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ARTICLE INFO ABSTRACT

Keywords: High-throughput characterization (HTC) of composition-process-structure-property relations is essential for
High-throughput experimentation accelerating molecular and material discovery and manufacturing paradigms. Here, we present a rapid, auton-
I;/[EMS omous method for HTC of hydrogel rheological properties in well plate formats via automated sensing and
€NnsSors

physics-guided supervised machine learning. The novel HTC method facilitates rapid, autonomous character-
ization of hydrogel rheological properties and percolation processes associated with gelation and network
interpenetration in 96-well plate formats at a rate of 24 s/sample (70 times faster than the state-of-the-art).
Viscoelastic properties and phase behavior obtained by the method were benchmarked against traditional
rheology studies. The speed and utility of the method were demonstrated by high-resolution characterization of
the gel point of Pluronic F127, collagen, and alginate-PNIPAM hydrogels in 96-well plate formats at resolutions
of 0.31 wt% (Pluronic F127), 0.031 mg/ml (collagen), and 0.069 wt% (NIPAM), respectively. Experimental
composition-property relation data generated from sensor multivariate time-series data, calibration data, and
fluid-structure interaction models enabled accurate classification of sample phase using supervised machine
learning. Feature augmentation using sensor physics, here, a fluid-structure interaction model, improved ma-
terial (i.e., sample) phase classification accuracy relative to that obtained in the absence of physics-based feature
augmentation. Ultimately, creating rapid, autonomous HTC methods that synergize with common high-
throughput experimentation formats, such as well plates, can accelerate the pace of research across several
disciplines as well as generate new tools for quality assurance and control across emerging industries.

Science-informed machine learning
Materials genome Initiative

1. Introduction properties of material libraries and generate experimental data for

model validation. Thus, creating rapid high-throughput characterization

The Materials Genome Initiative (MGI) has established a new stan-
dard for accelerated molecular and materials discovery workflows
through integrated autonomous, and often iterative, modeling, synthe-
sis, and characterization loops [1,2]. While considerable efforts have
been made in high-throughput synthesis (HTS), characterization re-
mains a bottleneck and limits progress in modeling and synthesis do-
mains. For example, it remains a challenge to rapidly screen the
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(HTC) methods is critical for realizing accelerated molecular and ma-
terials discovery paradigms, such as those based on high-throughput
experimentation (HTE) methods (e.g., additive manufacturing-driven)
[3].

Similar to HTC for molecular discovery applications, which requires
characterization of various molecular characteristics and properties,
including concentration, conformation, and binding affinity, HTC for
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material discovery applications is particularly challenging given the
large number of potential properties that may serve as measures of
material quality (i.e., performance) [4]. HTE workflows for accelerated
materials discovery, which consist of integrated HTS and HTC processes,
are now emerging in accelerated photovoltaics [5] and solar fuels [1,6,
7] applications. However, while considerable progress has been made
for integrated and thin-film materials applications, there remains a
significant demand for accelerated soft materials and biomaterials par-
adigms [3,8]. While various HTS platforms, such as those based on
microextrusion 3D printing processes, are now available for formulating
soft material libraries (e.g., hydrogel libraries), HTC of product quality
remains a challenge and bottleneck. For example, accelerated soft ma-
terials discovery workflows may require HTC of mechanical [9] and
transport properties as well as phase behavior and swelling response [7].
In addition, HTC formats should also synergize with existing HTS for-
mats, particularly well plate formats, which are extensively used [3].

Hydrogels are essential soft materials for tissue engineering, drug
delivery, and regenerative medicine [10]. Multiple HTE-based work-
flows have been recently established for accelerated hydrogel materials
research [7,11,12]. To date, hydrogel HTC methods are typically based
on transducer arrays or robotically-directed transducers capable of
measuring composition, structure, or property data [7,13-15]. The
majority of studies have adapted analytical methods, such as UV-vis
spectroscopy and X-ray diffraction, for HTC of hydrogel properties.
For example, a HTE-based method for optimization of injectable
hydrogels for protein delivery in a 96-well plate format was recently
created based on HTC of POEGMA hydrogel precursor composition,
ovalbumin release kinetics using ultraviolet-visible (UV-Vis) spectros-
copy and hydrogel compressive modulus and volume change using a
commercially-available micromechanical tester from 22 to 40°C [7]. In
another study, a HTE-based method for screening PEGDA-based mate-
rials for inkjet printing in a 96-well plate format was recently established
based on the characterization of ink viscosity via online pressure sensing
and HTC of surface tension based on image analysis from 25 -60C [12].
A HTE-based method for supramolecular gels research was recently
established based on HTC of material optical properties via UV-Vis
spectroscopy using a microplate reader format [11]. HTC of gel struc-
ture was characterized by UV-Vis absorbance measurements in a
384-well plate format from 20 — 35C. Optical density measurements and
fluorescence spectroscopy measurements were also used to characterize
gel formation and uniformity. While emerging HTE workflows for
hydrogel materials research have primarily employed HTC methods
based on existing spectroscopic methods and mechanical testing plat-
forms, there remains a need for sensor-based methods that facilitate
combinatorial screening of soft material composition-structure-property
data.

Among the properties of hydrogels, rheological properties are in-
dicators of processability, performance, and quality for applications.
Hydrogel rheological properties and phase behavior provide important
information regarding material processability in extrusion applications,
such as the ability to form free-standing structures. The viscoelastic
properties of hydrogel-based tissue scaffolds are also indicators of cell
behavior and phenotype in 3D cell culture models [16,17]. Thus, new
methods for HTC of hydrogel rheological properties and phase behavior
that synergize with practical HTE formats (e.g., well plate-based) could
eliminate significant bottlenecks to accelerated soft materials research
and discovery.

