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A B S T R A C T   

High-throughput characterization (HTC) of composition-process-structure-property relations is essential for 
accelerating molecular and material discovery and manufacturing paradigms. Here, we present a rapid, auton
omous method for HTC of hydrogel rheological properties in well plate formats via automated sensing and 
physics-guided supervised machine learning. The novel HTC method facilitates rapid, autonomous character
ization of hydrogel rheological properties and percolation processes associated with gelation and network 
interpenetration in 96-well plate formats at a rate of 24 s/sample (70 times faster than the state-of-the-art). 
Viscoelastic properties and phase behavior obtained by the method were benchmarked against traditional 
rheology studies. The speed and utility of the method were demonstrated by high-resolution characterization of 
the gel point of Pluronic F127, collagen, and alginate-PNIPAM hydrogels in 96-well plate formats at resolutions 
of 0.31 wt% (Pluronic F127), 0.031 mg/ml (collagen), and 0.069 wt% (NIPAM), respectively. Experimental 
composition-property relation data generated from sensor multivariate time-series data, calibration data, and 
fluid-structure interaction models enabled accurate classification of sample phase using supervised machine 
learning. Feature augmentation using sensor physics, here, a fluid-structure interaction model, improved ma
terial (i.e., sample) phase classification accuracy relative to that obtained in the absence of physics-based feature 
augmentation. Ultimately, creating rapid, autonomous HTC methods that synergize with common high- 
throughput experimentation formats, such as well plates, can accelerate the pace of research across several 
disciplines as well as generate new tools for quality assurance and control across emerging industries.   

1. Introduction 

The Materials Genome Initiative (MGI) has established a new stan
dard for accelerated molecular and materials discovery workflows 
through integrated autonomous, and often iterative, modeling, synthe
sis, and characterization loops [1,2]. While considerable efforts have 
been made in high-throughput synthesis (HTS), characterization re
mains a bottleneck and limits progress in modeling and synthesis do
mains. For example, it remains a challenge to rapidly screen the 

properties of material libraries and generate experimental data for 
model validation. Thus, creating rapid high-throughput characterization 
(HTC) methods is critical for realizing accelerated molecular and ma
terials discovery paradigms, such as those based on high-throughput 
experimentation (HTE) methods (e.g., additive manufacturing-driven) 
[3]. 

Similar to HTC for molecular discovery applications, which requires 
characterization of various molecular characteristics and properties, 
including concentration, conformation, and binding affinity, HTC for 
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material discovery applications is particularly challenging given the 
large number of potential properties that may serve as measures of 
material quality (i.e., performance) [4]. HTE workflows for accelerated 
materials discovery, which consist of integrated HTS and HTC processes, 
are now emerging in accelerated photovoltaics [5] and solar fuels [1,6, 
7] applications. However, while considerable progress has been made 
for integrated and thin-film materials applications, there remains a 
significant demand for accelerated soft materials and biomaterials par
adigms [3,8]. While various HTS platforms, such as those based on 
microextrusion 3D printing processes, are now available for formulating 
soft material libraries (e.g., hydrogel libraries), HTC of product quality 
remains a challenge and bottleneck. For example, accelerated soft ma
terials discovery workflows may require HTC of mechanical [9] and 
transport properties as well as phase behavior and swelling response [7]. 
In addition, HTC formats should also synergize with existing HTS for
mats, particularly well plate formats, which are extensively used [3]. 

Hydrogels are essential soft materials for tissue engineering, drug 
delivery, and regenerative medicine [10]. Multiple HTE-based work
flows have been recently established for accelerated hydrogel materials 
research [7,11,12]. To date, hydrogel HTC methods are typically based 
on transducer arrays or robotically-directed transducers capable of 
measuring composition, structure, or property data [7,13–15]. The 
majority of studies have adapted analytical methods, such as UV-vis 
spectroscopy and X-ray diffraction, for HTC of hydrogel properties. 
For example, a HTE-based method for optimization of injectable 
hydrogels for protein delivery in a 96-well plate format was recently 
created based on HTC of POEGMA hydrogel precursor composition, 
ovalbumin release kinetics using ultraviolet-visible (UV-Vis) spectros
copy and hydrogel compressive modulus and volume change using a 
commercially-available micromechanical tester from 22 to 40 ̊C [7]. In 
another study, a HTE-based method for screening PEGDA-based mate
rials for inkjet printing in a 96-well plate format was recently established 
based on the characterization of ink viscosity via online pressure sensing 
and HTC of surface tension based on image analysis from 25 – 60 ̊C [12]. 
A HTE-based method for supramolecular gels research was recently 
established based on HTC of material optical properties via UV-Vis 
spectroscopy using a microplate reader format [11]. HTC of gel struc
ture was characterized by UV-Vis absorbance measurements in a 
384-well plate format from 20 – 35 ̊C. Optical density measurements and 
fluorescence spectroscopy measurements were also used to characterize 
gel formation and uniformity. While emerging HTE workflows for 
hydrogel materials research have primarily employed HTC methods 
based on existing spectroscopic methods and mechanical testing plat
forms, there remains a need for sensor-based methods that facilitate 
combinatorial screening of soft material composition-structure-property 
data. 

Among the properties of hydrogels, rheological properties are in
dicators of processability, performance, and quality for applications. 
Hydrogel rheological properties and phase behavior provide important 
information regarding material processability in extrusion applications, 
such as the ability to form free-standing structures. The viscoelastic 
properties of hydrogel-based tissue scaffolds are also indicators of cell 
behavior and phenotype in 3D cell culture models [16,17]. Thus, new 
methods for HTC of hydrogel rheological properties and phase behavior 
that synergize with practical HTE formats (e.g., well plate-based) could 
eliminate significant bottlenecks to accelerated soft materials research 
and discovery. 

