of observables that will
induce the lifted linear state space model by using EDMD.
In Section V, we design a data-driven Koopman based LQR
controller. Numerical simulations are presented in Section
VI, and finally Section VII presents concluding remarks.

II. PRELIMINARIES
A. Quaternion Algebra

A quaternion ¢ can be represented by a pair (g, ¢4) where
g € R? is known as its vector part and ¢4 € R as its scalar
part. The set of quaternions is denoted by Q. Some of the
basic operations on quaternions are given below [33], [34]:
Addition: a4+ b= (a+b,as + by),
Multiplication by a scalar Aa = (M@, Aay),
Multiplication: ab = (a4b +bsa+a x b,asby —a - b)
Conjugation: o* = (—a,a4),
Dot product: a - b = %(a*b—l— b*a) =
((_), (14b4 +a- b),
Cross product: a X b =
(b4fl 4+ asb+a xb, O),
Norm: |ja|]? = aa* =a*a=a-a= (0,a] +a-a),
where a,b € Q.

% (ab* 4+ ba*) =

1 (ab—b*a*) =

B. Dual Quaternion Algebra

A dual quaternion ¢ can be represented by a pair (g, ¢q)
where ¢, qq € Q and ¢, and ¢4 are the real and dual parts
of g, respectively. Let the set of dual quaternions be denoted
by . The dual quaternion ¢ can also be represented as ¢ =
qr + €qq where €2 = 0 and € # 0. A list of some basic
operations on dual quaternions are given below [33], [34]:
Addition: G+ b = (ay + b,) + € (aq + ba) ,

Multiplication by a scalar: X\a = (Aa,) + € (Aaq) ,
Multiplication: ab = (a,b,.) + € (a;bg + aqb.) ,
Conjugation: a* = a} + ea},

Swap: a° = aq + €ay,

Dot product: G-b = % (a*b+ b*A> =1 (Zib* + bfi*)
=a, b +¢€(aqg- b, —I—ar bd)

Cross product: @ X b= 5 ab— b 6*)

=a, X b, + €(aq X by +a; X ba),

Circle product: @ob = a, - b, + aq - bg,

Norm: |[a||?> = a, - ar + aq - aq,

Dual norm: |[a|3>=aa* =a*a=a-a

= (ar - a,) + €(2a, - aq) ,

Multiplication by matrix : M xq = (M1 % ¢ + M2 * qa)
+6(M21*qT+M22*qd) with a,b € D and M =

My M 8x8 4x4
M;i Nl;i eR , where M1, M1, Moy, Moy € R .

C. Kinematics of rigid body in terms of dual quaternions

The kinematics of the rigid body in terms of the dual
quaternions can be written as follows:

1l _p 1 g
= — — 1
¢=5qw" = 5077, (D
wherewB—w + evB, BF = WF —|—ev,q—qr+eqd—

q+es th q is the rotatlon quaternion, t¥ = (t,0), t8
is the translatlon vector in the body frame and superscript
B and E denotes the body and inertial frame respectively.
Further, w? = (@,0) € Q and v® = (9,0) € Q where

@ € R? and v € R? are the angular and linear velocities of

the rigid body in the body frame respectively.

D. Dynamics of rigid body in terms of dual quaternions
The rigid body dynamics in terms of dual quaternions can

be written as follows [34]:

MPB« @P) = FP &% x (ME «(@%)*) @

where (-)° denotes the swap operation performed on (-), MB
is the dual inertia matrix, 2 = FB + ¢rB is the dual force

applied to the center of mass of the body, F'Z = (F B.0) and
7 = (#,0). Consider a modified control input 7 = PP
(M % ((©P)*)). Then (2) becomes
W = (MPEY xa), 3)
where MB € R®*8 is a block matrix
ml3  03x1  0O3zx3 0O3x1
MB = 01x3 1 O1x3 0
T | Osxz O3x1 IB 03x1 |
O1x3 0 O1x3 1

where T2 € R3*3 is the mass moment of inertia (positive
definite matrix) and m is the mass of the body.

Remark 1. A dual quaternion ¢ can also be represented in
a vector form as ¢ =[G, ¢ra Gq qaa)®-

To keep the notation simple, the superscript B for body
frame will be dropped.