The gold-standard methods for characterizing hydrogel mechanical
properties are rheometers, dynamic mechanical analyzers, and atomic
force microscopes [18]. However, such techniques are often destructive
and involve time-intensive tests (~ 0.5 — 1 day/sample) because of
required manual sample preparation steps and data analysis [19], which
limits throughput and potential for online product-process monitoring
applications. For example, while 3D bioprinting processes now enable
automated high-throughput fabrication of 3D cell culture models [1,2,
9], HTC of bioink and tissue construct rheological properties remains a
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bottleneck to scalable and quality-controlled additive bio-
manufacturing. Micro-mechanical testing techniques based on minia-
turized transducers, such as nanoindentation, micro-tensile testing,
micro-compression testing, and micro-electromechanical systems
(MEMS), now facilitate combinatorial HTC of thin-film and bulk mate-
rial mechanical properties [9]. While nanoindentation is widely used, it
may overestimate material properties due to size dependence [20-22].
MEMS have received considerable attention as a platform technology,
such as for chemical sensing, biosensing, and material property sensing
applications, based on their sensitivity, design flexibility (e.g., form
factor), and ability to perform continuous monitoring. MEMS have also
enabled the characterization of soft material viscoelastic properties
based on fluid-structure interaction effects [23], as well as real-time
monitoring of hydrogel gelation processes. Thickness shear mode reso-
nators, such as quartz crystal microbalances (QCM) [24], were among
the first MEMS leveraged for characterizing the viscoelastic properties of
hydrogel thin films, which remain an active area of research [25].
Suspended micro-beams were also previously used to characterize the
viscoelastic properties of hydrogel microstructures (PEGDA) [26].
However, not all MEMS exhibit versatile form factors and transduction
approaches that synergize with practical HTS formats, such as well
plates. For example, the form factors associated with QCM and
double-clamped beam resonators are relatively more difficult to imple-
ment in robotically-directed well plate-based measurement formats. We
recently showed that dynamic-mode piezoelectric milli-cantilever
(PEMC) sensors, which exhibit a dip-stick form factor [27], enable the
characterization of hydrogel viscoelastic properties with a sensitivity of
90 Pa (per unit quality factor) [28,29] and control of hydrogel structure
and viscoelastic properties [30]. Thus, the high sensitivity, dip-stick
form factor, self-exciting and -sensing transduction principle, spectral
data structure, and submersion-based measurement format of PEMC
sensors make them potentially attractive characterization tools for
autonomous HTC of hydrogels in well plate formats.

Here, we introduce a rapid, autonomous method for HTC of hydrogel
rheological properties based on the integration of robotically-directed
sensing using PEMC sensors and physics-guided machine learning. The
method is compatible with standard well plates and exceeds the cycle
rates of state-of-the-art and gold-standard characterization methods by
more than one order of magnitude. Feature augmentation using
knowledge of sensor physics, here, a fluid-structure interaction model,
improved the accuracy of classifying the sample’s phase as a solution or
gel relative to that obtained in the absence of physics-based feature
augmentation. The HTC method was validated by characterizing gela-
tion and percolation processes in several hydrogel libraries (i.e., batches
of samples of known composition but unknown properties). The ability
of this method to synergize with common HTE formats, such as those
based on well plates, can accelerate the pace of research across several
disciplines as well as generate new tools for quality assurance and
control across emerging industries.

2. Materials and methods
2.1. Materials

Pluronic F127 (PF127), collagen solution from bovine skin (3 mg/
ml), 10X phosphate-buffered saline, sodium hydroxide, alginate acid
sodium salt from brown algae (alginate), N-isopropylacrylamide
(NIPAM), and calcium chloride were from Sigma Aldrich.

2.2. Sensor fabrication

Piezoelectric milli-cantilever (PEMC) sensors with asymmetric
anchoring were fabricated from lead zirconate titanate (PZT) chips (5 x
1 x 0.127 mm®) as previously reported [31-37]. Briefly, 30-gauge
copper (Cu) wires were soldered to the top and bottom thin-film
nickel electrodes at the end of the PZT chip. The soldered end of the
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chip was then potted in a 6 mm diameter glass tube with a
non-conductive epoxy resulting in a cantilever geometry (length (L) =
4.1 mm, width (w) = 1 mm, thickness (t) = 127 pm). Anchor asymmetry
was obtained by applying additional epoxy to one side of the cantilever
extending from the embedded end. The sensors were then spin-coated
with polyurethane (~30 pm). Subsequently, the sensors were insu-
lated by a chemical vapor deposited Parylene C coating (10 pm) in
batches of 25 - 50 sensors following vendor-supplied protocols (PDS
2010 Labcoter® 2, Specialty Coating Systems, Indianapolis, IN).

2.3. Sensor measurement principle and data acquisition

The electrical impedance-based self-sensing and -exciting actuation
and transduction principle of PEMC sensors [36,38,39] enables in situ
real-time monitoring of viscous and viscoelastic materials, such as
hydrogels. While resonance of micro- and nano-cantilevers is highly
damped in viscous and viscoelastic materials based on consideration of
the cantilever Reynolds number, resonance monitoring of
milli-cantilevers is possible in many materials since Re, > 1 [33,40].
Continuous monitoring of the PEMC impedance and phase angle re-
sponses (i.e., impedance spectra) was performed using electrical
impedance spectroscopy across a frequency range of + 20-30 kHz
centered on the resonant frequency (f) using a network analyzer
(E5061B; Keysight). A custom MATLAB program provided simultaneous
instrument (analyzer) control and real-time data acquisition. This
enabled continuous monitoring of multivariate PEMC sensor responses,
which included f, the phase angle at resonance (¢), and the impedance at
resonance (Z) as described in our previous reports [31-37]. The quality
factor (Q) was calculated as Q = f/frequency-width-at-half-maximum
(FWHM).