The gold-standard methods for characterizing hydrogel mechanical 
properties are rheometers, dynamic mechanical analyzers, and atomic 
force microscopes [18]. However, such techniques are often destructive 
and involve time-intensive tests (~ 0.5 – 1 day/sample) because of 
required manual sample preparation steps and data analysis [19], which 
limits throughput and potential for online product-process monitoring 
applications. For example, while 3D bioprinting processes now enable 
automated high-throughput fabrication of 3D cell culture models [1,2, 
9], HTC of bioink and tissue construct rheological properties remains a 

bottleneck to scalable and quality-controlled additive bio
manufacturing. Micro-mechanical testing techniques based on minia
turized transducers, such as nanoindentation, micro-tensile testing, 
micro-compression testing, and micro-electromechanical systems 
(MEMS), now facilitate combinatorial HTC of thin-film and bulk mate
rial mechanical properties [9]. While nanoindentation is widely used, it 
may overestimate material properties due to size dependence [20–22]. 
MEMS have received considerable attention as a platform technology, 
such as for chemical sensing, biosensing, and material property sensing 
applications, based on their sensitivity, design flexibility (e.g., form 
factor), and ability to perform continuous monitoring. MEMS have also 
enabled the characterization of soft material viscoelastic properties 
based on fluid-structure interaction effects [23], as well as real-time 
monitoring of hydrogel gelation processes. Thickness shear mode reso
nators, such as quartz crystal microbalances (QCM) [24], were among 
the first MEMS leveraged for characterizing the viscoelastic properties of 
hydrogel thin films, which remain an active area of research [25]. 
Suspended micro-beams were also previously used to characterize the 
viscoelastic properties of hydrogel microstructures (PEGDA) [26]. 
However, not all MEMS exhibit versatile form factors and transduction 
approaches that synergize with practical HTS formats, such as well 
plates. For example, the form factors associated with QCM and 
double-clamped beam resonators are relatively more difficult to imple
ment in robotically-directed well plate-based measurement formats. We 
recently showed that dynamic-mode piezoelectric milli-cantilever 
(PEMC) sensors, which exhibit a dip-stick form factor [27], enable the 
characterization of hydrogel viscoelastic properties with a sensitivity of 
90 Pa (per unit quality factor) [28,29] and control of hydrogel structure 
and viscoelastic properties [30]. Thus, the high sensitivity, dip-stick 
form factor, self-exciting and -sensing transduction principle, spectral 
data structure, and submersion-based measurement format of PEMC 
sensors make them potentially attractive characterization tools for 
autonomous HTC of hydrogels in well plate formats. 

Here, we introduce a rapid, autonomous method for HTC of hydrogel 
rheological properties based on the integration of robotically-directed 
sensing using PEMC sensors and physics-guided machine learning. The 
method is compatible with standard well plates and exceeds the cycle 
rates of state-of-the-art and gold-standard characterization methods by 
more than one order of magnitude. Feature augmentation using 
knowledge of sensor physics, here, a fluid-structure interaction model, 
improved the accuracy of classifying the sample’s phase as a solution or 
gel relative to that obtained in the absence of physics-based feature 
augmentation. The HTC method was validated by characterizing gela
tion and percolation processes in several hydrogel libraries (i.e., batches 
of samples of known composition but unknown properties). The ability 
of this method to synergize with common HTE formats, such as those 
based on well plates, can accelerate the pace of research across several 
disciplines as well as generate new tools for quality assurance and 
control across emerging industries. 

2. Materials and methods 

2.1. Materials 

Pluronic F127 (PF127), collagen solution from bovine skin (3 mg/ 
ml), 10X phosphate-buffered saline, sodium hydroxide, alginate acid 
sodium salt from brown algae (alginate), N-isopropylacrylamide 
(NIPAM), and calcium chloride were from Sigma Aldrich. 

2.2. Sensor fabrication 

Piezoelectric milli-cantilever (PEMC) sensors with asymmetric 
anchoring were fabricated from lead zirconate titanate (PZT) chips (5 ×
1 × 0.127 mm3) as previously reported [31–37]. Briefly, 30-gauge 
copper (Cu) wires were soldered to the top and bottom thin-film 
nickel electrodes at the end of the PZT chip. The soldered end of the 
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chip was then potted in a 6 mm diameter glass tube with a 
non-conductive epoxy resulting in a cantilever geometry (length (L) =
4.1 mm, width (w) = 1 mm, thickness (t) = 127 μm). Anchor asymmetry 
was obtained by applying additional epoxy to one side of the cantilever 
extending from the embedded end. The sensors were then spin-coated 
with polyurethane (~30 μm). Subsequently, the sensors were insu
lated by a chemical vapor deposited Parylene C coating (10 μm) in 
batches of 25 - 50 sensors following vendor-supplied protocols (PDS 
2010 Labcoter® 2, Specialty Coating Systems, Indianapolis, IN). 

2.3. Sensor measurement principle and data acquisition 

The electrical impedance-based self-sensing and -exciting actuation 
and transduction principle of PEMC sensors [36,38,39] enables in situ 
real-time monitoring of viscous and viscoelastic materials, such as 
hydrogels. While resonance of micro- and nano-cantilevers is highly 
damped in viscous and viscoelastic materials based on consideration of 
the cantilever Reynolds number, resonance monitoring of 
milli-cantilevers is possible in many materials since Rec > 1 [33,40]. 
Continuous monitoring of the PEMC impedance and phase angle re
sponses (i.e., impedance spectra) was performed using electrical 
impedance spectroscopy across a frequency range of ± 20-30 kHz 
centered on the resonant frequency (f) using a network analyzer 
(E5061B; Keysight). A custom MATLAB program provided simultaneous 
instrument (analyzer) control and real-time data acquisition. This 
enabled continuous monitoring of multivariate PEMC sensor responses, 
which included f, the phase angle at resonance (ϕ), and the impedance at 
resonance (Z) as described in our previous reports [31–37]. The quality 
factor (Q) was calculated as Q = f/frequency-width-at-half-maximum 
(FWHM). 

2.4. HTC of Hydrogel rheological properties in well plates via robotically- 
directed sensing 

The HTC platform was composed of a PEMC sensor, network 
analyzer, desktop computer for analyzer control and data acquisition, 
three-axis robot (MPS50SL; Aerotech), motion controller (A3200; Aer
otech), and a desktop computer for robot control and path planning. 
Well plates were characterized on a custom plate holder and stage 
(Thorlabs) that enabled manual leveling. Leveling was achieved using a 
1D laser displacement sensor (IL-1000; Keyence). 

