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Abstract—In this paper, we present a new trajectory opti-
mization algorithm for stochastic linear systems which com-
bines Model Predictive Path Integral (MPPI) control with
Constrained Covariance Steering (CSS) to achieve high per-
formance with safety guarantees (robustness). Although MPPI
can be used to solve complex nonlinear trajectory optimization
problems, it may not always handle constraints effectively and
its performance may degrade in the presence of unmodeled
disturbances. By contrast, CCS can handle probabilistic state
and / or input constraints (e.g., chance constraints) and also
steer the state covariance of the system to a desired positive
definite matrix (control of uncertainty) which both imply that
CCS can provide robustness against stochastic disturbances.
CCS, however, suffers from scalability issues and cannot
handle complex cost functions in general. We argue that the
combination of the two methods yields a class of trajectory
optimization algorithms that can achieve high performance (a
feature of MPPI) while ensuring safety with high probability (a
feature of CCS). The efficacy of our algorithm is demonstrated
in an obstacle avoidance problem and a circular track path
generation problem.

I. INTRODUCTION

Many real-world tasks for autonomous systems can be
associated with finite-horizon trajectory optimization prob-
lems, which have received significant attention in control
engineering and robotics. In the presence of unmodeled
disturbances, model uncertainties, and random exogenous
inputs from the environment, one has to deal with stochastic
trajectory optimization problems in which the goal is to find
control input sequences or control policies that minimize the
expected value of a relevant cost function while satisfying
state and/or input constraints with a given confidence level.

In this work, we present a novel algorithm for constrained
stochastic trajectory optimization problems subject to safety
constraints. Our proposed algorithm combines Constrained
Covariance Steering (CCS) theory for discrete-time stochas-
tic linear systems with Model Predictive Path Integral (MPPI)
to achieve robustness to uncertainties and variations of the
different parameters of the proposed controllers as well as
improved performance, scalability, and ability for real-time
implementation.

Literature Review: Optimization-based methods treat the
stochastic trajectory optimization problem as a nonlinear
program (NLP) which can be solved by specialized NLP
solvers. However, these NLP based approaches rely on a
good initial guess to achieve high performance and may
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suffer from the lack of convergence guarantees [1]. Suc-
cessive convexification-based methods provide convergence
guarantees, but they may still suffer from scalability issues,
if the underlying system dynamics are stochastic [2], [3], [4].
Dynamic programming-based algorithms have been pro-
posed for unconstrained stochastic trajectory optimization
problems to alleviate the scalability issue in [5], [6] and for
constrained problems in [7], [8]. These methods, however,
cannot guarantee safety and their applicability is limited to
smooth objective functions. On the other hand, sampling-
based stochastic optimization algorithms deal with non-
smooth objective functions but they often cannot handle
unmodeled disturbances and model mismatch [9], [10].
The two papers that are most closely related to our
approach are [11], [12]. In [11], the authors use Covariance
Steering for path planning for linear systems with chance
constrained obstacle avoidance. However, the approach in
[11] does not scale well due to the fact that the number of
decision variables increases quadratically with the problem
horizon because of the feedback terms. Furthermore, integer
variables that are used to encode obstacle avoidance con-
straints add to computational complexity. In addition, the
quality of the solution depends on the decomposition of
the safe region into convex polytopes, which is in general
a complex problem. In [12], the authors use unconstrained
covariance steering to take sample trajectories from the low
cost regions of the state space to enhance the performance
and to avoid local optima. However, this method requires
the terminal mean and covariance as design parameters,
which can be hard to tune, and the safety constraints are
not explicitly satisfied.
Main Contributions: This paper presents a novel trajectory
optimization algorithm (CCSMPPI) for stochastic linear sys-
tems with a non-convex safe state space. CCSMPPI solves
the stochastic trajectory optimization problem with guaran-
teed satisfaction of the safety constraints, which cannot be
achieved by standard MPPI. It does so by combining the
standard MPPI with the CCS. In particular, MPPI is used to
generate a reference trajectory, which is then used to generate
a convex safe region, by solving an unconstrained stochastic
trajectory optimization problem whereas CCS generates a
control policy which minimizes the divergence from the
reference trajectory while satisfying the safety constraints. In
this way, CCSMPPI endows the MPPI algorithm with robust-
ness to stochastic disturbances by leveraging the framework
of CCS. These disturbances may cause the system to diverge
from the computed trajectory and may cause violation of
safety constraints. This problem is more frequently observed
when the cost function is non-smooth such as the sum of
indicator functions [10]. CCSMPPI satisfies the probabilistic
safety constraints by taking the distribution of disturbances



into account.

The final improvement of the CCSMPPI over the standard
MPPI is the robustness and the safety guarantees against
poorly designed cost functions and incorrect tuning of algo-
rithm parameters which are common issues in MPPI. The
parameter values and the cost functions that are tuned for
one scenario by the designer may not work well in other
scenarios and MPPI may return unsafe control inputs. The
CCS procedure of the algorithm filters the unsafe inputs that
are computed by MPPI and corrects them by means of a
feedback control law. This technique makes the cost function
design and parameter tuning tasks less time-consuming and
allows designers to experiment with cost functions and
parameters more freely without compromising safety.