2.4. HTC of Hydrogel rheological properties in well plates via robotically-
directed sensing

The HTC platform was composed of a PEMC sensor, network
analyzer, desktop computer for analyzer control and data acquisition,
three-axis robot (MPS50SL; Aerotech), motion controller (A3200; Aer-
otech), and a desktop computer for robot control and path planning.
Well plates were characterized on a custom plate holder and stage
(Thorlabs) that enabled manual leveling. Leveling was achieved using a
1D laser displacement sensor (IL-1000; Keyence).

2.5. Path planning

The sensor path across the well plate (material library), known as the
toolpath, was defined using G code and manual path planning based on
well-reported 96-well plate dimensions. The sensor path was based on a
move-dip-dwell-retract loop that resulted in the characterization of the
material in each well of a given plate. The sensor moved in the direction
of increasing well number, which corresponded to increasing polymer
concentration based on the plate preparation protocol. The sensor re-
sponses were allowed to stabilize in air prior to all studies. The dip
motion command resulted in full submersion of the PEMC sensor. The
duration of the dwell time was 15 s. A feed rate of 2.5 mm/s was used for
all linear motion commands. Sensor data was continuously collected
throughout tool motion.

2.6. Hydrogel preparation

Hydrogel ‘libraries,” which refer to a batch of hydrogel samples of
known composition but unknown properties, were manually formulated
in commercially-available 96-well plates. Controls: Plates filled with
only DIW and glycerol served as negative controls, respectively. 2.6.1
Formulation of Pluronic F127 Hydrogels: Stock PF127-water solution (30
wt%) was first prepared in DIW. The stock solution was then serially
diluted with DIW across the well plate, spanning the concentration of
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the known gel point, to form the Pluronic F127 hydrogel library. 2.6.2
Formulation of Collagen Hydrogels: Stock collagen solution (3 mg/mL)
was first serially diluted with DIW across the plate followed by the
addition of 40 ul 10X PBS and 12 pl 1N NaOH to each well that contained
360 pl collagen solution. The collagen hydrogel library formed after 1
hour at room temperature. 2.6.3 Formulation of Alginate-PNIPAM
Hydrogels: Stock NIPAM solution was serially diluted with DIW across
the well plate. The alginate-PNIPAM libraries were prepared by mixing
100 pl 2 wt% alginate with 300 pl NIPAM. After the library was exposed
to UV light for 30 minutes (365 nm; UVGL-58), 30 pl 100 mM CaCl, was
added. The library was left overnight to react. The concentration step
sizes for 96-well plate studies were 0.031 - 3 mg/ml, 0.31 - 30 wt%,
0.069 - 6.67 wt% for collagen-10X PBS-1N NaOH-water, PF127-water,
and alginate-PNIPAM-CaCl, mixtures, respectively.

2.7. Benchmarking of hydrogel rheological properties via traditional
rheology

The low-frequency storage (G’) and loss (G’’) moduli of PF127 so-
lutions (3 — 18 wt%) were acquired by frequency sweeps (1 to 100 Hz)
with a strain of 50%, which was found to be within the linear visco-
elastic region, using a rheometer (MCR302; Anton Paar). The PF127
hydrogels (21 — 30 wt%) were characterized by frequency sweeps (1 to
100 Hz) at low strain (1%). Solution characterization was performed
using a concentric cylinder measuring system (CC27; Anton Paar) (20
ml) at 50% strain. Hydrogels were characterized using a parallel plate
test fixture (PP50; Anton Paar) (3 ml) at a gap of 1 mm and 1% strain.
The MCR302 was equipped with a Peltier system for temperature
control.

2.8. Calculation of hydrogel rheological properties from sensor data and
sensor physics

The sensor outputs of f and Q were utilized to calculate the sur-
rounding material G’ and G’ at f from the following fluid-structure
interaction model [23]:
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where L is the cantilever length, u = p bt is the cantilever mass per unit
length, p, and t are the respective cantilever density and thickness, Qg
and w, are the respective quality factor and resonant frequency in the
absence of fluid damping (i.e., resonating in vacuum with only internal
damping effects present), m; = p.btL is the cantilever mass, my =
pab?LI/4 is the added mass, I’ is the real part of the hydrodynamic
function, and ¢; = m.w,/Q, is the internal damping coefficient. Due to
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the scale of the cantilevers (L = 4.1mm), the internal damping was not
negligible and was subtracted from the measured value (as described in
the term ¢; in Eq. 3). In calculation of ¢;, w, and Qg were approximated as
®o ~ 2nfy qir and Qp ~ Qp, air, Which were reasonable assumptions as
discussed in the following sections. The hydrodynamic function was
approximated using the relation I’ = a; + az5/b, where 5 = (217/(pw))"/?
is the thickness of the thin viscous layer surrounding the cantilever in
which the velocity has dropped by a factor of 1/e, and 7 is the viscosity of
the fluid. Previous work has shown that Q is also strongly correlated
with ¢ and G’ in several hydrogels [28-30]. Egs. (3) and (4) allow for
solutions of g; and g, based on measurable values (w and Q, which are
related to f and ¢, which are continuously monitored). These values can
then be used to obtain the desired viscoelastic properties G’ and G’ at
the measurement frequency using Eqs. (1) and (2) and measured values
of g; and g. Thus, the solution to the system of equations formed by
Equations (1) - (4) provides the viscoelastic properties of the sur-
rounding material based on the continuously-monitored cantilever
sensor response [29]. Supporting details on the solution method are
provided in Supporting Information.

2.9. Calculation of percolation threshold

The gel point and percolation threshold were obtained as the in-
flection point of a best-fit (nonlinear least squares; Microsoft Excel)
sigmoidal percolation model [41] to the experimental sensor
steady-state phase angle vs. polymer concentration (c) or G’ obtained
from sensor data and Equations (1) — (4) vs. concentration.

