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Abstract— In this paper, we present a new trajectory opti-
mization algorithm for stochastic linear systems which com-
bines Model Predictive Path Integral (MPPI) control with
Constrained Covariance Steering (CSS) to achieve high per-
formance with safety guarantees (robustness). Although MPPI
can be used to solve complex nonlinear trajectory optimization
problems, it may not always handle constraints effectively and
its performance may degrade in the presence of unmodeled
disturbances. By contrast, CCS can handle probabilistic state
and / or input constraints (e.g., chance constraints) and also
steer the state covariance of the system to a desired positive
definite matrix (control of uncertainty) which both imply that
CCS can provide robustness against stochastic disturbances.
CCS, however, suffers from scalability issues and cannot
handle complex cost functions in general. We argue that the
combination of the two methods yields a class of trajectory
optimization algorithms that can achieve high performance (a
feature of MPPI) while ensuring safety with high probability (a
feature of CCS). The efficacy of our algorithm is demonstrated
in an obstacle avoidance problem and a circular track path
generation problem.

I. INTRODUCTION

Many real-world tasks for autonomous systems can be

associated with finite-horizon trajectory optimization prob-

lems, which have received significant attention in control

engineering and robotics. In the presence of unmodeled

disturbances, model uncertainties, and random exogenous

inputs from the environment, one has to deal with stochastic

trajectory optimization problems in which the goal is to find

control input sequences or control policies that minimize the

expected value of a relevant cost function while satisfying

state and/or input constraints with a given confidence level.

In this work, we present a novel algorithm for constrained

stochastic trajectory optimization problems subject to safety

constraints. Our proposed algorithm combines Constrained

Covariance Steering (CCS) theory for discrete-time stochas-

tic linear systems with Model Predictive Path Integral (MPPI)

to achieve robustness to uncertainties and variations of the

different parameters of the proposed controllers as well as

improved performance, scalability, and ability for real-time

implementation.

Literature Review: Optimization-based methods treat the

stochastic trajectory optimization problem as a nonlinear

program (NLP) which can be solved by specialized NLP

solvers. However, these NLP based approaches rely on a

good initial guess to achieve high performance and may

This research has been supported in part by NSF award CMMI-1937957.
I. M. Balci (PhD student) and E. Bakolas (Associate Professor) are with
the Department of Aerospace Engineering and Engineering Mechanics, The
University of Texas at Austin, Austin, Texas 78712-1221, USA, Email:
isinmertbalci@utexas.edu, bakolas@austin.utexas.edu. B. Vlahov (PhD stu-
dent) and E. Theodorou (Associate Professor) are with the Department
of Aerospace Engineering, Georgia Tech, Atlanta, Georgia, USA, Email:
evangelos.theodorou@gatech.edu

suffer from the lack of convergence guarantees [1]. Suc-

cessive convexification-based methods provide convergence

guarantees, but they may still suffer from scalability issues,

if the underlying system dynamics are stochastic [2], [3], [4].

Dynamic programming-based algorithms have been pro-

posed for unconstrained stochastic trajectory optimization

problems to alleviate the scalability issue in [5], [6] and for

constrained problems in [7], [8]. These methods, however,

cannot guarantee safety and their applicability is limited to

smooth objective functions. On the other hand, sampling-

based stochastic optimization algorithms deal with non-

smooth objective functions but they often cannot handle

unmodeled disturbances and model mismatch [9], [10].

The two papers that are most closely related to our

approach are [11], [12]. In [11], the authors use Covariance

Steering for path planning for linear systems with chance

constrained obstacle avoidance. However, the approach in

[11] does not scale well due to the fact that the number of

decision variables increases quadratically with the problem

horizon because of the feedback terms. Furthermore, integer

variables that are used to encode obstacle avoidance con-

straints add to computational complexity. In addition, the

quality of the solution depends on the decomposition of

the safe region into convex polytopes, which is in general

a complex problem. In [12], the authors use unconstrained

covariance steering to take sample trajectories from the low

cost regions of the state space to enhance the performance

and to avoid local optima. However, this method requires

the terminal mean and covariance as design parameters,

which can be hard to tune, and the safety constraints are

not explicitly satisfied.