Finally, the practicality of CCSMPPI is demonstrated in
2 different trajectory optimization problems in which we
compare our results with those obtained by using the standard
MPPI [9] and tube-MPPI [10]. It is shown in numerical
experiments that our approach is superior to standard MPPI
and tube-MPPI in terms of providing safety against both
stochastic disturbances and poorly designed cost functions.

II. PROBLEM STATEMENT AND PRELIMINARIES
A. Notation

We denote by R" the set of n-dimensional real vectors,
by RT the set of non-negative real numbers and by NT
the set of non-negative integers. We write E[] to denote
the expectation functional. We denote the probability of the
random event £ as P(F). Given a vector z, its 2-norm
is denoted by ||z||2 and given a matrix A, we denote its
Frobenius norm by ||A|r if A is a square matrix, we
denote its trace by tr(A). We use O and I,, to denote the
zero matrix with suitable dimensions and the n x n identity
matrix, respectively. We will denote the convex cone of
n X n symmetric positive semi-definite (symmetric positive
definite) matrices by S; (S;F+). We write bdiag(Ay, ..., Ay)
to denote the block diagonal matrix formed by the matrices
Ai i€ {1,...,€}. We use UY,O; to denote the union
of sets O; indexed by ¢ € {1,...,N}. We denote by p,
and var, the mean and the variance of a random vector z,
respectively, that is, p, := E[z] and var, := E[(z — p.)(z —
p)T] = E[zz]—p. k. We use N (p, 3) to denote normally
distributed random variable with mean p covariance X..

B. Problem Statement

We consider a discrete-time stochastic linear system with
dynamics:

Tpt1 = ApTr + Brug + wg, ey
where A, € R¥™4 B, € R*2 2z, €¢ X C R* is
the state which is decomposed as z = [p{,v{]T, where

pr = [p%, pl]T € R? is the position and vy, = [vf,v}]T € R?
is the velocity, u, = [uf,u}]T € R? is the control input
and w, € R* is the disturbance. We assume that wj ~
N (0, Wy) and E[wiw;"] = 0 for all k& # [. In our problem
formulation, we consider that the obstacles lie in the position
space R2.

The choice of the objective function will be determined
by the particular application. However, in this paper, we

use the objective function utilized in the formulation of the
information-theoretic MPPI [9], which is defined as follows:

LN, UNY = d(xy +Z( ) +AukRkuk) 2)

where X7 {xg,21,..., 2N} is the state sequence,
UN=Y = {ug,uy,...,unx_1} is the control input sequence,
g : R* — RT is the state-dependent term of the running
cost function, ® : R2” — R7 is the terminal cost function,
Ry, € S} and A € RT. While the term Au} Ryuy, penalizes
the control input, ¢(x)) and ®(xy) are task dependent and
each of them can either be a smooth function as in [9] or a
sum of indicator functions for obstacle avoidance as in [10].

We assume that the position space is populated by Npg
obstacles. The i-th obstacle is parametrized by its position,
s; € R™, and its radius, r; € R, and the region it occupies
is denoted as O;, where

O; = {p S R”|||m — SiHQ < ’l"i}, 1 E {1,. . .,Nobs}. 3)

The position space is defined as X C R"™ and the safe region
(or obstacle-free region) of the position space is defined
as Xaafe = X\O where O = U‘A;-VZO?SOJ'. Then, the safe
trajectory optimization problem can be formally stated as
follows:

minimize E[ﬁ(XN, UNfl)]

XN, UN—l

subject to  xp = Zo 4
Thi1 = Apxi + By, +wy, Yk € TN (5)

P(zy € Xeate) > 1 — Prayt, VE €IV (©6)

where IV = {0,1,..., N}, Zo € R?" and Py,; € (0,0.5] is
the acceptable level of the probability of the failure.

It should be highlighted here that since the dynamics of the
system include the random noise term wy, the state sequence
X" will be a random process, and the problem that we will be
trying to solve will correspond to an instance of a stochastic
trajectory optimization problem.

III. MPPI aAND TUBE-MPPI REVIEW

MPPI is a sampling based stochastic Model Predictive
Control (MPC) algorithm [9]. It works by taking K sam-
ples of control sequences from a Gaussian distribution, and
finding the corresponding state trajectories and costs. Each
sequence is then weighted by an exponential transform of
its cost and the optimal control sequence is found as the
weighted sum, written as:

1 & K
WMPPI _ 2 Zwiu(i), n= Zwi) )

" =1 i=1
where w; = exp—%(C',- —B), B =min;— .k Ci, u® =
o e and el = ()] ) ~ A0, 01) and

C; is defined as follows:

TmpPI

Ci = xTMPPI + Z (
=0

+ §(vk Rkeg) +(1-

+ ’Uk Rk’l)k

v e i), ®)



C; is the total path cost induced by ith sample trajectory,
v = [0, UTypp—1]T is the optimal control sequence
obtained by the previous iteration of the MPPI, € is the
control sampling noise, u(?) is the ith control sequence
sample and v € RT is the control sampling covariance
parameter. At the next iteration, the previous optimal control
sequence is shifted in time and used as the mean of the
Gaussian distribution to sample controls from.