2.10. Physics-guided supervised machine learning

The raw phase angle data, normalized phase angle data, low-
frequency G’ calculated from normalized phase angle and rheometer
data, and high-frequency G’ calculated from resonant frequency and
quality factor data and the fluid-structure interaction model served as
the input features to the material phase-classification (i.e., sol-gel
transition) problem. The latter feature is generated via physics-guided
fusion of sensor bivariate time-series data (f(t) & ¢(t)) using knowl-
edge of sensor physics (i.e., Equations (1) — (4)). The two classes 0 and 1
represented solution and gel as the output, respectively. Labeling was
performed based on the best-fit sigmoidal regression model. Class
0 (solution) corresponded to sigmoidal values less than 0.5, while class 1
(gel) corresponded to values greater than 0.5. The data was divided into
80% and 20% for training and testing, respectively using Stratified
sampling with respect to class labels to preserve the percentage and
distribution of samples in each class. Supervised machine learning was
performed using Support vector machine (SVM), Random forest (RF),
and Extreme gradient boosting (XGB) classifiers. Regularization
parameter C in SVM, minimum trees leaf, minimum trees split, and the
maximum depth of trees in random forest, and number of trees in the
classifier, the maximum depth of trees, the learning rate, and subsample
ratio of columns in XGB model hyperparameters were tuned for optimal
results. No tuning was done to default parameter values that resulted in
100% accuracy. Additional details regarding model tuning are provided
in Supporting Information. Model accuracy score, Fl-score, precision,
recall, and misclassification error were used to evaluate model perfor-
mance. Supervised machine learning was performed using a personal
computer (Linux; 12 GB RAM) and statistical software and packages
(Python).

2.11. Statistical analysis

Data were expressed as mean + standard error of the mean.
Normality of the data was assessed by a normal probability (Q-Q) plot.
The significance of differences between the mean values of: 1) f and ¢ in
various surrounding materials; and 2) G’ and G’’ above and below the
gel point (e.g., at the limit of high polymer concentration) were
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determined by Student t-tests and one-way ANOVA. Statistical analysis
was performed using statistical software (Python).

3. Results and discussion

As illustrated in Fig. 1a, we report a novel rapid, autonomous method
for HTC of hydrogel rheological properties in well plates based on
robotically-directed sensing and supervised machine learning. Photo-
graphs of the HTC platform are provided in Supporting Fig. S1. The
premise of this work is that the integration of automated (i.e.,
robotically-directed) sensing and machine learning provides an auton-
omous HTC method that can accelerate the screening of large batches of
hydrogels using traditional HTE experimentation formats (well plates)
relative to traditional characterization methods (see Fig. 1b). As shown
in Fig. 1a and ¢, automated sensing of hydrogel rheological properties in
well plates was performed using dynamic-mode PEMC sensors. PEMC
sensors were selected given their design synergizes with well plate for-
mats that are commonly used in HTE. In particular, the self-sensing and
-exciting transduction mechanism and milli-scale dip-stick form factor
supports interrogation of small sample volumes without requiring bulky
supporting measurement instrumentation. The electrical impedance-
based transduction mechanism also provides access to high sampling
rates, which is important for achieving rapid measurement. The canti-
lever geometry also enables use of established sensor physics, specif-
ically fluid-structure interaction models, for interpretation of sensor
response and guidance of autonomous operations (e.g., machine
learning-based classification of material properties or phase). While
PEMC sensors enable rheological property sensing at different submer-
sion depths [31], the measurements reported in this work correspond to
fully submerged sensors, which enables the characterization of the
material rheological properties through a fluid-structure interaction
model [23] based on the sensor impedance response. As shown in Fig. 1a
and ¢, HTC was achieved by continuous monitoring of the impedance
response around the resonant frequency (f) as the sensor was robotically
directed through the sample library based on a user-defined path.

Given its extensive use, we first validated the method using the well-
characterized PF127-water system. As shown in Fig. 1d and e, various
features of the PEMC sensor impedance response (i.e., spectral data)
correlated with the polymer concentration of the PF127-water mixture
across the 0 — 30 wt% range. The time to collect the 96 impedance
spectra was 4 hours, which included the time associated with sensor
cleaning. The dependence of the f and phase angle at resonance (¢)
responses on the PF127 concentration are shown in Fig. 1f and g. The
dependence of quality factor (Q) on ¢ is shown in Supporting Fig. S2.
The largest rate of change in the steady-state ¢ response occurred at the
inflection point of the sigmoidal curve (18.33 + 0.95 wt%), which
agreed well with the reported gel point for the PF127-water system at
room temperature [42] (see Fig. 1g). We also found that f, ¢, and Q were
significantly different across the solution vs. gel concentration ranges (p
= 0.015, p < 0.001, and p < 0.001, respectively, n = 24 data points).
Previously, we showed that ¢ response correlated with low-frequency G’
of gelatin and alginate hydrogels obtained by dynamic mechanical
analysis [28-30]. As shown in Fig. 1h, the trends in the sensor spectral
response with polymer concentration (see Fig.1f and g) also correlated
with low-frequency G’ (1 Hz) obtained using a rheometer. The G’ and
G’ ranged from 0 - 28.6 + 1.85 and 0 - 2.62 + 0.08 kPa (n = 3 repeated
studies), respectively, across the 3 - 30 wt% concentration range. As
shown by the location of the crossover point, the rheology studies also
suggested a gel point near 20 wt% based on the crossover of G’ and G,
which agrees with the transition point estimated by the trends of raw
PEMC sensor spectral data. While characterization studies using a
traditional rheometer enabled estimation of the gel point, the technique
exhibited various disadvantages, including relatively increased sample
characterization time (~30 min/sample) and sample volume (20 ml for
solution; 3 ml for gel), yet still provided limited resolution of the
percolation process (i.e., relatively high uncertainty in the percolation
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Fig. 1. a) Illustration of a rapid, autonomous method for high-throughput characterization (HTC) of hydrogel rheological properties via automated sensing and
physics-guided supervised machine learning (spectra shown in arbitrary units (A.U.)). b) Illustration of the effect of novel autonomous sensor- and data-driven HTC
methods on achievable screening throughput relative to traditional characterization processes. ¢) Photograph of dynamic-mode piezoelectric milli-cantilever (PEMC)
sensor-material interaction during submersion into a well of a 96-well plate. Impedance response (i.e., resonant frequency (f) and phase angle response (¢)) of the
PEMC sensor second mode while submerged in various PF127-water mixtures ranging from 0.31 — 30 wt% in 3D (d) and 2D (e). Dependence of ¢ (f) and f (g) on the
material PF127 concentration. h) Rheometer-measured low-frequency shear storage (G’) and loss (G’") moduli among concentration across the 3 — 30 wt% range for
the PF127-water system (error bars are not visible based on the y-axis scale)).
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threshold). Thus, the integration of PEMC sensors with robotics and
machine learning could potentially facilitate autonomous HTC of
hydrogel rheological properties in well plate formats using small sample
volumes.