2.5. Path planning 

The sensor path across the well plate (material library), known as the 
toolpath, was defined using G code and manual path planning based on 
well-reported 96-well plate dimensions. The sensor path was based on a 
move-dip-dwell-retract loop that resulted in the characterization of the 
material in each well of a given plate. The sensor moved in the direction 
of increasing well number, which corresponded to increasing polymer 
concentration based on the plate preparation protocol. The sensor re
sponses were allowed to stabilize in air prior to all studies. The dip 
motion command resulted in full submersion of the PEMC sensor. The 
duration of the dwell time was 15 s. A feed rate of 2.5 mm/s was used for 
all linear motion commands. Sensor data was continuously collected 
throughout tool motion. 

2.6. Hydrogel preparation 

Hydrogel ‘libraries,’ which refer to a batch of hydrogel samples of 
known composition but unknown properties, were manually formulated 
in commercially-available 96-well plates. Controls: Plates filled with 
only DIW and glycerol served as negative controls, respectively. 2.6.1 
Formulation of Pluronic F127 Hydrogels: Stock PF127-water solution (30 
wt%) was first prepared in DIW. The stock solution was then serially 
diluted with DIW across the well plate, spanning the concentration of 

the known gel point, to form the Pluronic F127 hydrogel library. 2.6.2 
Formulation of Collagen Hydrogels: Stock collagen solution (3 mg/mL) 
was first serially diluted with DIW across the plate followed by the 
addition of 40 μl 10X PBS and 12 μl 1N NaOH to each well that contained 
360 μl collagen solution. The collagen hydrogel library formed after 1 
hour at room temperature. 2.6.3 Formulation of Alginate-PNIPAM 
Hydrogels: Stock NIPAM solution was serially diluted with DIW across 
the well plate. The alginate-PNIPAM libraries were prepared by mixing 
100 μl 2 wt% alginate with 300 μl NIPAM. After the library was exposed 
to UV light for 30 minutes (365 nm; UVGL-58), 30 μl 100 mM CaCl2 was 
added. The library was left overnight to react. The concentration step 
sizes for 96-well plate studies were 0.031 - 3 mg/ml, 0.31 - 30 wt%, 
0.069 – 6.67 wt% for collagen-10X PBS-1N NaOH-water, PF127-water, 
and alginate-PNIPAM-CaCl2 mixtures, respectively. 

2.7. Benchmarking of hydrogel rheological properties via traditional 
rheology 

The low-frequency storage (G’) and loss (G’’) moduli of PF127 so
lutions (3 – 18 wt%) were acquired by frequency sweeps (1 to 100 Hz) 
with a strain of 50%, which was found to be within the linear visco
elastic region, using a rheometer (MCR302; Anton Paar). The PF127 
hydrogels (21 – 30 wt%) were characterized by frequency sweeps (1 to 
100 Hz) at low strain (1%). Solution characterization was performed 
using a concentric cylinder measuring system (CC27; Anton Paar) (20 
ml) at 50% strain. Hydrogels were characterized using a parallel plate 
test fixture (PP50; Anton Paar) (3 ml) at a gap of 1 mm and 1% strain. 
The MCR302 was equipped with a Peltier system for temperature 
control. 

2.8. Calculation of hydrogel rheological properties from sensor data and 
sensor physics 

The sensor outputs of f and Q were utilized to calculate the sur
rounding material G’ and G’’ at f from the following fluid-structure 
interaction model [23]: 
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where L is the cantilever length, μ = ρcbt is the cantilever mass per unit 
length, ρc and t are the respective cantilever density and thickness, Q0 
and ωo are the respective quality factor and resonant frequency in the 
absence of fluid damping (i.e., resonating in vacuum with only internal 
damping effects present), mc = ρcbtL is the cantilever mass, mA =

ρπb2LΓ’/4 is the added mass, Γ’ is the real part of the hydrodynamic 
function, and ci = mcωo/Qo is the internal damping coefficient. Due to 
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the scale of the cantilevers (L = 4.1mm), the internal damping was not 
negligible and was subtracted from the measured value (as described in 
the term ci in Eq. 3). In calculation of ci, ωo and Q0 were approximated as 
ωo ~ 2πfn, air and Q0 ~ Qn, air, which were reasonable assumptions as 
discussed in the following sections. The hydrodynamic function was 
approximated using the relation Γ’ = a1 + a2δ/b, where δ = (2η/(ρω))1/2 

is the thickness of the thin viscous layer surrounding the cantilever in 
which the velocity has dropped by a factor of 1/e, and η is the viscosity of 
the fluid. Previous work has shown that Q is also strongly correlated 
with φ and G’ in several hydrogels [28–30]. Eqs. (3) and (4) allow for 
solutions of g1 and g2 based on measurable values (ω and Q, which are 
related to f and φ, which are continuously monitored). These values can 
then be used to obtain the desired viscoelastic properties G’ and G’’ at 
the measurement frequency using Eqs. (1) and (2) and measured values 
of g1 and g2. Thus, the solution to the system of equations formed by 
Equations (1) – (4) provides the viscoelastic properties of the sur
rounding material based on the continuously-monitored cantilever 
sensor response [29]. Supporting details on the solution method are 
provided in Supporting Information. 

2.9. Calculation of percolation threshold 

The gel point and percolation threshold were obtained as the in
flection point of a best-fit (nonlinear least squares; Microsoft Excel) 
sigmoidal percolation model [41] to the experimental sensor 
steady-state phase angle vs. polymer concentration (c) or G’ obtained 
from sensor data and Equations (1) – (4) vs. concentration. 