Main Contributions: This paper presents a novel trajectory

optimization algorithm (CCSMPPI) for stochastic linear sys-

tems with a non-convex safe state space. CCSMPPI solves

the stochastic trajectory optimization problem with guaran-

teed satisfaction of the safety constraints, which cannot be

achieved by standard MPPI. It does so by combining the

standard MPPI with the CCS. In particular, MPPI is used to

generate a reference trajectory, which is then used to generate

a convex safe region, by solving an unconstrained stochastic

trajectory optimization problem whereas CCS generates a

control policy which minimizes the divergence from the

reference trajectory while satisfying the safety constraints. In

this way, CCSMPPI endows the MPPI algorithm with robust-

ness to stochastic disturbances by leveraging the framework

of CCS. These disturbances may cause the system to diverge

from the computed trajectory and may cause violation of

safety constraints. This problem is more frequently observed

when the cost function is non-smooth such as the sum of

indicator functions [10]. CCSMPPI satisfies the probabilistic

safety constraints by taking the distribution of disturbances



into account.

The final improvement of the CCSMPPI over the standard

MPPI is the robustness and the safety guarantees against

poorly designed cost functions and incorrect tuning of algo-

rithm parameters which are common issues in MPPI. The

parameter values and the cost functions that are tuned for

one scenario by the designer may not work well in other

scenarios and MPPI may return unsafe control inputs. The

CCS procedure of the algorithm filters the unsafe inputs that

are computed by MPPI and corrects them by means of a

feedback control law. This technique makes the cost function

design and parameter tuning tasks less time-consuming and

allows designers to experiment with cost functions and

parameters more freely without compromising safety.

Finally, the practicality of CCSMPPI is demonstrated in

2 different trajectory optimization problems in which we

compare our results with those obtained by using the standard

MPPI [9] and tube-MPPI [10]. It is shown in numerical

experiments that our approach is superior to standard MPPI

and tube-MPPI in terms of providing safety against both

stochastic disturbances and poorly designed cost functions.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Notation

We denote by R
n the set of n-dimensional real vectors,

by R
+ the set of non-negative real numbers and by N

+

the set of non-negative integers. We write E [·] to denote

the expectation functional. We denote the probability of the

random event E as P(E). Given a vector x, its 2-norm

is denoted by ‖x‖2 and given a matrix A, we denote its

Frobenius norm by ‖A‖F if A is a square matrix, we

denote its trace by tr(A). We use 0 and In to denote the

zero matrix with suitable dimensions and the n× n identity

matrix, respectively. We will denote the convex cone of

n × n symmetric positive semi-definite (symmetric positive

definite) matrices by S
+
n (S++

n ). We write bdiag(A1, . . . , A`)
to denote the block diagonal matrix formed by the matrices

Ai, i ∈ {1, . . . , `}. We use ∪Ni=1Oi to denote the union

of sets Oi indexed by i ∈ {1, . . . , N}. We denote by µz

and varz the mean and the variance of a random vector z,

respectively, that is, µz := E[z] and varz := E[(z−µz)(z−
µz)

T] = E[zzT]−µzµ
T
z . We useN (µ,Σ) to denote normally

distributed random variable with mean µ covariance Σ.

B. Problem Statement

We consider a discrete-time stochastic linear system with

dynamics:

xk+1 = Akxk +Bkuk + wk, (1)

where Ak ∈ R
4×4, Bk ∈ R

4×2, xk ∈ X ⊆ R
4 is

the state which is decomposed as xk = [pTk , v
T
k ]

T, where

pk = [pxk, p
y
k]

T ∈ R
2 is the position and vk = [vxk , v

y
k ]

T ∈ R
2

is the velocity, uk = [ux
k, u

y
k]

T ∈ R
2 is the control input

and wk ∈ R
4 is the disturbance. We assume that wk ∼

N (0,Wk) and E[wkw
T
l ] = 0 for all k 6= l. In our problem

formulation, we consider that the obstacles lie in the position

space R
2.