Having discussed the sensor-based measurement principle associated
with the characterization of hydrogel viscoelastic properties using the
PF127-water system and the correlation among sensor outputs (f, ¢, and
Q) and low-frequency rheological properties obtained by traditional
rheology, we next examined the ability to automate the characterization
of a hydrogel library rheological properties and phase behavior in a 96-
well plate reading format. Automating the characterization process via
robotically-directed sensing can reduce the characterization cycle time
and, therefore, average characterization time per sample by potentially
decreasing the handling, operation, and tooling times associated with a
characterization process. Thus, automating the characterization process
is an important aspect of increasing the speed and, thus, the throughput
of a characterization method. The robotically-directed sensor path and
concentration distribution across the 96-well plate are shown schemat-
ically in Fig. 2a. The concentration of the PF127-water library varied
linearly across the well plate from the 0.31 — 30 wt% range with a step
size of 0.31 wt%.

The f and ¢ responses and corresponding rheological property heat
maps associated with the library obtained from steady-state sensor re-
sponses during submersion in successive samples are shown in Fig. 2b
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and c. In this study, an optimized acquisition time of 15 s/sample was
utilized, but the measurement time may theoretically be reduced to on
the order of 1/f or the time constant associated with the cantilever’s free
response. The steady-state f response exhibited a complex trend across
the 0.31 - 30 wt% PF127 concentration range. The steady-state ¢
response exhibited a sigmoidal trend with an inflection point at t =
28.58 min (see Fig. 2¢), which corresponded to ¢ = 19.375 wt% (recall
that time corresponded to concentration because of the constant robot
feed rate). The gel point, characterized by the inflection point of best-fit
sigmoidal curve, was 18.85 + 0.48 wt% (n = 3 repeated experiments),
which agreed with a previously reported range (18 — 21 wt%) [42]. The
steady-state ¢ responses before and after gelation were also significantly
different (p < 0.001, n = 24). The results of normality testing for data
associated with the solution and gel phases are provided in Supporting
Fig. S3. Importantly, the features of gelation in the sensor data, such as
the inflection point of the ¢ response, were absent from negative control
studies with water and glycerol in which gelation was absent (see
Fig. S4). It should be noted that the data acquisition, analysis, and
interpretation were autonomous (i.e., based on robotics and regression)
and provided a significantly higher resolution of the phase boundary
than traditional methods (see Fig. 1h) but with significantly reduced
time-to-results and required sample volume. The total characterization
time was 37.13 min, which included 3 s associated with
composition-property relation regression analysis. Thus, the method
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phase angle (¢) responses associated with the measurement. ¢) Heat maps for 96-well plate steady state sensor responses, and plot of steady-state ¢ response with

respect to concentration showing the best-fit sigmoidal curve (R? = 0.97).
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provided automated HTC at a rate of 24 s/sample, which included the
time associated with sensor motion, measurement, calculation of rheo-
logical properties from sensor data via Equations (1) - (4), and
regression-based identification of the gel point.

As previously discussed and illustrated in Fig. 3a, the PEMC sensor
data can be used to quantify the rheological properties of each sample in
the material library using the fluid-structure interaction model or based
on calibration using results from traditional rheology studies (see
Fig.3b). The rheological property maps associated with the hydrogel
library calculated from the sensor physics (i.e., Equations (1) — (4)) are
shown in Fig. 3c. The computation time was 1 s. The resultant
composition-rheological property relation for the PF127-water system at
room temperature is shown in Fig.3d. As shown by comparison of
Figs. 3¢, 3d, and 1f, the ¢ response and G’ at f obtained from sensor data
and physics exhibited similar magnitude to low-frequency G’ and G”’
values obtained using the commercially-available rheometer. In addi-
tion, G’ and G’ at f also exhibited a sigmoidal trend, with an inflection
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point (i.e., gel point) at 19.06 wt%, which also agreed with previously
reported values [42]. Similar to the ¢ response, G’ and G’ were
significantly different before and after gelation (p < 0.001 and p <
0.001, respectively; n = 24).