MPPI may not perform well when the system has a
disturbance that causes control sampling distribution to only
sample high cost trajectories. Tube-MPPI [10] addresses
this by running MPPI from two starting states, a nominal
and a real state. The real state is taken from the state
of the real system as before whereas the nominal state
is found by propagating the previous nominal state and
control through the noise-free dynamics model without the
disturbance term, wy. Once the MPPI optimization step is
done, the optimal trajectory of the real system is pushed to
follow the optimal trajectory of the nominal system through
the use of a feedback controller. The nominal state and
control sequence can then be reset to the real system’s when
the difference in the free energy of the real and nominal
systems is below a user-defined threshold. This means that
Tube-MPPI should perform similarly to MPPI in most cases
as the nominal and real states will be nearly equivalent but in
cases where a large disturbance affects the real system, the
nominal system should provide a control sequence unaffected
by the disturbance that the real system can then track to get
out of a high-cost region.

IV. LINEAR COVARIANCE STEERING THEORY

The main objective of the constrained covariance steering
(CCS) problem is to steer the mean and the covariance of a
stochastic linear system to desired values while minimizing
the expected value of an objective function subject to state
and/or input constraints [13], [14]. The general form of the
discrete-time CCS problem can be formally stated as follows:

N-1
mirgenﬁize J(x,u)=FE ; ngkl’k + UERkuk (9a)
subject to x4 1 = Az + Brug + wg, (9b)

Plap € X] > 1 — €, Plup €U] > 1 —€, (9¢)
o ~ N(:U‘Oa 20)7 TN ~ N(:udvzd) (9d)

where II denotes the set of causal policies, X C R"
and &/ C R™ are arbitrary sets corresponding to state and
input constraints. The constraints defined in (9d) represents
the initial state distribution and the desired terminal state
distribution. We should point out that the terminal covariance
constraint in (9d) is dropped in our constrained covariance
steering formulation since it is not useful to specify a desired
covariance for safety as long as constraints in (9c) are
satisfied.

Discrete-time formulations of the CCS problems can be
cast as finite-dimensional deterministic optimization prob-
lems by restricting the class of admissible policies to those
which admit the affine state history feedback parametrization
[15] or the disturbance feedback parametrization [16] (both

tailored to the covariance steering problem). In this work, we
will be utilizing the latter parametrization according to which
the control input at each discrete stage can be expressed as
follows:

Vo + Ho(wo — pio) k=0,

e {“k + Hy(zo — o) + Kiywgy k>0, 10

where Hyp, K, € R™" and 9, € R" for all k €
{0,1,...,N — 1}. This parametrization allows us to cast
the covariance steering problem as a finite-dimensional
(deterministic) optimization problem in terms of the fol-
lowing decision variables: {@k,Hk,Kk}iV;Ol. In order to
do that, the decision variables are represented in a more

compact form as follows: H = [HI, HE,...,Hy ]T,
K = bdiag(Ko,Kl,...,KN,Q,O”X”), K = [10(8] and
v =[og,08,..., 05 )T
Now, let = = (x5, 2t 2yt v =
[og,vf, .., vk 4]T and, w = [wd,w],...,wk ]
Then, it follows from (1) that
x:=Txy+ Guv + Guw, (11a)
v:=v+HI) + Kw, (11b)

where Zg := x¢— po. Equations (11a)-(11b) are derived from
(1) and (10) respectively. The reader can refer to [15], [16]
for the details of the previous derivations.

We can compute the mean of the vectors  and u by taking
the expectation of both sides of (11a) and (11b). Then, we
compute the deviation of concatenated vectors & = & — i
and ¥ := v — p,. Finally, we compute the variances vary :=
E[ZZT] and var, := E[95"] as follows:

e = Lug + Guu, (12a)
varg = (T + G, H)Zo(T + G, H)T

+ (G + GuIO)W (G + G KO, (12b)

o = T, (12¢)

var, = HE0HT + KWKT, (12d)

where o = Elzg], o = E[ZoZl] and W =
bdiag(Wy,...,N — 1). Furthermore, the state and the
control at the discrete stage k can be recovered from the
concatenated state and input vector as x; = Fjx and

v = FYv, where F}7 and F}} denote the block matrices
whose kth block is equal to the identity matrix and the other
blocks are equal to zero. Thus, the mean and the covariance
of x; and vy are given by:

(13a)
(13b)

T
tay, = Fi tha, vary, = FiivargFy -,

u v uT
Mo, = FY o, vary, = Fyvary,Fy .

So, we can express the mean of xj, and vy as affine functions
of the decision variable ¥ whereas the covariance matrices of
xj, and v can be expressed as convex quadratic functions of
decision variables H and /C. This allows us to cast various
forms of the (constrained) covariance steering problem as
convex optimization problems which can be solved with
highly efficient solvers. The reader can refer to [15], [16],
[17], [18] for more details.