2.10. Physics-guided supervised machine learning 

The raw phase angle data, normalized phase angle data, low- 
frequency G’ calculated from normalized phase angle and rheometer 
data, and high-frequency G’ calculated from resonant frequency and 
quality factor data and the fluid-structure interaction model served as 
the input features to the material phase-classification (i.e., sol-gel 
transition) problem. The latter feature is generated via physics-guided 
fusion of sensor bivariate time-series data (f(t) & ϕ(t)) using knowl
edge of sensor physics (i.e., Equations (1) – (4)). The two classes 0 and 1 
represented solution and gel as the output, respectively. Labeling was 
performed based on the best-fit sigmoidal regression model. Class 
0 (solution) corresponded to sigmoidal values less than 0.5, while class 1 
(gel) corresponded to values greater than 0.5. The data was divided into 
80% and 20% for training and testing, respectively using Stratified 
sampling with respect to class labels to preserve the percentage and 
distribution of samples in each class. Supervised machine learning was 
performed using Support vector machine (SVM), Random forest (RF), 
and Extreme gradient boosting (XGB) classifiers. Regularization 
parameter C in SVM, minimum trees leaf, minimum trees split, and the 
maximum depth of trees in random forest, and number of trees in the 
classifier, the maximum depth of trees, the learning rate, and subsample 
ratio of columns in XGB model hyperparameters were tuned for optimal 
results. No tuning was done to default parameter values that resulted in 
100% accuracy. Additional details regarding model tuning are provided 
in Supporting Information. Model accuracy score, F1-score, precision, 
recall, and misclassification error were used to evaluate model perfor
mance. Supervised machine learning was performed using a personal 
computer (Linux; 12 GB RAM) and statistical software and packages 
(Python). 

2.11. Statistical analysis 

Data were expressed as mean ± standard error of the mean. 
Normality of the data was assessed by a normal probability (Q-Q) plot. 
The significance of differences between the mean values of: 1) f and ϕ in 
various surrounding materials; and 2) G’ and G’’ above and below the 
gel point (e.g., at the limit of high polymer concentration) were 

determined by Student t-tests and one-way ANOVA. Statistical analysis 
was performed using statistical software (Python). 

3. Results and discussion 

As illustrated in Fig. 1a, we report a novel rapid, autonomous method 
for HTC of hydrogel rheological properties in well plates based on 
robotically-directed sensing and supervised machine learning. Photo
graphs of the HTC platform are provided in Supporting Fig. S1. The 
premise of this work is that the integration of automated (i.e., 
robotically-directed) sensing and machine learning provides an auton
omous HTC method that can accelerate the screening of large batches of 
hydrogels using traditional HTE experimentation formats (well plates) 
relative to traditional characterization methods (see Fig. 1b). As shown 
in Fig. 1a and c, automated sensing of hydrogel rheological properties in 
well plates was performed using dynamic-mode PEMC sensors. PEMC 
sensors were selected given their design synergizes with well plate for
mats that are commonly used in HTE. In particular, the self-sensing and 
-exciting transduction mechanism and milli-scale dip-stick form factor 
supports interrogation of small sample volumes without requiring bulky 
supporting measurement instrumentation. The electrical impedance- 
based transduction mechanism also provides access to high sampling 
rates, which is important for achieving rapid measurement. The canti
lever geometry also enables use of established sensor physics, specif
ically fluid-structure interaction models, for interpretation of sensor 
response and guidance of autonomous operations (e.g., machine 
learning-based classification of material properties or phase). While 
PEMC sensors enable rheological property sensing at different submer
sion depths [31], the measurements reported in this work correspond to 
fully submerged sensors, which enables the characterization of the 
material rheological properties through a fluid-structure interaction 
model [23] based on the sensor impedance response. As shown in Fig. 1a 
and c, HTC was achieved by continuous monitoring of the impedance 
response around the resonant frequency (f) as the sensor was robotically 
directed through the sample library based on a user-defined path. 

Given its extensive use, we first validated the method using the well- 
characterized PF127-water system. As shown in Fig. 1d and e, various 
features of the PEMC sensor impedance response (i.e., spectral data) 
correlated with the polymer concentration of the PF127-water mixture 
across the 0 – 30 wt% range. The time to collect the 96 impedance 
spectra was 4 hours, which included the time associated with sensor 
cleaning. The dependence of the f and phase angle at resonance (ϕ) 
responses on the PF127 concentration are shown in Fig. 1f and g. The 
dependence of quality factor (Q) on ϕ is shown in Supporting Fig. S2. 
The largest rate of change in the steady-state ϕ response occurred at the 
inflection point of the sigmoidal curve (18.33 ± 0.95 wt%), which 
agreed well with the reported gel point for the PF127-water system at 
room temperature [42] (see Fig. 1g). We also found that f, ϕ, and Q were 
significantly different across the solution vs. gel concentration ranges (p 
= 0.015, p < 0.001, and p < 0.001, respectively, n = 24 data points). 
Previously, we showed that ϕ response correlated with low-frequency G’ 
of gelatin and alginate hydrogels obtained by dynamic mechanical 
analysis [28–30]. As shown in Fig. 1h, the trends in the sensor spectral 
response with polymer concentration (see Fig.1f and g) also correlated 
with low-frequency G’ (1 Hz) obtained using a rheometer. The G’ and 
G’’ ranged from 0 - 28.6 ± 1.85 and 0 - 2.62 ± 0.08 kPa (n = 3 repeated 
studies), respectively, across the 3 - 30 wt% concentration range. As 
shown by the location of the crossover point, the rheology studies also 
suggested a gel point near 20 wt% based on the crossover of G’ and G’’, 
which agrees with the transition point estimated by the trends of raw 
PEMC sensor spectral data. While characterization studies using a 
traditional rheometer enabled estimation of the gel point, the technique 
exhibited various disadvantages, including relatively increased sample 
characterization time (~30 min/sample) and sample volume (20 ml for 
solution; 3 ml for gel), yet still provided limited resolution of the 
percolation process (i.e., relatively high uncertainty in the percolation 
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Fig. 1. a) Illustration of a rapid, autonomous method for high-throughput characterization (HTC) of hydrogel rheological properties via automated sensing and 
physics-guided supervised machine learning (spectra shown in arbitrary units (A.U.)). b) Illustration of the effect of novel autonomous sensor- and data-driven HTC 
methods on achievable screening throughput relative to traditional characterization processes. c) Photograph of dynamic-mode piezoelectric milli-cantilever (PEMC) 
sensor-material interaction during submersion into a well of a 96-well plate. Impedance response (i.e., resonant frequency (f) and phase angle response (ϕ)) of the 
PEMC sensor second mode while submerged in various PF127-water mixtures ranging from 0.31 – 30 wt% in 3D (d) and 2D (e). Dependence of ϕ (f) and f (g) on the 
material PF127 concentration. h) Rheometer-measured low-frequency shear storage (G’) and loss (G’’) moduli among concentration across the 3 – 30 wt% range for 
the PF127-water system (error bars are not visible based on the y-axis scale)). 
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threshold). Thus, the integration of PEMC sensors with robotics and 
machine learning could potentially facilitate autonomous HTC of 
hydrogel rheological properties in well plate formats using small sample 
volumes. 