Fig. 3e shows the strong correlation between the normalized steady-
state ¢ response (= [¢ - ¢il/ [¢7— ¢:]) and the low-frequency viscoelastic
properties obtained using a rheometer. The normalized ¢ response also
exhibited a sigmoidal trend with an inflection point at 19.06 wt%. Fig. 3f
shows a comparison of the low-frequency G’ obtained using normalized
¢ response and results from the traditional rheometer studies with the G’
at f (i.e., obtained from sensor physics). As shown in Fig. 3f, G’ at f was
lower in magnitude than at low frequency yet exhibited a similar
dependence on concentration, with inflection points at 19.06 wt%,
respectively. The calibration-based method for rheological property
characterization offers the advantage of incorporating benchmarking
data from traditional characterization methods (e.g., rheometers), but
the disadvantage of requiring additional time associated with such
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Fig. 3. a) Workflow of composition-property relation data generated from sensor data and physics. b) Workflow of composition-property relation data generated
from sensor data using calibration-based approach. ¢) Rheological property heat maps of storage (G’) and loss (G'’) moduli generated from sensor data and physics.
d) Composition-property relations corresponding to the heat maps shown in panel (c). e) Normalized steady-state ¢ response, best-fit sigmoidal regression model,
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interaction model (i.e., sensor physics) and best-fit sigmoidal curve.
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studies if data were not pre-existing. The sensor- and physics-based
method for rheological property characterization has the advantage of
relatively increased characterization rate, as it avoids the need for
traditional characterization methods. Both approaches provide equiva-
lent resolution and throughput in the case of pre-existing calibration
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data.

In addition to formulating hydrogel libraries that exhibit a linear
change in composition across the plate, we also verified that the method
was capable of resolving nonlinear and discontinuous changes in sample
concentration as well as successive phase changes along the sensor path.
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Fig. 4. a) Schematic of the sensor path and concentration distribution of the PF127 hydrogel library in a 96-well plate format. Sensor resonant frequency (f) (b) and
phase angle (¢) (c) responses associated with the measurement and corresponding heat maps. d) Rheological property heat maps of storage (G") and loss (G’’) moduli

generated from sensor data and physics.
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For example, such libraries may be found in chemical sensing and bio-
sensing applications in which sample concentration may be unknown
and spatially uncorrelated across the plate. As shown in Fig. 4a, we
characterized a library that contained two PF127-water mixtures, one
below (18 wt%) and one above (21 wt%) the gel point at room
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temperature. The concentration exhibited a Virginia Tech “VT”-shaped
spatial distribution across the 96-well plate (Fig. 4a). The f and ¢ re-
sponses and corresponding heat maps of steady-state responses during
submersion are shown in Fig. 4b and c. As shown in Fig. 4d, the “VT”
distribution can be observed in the viscoelastic property heat maps. In

Ccollagen = 3 mg/ml —— —— PBS
—— NaOH
b
28 wen Well 96 -
:Irs__l 26 " Air Ceor = 0.031 mg/ml Ceor= 3 mg/ml 21.4 g
- My
T 24} . &
%) 3
=] | =
g 20 b I
L 4g Collagen . . . . 19.8 =
0 10 20 30 40
Time (min)

Cc

86 Well 1 Well 23: GP Well 96 A
C' €, = 0.031 mg/ml Ceor = 0.719 mg/ml C., = 3 mg/ml 3
° Py s " c B -87.1 3):{
TCJ’ @

-87 u >
<
a» T
: | :
£ g8t G ®
o Collagen j—87.5 ~

0 10 20 30 40 13 6 9 12
Time (min)
e
1.2 1

" "Sigmoidal Fit
R2=0.77

Normalized Phase Angle &
o
~

(o] B
0 06 12 18 24 30
Concentration (mg/ml)

I oG T mogoOw>

L
20
N5 @
5
1 3 6 9 12

(ed¥)

-
o

Concentration (mg/ml)

Fig. 5. a) Schematic of the sensor path and concentration distribution of a collagen hydrogel library in a 96-well plate format. Sensor resonant frequency (f) (b) and
phase angle (¢) (c) responses associated with the measurement and corresponding heat maps. d) Plot of normalized phase angle vs. collagen concentration with a
best-fit sigmoidal curve and rheological property heat maps of storage modulus (G") generated from sensor data and physics. €) Composition-property relations
corresponding to the heat maps shown in (d) and the corresponding best-fit sigmoidal curves.
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addition, all wells that contained a hydrogel were successfully charac-
terized based on the criteria that the calculated G’ > G”".

In addition to synthetic polymers (e.g., PF127 hydrogels), we next
characterized hydrogel libraries of natural polymers to further demon-
strate the utility and impact of the method. Collagen-based hydrogels
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have received considerable attention as scaffolds for tissue engineering
applications. It is well established that the stiffness of two- and three-
dimensional substrates and matrices for cell culture affect cellular
behavior and tissue outcomes. For example, the design of processable
hydrogels for neural tissue engineering applications remains an active
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Fig. 6. a) Schematic of the sensor path and concentration distribution of a composite alginate-PNIPAM hydrogel library in a 96-well plate format. Sensor resonant
frequency (f) (b) and phase angle (¢) (c) responses associated with the measurement and corresponding heat maps of steady-state responses. d) Rheological property
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(d) and the best-fit sigmoidal curve.

10



J. Zhang et al.

area of research [43,44]. Thus, identifying the minimum polymer con-
tent needed to cause gelation could inform the design of future ‘ultra--
soft’ tissue scaffolds. In addition, the optimization of the polymer
content required to manufacture engineered tissues is also an important
present economic and logistical consideration in tissue manufacturing,
given the high cost and supply chain challenges.

As shown in Fig. 5a, we next characterized a 96-sample collagen
hydrogel library that exhibited a linear concentration distribution with
respect to collagen across the range of 0.031 to 3 mg/ml with a step size
of 0.031 mg/ml. Similar to the PF127 hydrogel libraries discussed in
Figs. 2 and 3, the concentration range spanned the known gel point (near
1 mg/ml) [45-47]. The ¢ and f responses and corresponding heat maps
associated with the collagen library are shown in Fig. 5b and c. Similar
to the PF127 hydrogel library, the steady-state ¢ response exhibited a
sigmoidal trend. The gel point of the collagen hydrogel was obtained as
0.760 + 0.048 mg/ml (n = 3 repeated studies) (see Fig. 5), which agreed
well with previously reported estimates near, and also below, 1 mg/ml
[45-47]. Considering the normalized ¢ response exhibited a strong
correlation with the rheometer-measured property data from Fig. 3, the
normalized ¢ response with respect to concentration and the rheological
property heat map are shown in Fig. 5d. The composition-property re-
lations associated with the sample library are shown in Fig. Se.