The choice of the objective function will be determined
by the particular application. However, in this paper, we

use the objective function utilized in the formulation of the
information-theoretic MPPI [9], which is defined as follows:

L(XN
, U

N−1) = Φ(xN ) +

N−1
∑

k=0

(

q(xk) + λu
T

kRkuk

)

, (2)

where XN = {x0, x1, . . . , xN} is the state sequence,

UN−1 = {u0, u1, . . . , uN−1} is the control input sequence,

q : Rn → R
+ is the state-dependent term of the running

cost function, Φ : R2n → R
+ is the terminal cost function,

Rk ∈ S
+
n and λ ∈ R

+. While the term λuT
kRkuk penalizes

the control input, q(xk) and Φ(xN ) are task dependent and

each of them can either be a smooth function as in [9] or a

sum of indicator functions for obstacle avoidance as in [10].

We assume that the position space is populated by Nobs

obstacles. The i-th obstacle is parametrized by its position,

si ∈ R
n, and its radius, ri ∈ R

+, and the region it occupies

is denoted as Oi, where

Oi := {p ∈ R
n|‖x− si‖2 ≤ ri}, i ∈ {1, . . . , Nobs}. (3)

The position space is defined as X ⊆ R
n and the safe region

(or obstacle-free region) of the position space is defined

as Xsafe := X\O where O = ∪Nobs

j=1 Oj . Then, the safe

trajectory optimization problem can be formally stated as

follows:

minimize
XN , UN−1

E[L(XN , UN−1)]

subject to x0 = x̄0 (4)

xk+1 = Akxk +Bkuk + wk, ∀k ∈ I
N−1 (5)

P(xk ∈ Xsafe) ≥ 1− Pfail, ∀k ∈ I
N (6)

where IN = {0, 1, . . . , N}, x̄0 ∈ R
2n and Pfail ∈ (0, 0.5] is

the acceptable level of the probability of the failure.

It should be highlighted here that since the dynamics of the

system include the random noise term wk, the state sequence

Xk will be a random process, and the problem that we will be

trying to solve will correspond to an instance of a stochastic

trajectory optimization problem.

III. MPPI AND TUBE-MPPI REVIEW

MPPI is a sampling based stochastic Model Predictive

Control (MPC) algorithm [9]. It works by taking K sam-

ples of control sequences from a Gaussian distribution, and

finding the corresponding state trajectories and costs. Each

sequence is then weighted by an exponential transform of

its cost and the optimal control sequence is found as the

weighted sum, written as:

uMPPI =
1

η

K
∑

i=1

ωiu
(i), η =

K
∑

i=1

ωi, (7)

where ωi = exp− 1
λ
(Ci − β), β = mini=1,...,K Ci, u

(i) =

v + ε(i) and ε(i) = [ε
(i)
0 , . . . , ε

(i)
TMPPI

], ε
(i)
k ∼ N (0, νI) and

Ci is defined as follows:

Ci = Φ(x
(i)
TMPPI

) +

TMPPI
∑

k=0

(

q(x
(i)
k ) +

1

2
vTk Rkvk

+
1

2

(

vTk Rkε
(i)
k + (1− ν−1)ε

(i)T
k Rkε

(i)
k

)

)

, (8)



Ci is the total path cost induced by ith sample trajectory,

v = [v0, . . . , vTMPPI−1]
T is the optimal control sequence

obtained by the previous iteration of the MPPI, ε(i) is the

control sampling noise, u(i) is the ith control sequence

sample and ν ∈ R
+ is the control sampling covariance

parameter. At the next iteration, the previous optimal control

sequence is shifted in time and used as the mean of the

Gaussian distribution to sample controls from.

MPPI may not perform well when the system has a

disturbance that causes control sampling distribution to only

sample high cost trajectories. Tube-MPPI [10] addresses

this by running MPPI from two starting states, a nominal

and a real state. The real state is taken from the state

of the real system as before whereas the nominal state

is found by propagating the previous nominal state and

control through the noise-free dynamics model without the

disturbance term, wk. Once the MPPI optimization step is

done, the optimal trajectory of the real system is pushed to

follow the optimal trajectory of the nominal system through

the use of a feedback controller. The nominal state and

control sequence can then be reset to the real system’s when

the difference in the free energy of the real and nominal

systems is below a user-defined threshold. This means that

Tube-MPPI should perform similarly to MPPI in most cases

as the nominal and real states will be nearly equivalent but in

cases where a large disturbance affects the real system, the

nominal system should provide a control sequence unaffected

by the disturbance that the real system can then track to get

out of a high-cost region.