Having discussed the sensor-based measurement principle associated 
with the characterization of hydrogel viscoelastic properties using the 
PF127-water system and the correlation among sensor outputs (f, ϕ, and 
Q) and low-frequency rheological properties obtained by traditional 
rheology, we next examined the ability to automate the characterization 
of a hydrogel library rheological properties and phase behavior in a 96- 
well plate reading format. Automating the characterization process via 
robotically-directed sensing can reduce the characterization cycle time 
and, therefore, average characterization time per sample by potentially 
decreasing the handling, operation, and tooling times associated with a 
characterization process. Thus, automating the characterization process 
is an important aspect of increasing the speed and, thus, the throughput 
of a characterization method. The robotically-directed sensor path and 
concentration distribution across the 96-well plate are shown schemat
ically in Fig. 2a. The concentration of the PF127-water library varied 
linearly across the well plate from the 0.31 – 30 wt% range with a step 
size of 0.31 wt%. 

The f and ϕ responses and corresponding rheological property heat 
maps associated with the library obtained from steady-state sensor re
sponses during submersion in successive samples are shown in Fig. 2b 

and c. In this study, an optimized acquisition time of 15 s/sample was 
utilized, but the measurement time may theoretically be reduced to on 
the order of 1/f or the time constant associated with the cantilever’s free 
response. The steady-state f response exhibited a complex trend across 
the 0.31 – 30 wt% PF127 concentration range. The steady-state ϕ 
response exhibited a sigmoidal trend with an inflection point at t =

28.58 min (see Fig. 2c), which corresponded to c = 19.375 wt% (recall 
that time corresponded to concentration because of the constant robot 
feed rate). The gel point, characterized by the inflection point of best-fit 
sigmoidal curve, was 18.85 ± 0.48 wt% (n = 3 repeated experiments), 
which agreed with a previously reported range (18 – 21 wt%) [42]. The 
steady-state ϕ responses before and after gelation were also significantly 
different (p < 0.001, n = 24). The results of normality testing for data 
associated with the solution and gel phases are provided in Supporting 
Fig. S3. Importantly, the features of gelation in the sensor data, such as 
the inflection point of the ϕ response, were absent from negative control 
studies with water and glycerol in which gelation was absent (see 
Fig. S4). It should be noted that the data acquisition, analysis, and 
interpretation were autonomous (i.e., based on robotics and regression) 
and provided a significantly higher resolution of the phase boundary 
than traditional methods (see Fig. 1h) but with significantly reduced 
time-to-results and required sample volume. The total characterization 
time was 37.13 min, which included 3 s associated with 
composition-property relation regression analysis. Thus, the method 

Fig. 2. a) Schematic of the sensor path and concentration distribution of the PF127 hydrogel library in a 96-well plate format. b) Sensor resonant frequency (f) and 
phase angle (ϕ) responses associated with the measurement. c) Heat maps for 96-well plate steady state sensor responses, and plot of steady-state ϕ response with 
respect to concentration showing the best-fit sigmoidal curve (R2 = 0.97). 
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provided automated HTC at a rate of 24 s/sample, which included the 
time associated with sensor motion, measurement, calculation of rheo
logical properties from sensor data via Equations (1) – (4), and 
regression-based identification of the gel point. 

As previously discussed and illustrated in Fig. 3a, the PEMC sensor 
data can be used to quantify the rheological properties of each sample in 
the material library using the fluid-structure interaction model or based 
on calibration using results from traditional rheology studies (see 
Fig.3b). The rheological property maps associated with the hydrogel 
library calculated from the sensor physics (i.e., Equations (1) – (4)) are 
shown in Fig. 3c. The computation time was 1 s. The resultant 
composition-rheological property relation for the PF127-water system at 
room temperature is shown in Fig.3d. As shown by comparison of 
Figs. 3c, 3d, and 1f, the ϕ response and G’ at f obtained from sensor data 
and physics exhibited similar magnitude to low-frequency G’ and G’’ 
values obtained using the commercially-available rheometer. In addi
tion, G’ and G’’ at f also exhibited a sigmoidal trend, with an inflection 

point (i.e., gel point) at 19.06 wt%, which also agreed with previously 
reported values [42]. Similar to the ϕ response, G’ and G’’ were 
significantly different before and after gelation (p < 0.001 and p <

0.001, respectively; n = 24). 
Fig. 3e shows the strong correlation between the normalized steady- 

state ϕ response (= [ϕ – ϕi]/ [ϕf – ϕi]) and the low-frequency viscoelastic 
properties obtained using a rheometer. The normalized ϕ response also 
exhibited a sigmoidal trend with an inflection point at 19.06 wt%. Fig. 3f 
shows a comparison of the low-frequency G’ obtained using normalized 
ϕ response and results from the traditional rheometer studies with the G’ 
at f (i.e., obtained from sensor physics). As shown in Fig. 3f, G’ at f was 
lower in magnitude than at low frequency yet exhibited a similar 
dependence on concentration, with inflection points at 19.06 wt%, 
respectively. The calibration-based method for rheological property 
characterization offers the advantage of incorporating benchmarking 
data from traditional characterization methods (e.g., rheometers), but 
the disadvantage of requiring additional time associated with such 

Fig. 3. a) Workflow of composition-property relation data generated from sensor data and physics. b) Workflow of composition-property relation data generated 
from sensor data using calibration-based approach. c) Rheological property heat maps of storage (G’) and loss (G’’) moduli generated from sensor data and physics. 
d) Composition-property relations corresponding to the heat maps shown in panel (c). e) Normalized steady-state ϕ response, best-fit sigmoidal regression model, 
and low-frequency G’ measured from rheometer with respect to concentration. f) The composition-property relations from ϕ response and rheometer calibration data 
and best-fit sigmoidal curve, low-frequency rheometer data, and G’ from sensor resonant frequency (f) and quality factor (Q) responses using a fluid-structure 
interaction model (i.e., sensor physics) and best-fit sigmoidal curve. 
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studies if data were not pre-existing. The sensor- and physics-based 
method for rheological property characterization has the advantage of 
relatively increased characterization rate, as it avoids the need for 
traditional characterization methods. Both approaches provide equiva
lent resolution and throughput in the case of pre-existing calibration 

data. 
In addition to formulating hydrogel libraries that exhibit a linear 

change in composition across the plate, we also verified that the method 
was capable of resolving nonlinear and discontinuous changes in sample 
concentration as well as successive phase changes along the sensor path. 