In addition to characterizing hydrogel libraries that exhibit mechan-
ical percolation processes associated with phase change (i.e., gelation),
we next applied the method to identify the mechanical property perco-
lation associated with network interaction in stimuli-responsive com-
posite hydrogel libraries in which all samples were hydrogels. Composite
alginate-PNIPAM hydrogels have received considerable attention based
on their biocompatibility, mechanical strength, and thermal response
[48]. Interpenetrating ionic and covalent networks can also result in
tough alginate-PNIPAM hydrogels, which have been leveraged for soft
robotics [49] and drug delivery applications [50,51]. However, the study
of composition-process-structure-property relations remains an active
research area. Fig. 6a shows the concentration distribution of reactants
associated with the 96-sample alginate-PNIPAM hydrogel library and the
associated sample preparation (synthesis) steps. The NIPAM concentra-
tion varied linearly across the library from 0 to 6.67 wt% with a step size
of 0.069 wt%. Similar to the previous hydrogel libraries that exhibited a
percolation in storage modulus associated with a gelation process, the f
(Fig. 6b) and ¢ (Fig. 6¢) responses and associated heat maps of
steady-state sensor responses show a mechanical percolation process in
the alginate-PNIPAM hydrogel library associated with network interac-
tion. As shown in Fig. 6d and e, alginate-PNIPAM hydrogels undergo a
percolation process at 4.68 + 0.21 wt% NIPAM that drives sharp increase
in G’. Following the percolation threshold, G’ continues to increase, but at
a lower rate than the rate of loss modulus increase, suggesting that the
stimuli-responsive material becomes relatively more dissipative at
NIPAM concentrations greater than 4.45 wt%.

Having established a rapid HTC method for generating composition-
property relations for hydrogels from sensor data and sensor physics
based on automated sensing, we next utilized these inputs in combina-
tion with supervised machine learning to create an autonomous HTC
method capable of accurately interpreting the hydrogel composition-
property characterization data, such as the ability to classify the sam-
ple’s phase as solution or gel. The creation of autonomous HTC methods
is also an important approach for increasing the speed (i.e., throughput),
as data interpretation is often a significant bottleneck in materials
research. As previously discussed (see Fig. 1), HTC methods can not only
accelerate materials discovery by removing bottlenecks associated with
screening of molecular and materials candidates, but they also generate
data for facilitating and improving Al-guided modeling, synthesis, and
characterization thrusts. We remind the reader that chemistry and ma-
terials applications of machine learning are presently physics-rich but
data-poor, in part because of the absence of rapid HTC methods. While
there are various problems in materials science and discovery, such as
prediction of composition-property relations [52-54], here, we focus on
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the application of regression and supervised machine learning (classi-
fication) for deepening the understanding of hydrogel percolation
physics based on the generated high-resolution experimental
composition-property relations for large sample libraries as well as
improving the accuracy of data interpretation. The data in Figs. 2c, 3e,
and f (raw ¢ response, normalized ¢ response, low-frequency G’ calcu-
lated from normalized ¢ response and rheometer data, and phase label)
served as the inputs to the classification task. The novel HTC method
generated high-resolution (i.e., dense) composition-property relation
data for machine learning. For example, 1152 data samples were ob-
tained from all of the repeated scans for the PF127 hydrogel studies, of
which approximately 60% corresponded to the solution phase (class 0)
and 40% to the gel phase (class 1). For modeling the supervised classi-
fication task, Support vector machine (SVM), Random forest (RF), and
Extreme gradient boosting (XGB) classifiers were used based on their use
as benchmarks in supervised machine learning and materials science
applications [55-57].

As shown in Fig. 7a, raw ¢ response, normalized ¢ response, and low-
frequency G’ (obtained from normalized ¢ response and rheometer data)
were strongly correlated (all absolute correlation scores exceeded 0.99).
We found that default model parameters of SVM, RF, and XGB classifiers
enabled classification accuracy greater than 96% (96.1, 100 and 96.1%,
respectively). The associated computing times for model tuning and
classification were 6, 42, and 30 s, respectively. Model tuning improved
classification accuracy to greater than 96.5% (96.5, 100, and 99.57%,
respectively) (see Table 1). A comparison of classifier performance for
gelation and interaction network-driven percolation using raw ¢
response and characterization data from rheology studies is shown in
Table 1. The high test accuracy, Fl-score, precision, recall, and low
misclassification error indicated that all three models performed
comparably well for the classification of the hydrogel phase. Based on
these metrics, XGB and RF classifiers provided similar performance to
SVM. SVM provides optimal performance for relatively small datasets
and typically works relatively well when there is a clear margin of
separation between classes, such as a sharp phase transition point or
percolation threshold. Thus, it was expected that SVM would provide an
accurate classification of material phase based on sensor data. RF and
XGB classifiers are known for relatively reduced overfitting and inter-
pretability, given their basis on ensembles of decision trees.

The input features to the classification task were then further sub-
divided into sensor-based features, which included the raw ¢ response,
normalized ¢ response, and low-frequency G’ calculated from normal-
ized ¢ response and rheometer data, and physics-based features, which
included G’ at f generated from raw sensor data and sensor physics.
Fig. 7b shows the feature importance plots associated with the RF and
XGB classifiers considering only the sensor-based features (i.e., obtained
in the absence of sensor physics). Considering the PF127 hydrogel, the
low-frequency G’ calculated from the normalized ¢ response and
rheometer data was the most important sensor-based feature for the RF
and XGB classifiers. The normalized ¢ response was the second most
important sensor-based feature for both classifiers. This result suggests
that high classification accuracy of material phase can be achieved
solely with features obtained from sensor data.