IV. LINEAR COVARIANCE STEERING THEORY

The main objective of the constrained covariance steering

(CCS) problem is to steer the mean and the covariance of a

stochastic linear system to desired values while minimizing

the expected value of an objective function subject to state

and/or input constraints [13], [14]. The general form of the

discrete-time CCS problem can be formally stated as follows:

minimize
π∈Π

J(x,u) = E

[

N−1
∑

k=0

xT
kQkxk + uT

kRkuk

]

(9a)

subject to xk+1 = Akxk +Bkuk + wk, (9b)

P[xk ∈ X ] ≥ 1− εx, P[uk ∈ U ] ≥ 1− εu (9c)

x0 ∼ N (µ0,Σ0), xN ∼ N (µd,Σd) (9d)

where Π denotes the set of causal policies, X ⊆ R
nx

and U ⊆ R
nu are arbitrary sets corresponding to state and

input constraints. The constraints defined in (9d) represents

the initial state distribution and the desired terminal state

distribution. We should point out that the terminal covariance

constraint in (9d) is dropped in our constrained covariance

steering formulation since it is not useful to specify a desired

covariance for safety as long as constraints in (9c) are

satisfied.

Discrete-time formulations of the CCS problems can be

cast as finite-dimensional deterministic optimization prob-

lems by restricting the class of admissible policies to those

which admit the affine state history feedback parametrization

[15] or the disturbance feedback parametrization [16] (both

tailored to the covariance steering problem). In this work, we

will be utilizing the latter parametrization according to which

the control input at each discrete stage can be expressed as

follows:

vk =

{

v̄0 +H0(x0 − µ0) k = 0,
v̄k +Hk(x0 − µ0) +Kk−1wk−1 k > 0,

(10)

where Hk,Kk ∈ R
n×n and v̄k ∈ R

n for all k ∈
{0, 1, . . . , N − 1}. This parametrization allows us to cast

the covariance steering problem as a finite-dimensional

(deterministic) optimization problem in terms of the fol-

lowing decision variables: {v̄k, Hk,Kk}
N−1
k=0 . In order to

do that, the decision variables are represented in a more

compact form as follows: H := [HT
0 , H

T
1 , . . . , H

T
N−1]

T,

K = bdiag(K0,K1, . . . ,KN−2,0
n×n), K := [ 0 0

K 0
] and

v̄ = [v̄T0 , v̄
T
1 , . . . , v̄

T
N−1]

T.

Now, let x = [xT
0 , x

T
1 , . . . , x

T
N ]T, v =

[vT0 , v
T
1 , . . . , v

T
N−1]

T and, w = [wT
0 , w

T
1 , . . . , w

T
N−1]

T.

Then, it follows from (1) that

x := Γx0 +Guv +Gww, (11a)

v := v̄ +Hx̃0 +Kw, (11b)

where x̃0 := x0−µ0. Equations (11a)-(11b) are derived from

(1) and (10) respectively. The reader can refer to [15], [16]

for the details of the previous derivations.

We can compute the mean of the vectors x and u by taking

the expectation of both sides of (11a) and (11b). Then, we

compute the deviation of concatenated vectors x̃ = x− µx

and ṽ := v−µv . Finally, we compute the variances varx :=
E[x̃x̃T] and varv := E[ṽṽT] as follows:

µx = Γµ0 +Guū, (12a)

varx = (Γ+GuH)Σ0(Γ+GuH)T

+ (Gw +GuK)W(Gw +GuK)T, (12b)