Fig. 4. a) Schematic of the sensor path and concentration distribution of the PF127 hydrogel library in a 96-well plate format. Sensor resonant frequency (f) (b) and 
phase angle (ϕ) (c) responses associated with the measurement and corresponding heat maps. d) Rheological property heat maps of storage (G’) and loss (G’’) moduli 
generated from sensor data and physics. 
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For example, such libraries may be found in chemical sensing and bio
sensing applications in which sample concentration may be unknown 
and spatially uncorrelated across the plate. As shown in Fig. 4a, we 
characterized a library that contained two PF127-water mixtures, one 
below (18 wt%) and one above (21 wt%) the gel point at room 

temperature. The concentration exhibited a Virginia Tech “VT”-shaped 
spatial distribution across the 96-well plate (Fig. 4a). The f and ϕ re
sponses and corresponding heat maps of steady-state responses during 
submersion are shown in Fig. 4b and c. As shown in Fig. 4d, the “VT” 
distribution can be observed in the viscoelastic property heat maps. In 

Fig. 5. a) Schematic of the sensor path and concentration distribution of a collagen hydrogel library in a 96-well plate format. Sensor resonant frequency (f) (b) and 
phase angle (ϕ) (c) responses associated with the measurement and corresponding heat maps. d) Plot of normalized phase angle vs. collagen concentration with a 
best-fit sigmoidal curve and rheological property heat maps of storage modulus (G’) generated from sensor data and physics. e) Composition-property relations 
corresponding to the heat maps shown in (d) and the corresponding best-fit sigmoidal curves. 
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addition, all wells that contained a hydrogel were successfully charac
terized based on the criteria that the calculated G’ > G’’. 

In addition to synthetic polymers (e.g., PF127 hydrogels), we next 
characterized hydrogel libraries of natural polymers to further demon
strate the utility and impact of the method. Collagen-based hydrogels 

have received considerable attention as scaffolds for tissue engineering 
applications. It is well established that the stiffness of two- and three- 
dimensional substrates and matrices for cell culture affect cellular 
behavior and tissue outcomes. For example, the design of processable 
hydrogels for neural tissue engineering applications remains an active 

Fig. 6. a) Schematic of the sensor path and concentration distribution of a composite alginate-PNIPAM hydrogel library in a 96-well plate format. Sensor resonant 
frequency (f) (b) and phase angle (ϕ) (c) responses associated with the measurement and corresponding heat maps of steady-state responses. d) Rheological property 
heat maps of storage (G’) and loss (G’’) moduli generated from sensor data and physics. e) Composition-property relations corresponding to the heat maps shown in 
(d) and the best-fit sigmoidal curve. 
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area of research [43,44]. Thus, identifying the minimum polymer con
tent needed to cause gelation could inform the design of future ‘ultra-
soft’ tissue scaffolds. In addition, the optimization of the polymer 
content required to manufacture engineered tissues is also an important 
present economic and logistical consideration in tissue manufacturing, 
given the high cost and supply chain challenges. 

As shown in Fig. 5a, we next characterized a 96-sample collagen 
hydrogel library that exhibited a linear concentration distribution with 
respect to collagen across the range of 0.031 to 3 mg/ml with a step size 
of 0.031 mg/ml. Similar to the PF127 hydrogel libraries discussed in 
Figs. 2 and 3, the concentration range spanned the known gel point (near 
1 mg/ml) [45–47]. The ϕ and f responses and corresponding heat maps 
associated with the collagen library are shown in Fig. 5b and c. Similar 
to the PF127 hydrogel library, the steady-state ϕ response exhibited a 
sigmoidal trend. The gel point of the collagen hydrogel was obtained as 
0.760 ± 0.048 mg/ml (n = 3 repeated studies) (see Fig. 5), which agreed 
well with previously reported estimates near, and also below, 1 mg/ml 
[45–47]. Considering the normalized ϕ response exhibited a strong 
correlation with the rheometer-measured property data from Fig. 3, the 
normalized ϕ response with respect to concentration and the rheological 
property heat map are shown in Fig. 5d. The composition-property re
lations associated with the sample library are shown in Fig. 5e. 

In addition to characterizing hydrogel libraries that exhibit mechan
ical percolation processes associated with phase change (i.e., gelation), 
we next applied the method to identify the mechanical property perco
lation associated with network interaction in stimuli-responsive com
posite hydrogel libraries in which all samples were hydrogels. Composite 
alginate-PNIPAM hydrogels have received considerable attention based 
on their biocompatibility, mechanical strength, and thermal response 
[48]. Interpenetrating ionic and covalent networks can also result in 
tough alginate-PNIPAM hydrogels, which have been leveraged for soft 
robotics [49] and drug delivery applications [50,51]. However, the study 
of composition-process-structure-property relations remains an active 
research area. Fig. 6a shows the concentration distribution of reactants 
associated with the 96-sample alginate-PNIPAM hydrogel library and the 
associated sample preparation (synthesis) steps. The NIPAM concentra
tion varied linearly across the library from 0 to 6.67 wt% with a step size 
of 0.069 wt%. Similar to the previous hydrogel libraries that exhibited a 
percolation in storage modulus associated with a gelation process, the f 
(Fig. 6b) and ϕ (Fig. 6c) responses and associated heat maps of 
steady-state sensor responses show a mechanical percolation process in 
the alginate-PNIPAM hydrogel library associated with network interac
tion. As shown in Fig. 6d and e, alginate-PNIPAM hydrogels undergo a 
percolation process at 4.68 ± 0.21 wt% NIPAM that drives sharp increase 
in G’. Following the percolation threshold, G’ continues to increase, but at 
a lower rate than the rate of loss modulus increase, suggesting that the 
stimuli-responsive material becomes relatively more dissipative at 
NIPAM concentrations greater than 4.45 wt%. 