E. Koopman Operator

In this section, we briefly review the key concepts from the
Koopman operator theory. To this end, consider a continuous-
time nonlinear dynamical system & = f(x). where € R”
and the vector field f is assumed to satisfy regularity assump-
tions that ensure existence and uniqueness of solutions. Let
O be the set of observables (functions of the system’s state)
1 : R™ — C where C belongs to the set of complex numbers.
The Koopman operator ; : O — O associated with system
& = f(x) is defined as [K:p(x)] = Ki(¢(x)). Although the
underlying dynamics is, in general, nonlinear, the Koopman
operator is a linear infinite dimensional operator which acts
on the space of observables. In particular, it holds that

[Ki(ar(z) + Bioa(x))] = alKihi](z) + BIKa](2),

where 1, Y2 € O and «, 8 € C. A Koopman eigenfunction
Ya(x) € O corresponding to an eigenvalue A € C is defined
as [Cyiha(x)] = Mpa(x), which implies that ¢y () satisfies
the differential equation )y (x) = A (). For a controlled
system of the form @ = f(x) + Bu with input matrix
B € R™™ and control input w € R™, the dynamics of
the Koopman eigenfunctions become

w)\(w) = My (x) + Vioa(x)Bu 4)

The Koopman operator K, for discrete nonlinear system
Zp+1 = h(xy) can be written in terms of K and the sampling
time T as K = log(K4)/T. Consequently, (xpt1) =
Kaw(xy). In general it is not possible to find the set of
finite Koopman eigenfunctions for any nonlinear dynamics.
In practice, one has to use a finite subspace approximation
of the Koopman operator Ky € R x RY which acts on
a subspace S C O. If the finite set of observables are
given by z(x) = [tf1(z) ¥a(x)...¢¥n(x)]T € RY, then



z(xpy1) ~ I@dz(mk) approximation holds true. Given the
data D = {zx}{_,, Kq can be computed by solving the
following least squares minimization problem:

— Kaz(x)|]3- (&)

Consider the discrete-time controlled system xpy1 =
h(xy,ur). Then, the Koopman operator K, over the ex-
tended state space G : X x U and observable g(xj,ur) =
[z v(xp,ur)]t can be defined as g(Tpy1,uri1) =
lCdg(a:k,uk) [19].

III. DERIVATION OF KOOPMAN BASED OBSERVABLES

In this section, we provide a systematic way to derive
the observable functions for the continuous-time rigid body
motion based on the dual quaternion representation.

ming, [|z(xk+1)

Theorem 1. For the nonlinear system governed by (1) and
(2), the lifted state space z is spanned by the following set
of observable functions

=@ o, {73, (©6)
where ﬁ = qw*.

Proof. Let  @B®) e BK)

defined as @ =

@B(@B(... (GP5P)...))). Let fi = GoP. Then,

k times

fi= 0" + 45" = S@%)0° + "

- §a<aBaB> P = S+ 57,
where GP®?) = 5BGE. Now let fo = g, Then,
fo = @5 4 @O = L(@P )R + @
%a(ABAB@)) + " = %quB@) +awt, )

where GB3) = 5B (@BHP). Therefore, in general

k
; 1 ~B(i— — ~ N\~ —4
o=l + Y BPEDM T xa)P T (s)
i=1

As N — oo, we obtain countably infinite collection of
observables given by (6). O

In the following we derive the general expression for
@B ) which will be used in subsequent analysis.

A. General expression for &P ®*)

Consider the expression for W = GPGE,
GBGB = (WPWP) + e(WPv? + vBWB). 9)
Now, (wPwB),wPvB and vBwP can be written as
WBOJB :(_B X "‘_)Ba wB wB) ( ?_|G)B|2)
wBvB =(@f x o8, —oP vP),
vBwP =98 x o8, —oP oP).
~BA~B

Therefore, H20F = \w | };—i— (0, —20®.9P). Now,

0,
of =

the expression of WP&P = GPLGPGP can be written as
OBGE = wBWB + e(wPv? +vBWh). (10)

B B

Now, wBwf wPv? and vPw? in (10) are given as

wBwl = (2)|@B,0),

(~l&PP ", 0),
vPwf = (—2(0f 2P)w?,0),

Therefore

whv? = (—|@?f

~B /\BalB

o8 =0 =(—|@B@ |5, 0) + ¢(—|0P@ P -

2" 2%)w", 0)

Now, the expression of &% := &P&P is given by
AB@B (WBWB) + e(wWPvB +vBwP) (11a)
w w2 = (0, —|@®") (11b)
wzv = (0P P(@" xo7), —@"P(@"0")) (1o
vPwWB = (—|@P (@8 x oP), —|@P|Pw?f oP — 2(0B.0P)?
(11d)
Therefore, from (11)
o8 = (0, @) + €(0, —2|@P|?@? B8P — 2(0P .P)?)
Again, let OF := GPGL. Then,
OBHP = (WPWE) + e(WPvP +v8wP), (12a)
wiw? = (—@P['&",0), wiv? = (~|o”*s",0)
(12b)
VPP = (—2|0f |} (0P 9P)of - 2(wf.0P)%@?)0).
(12¢)

Therefore, from (12)
OF = 0Pol =(—|0P*&P,0) + e(—|@P | v -
2|0P 2 (@ 2P)of - 2(@f 8P)%w?,0).
Hence, the value of &2(*) can be written as follows:
e Case 1: k is odd

aB(k) _(|wB‘k 1 - O)+€( |QB|(k71),BB_

22|w k: 1—24) ) 0)

e Case 2: k is even
k/2

= (0, ~|@" ") +¢(0,—2 ) || ") (" .5")")

i=1

@B(k)

The following lemma will be used to prove the pointwise
convergence of the observables to zero.