µv = v̄, (12c)

varv = HΣ0H
T +KWK

T, (12d)

where µ0 = E[x0], Σ0 = E[x̃0x̃
T
0 ] and W =

bdiag(W0, . . . , N − 1). Furthermore, the state and the

control at the discrete stage k can be recovered from the

concatenated state and input vector as xk = F x
k x and

vk = F v
k v, where F x

k and F v
k denote the block matrices

whose kth block is equal to the identity matrix and the other

blocks are equal to zero. Thus, the mean and the covariance

of xk and vk are given by:

µxk
= F x

k µx, varxk
= F x

k varxF
xT
k , (13a)

µvk = Fu
k µv, varvk = F v

k varvF
uT
k . (13b)

So, we can express the mean of xk and vk as affine functions

of the decision variable v̄ whereas the covariance matrices of

xk and vk can be expressed as convex quadratic functions of

decision variables H and K. This allows us to cast various

forms of the (constrained) covariance steering problem as

convex optimization problems which can be solved with

highly efficient solvers. The reader can refer to [15], [16],

[17], [18] for more details.



V. MAIN ALGORITHM

The main components of the algorithm are the MPPI

controller, the half-space generator, and the Constrained

Covariance Steering module. The MPPI controller solves the

unconstrained stochastic trajectory optimization problem and

returns a state and an input sequence of length TMPPI. The

state sequence generated by the MPPI module is used to

generate the half-space constraints. The state and the input

sequences and half-space constraints are used in the CCS

module to solve for a policy that is guaranteed to be safe

with high probability.

Algorithm 1: CCSMPPI

Require: Tmax, TCS, TMPPI,

Mobs, {Ak, Bk,Wk}k=0,...,Tmax
, σmax

1 x̄0 ← x0;

2 Σk ← 0;

3 for k ∈ {0, 1, . . . , Tmax} do

4 XTMPPI , UTMPPI ← MPPI(x̄k);

5 Sobsk ← HSGen(XTMPPI ,Mobs) ;

6 µ0 ← x̄k; Σ0 ← Σk ;

7 v̄,H,K← CCS(µ0,Σ0, X
TMPPI , UTMPPI ,Sobsk );

8 ūk ← v̄0, Lk ← H0 ;

9 uk ← ūk + Lk(xk − x̄k) ;

10 SendToActuators(uk);

11 x̄k+1 ← Akx̄k +Bkūk ;

12 Σk+1 ← (Ak +BkLk)Σk(Ak +BkLk)
T +Wk ;

13 if λmax(Σ) > σmax then

14 x̄k+1 ← xk; Σk+1 ← 0;

A. MPPI

In this paper, we follow the procedures described in

[9] to use MPPI algorithm. The MPPI module requires

system dynamics and initial state x0 to sample trajectories.

The MPPI horizon TMPPI, the input sampling covariance

parameter ν, the number of trajectory samples K are required

as algorithm parameters. The input cost matrix Rk � 0, the

state-dependent term of the running cost function q(xk), and

the terminal cost function Φ(x) are taken as problem data,

and they are chosen according to the task at hand.

B. Half-space Generation

Safe half-spaces are generated by the “HSGen” procedure

which takes the obstacle information tuple Mobs, the refer-

ence state sequence XTMPPI , and the TCS as inputs. It takes

the first TCS states of the sequence XTMPPI and projects the

position vectors p` onto each obstacle Oj . Then, it computes

the supporting hyperplane:

H`,j := {p ∈ R
2 | aT`,jp− b`,j = 0}, (14)

at the point of projection such that

aT`,jp` − b`,j ≥ 0⇒ p` /∈ Oj . (15)

The procedure of half-space generation is illustrated in

Figure 2. The projection of position p` at time ` onto the

obstacle Oj is denoted as z`,j and is defined as follows:

z`,j := sj + h`,jrj , (16)

where h`,j := (p`−sj)/‖p`−sj‖2 is the unit normal vector

to obstacle Oj at the point z`,j pointing towards p`. We set

a`,j = h`,j and, b`,j should satisfy aT`,jz`,j−b`,j = 0. So, we

can express a`,j and b`,j in terms of pl, sj and rj as follows:

a`,j =
(p` − sj)

‖p` − sj‖2
, b`,j =

(p` − sj)
Tsj

‖p` − sj‖2
+ rj . (17)

The halfspace generation process is repeated for each ob-

stacle Oj where j ∈ {1, . . . , Nobs} and every time step ` ∈
{0, 1, . . . , TCS}. The halfspace parameters are gathered in

the set of tuples Sobsk = {(a`,j , b`,j)}`=0,...,TMC ;j=1,...,Nobs

to be used in Constrained Covariance Steering.