Having established a rapid HTC method for generating composition- 
property relations for hydrogels from sensor data and sensor physics 
based on automated sensing, we next utilized these inputs in combina
tion with supervised machine learning to create an autonomous HTC 
method capable of accurately interpreting the hydrogel composition- 
property characterization data, such as the ability to classify the sam
ple’s phase as solution or gel. The creation of autonomous HTC methods 
is also an important approach for increasing the speed (i.e., throughput), 
as data interpretation is often a significant bottleneck in materials 
research. As previously discussed (see Fig. 1), HTC methods can not only 
accelerate materials discovery by removing bottlenecks associated with 
screening of molecular and materials candidates, but they also generate 
data for facilitating and improving AI-guided modeling, synthesis, and 
characterization thrusts. We remind the reader that chemistry and ma
terials applications of machine learning are presently physics-rich but 
data-poor, in part because of the absence of rapid HTC methods. While 
there are various problems in materials science and discovery, such as 
prediction of composition-property relations [52–54], here, we focus on 

the application of regression and supervised machine learning (classi
fication) for deepening the understanding of hydrogel percolation 
physics based on the generated high-resolution experimental 
composition-property relations for large sample libraries as well as 
improving the accuracy of data interpretation. The data in Figs. 2c, 3e, 
and f (raw ϕ response, normalized ϕ response, low-frequency G’ calcu
lated from normalized ϕ response and rheometer data, and phase label) 
served as the inputs to the classification task. The novel HTC method 
generated high-resolution (i.e., dense) composition-property relation 
data for machine learning. For example, 1152 data samples were ob
tained from all of the repeated scans for the PF127 hydrogel studies, of 
which approximately 60% corresponded to the solution phase (class 0) 
and 40% to the gel phase (class 1). For modeling the supervised classi
fication task, Support vector machine (SVM), Random forest (RF), and 
Extreme gradient boosting (XGB) classifiers were used based on their use 
as benchmarks in supervised machine learning and materials science 
applications [55–57]. 

As shown in Fig. 7a, raw ϕ response, normalized ϕ response, and low- 
frequency G’ (obtained from normalized ϕ response and rheometer data) 
were strongly correlated (all absolute correlation scores exceeded 0.99). 
We found that default model parameters of SVM, RF, and XGB classifiers 
enabled classification accuracy greater than 96% (96.1, 100 and 96.1%, 
respectively). The associated computing times for model tuning and 
classification were 6, 42, and 30 s, respectively. Model tuning improved 
classification accuracy to greater than 96.5% (96.5, 100, and 99.57%, 
respectively) (see Table 1). A comparison of classifier performance for 
gelation and interaction network-driven percolation using raw ϕ 
response and characterization data from rheology studies is shown in 
Table 1. The high test accuracy, F1-score, precision, recall, and low 
misclassification error indicated that all three models performed 
comparably well for the classification of the hydrogel phase. Based on 
these metrics, XGB and RF classifiers provided similar performance to 
SVM. SVM provides optimal performance for relatively small datasets 
and typically works relatively well when there is a clear margin of 
separation between classes, such as a sharp phase transition point or 
percolation threshold. Thus, it was expected that SVM would provide an 
accurate classification of material phase based on sensor data. RF and 
XGB classifiers are known for relatively reduced overfitting and inter
pretability, given their basis on ensembles of decision trees. 

The input features to the classification task were then further sub
divided into sensor-based features, which included the raw ϕ response, 
normalized ϕ response, and low-frequency G’ calculated from normal
ized ϕ response and rheometer data, and physics-based features, which 
included G’ at f generated from raw sensor data and sensor physics. 
Fig. 7b shows the feature importance plots associated with the RF and 
XGB classifiers considering only the sensor-based features (i.e., obtained 
in the absence of sensor physics). Considering the PF127 hydrogel, the 
low-frequency G’ calculated from the normalized ϕ response and 
rheometer data was the most important sensor-based feature for the RF 
and XGB classifiers. The normalized ϕ response was the second most 
important sensor-based feature for both classifiers. This result suggests 
that high classification accuracy of material phase can be achieved 
solely with features obtained from sensor data. 

Having evaluated the relative importance of the sensor-based fea
tures obtained by the HTC method for different classifiers, we next 
compared the importance of the sensor- vs. physics-based features for a 
single classifier (see Table 2). As shown in Table 2, the RF classifier 
yielded accurate classification of percolation processes in PF127, 
collagen, and alginate-PNIPAM hydrogels using: 1) only a sensor-based 
feature (normalized ϕ response); 2) only a physics-based feature (G’ at 
f); and 3) both features. As shown in Fig. 7c - e, the physics-based feature 
was more important than the sensor-based features for phase classifi
cation in the collagen and alginate-PNIPAM hydrogels. However, the 
ratio of feature importance was dependent on the type of material 
characterized, suggesting that the value of incorporating physics in 
machine learning may be material-dependent. Thus, considering the 
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total characterization time was 0.39 min/sample and the computational 
time associated with supervised machine learning (i.e., phase classifi
cation) averaged ~ 30 s, the time-to-results associated with the method 
was ~24 s/sample. 

In Table 3, we compare the established autonomous HTC method 
with state-of-the-art and gold-standard methods for characterizing 
hydrogel rheological properties, which include atomic force micro
scopes, rheometers, and dynamic mechanical analyzers. The method 
presented in this work, based on automated sensing and physics-guided 
machine learning, offers an improvement in the characterization cycle 

rate by reducing the process operation and handling times (e.g., sample 
preparation time). Finally, it is important to distinguish between auto
mated methods capable of characterizing batches of samples vs. those 
that require manual loading, positioning, and unloading of samples by a 
trained user. Given sample mass and volume may be limited in many 
applications, such as materials discovery and sensing applications, it is 
also important to consider a method’s minimum allowable sample vol
ume. Autonomous HTC methods that are compatible with well plates, 
such as that presented in this work based on automated sensing and 
physics-guided machine learning, can characterize batches with a high 
quantity of samples, use low sample volume, and synergize with com
mon HTE formats, which makes them attractive for HTE applications 
involving hydrogels and potentially other soft materials. 