Having evaluated the relative importance of the sensor-based fea-
tures obtained by the HTC method for different classifiers, we next
compared the importance of the sensor- vs. physics-based features for a
single classifier (see Table 2). As shown in Table 2, the RF classifier
yielded accurate classification of percolation processes in PF127,
collagen, and alginate-PNIPAM hydrogels using: 1) only a sensor-based
feature (normalized ¢ response); 2) only a physics-based feature (G’ at
f); and 3) both features. As shown in Fig. 7c - e, the physics-based feature
was more important than the sensor-based features for phase classifi-
cation in the collagen and alginate-PNIPAM hydrogels. However, the
ratio of feature importance was dependent on the type of material
characterized, suggesting that the value of incorporating physics in
machine learning may be material-dependent. Thus, considering the
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response and G’ at f in the RF classifier.

Table 1
Summary of model performance for classification of material phase using fea-
tures obtained from sensor data (i.e., sensor-based features).

Model  Test Misclassification Error F1- Precision  Recall
Accuracy (%) score

SVM 0.965 3.5 0.96 0.96 0.97

XGB 0.996 0 1 0.99 1

RF 1 0 1 1 1

total characterization time was 0.39 min/sample and the computational
time associated with supervised machine learning (i.e., phase classifi-
cation) averaged ~ 30 s, the time-to-results associated with the method
was ~24 s/sample.

In Table 3, we compare the established autonomous HTC method
with state-of-the-art and gold-standard methods for characterizing
hydrogel rheological properties, which include atomic force micro-
scopes, rheometers, and dynamic mechanical analyzers. The method
presented in this work, based on automated sensing and physics-guided
machine learning, offers an improvement in the characterization cycle

Table 2

rate by reducing the process operation and handling times (e.g., sample
preparation time). Finally, it is important to distinguish between auto-
mated methods capable of characterizing batches of samples vs. those
that require manual loading, positioning, and unloading of samples by a
trained user. Given sample mass and volume may be limited in many
applications, such as materials discovery and sensing applications, it is
also important to consider a method’s minimum allowable sample vol-
ume. Autonomous HTC methods that are compatible with well plates,
such as that presented in this work based on automated sensing and
physics-guided machine learning, can characterize batches with a high
quantity of samples, use low sample volume, and synergize with com-
mon HTE formats, which makes them attractive for HTE applications
involving hydrogels and potentially other soft materials.

4. Conclusions

Autonomous methods for HTE offer the potential to improve the pace
and reproducibility of scientific inquiry and quality control across
various fields and industries. Here, we reported a rapid, autonomous
method for HTC of hydrogels based on robotically-directed automated

Summary of random forest (RF) model performance for classification of material phase for various material systems using sensor- (normalized ¢ response) and physics-

based features (i.e., G’ at f obtained from sensor data and physics).

Hydrogel Feature(s) Test Accuracy F1-score Precision Recall Misclassification Error (%)
Pluronic F127 ¢/ Pmax 0.965 0.97 0.96 0.96 3.45

Collagen ¢/ Pmax 0.965 0.97 0.98 0.93 3.45

Alginate-PNIPAM &/ Prmax 0.845 0.84 0.83 0.80 15.5

Pluronic F127 G’ 1 1 1 1 0

Collagen G’ 1 1 1 1 0

Alginate-PNIPAM G’ 0.983 0.98 0.99 0.97 1.72

Pluronic F127 &/ Pmax & G’ 1 1 1 1 0

Collagen ¢/ Pmax & G’ 1 1 1 1 0

Alginate-PNIPAM G’ 0.983 0.98 0.99 0.97 1.72
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Comparison of the gold-standard and state-of-the-art methods for characterization of rheological properties. The characterization cycle time is defined as the sum of the
sample handling time (e.g., sample preparation time, time associated with sample-system integration and tool positioning), operation time (i.e., time for the mea-
surement to occur after the sample has been prepared and the tool positioned), and tooling time (e.g., time required to clean or replace measurement fixtures or

Sensors).
Rheometer Dynamic Mechanical Analyzers Atomic Force Microscopes Autonomous Sensor-based HTC
Cycle Time (hr/sample) 1 [58] 0.5 -24 [59] 0.5 [60] 0.0067
Cycle Rate (samples/hr) 2 ~0.041- 2 2 150
Well Plate Compatible No No No Yes
Handling Method Manual Manual Manual Automated
Data Interpretation Manual Manual Manual Autonomous

sensing and physics-guided supervised machine learning. The method
enables autonomous HTC of hydrogel rheological properties and high-
resolution screening of gelation and percolation processes in 96-well
plate formats at a rate of 24 s/sample (which is more than 70 times
faster than the state-of-the-art methods), requiring no manual data
analysis or interpretation. This work also shows that knowledge of
sensor physics can improve the performance of autonomous HTC
methods based on supervised machine learning via feature augmenta-
tion. Given the rheological properties of hydrogels are indicators of both
processability and performance, the ability to rapidly and autonomously
characterize the rheological properties of large batches of solutions and
hydrogels in well plate formats is potentially meaningful for various
applications, including accelerated materials discovery, sensing, tissue
engineering, mechanobiology, and biomanufacturing. It is of interest to
further consider how experimental data acquired from autonomous HTC
methods can be utilized to guide material design (e.g., automated
formulation processes) and how to further increase measurement speed
and optimize the amount and type of sensor data collected (e.g., addi-
tional complementary composition, structure, and property data).
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