We should also point out that p` /∈ Oj in Figure 2 but

this condition is not necessary for the half-space generation

procedure. Even if p` ∈ Oj , the procedure described by

equations in (17) generates a half-space H`,j such that

aT`,jp− b`,j ≤ 0 holds for all p ∈ Oj .

C. Constrained Covariance Steering

The goal of the Constrained Covariance Steering Module

is to minimize the deviation of the actual state and control

sequence from the reference state and control sequence

which is computed by the MPPI algorithm while satisfying

the safety constraints. This problem can be formally stated

as the following stochastic optimal control problem:

minimize
π∈Π

J(π) := E

[

TCS−1
∑

`=0

δxT
` Q`δx` + δuT

` R`δu`

+ δxT
TCS

QTCS
δxTCS

]

(18a)

subject to x`+1 = A`x` +B`u` + w`, ∀` ∈ It (18b)

u` = π(x0, . . . , x`), ∀` ∈ It (18c)

P
[

aT`,jp` − b`,j ≥ 0
]

≥ 1− Pfail,

∀{`, j} ∈ I (18d)

where Π denotes the set of all admissible control policies,

δx` = x`− xMPPI
` , δu` = u`− uMPPI

` , It := {0, . . . , TCS},
Io := {1, . . . , Nobs}, I = It × Io.

The stochastic optimal control problem defined in (18a),

(18b) and (18d) can be cast as a deterministic optimization

problem by fixing the policy as in (10) and concatenating the

states {xk}
N
k=0, the inputs {uk}

N−1
k=0 and the random noise

vectors {wk}
N−1
k=0 as explained in Section IV. The result-

ing finite dimensional deterministic optimization problem is

given by:

minimize
ū,H,K

J (ū,H,K) := δx̄TQδx̄+ δūTRδū

+ tr(Qvarx) + tr(Rvaru) (19a)

subject to aT`,jP`µx − b`,j ≥

α‖ζT
P

T
` a`,j‖2, ∀{`, j} ∈ I (19b)

ζ = [(G0 +GuH) (Gw +GwK)]R (19c)

where RR
T = bdiag(Σ0,W), x and u are defined as in

Section IV, δx̄ = µx − xMPPI, δū = µu − uMPPI, Q =
bdiag(Q0, . . . , QTCS

), R = bdiag(R0, . . . , RTCS−1). P` is

defined such that p` = P`x and α = ϕ−1(1−Pfail) where ϕ





and Σ0 = 0 where x̄0 and Σ0 represent the initial nominal

state and initial covariance respectively. Then, using x̄k as

the initial state, MPPI generates a pair of reference state

and input sequences (XTMPPI , UTMPPI). The state sequence

is used to generate a safe convex region over which the

constraints (18d) are satisfied based on the technique that

will be described in Section V-B. Then, we formulate a

corresponding CCS problem that seeks for a control policy in

the form of (10). This control policy will guarantee collision

avoidance while minimizing the deviation from the state

and input sequences generated by the MPPI module. If the

largest eigenvalue of the computed covariance Σk+1 exceeds

a predetermined threshold σmax, then the nominal state x̄k

is set equal to the real state xk and covariance Σk is set to

0. Next, the nominal state x̄k+1 and covariance matrix Σk+1

will be updated as described in lines 9-10 in Algorithm 1.

D. Discussion

It is worth mentioning that the CCS module uses the

disturbance noise covariance in its formulation. However, this

information is usually unknown in real-world scenarios. But,

this can easily be handled by over-approximating the noise

covariance, that is, by taking Wk �W
real
k , where W

real
k is

the actual noise covariance that is acting on the system, and

the previous inequality should be understood in the Loewner

partial ordering sense. This allows the CCS module to find

a policy that satisfies the safety constraints. Although this

approach may generate overly conservative policies, system

identification techniques can be used to learn the actual noise

covariance [21] and hence reduce conservativeness.