V. MAIN ALGORITHM

The main components of the algorithm are the MPPI
controller, the half-space generator, and the Constrained
Covariance Steering module. The MPPI controller solves the
unconstrained stochastic trajectory optimization problem and
returns a state and an input sequence of length Typpr. The
state sequence generated by the MPPI module is used to
generate the half-space constraints. The state and the input
sequences and half-space constraints are used in the CCS
module to solve for a policy that is guaranteed to be safe
with high probability.

Algorithm 1: CCSMPPI

Require: Ty,ax, Tcs, Tvppis

Moobss {Ak, Biey Wi b e=0.... Tonaws Omax

1 Tg ¢ To;
2 Y+ 0;
3 for k€ {0,1,...,Tmax} do
XTMPPI,UTMPPI +— MPPI(Z});
Sebs « HSGen(XTMPPI M)
Mo = Tg; 2o < X 5
U, H, IC + CCS(uo, So, X Turer [Turrr | Sobs),
U < g, L <+ Hy ;
up < U + Li(zp — Zp) ;
10 SendToActuators(uy);
11 Tpy1 < ApTyr + Brug ;
12 Y1 (Ak + B}ng)Ek(Ak + BkLk)T + Wy ;
13 if Anax(X) > Omax then
14 | Zrg1 < ks Bpgr < 0

DTN RN B WY Y

A. MPPI

In this paper, we follow the procedures described in
[9] to use MPPI algorithm. The MPPI module requires
system dynamics and initial state xy to sample trajectories.
The MPPI horizon Typp1, the input sampling covariance
parameter v, the number of trajectory samples K are required
as algorithm parameters. The input cost matrix Ry > 0, the
state-dependent term of the running cost function ¢(zy), and
the terminal cost function ®(x) are taken as problem data,
and they are chosen according to the task at hand.

B. Half-space Generation

Safe half-spaces are generated by the “HSGen” procedure
which takes the obstacle information tuple My, the refer-
ence state sequence X Tvept and the Teg as inputs. It takes
the first Tcg states of the sequence X “MPPI and projects the
position vectors p, onto each obstacle O;. Then, it computes
the supporting hyperplane:

Heji={p €R* | agp—be; =0}, (14)
at the point of projection such that
af;pe—be; > 0=pe ¢ O;. (15)

The procedure of half-space generation is illustrated in
Figure 2. The projection of position p, at time ¢ onto the
obstacle O; is denoted as z;; and is defined as follows:

205 = Sj + hgyj’f‘j, (16)

where he ; := (pe—5;)/|lpe — s;]|2 is the unit normal vector
to obstacle O; at the point 2, ; pointing towards p,. We set
agj = hej and, by ; should satisfy a; ;¢ j—be; = 0. So, we
can express ag ; and by ; in terms of p;, s; and 7; as follows:

_ (pe—s5)"s;
pe — 55l

The halfspace generation process is repeated for each ob-
stacle O; where j € {1,..., Nobs} and every time step ¢ €
{0,1,...,Tcs}. The halfspace parameters are gathered in
the set of tuples S,‘;bs = {(acj,be.5)}e=0.... Tricij=1,.... None
to be used in Constrained Covariance Steering.

We should also point out that p, ¢ O, in Figure 2 but
this condition is not necessary for the half-space generation
procedure. Even if p, € O;, the procedure described by
equations in (17) generates a half-space H, ; such that
asz —bg,; < 0 holds for all p € O;.

Pe — Sj
0, = = 5)

=T, (I7)
llpe — 3]‘”2

0, 7.

C. Constrained Covariance Steering

The goal of the Constrained Covariance Steering Module
is to minimize the deviation of the actual state and control
sequence from the reference state and control sequence
which is computed by the MPPI algorithm while satisfying
the safety constraints. This problem can be formally stated
as the following stochastic optimal control problem:

Tes—1

miI;ienrllize J(m) = ]E[ ; 617 Qobxp + Suy Reduy
+ 5x$CSQT055xTCS} (18a)
subject to X471 = Apxy + Boup +wp, VL €I (18b)
ug = w(xo, ..., Te), Ve eI, (18c)

P [asze — b >0] >1— Py,
V{6, 5} €T (18d)

where II denotes the set of all admissible control policies,
51‘5 =Ty — x?/IPPI, §Ug = Uy — ug/[PPI, It = {07 . 7Tcs},
Zo:={1,...,Nows}, T =TI x ZL,.

The stochastic optimal control problem defined in (18a),
(18b) and (18d) can be cast as a deterministic optimization
problem by fixing the policy as in (10) and concatenating the
states {xy }~_, the inputs {uz}n ' and the random noise
vectors {wy.},, as explained in Section IV. The result-
ing finite dimensional deterministic optimization problem is
given by:

min;{m’icze J(t,H,K) := 02" QIZ + da " Roa

+ tr(Qvarg) + tr(Rvar,) (19a)

subject to aZng,um —be; >
ol[¢"Pagla, V{tj} €T (19b)
¢ =[(Go+GuH) (Gw + GuK)|R (190)

where RRT = bdiag(Xo, W), & and u are defined as in
Section IV, 6& = p, — oMPPL 54 = fhay — uMPPI o —
bdiag(Qo, ceey QTCS)’ R = bdiag(Ro, ey RTCS—l)' Pg is
defined such that py = Pyx and o = =1 (1 — Pr,;1) where