Lemma 1. For any 6,5 € D, we have

l[ab]l < v/3/2|[alll[b]]. (13)
Proof. Refer to the proof of Lemma 1 from [34]. O

Assumption 1. We assume that the maximum angular and
linear velocities of the rigid body are constrained and are
known a-priori. In other words, there exists some Wy and v
such that wgy > mgx(|<1;|) and vy > m%x(|@|).



Now, let us consider the normalized angular and linear
velocities which are defined as follows:

. [l :
HE 5] =

max({wo, ’UQ})

o]l

—_— <1
max({wo, 'U()})

Nezt, we define the modified observable function fk as fk =
G@ where & = (&,0) + €(v,0). The expression of i can
be written in terms of fy as fy = (@o)"fr where &y =
(0, max({wo, v9}))+€(0,0). The linear dynamics in the lifted
space can then be written as follows:

fo = Bofrs + QZ PN x ) @B (14
=1
In addition, let
Bk _ Z <B(i—1) *ﬁ)séB(kfi) (15)
Next we consider the sets D5 and D; where
Dp:={0:|lw[| <1}, Ds:={v: o] <1}
Lemma 2. For k € [2, N4, the following holds true:
lim B, =0, limBy=0 (16)
max({wo,vo})—00 k—o0

Proof. Since & = [(@,0) + €(®,0)]/max({wo,vo}). There-

fore " 1im}) w = (0,0) + €(0,0). Subsequently from
max(qwo,vo y)—>00

(15), lim By = (0,0) + €(0,0) Further using Lemma 1,

wop—>00

3 2Bk IR
1Bill <SRG « @) (7)

Since klim kzk =0 for z < 1, taking limit on both sides
—00
of (17), we get klim || Bk|| = 0. Consequently, klim B =0.
nde el — 00
This completes the proof. O

Remark 2. For higher value of wy, By, (for all k € [2, N]g)
can be approximated to be the zero dual number i.e. By ~
(0,0) + €(0,0). In other words, as k and wy increases, the
dependence of the states on B decreases. Thereafter, the
lifted space linear dynamics can be approximated as follows:

Fi=Gofa + @M~ x@)* Juwp,
fr= @oﬁcﬂ + ¢By, ke [2,Nlq

Theorem 2. For any w € Dy and v € Ds, the sequences of

(18a)
(18b)

functions fj, and fj, converge pointwise to 0, i.e.,

hmfk:O limszﬁ VweDy, veDs.
k—o0 k— o0
Proof. Since ||@| < 1 and ||%|| < 1, we have
lim |&°% V)& = 0, Jim | &M=0. a9
k—o0

In addition, we have

ZII’

(k— 22)

k
~B —i ~B i
Py <N 1E7 1B (20
=1

Now, using the formula for the sum of geometric series,
we have

k ~ ~
SOIEE IR = [l [ |’v 1167 ¥
~ 1= [15711/11&")

Taking limits on both sides of (21) gives

k
. ~B (k—1) ~B () _
Jim 32105 =0

Similarly, it can be shown that

|k-DF" +2Z||

(22)

|(k 1— 21)(~B B)zu—JB_O

lim ||w
k—o0

(23)

Using (19), (22) and (23), we conclude that lim oB*) =
. — 00

(0,0) + €(0,0). Since f, = qw®®), using Lemma 2, we

have
G5 ® ) < /3/2)1g) @55

Now, since lim [|&” %) = 0, we have
k—o00

(24)

lim [|G@®® || <0 = lim f, = 0.
k—oo k—oo
Taking limits on both sides of (18b), we get klim fk =0
bade el

Hence, the theorem is proved. O

Theorem 3. For any w € D and v € Dy, it holds that
Rl > [ Fiall, & € [2, Nla (25)
Proof. Since f, = qwB®), using Lemma 2, we have
| Fiia ]| < 3/21 @5 PGP = 3/2]| ful IS5 > (26)

(061 (0,15 = (0154137 <
2 < 3/2||g@wP® 2 |GP]* < || fu]]?. Sub-
| < |Ifx|l- Hence the theorem follows. [