The half-space generation module typically under-

approximates the safe region for a time step k. That is, the

generated safe set is a subset of the actual safe region. If the

real covariance Wreal
k of the disturbance action on the system

wk satisfies the matrix inequality Wk � W
real
k , then the

satisfaction of the constraint (18d) implies that the state will

stay in the safe region with probability greater than 1−Pfail.

If the trajectory that is returned by the stochastic optimiza-

tion module violates safety constraints, the half-space gener-

ation module might return half-spaces that are very different

in consecutive time steps, which makes the CCS problem

defined in (19) infeasible. To avoid this potential problem,

we use the constrained covariance steering formulation for

only the first few time steps of the trajectory optimization

algorithm (Tmax > TCS). If x̄k ∈ Xsafe, then the safety

violations in the first TCS time steps would be small and the

half-spaces between consecutive time steps would be close to

each other i.e. ‖a`,j−a`+1,j‖2 ≤ ε and ‖b`,j− b`+1,j‖2 ≤ ε
for some small ε > 0.

The final component of our algorithm is the use of nominal

dynamics, which are the same as real dynamics except it

is noise-free. Since the CCS module assures that chance

constraints are satisfied with high probability and it uses the

nominal state as the initial mean state in its formulation,

the nominal state will be safer than the real state. This

justifies the use of the nominal state as the initial state in

the trajectory optimization module. Also, by computing the

covariance in line 10, we compute the high probability region

where the real state lies. Then, this covariance value is used

as initial covariance in the CCS procedure in the next step

to guarantee the satisfaction of the chance constraints with

high probability. This procedure also allows us to use the

feedback term computed in the CCS because if µ0 and Σ0

are set to xk and 0 respectively, then feedback term H would

be equal to 0 and consequently the covariance steering would

have little effect.

VI. NUMERICAL EXPERIMENTS

In our numerical experiments, we consider a double inte-

grator with dynamics described by (1) with:

Ak =





1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1



, Bk =





0 0
0 0
dt 0
0 dt



, (26)

dt = 0.05, and {wk} is taken to be a white noise process with

wk ∼ N (0,Wk) where the noise covariance matrix Wk

varies depending on different problem instances. We show

the efficacy of our approach in two trajectory optimization

problems: an obstacle avoidance problem and a path gener-

ation problem in a circular track.

Obstacle Avoidance: In the obstacle avoidance case, we

compare the performances of CCSMPPI with tube-MPPI

[10] under high noise that is acting upon the system to

show the robustness of our approach against stochastic

disturbances. In the tube-MPPI formulation, an LQG tracking

controller is used to track nominal state and input sequences.

In our experiments, the LQG cost function parameters

QLQG
k , RLQG

k are chosen to be equal to the cost function

parameters used in the CCS formulation given in (18a). Also,

the failure parameter Pfail that is shown in (18d) is taken to

be 0.01.

To show that CCSMPPI guarantee safety against stochastic

disturbances, we consider the running cost function q(xk) to

be equal to qhard which is defined as follows:

qhard(pk) = ‖pk − pdes‖
2
2 + 5000

Nobs
∑

j=1

IOj
(pk) (27)

and Φhard(xT ) = 0 where IOj
: R2 → {0, 1} is the indicator

function of set Oj .

The parameters of the MPPI algorithm used in the ex-

periments which produce the results shown in Figure 3 and

Figure 4, are TMPPI = 40, K = 100, λ = 0.1, ν = 0.1
and εk ∼ N (0, 0.001I). In addition, the problem horizon

parameter Tmax = 200 and the noise covariance matrix

Wk = bdiag(0., 0., 5.0, 5.0). In these experiments, the state-

dependent term of the running cost function was taken to

be q(xk) = 10 qhard(xk) and the desired final position

pdes = [2.0, 10.0]T.