Half-space

{acj,be;} > S

> Generation
(Line 5)
X Tuprr 7Turp » Linear
4 o Covariance
> Xk = Ho Steering
>3, 3, (Line 7)
- )
MPPI Set Nominal Nominal System:
(Line 4) -fk ; State X_k+1 = Akfk aF Bkﬁk < ﬁk — 770 Lk « HO
(Line 11-14) (Line 11-12) )
Real System: N owe= Tt L~ %)
Xe+1 Xie+1 = AXy + Bruty + Wi N
(Line 9-10) )

Fig. 1: Main Algorithm Flowchart

Fig. 2: Half-space Generation: Grey area illustrates the region
occupied by the obstacle. Red dot shows the reference
position py at time step ¢. Black arrow pointing towards py
shows the unit normal vector hy; = ag ;. Dashed line and
red zone illustrate the supporting hyperplane #H, ; := {p €
R? | aij — bej = 0} and restricted unsafe zone.

is the cumulative density function of normal random variable
with zero mean and unit variance. Finally, g, fi,, Varg and
var,, are defined as in (12a)-(12d). In addition, we observe
that varg, = (¢ where ¢ is given by (19c).

To see the equivalence of optimization problems in (19)
and (18), First, observe that the objective function in (18)
can be written as E[§zT Qdz + suTRJIu] where

MPPI MPPI
5 .

bx=x—x ‘u=u—u (20)

Using the cyclic permutation property of trace operator, the
linearity of expectation and the equalities vars, = var, and
Vars, = Var,, it follows readily that the objective functions
in (18a) and (19a) are equivalent.

We use Proposition 1 along with the expressions of fi,, =
Pou, and var,, = P,(¢TPT to show that (19b), (19¢) <
(184).

Proposition 1. Let p ~ N (up,Xp), where a,p, € R",
beR ¥, €S}, and P € (0,1/2]. Then, Pla®p — b >

n’

0] > 1 — P ifand only if aTp, —b > ¢~ 1(1 — P)|RTal2

where ¢ : R — (0,1) is the cumulative density function of
normally distributed random variable with zero mean and
unit variance and, finally R is such that RRT = Yp.

Proof.
Pla™p > b] = Pla™ (p— 1) > b—a” )]

T, _ _ T
_p a’(p Mp)zb a” kp 1)
Vatlya Varty,a
_ o (p—pp)
Let z = ﬁ Observe that z ~ A (0, 1). Then,
b—aTp atu, —b
Ple> —L2 =¢p| ——2— 22
[ - \/aTZpa] <p<\/aTEpa @
_ alupb bili
Let v = JaT5a for the sake of readibility. Thus,
Pla"p>b>1-Psp(y)>1-P (23)
Sy>p'(1-P) (24)
s atp, —b>ay/aTS,a = a|R a2 (25)

The implication in (23) comes from derivation of (21) and
(22). Since the function ¢ : R — (0,1) is one-to-one and
non-decreasing, the implication in (24) holds. The inequality
in (25) is obtained by multiplying both sides of (24) by
,/anZplaM. Finally, we show the equality in (25) using

the definition of ||.||2 and the fact that ¥, = RRT thus
complete the proof. O

The problem in (19) has a convex quadratic objective
function and the constraint in (19¢) is affine. Also, the con-
straint in (19b) corresponds to a second-order cone constraint
since o = @ 1(1 — Ppy) > 0 for all Py € (0,0.5] [19].
Thus, problem 19 can be solved for global optimal solution
(0*,H*,KC*) using off-the-shelf solvers such as [20]. Then,
the terms vy and Hy are recovered and assigned to uj and
Ly, to be used for the nominal and the real system.

The flowchart of the main algorithm is given in Figure
1. First, the algorithm is initialized by setting Zg = xg



and ¥y = 0 where Ty and ¥ represent the initial nominal
state and initial covariance respectively. Then, using Zj as
the initial state, MPPI generates a pair of reference state
and input sequences (X 7Mpr1 {JTmrrr) The state sequence
is used to generate a safe convex region over which the
constraints (18d) are satisfied based on the technique that
will be described in Section V-B. Then, we formulate a
corresponding CCS problem that seeks for a control policy in
the form of (10). This control policy will guarantee collision
avoidance while minimizing the deviation from the state
and input sequences generated by the MPPI module. If the
largest eigenvalue of the computed covariance ;4 exceeds
a predetermined threshold o,,«, then the nominal state Ty
is set equal to the real state x; and covariance Y is set to
0. Next, the nominal state T and covariance matrix X
will be updated as described in lines 9-10 in Algorithm 1.

D. Discussion

It is worth mentioning that the CCS module uses the
disturbance noise covariance in its formulation. However, this
information is usually unknown in real-world scenarios. But,
this can easily be handled by over-approximating the noise
covariance, that is, by taking W, = Wieal where Wieal jg
the actual noise covariance that is acting on the system, and
the previous inequality should be understood in the Loewner
partial ordering sense. This allows the CCS module to find
a policy that satisfies the safety constraints. Although this
approach may generate overly conservative policies, system
identification techniques can be used to learn the actual noise
covariance [21] and hence reduce conservativeness.