Therefore, HwB |? =

sequently,

IV. LIFTED LINEAR STATE SPACE MODEL

Based on the derived observables in Section III, the lifted
state (from Theorem 1) is 2 = [q, @, f1,... fn]T. The
lifted state space z is used to learn the lifted state and
input matrices, Ayg and Byg which is described as follows.
First, from a random uniform distribution [—1,1] ,a set of
random control inputs are chosen. These inputs are then
applied sequentially to the discrete-time nonlinear system
(??) with x as the initial state to get the subsequent states.
Let the control input uy be applied to take the rigid body
from x;, to xx41. Consequently, we construct the matrices
X = [wo, ey J:Nt—l]v U = [’ao, ce ,ﬁNt_l] and Y :=
[®1,...,xnN,] where N;+1 is the total number of data points
collected. The matrix Y can be expressed as Y=h(X,U).
Now given these matrices, Aji and Bjir, can be computed
via the solution to the following optimization problem

1Y e — Aiige Xiee — BuirU ||z

[z(x0), -, z(zN,—1)] and Yig =
z(xn,)]. The analytical solution to (27) is given

min

27
Auite, Buigt @7

where Xy =
[z(x1),. ..,
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Fig. 1: Evolution of the dual quaternion ¢ with time

by [A]ift, Blift] = Y [Xlift, U]]L where ()T denotes the
Moore-Penrose pseudoinverse operator. Therefore, the lifted
linear state space model is given by

Zip+1 = Annzk + Biirur. (28)
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Fig. 2: Angular and linear velocities v/s time

V. LINEAR CONTROL DESIGN USING LQR

In this section, we design a LQR controller for the
Koopman based on lifted state space model of the rigid body
dynamics. Consider the lifted linear dynamics given by (28).
The control design is based on the solution to the following
infinite horizon LQR problem with performance index

oo
o~ ~T o~
J(uk) = Z ngzzk + uy, R uy,
k=1

(29)
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Fig. 3: Force FB = [f, f,
[T2 Ty 7.]T versus time ¢

f-]T and torque 78 =

where Q. = QT = 0 and R, = R = 0. The feedback
control law that solves (29) is given by u, = —K z;, where
K = (R.+BLPBix) B PAy and P satisfies the
discrete-time algebraic Riccati equation P = AfﬁPAhﬂ —
A%;[PBM[ (Rz + BTPBlift)il Bliq;tPAlift + @.. The control
input is given by uy = M (@ +© x (M * ([@)%)))*.

VI. NUMERICAL SIMULATIONS

Simulation studies have been carried out using MATLAB
R2020b on an Intel Core i7 2.2GHz processor. The parame-
ters for the rigid body are the same as in [34]. A rigid body

. .. =B 1 0.1 0.
with the moment of inertia I° = [ 0.1 0.63 0.05

. 0.15 0.05 0.85, It
and mass m = 1kg is chosen. The rigid body is positioned
at initial position [z,y,2]T = [2,2,1]Tm with attitude

Kg - m?



LOR cost | Derived observables Gaussian RBF’s
N=0 7.9449 x 10% 7.9449 x 103
N =3 7.5697 x 103 2.1485 x 10°
N=5 7.0287 x 103 3.2961 x 10°

TABLE I: LQR cost versus the number of observables N

¢ = [q1,92,q3,q4)7 = [0.4618,0.1917,0.7999,0.3320]T.
The initial linear and angular velocity in the body frame
are equal to 9% = [vg,vy,v,]T = [0.1,-0.2,0.3]"m and
oB = [p,q,r]T =[-0.1,0.2,0.3]T. The task is to steer the
rigid body from the given initial state to the origin in the
inertial frame. For LQR control design purposes, we take
Q. =blkdiag(blis,0n_16) and R, = Is. The values of
N¢ , Ny, and the sampling time 7' are chosen as 500s,
6000s = 30s/T, and 0.05s respectively. Consequently, the
feedback control inputs u computed by solving (29) are
added to the nonlinear system. Fig. 2 shows the evolution
of angular and linear velocities with time for N; = 30s. The
lifted state space for the LQR based control design is chosen
as z = [q qw qw? qw® qw* qw°]T. As seen from Table I,
the LQR cost decreases as the dimension of the lifted space
increases which is in agreement with our analysis. It is worth
mentioning that, as seen from Table I using, other popular
observables like the Gaussian radial basis functions (RBFs)
might not always lead to decrease in the LQR cost as N
increases.

VII. CONCLUSIONS

In this paper, we derived a set of Koopman based observ-
ables for the rigid body dynamics based on the dual quater-
nion representation which form a sequence of functions that
converges pointwise to the zero function. Subsequently, we
utilized the lifted linear model induced by these observables
to design an LQR controller which turned out to perform in
par with benchmark nonlinear controllers for stabilization
of rigid body dynamics. In our future work, we plan to
utilize the proposed Koopman operator framework to design
more sophisticated controllers (such as covariance steering
algorithms) for uncertain rigid body dynamics.
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