Figure 3 illustrates 10 randomly sampled trajectories in-

duced by the CCSMPPI algorithm. Although the intensity

of the noise that is acting upon the system is quite high

compared to the sampling distribution parameter ν, the

CCSMPPI is successfully avoiding obstacles. Figure 4 shows

10 randomly sampled trajectories of the system running

under the tube-MPPI algorithm. It can be seen that the

agent reaches the goal position but fails to avoid obstacles

even though qhard(xk) is used as running cost, and the





tube-MPPI and standard MPPI statistically by sampling

Nsim = 15 trajectories for both experiments #1 and #2.

The running cost function is taken as 100qt,s(xk) and

100qt,h(xk) in experiments #1 and #2, respectively. Also,

Tmax is taken as 200 and 300 in experiments #1 and #2,

respectively. In both experiments, Wk are chosen to be

equal to bdiag(0.005, 0.005, 0.5, 0.5) and vdes = 6.0. Prfail

represents the probability of failure and it is computed by

dividing the number of trajectories that leave the circular

track at least once (Nfail) by total number of trajectories

Nsim.

It can be seen from the results of experiment #1 in Table

I that standard MPPI performs better in terms of minimizing

the cost than both tube-MPPI and CCSMPPI and reaches

higher speeds. However, this is due to the poor design of

the cost function, and the fact that the control inputs that

are corrected by CCS module to guarantee safety are not

optimal with respect to the used cost function. When qt,h(xk)
is used as the running cost in experiment #2, standard MPPI

performs worse than both tube-MPPI and CCSMPPI due to

the presence of random noise wk. In these experiments, the

safety of the trajectory is the first priority, as encoded in the

running cost qt,h(xk). Although tube-MPPI reaches higher

speeds, it fails to reach the safety levels of CCSMPPI. Thus,

we can conclude that CCSMPPI is superior to standard MPPI

and tube-MPPI in terms of minimizing safety violations.

It should be highlighted that the probability of violating

the constraint in (18d) at every time step k is less than

Pfail = 0.01 but still greater than 0. This means that as

Tmax →∞, the failure probability of a trajectory approaches

1. This is the reason why Prfail is non-zero for CCSMPPI

in both experiments. Prfail can be reduced by lowering the

safety threshold Pfail, however it is not possible to make it

0 since wk is assumed to be normally distributed which is

unbounded.

Exp. #1 Av. Speed Max Speed Prfail Cost

MPPI 2.46 ± 0.31 3.42 ± 0.35 1.0 44.1 ± 7.0

Tube-MPPI 2.37 ± 0.32 2.95 ± 0.36 0.87 47.9 ± 8.2

CCSMPPI 2.33 ± 0.31 3.03 ± 0.37 0.13 58.6 ± 8.5

Exp. #2 Av. Speed Max Speed Prfail Cost

MPPI 1.66 ± 0.24 3.53 ± 0.32 1.0 259.6 ± 73.8

Tube-MPPI 1.77 ± 0.26 2.85 ± 0.35 0.67 95.6 ± 20.9

CCSMPPI 1.65 ± 0.27 2.67 ± 0.29 0.07 66.1 ± 8.3

TABLE I: Performance Comparision Statistics

VII. CONCLUSION

In this paper, we presented a novel framework for safe

trajectory optimization for stochastic linear systems. Our

method mainly consists of three components which are

a stochastic optimization algorithm, a convex safe region

generator, and a constrained covariance steering algorithm.

In particular, we used Model Predictive Path Integral (MPPI)

control for stochastic optimization and a projection-based

linearization method for the generation of safe convex

regions. In addition, we used a Constrained Covariance

Steering algorithm based on the affine disturbance feedback

parametrization to safeguard against unmodeled noise dis-

turbances that the MPPI algorithm may not always handle

satisfactorily. Our numerical simulations have demonstrated

that our approach can guarantee safety against unmodeled

noise uncertainties as well as unsafe outputs generated by

the stochastic optimization algorithm. In our future work,

we plan to extend our proposed framework to trajectory

generation problems for uncertain nonlinear systems based

on model-free trajectory optimization algorithms while guar-

anteeing safety by utilizing nonlinear covariance steering

algorithms.
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