The half-space generation module typically under-
approximates the safe region for a time step k. That is, the
generated safe set is a subset of the actual safe region. If the
real covariance W:¢a! of the disturbance action on the system
wy, satisfies the matrix inequality Wy > Wfal, then the
satisfaction of the constraint (18d) implies that the state will
stay in the safe region with probability greater than 1 — Ppy;;.

If the trajectory that is returned by the stochastic optimiza-
tion module violates safety constraints, the half-space gener-
ation module might return half-spaces that are very different
in consecutive time steps, which makes the CCS problem
defined in (19) infeasible. To avoid this potential problem,
we use the constrained covariance steering formulation for
only the first few time steps of the trajectory optimization
algorithm (Ti,.x > Tcs). If Z € Asage, then the safety
violations in the first Tcg time steps would be small and the
half-spaces between consecutive time steps would be close to
cach other i.e. [lag,; — arq1,5]l2 < € and [[byj —berjll2 < €
for some small € > 0.

The final component of our algorithm is the use of nominal
dynamics, which are the same as real dynamics except it
is noise-free. Since the CCS module assures that chance
constraints are satisfied with high probability and it uses the
nominal state as the initial mean state in its formulation,
the nominal state will be safer than the real state. This
justifies the use of the nominal state as the initial state in
the trajectory optimization module. Also, by computing the
covariance in line 10, we compute the high probability region
where the real state lies. Then, this covariance value is used

as initial covariance in the CCS procedure in the next step
to guarantee the satisfaction of the chance constraints with
high probability. This procedure also allows us to use the
feedback term computed in the CCS because if g and X
are set to x;, and O respectively, then feedback term H would
be equal to 0 and consequently the covariance steering would
have little effect.

VI. NUMERICAL EXPERIMENTS

In our numerical experiments, we consider a double inte-
grator with dynamics described by (1) with:

10 dt 0 0 0

01 0 dt 0 0
Ae=1o0 0 1 o] Be=|at of (20

00 0 1 0 dt

dt = 0.05, and {wy, } is taken to be a white noise process with
wg ~ N(0, Wy) where the noise covariance matrix Wy,
varies depending on different problem instances. We show
the efficacy of our approach in two trajectory optimization
problems: an obstacle avoidance problem and a path gener-
ation problem in a circular track.
Obstacle Avoidance: In the obstacle avoidance case, we
compare the performances of CCSMPPI with tube-MPPI
[10] under high noise that is acting upon the system to
show the robustness of our approach against stochastic
disturbances. In the tube-MPPI formulation, an LQG tracking
controller is used to track nominal state and input sequences.
In our experiments, the LQG cost function parameters

I,;QG,RE © are chosen to be equal to the cost function
parameters used in the CCS formulation given in (18a). Also,
the failure parameter Pk, that is shown in (18d) is taken to
be 0.01.

To show that CCSMPPI guarantee safety against stochastic
disturbances, we consider the running cost function ¢(xy) to
be equal to gnarq Which is defined as follows:

Nob:;
Ghard (Pr) = [Pk — Paesl3 + 5000 Z Lo, (pk)

j=1

27)

and ®papq(27) = 0 where Lo, : R? — {0,1} is the indicator
function of set O;.

The parameters of the MPPI algorithm used in the ex-
periments which produce the results shown in Figure 3 and
Figure 4, are Tyippr = 40, K = 100, A = 0.1, v = 0.1
and €, ~ N(0,0.0017). In addition, the problem horizon
parameter Ty,,x = 200 and the noise covariance matrix
W, = bdiag(0.,0.,5.0,5.0). In these experiments, the state-
dependent term of the running cost function was taken to
be g(zr) = 10¢nara(zr) and the desired final position
Pdes = [2.0,10.0].

Figure 3 illustrates 10 randomly sampled trajectories in-
duced by the CCSMPPI algorithm. Although the intensity
of the noise that is acting upon the system is quite high
compared to the sampling distribution parameter v, the
CCSMPPI is successfully avoiding obstacles. Figure 4 shows
10 randomly sampled trajectories of the system running
under the tube-MPPI algorithm. It can be seen that the
agent reaches the goal position but fails to avoid obstacles
even though gnara(xi) is used as running cost, and the



Fig. 4: Trajectories induced by Tube-MPPI

trajectories that collide with obstacles are heavily penalized
using indicator functions. In this case, tube-MPPI fails to
handle uncertain disturbances and causes collision with the
obstacles.

Circular Track: In this scenario, the goal is to keep the
position of the system in a circular track with inner radius
R;, = R.—0.125 and outer radius R, = R.+0.125 where
R. = 2 while maintaining a desired speed vges in counter-
clockwise direction. In the numerical experiments, this goal
is encoded 2 different state-dependent running cost functions
qi,s(rx) and g n(z) which are defined as follows:

Qt,S(frk) = (||Uk||2 - UdeS)2 + 2“(1’:1?”1% - Ulpr) — Revges||

2
+100 <\/pﬁ2 +pp? - RC>

aen(zk) = (|lvellz — UdeS)2 + H(pivlg - Uipi) — Revaes|
+ 50001-¢(pk) (28b)

where C := {p € R?| R, — 0.125 < [|]p||2 < R + 0.125},
I.c : R? — {0,1} is the indicator function such that
Ielp)=1ifp¢ Cand Ic(p)=0ifpeC.