4. Conclusions 

Autonomous methods for HTE offer the potential to improve the pace 
and reproducibility of scientific inquiry and quality control across 
various fields and industries. Here, we reported a rapid, autonomous 
method for HTC of hydrogels based on robotically-directed automated 

Fig. 7. a) Correlation matrix of input sensor-based features for the PF127 hydrogel library. b) Feature importance for RF and XGB classifiers for PF127 hydrogel 
phase classification. Feature importance for PF127 (c), collagen (d), and alginate-PNIPAM (e) hydrogel libraries using normalized steady-state phase angle (ϕ) 
response and G’ at f in the RF classifier. 

Table 1 
Summary of model performance for classification of material phase using fea
tures obtained from sensor data (i.e., sensor-based features).  

Model Test 
Accuracy 

Misclassification Error 
(%) 

F1- 
score 

Precision Recall 

SVM 0.965 3.5 0.96 0.96 0.97 
XGB 0.996 0 1 0.99 1 
RF 1 0 1 1 1  

Table 2 
Summary of random forest (RF) model performance for classification of material phase for various material systems using sensor- (normalized ϕ response) and physics- 
based features (i.e., G’ at f obtained from sensor data and physics).  

Hydrogel Feature(s) Test Accuracy F1-score Precision Recall Misclassification Error (%) 

Pluronic F127 ϕ/ϕmax 0.965 0.97 0.96 0.96 3.45 
Collagen ϕ/ϕmax 0.965 0.97 0.98 0.93 3.45 
Alginate-PNIPAM ϕ/ϕmax 0.845 0.84 0.83 0.80 15.5 
Pluronic F127 G’ 1 1 1 1 0 
Collagen G’ 1 1 1 1 0 
Alginate-PNIPAM G’ 0.983 0.98 0.99 0.97 1.72 
Pluronic F127 ϕ/ϕmax & G’ 1 1 1 1 0 
Collagen ϕ/ϕmax & G’ 1 1 1 1 0 
Alginate-PNIPAM G’ 0.983 0.98 0.99 0.97 1.72  
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sensing and physics-guided supervised machine learning. The method 
enables autonomous HTC of hydrogel rheological properties and high- 
resolution screening of gelation and percolation processes in 96-well 
plate formats at a rate of 24 s/sample (which is more than 70 times 
faster than the state-of-the-art methods), requiring no manual data 
analysis or interpretation. This work also shows that knowledge of 
sensor physics can improve the performance of autonomous HTC 
methods based on supervised machine learning via feature augmenta
tion. Given the rheological properties of hydrogels are indicators of both 
processability and performance, the ability to rapidly and autonomously 
characterize the rheological properties of large batches of solutions and 
hydrogels in well plate formats is potentially meaningful for various 
applications, including accelerated materials discovery, sensing, tissue 
engineering, mechanobiology, and biomanufacturing. It is of interest to 
further consider how experimental data acquired from autonomous HTC 
methods can be utilized to guide material design (e.g., automated 
formulation processes) and how to further increase measurement speed 
and optimize the amount and type of sensor data collected (e.g., addi
tional complementary composition, structure, and property data). 
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nonrecovered compliance from multiple stress creep recovery test in the dynamic 
shear rheometer, Int. J. Pavement Eng. 9 (2008) 329–341. 

[59] D. Ionita, M. Cristea, C. Gaina, Prediction of polyurethane behaviour via time- 
temperature superposition: meanings and limitations, Polym. Test. 83 (2020), 
106340. 

[60] R. Foschia, M. Jobin, S. Hengsberger, Local dynamic mechanical analysis, Micron 
40 (2009) 51–55. 

J. Zhang et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0016
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0016
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0016
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0016
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0017
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0017
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0017
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0018
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0018
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0019
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0019
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0019
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0020
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0020
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0021
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0021
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0022
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0022
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0022
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0023
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0023
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0024
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0024
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0024
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0025
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0025
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0025
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0026
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0026
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0026
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0028
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0028
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0028
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0029
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0029
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0029
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0030
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0030
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0030
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0031
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0031
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0031
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0032
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0032
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0032
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0033
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0033
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0033
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0034
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0034
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0034
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0034
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0035
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0035
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0035
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0037
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0037
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0037
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0038
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0038
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0038
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0039
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0039
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0039
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0040
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0040
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0040
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0041
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0041
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0042
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0042
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0042
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0043
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0043
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0043
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0043
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0044
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0044
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0044
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0045
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0045
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0046
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0046
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0047
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0047
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0047
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0048
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0048
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0048
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0049
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0049
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0049
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0050
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0050
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0050
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0051
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0051
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0051
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0051
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0052
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0052
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0052
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0053
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0053
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0053
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0054
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0054
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0054
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0054
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0055
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0055
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0056
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0056
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0057
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0057
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0058
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0058
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0058
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0059
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0059
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0059
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0060
http://refhub.elsevier.com/S2352-9407(22)00354-7/sbref0060

	Rapid, autonomous high-throughput characterization of hydrogel rheological properties via automated sensing and physics-gui ...
	1 Introduction
	2 Materials and methods
	2.1 Materials
	2.2 Sensor fabrication
	2.3 Sensor measurement principle and data acquisition
	2.4 HTC of Hydrogel rheological properties in well plates via robotically-directed sensing
	2.5 Path planning
	2.6 Hydrogel preparation
	2.7 Benchmarking of hydrogel rheological properties via traditional rheology
	2.8 Calculation of hydrogel rheological properties from sensor data and sensor physics
	2.9 Calculation of percolation threshold
	2.10 Physics-guided supervised machine learning
	2.11 Statistical analysis

	3 Results and discussion
	4 Conclusions
	Data availability
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data Availability
	Acknowledgements
	Supplementary materials
	References