The safety criterion in this example is to stay within
the circular track which is formally defined by set C. This
condition is encoded in g s(x) in (28a) by penalizing the
deviation of the position py from the mid radius R, and
increasing its weight. This choice makes ¢ s(zx) a smooth
function. On the other hand, the safety criterion is encoded

(28a)

(a) CCSMPPI - g s (b) CCSMPPI - ¢ 1,

(c) Tube-MPPI - g; 5 (d) Tube-MPPI - g,

(e) MPPI - ¢, . (f) MPPI - g;

Fig. 5: CCSMPPI, Tube-MPPI and standard MPPI in differ-
ent scenarios

by using indicator functions in (28b) which is a more clear
encoding of the safety constrained however non-smoothness
of ¢ n(x,) makes this problem harder to solve.

In Figure 5, trajectories generated by CCSMPPI, Tube-
MPPI and standard MPPI are shown from the top to the
bottom. Figures 5a, Sc, 5e show the results with running
cost g(xg) = 100 ¢, s(x) and Figures 5b, 5d, 5f show the
results with g(zj) = 100 ¢ n(xf). The parameters of MPPI
algorithm are given as: Typpr = 20, K = 200, A = 0.1,
v = 1.0, and € ~ N(0,0.0017). In addition, the problem
horizon Ty,.x = 300, Wy = bdiag(0.001,0.001, 1.0, 1.0)
and vges = 6.0. When ¢y () is used as a running cost
function, the trajectories induced by tube-MPPI and standard
MPPI fail to meet the safety criterion (shown in Figures 5c,
5e) due to the poor design of cost function. On the other
hand, it is shown in Figure 5a that CCSMPPI manages to
keep the position within the track. When the running cost is
switched to gy 1 (%), the non-smoothness of the cost function
causes standard MPPI to fail as shown in Figure 5f. Even
though tube-MPPI seems to keep the position within the
circular track in Figure 5d, there are more violations of the
safety constraints than CCSMPPI as is shown in Figure 5b.

In Table I, we compare the performance of CCSMPPI,



tube-MPPI and standard MPPI statistically by sampling
Ngim = 15 trajectories for both experiments #1 and #2.
The running cost function is taken as 100q.s(zx) and
100g¢ n(x) in experiments #1 and #2, respectively. Also,
Thax 1s taken as 200 and 300 in experiments #1 and #2,
respectively. In both experiments, Wy are chosen to be
equal to bdiag(0.005,0.005,0.5,0.5) and vges = 6.0. Pre
represents the probability of failure and it is computed by
dividing the number of trajectories that leave the circular
track at least once (INp,j) by total number of trajectories
N, sim-

It can be seen from the results of experiment #1 in Table
I that standard MPPI performs better in terms of minimizing
the cost than both tube-MPPI and CCSMPPI and reaches
higher speeds. However, this is due to the poor design of
the cost function, and the fact that the control inputs that
are corrected by CCS module to guarantee safety are not
optimal with respect to the used cost function. When ¢, j, ()
is used as the running cost in experiment #2, standard MPPI
performs worse than both tube-MPPI and CCSMPPI due to
the presence of random noise wy. In these experiments, the
safety of the trajectory is the first priority, as encoded in the
running cost gy n(zx). Although tube-MPPI reaches higher
speeds, it fails to reach the safety levels of CCSMPPI. Thus,
we can conclude that CCSMPPI is superior to standard MPPI
and tube-MPPI in terms of minimizing safety violations.

It should be highlighted that the probability of violating
the constraint in (18d) at every time step k is less than
Prn = 0.01 but still greater than 0. This means that as
Tinax — 00, the failure probability of a trajectory approaches
1. This is the reason why Prg,y is non-zero for CCSMPPI
in both experiments. Prgy can be reduced by lowering the
safety threshold Pg,;;, however it is not possible to make it
0 since wy, is assumed to be normally distributed which is
unbounded.

Exp. #1 Av. Speed Max Speed | Prg; Cost
MPPI 2.46 + 0.31 342 +0.35 1.0 4.1 £70
Tube-MPPI | 2.37 £ 0.32 | 2.95 £+ 0.36 0.87 479 + 8.2
CCSMPPI | 233 £ 031 | 3.03 4+ 037 | 0.13 58.6 £ 8.5
Exp. #2 Av. Speed Max Speed | Prgy; Cost
MPPI 1.66 = 0.24 | 3.53 £+ 0.32 1.0 259.6 £ 73.8
Tube-MPPI | 1.77 £ 0.26 | 2.85 = 0.35 | 0.67 95.6 + 20.9
CCSMPPI 1.65 £0.27 | 2.67 £ 029 | 0.07 66.1 = 8.3

TABLE I: Performance Comparision Statistics

VII. CONCLUSION

In this paper, we presented a novel framework for safe
trajectory optimization for stochastic linear systems. Our
method mainly consists of three components which are
a stochastic optimization algorithm, a convex safe region
generator, and a constrained covariance steering algorithm.
In particular, we used Model Predictive Path Integral (MPPI)
control for stochastic optimization and a projection-based
linearization method for the generation of safe convex
regions. In addition, we used a Constrained Covariance
Steering algorithm based on the affine disturbance feedback
parametrization to safeguard against unmodeled noise dis-
turbances that the MPPI algorithm may not always handle
satisfactorily. Our numerical simulations have demonstrated

that our approach can guarantee safety against unmodeled
noise uncertainties as well as unsafe outputs generated by
the stochastic optimization algorithm. In our future work,
we plan to extend our proposed framework to trajectory
generation problems for uncertain nonlinear systems based
on model-free trajectory optimization algorithms while guar-
anteeing safety by utilizing nonlinear covariance steering
algorithms.

REFERENCES

[1] S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From
linear to nonlinear MPC: bridging the gap via the real-time iteration,”
International Journal of Control, vol. 93, no. 1, pp. 62-80, 2020.

[2] D. Malyuta, T. P. Reynolds, M. Szmuk, T. Lew, R. Bonalli, M. Pavone,
and B. Acikmese, “Convex optimization for trajectory generation,”
arXiv preprint arXiv:2106.09125, 2021.

[3] Y. Mao, M. Szmuk, and B. Ag¢ikmese, “Successive convexification of
non-convex optimal control problems and its convergence properties,”
in 2016 IEEE 55th Conference on Decision and Control (CDC),
pp- 3636-3641, IEEE, 2016.

[4] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach,” in 2012 IEEE/RSJ international conference
on Intelligent Robots and Systems, pp. 1917-1922, IEEE, 2012.

[5]1 E. Theodorou, Y. Tassa, and E. Todorov, “Stochastic differential
dynamic programming,” in Proceedings of the 2010 American Control
Conference, pp. 1125-1132, 1IEEE, 2010.

[6] E. Todorov and W. Li, “A generalized iterative LQG method for
locally-optimal feedback control of constrained nonlinear stochastic
systems,” in Proceedings of the 2005, American Control Conference,
2005., pp. 300-306, IEEE, 2005.

[71 Y. Aoyama, G. Boutselis, A. Patel, and E. A. Theodorou, “Con-
strained differential dynamic programming revisited,” arXiv preprint
arXiv:2005.00985, 2020.

[8] Z. Xie, C. K. Liu, and K. Hauser, “Differential dynamic programming
with nonlinear constraints,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA), pp. 695-702, IEEE, 2017.

[91 G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic MPC for model-based
reinforcement learning,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1714-1721, 1IEEE, 2017.

[10] G. Williams, B. Goldfain, P. Drews, K. Saigol, J. M. Rehg, and E. A.
Theodorou, “Robust sampling based model predictive control with
sparse objective information.,” in Robotics: Science and Systems, 2018.

[11] K. Okamoto and P. Tsiotras, “Optimal stochastic vehicle path planning
using covariance steering,” IEEE Robotics and Automation Letters,
vol. 4, no. 3, pp. 22762281, 2019.

[12] J. Yin, Z. Zhang, E. Theodorou, and P. Tsiotras, “Improving model
predictive path integral using covariance steering,” arXiv preprint
arXiv:2109.12147, 2021.

[13] Y. Chen, T. T. Georgiou, and M. Pavon, “Optimal steering of a linear
stochastic system to a final probability distribution, part 1, IEEE
Transactions on Automatic Control, vol. 61, no. 5, pp. 1158-1169,
2015.

[14] A. Hotz and R. E. Skelton, “Covariance control theory,” International
Journal of Control, vol. 46, no. 1, pp. 13-32, 1987.

[15] E. Bakolas, “Finite-horizon covariance control for discrete-time
stochastic linear systems subject to input constraints,” Automatica,
vol. 91, pp. 61-68, 2018.

[16] 1. M. Balci and E. Bakolas, “Covariance control of discrete-time
gaussian linear systems using affine disturbance feedback control
policies,” arXiv preprint arXiv:2103.14428, 2021.

[17] E. Bakolas, “Covariance control for discrete-time stochastic linear
systems with incomplete state information,” in 2017 American Control
Conference (ACC), pp. 432-437, IEEE, 2017.

[18] J. Pilipovsky and P. Tsiotras, “Chance-constrained optimal covariance
steering with iterative risk allocation,” in 2021 American Control
Conference (ACC), pp. 2011-2016, IEEE, 2021.

[19] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[20] MOSEK ApS, MOSEK Optimizer API for Python 9.2.40, 2019.

[21] B. Feng, M. Fu, H. Ma, Y. Xia, and B. Wang, “Kalman filter with
recursive covariance estimation—sequentially estimating process noise
covariance,” IEEE Transactions on Industrial Electronics, vol. 61,
no. 11, pp. 6253-6263, 2014.



