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Abstract

Objective: Identification of informative signatures from electrophysiological signals is important
for understanding brain developmental patterns, where techniques such as magnetoencephalography
(MEG) are particularly useful. However, less attention has been given to fully utilizing the multidi-
mensional nature of MEG data for extracting components that describe these patterns. Methods:
Tensor factorizations of MEG yield components that encapsulate the data’s multidimensional nature,
providing parsimonious models identifying latent brain patterns for meaningful summarization of neu-
ral processes. To address the need for meaningful MEG signatures for studies of pediatric cohorts,
we propose a tensor-based approach for extracting developmental signatures of multi-subject MEG
data. We employ the canonical polyadic (CP) decomposition for estimating latent spatiotemporal
components of the data, and use these components for group level statistical inference. Results:
Using CP decomposition along with hierarchical clustering, we were able to extract typical early and
late latency event-related field (ERF) components that were discriminative of high and low perfor-
mance groups (p < 0.05) and significantly correlated with major cognitive domains such as attention,
episodic memory, executive function, and language comprehension. Conclusion: We demonstrate
that tensor-based group level statistical inference of MEG can produce signatures descriptive of the
multidimensional MEG data. Furthermore, these features can be used to study group differences
in brain patterns and cognitive function of healthy children. Significance: We provide an effective
tool that may be useful for assessing child developmental status and brain function directly from
electrophysiological measurements and facilitate the prospective assessment of cognitive processes.

Keywords: tensor decomposition, canonical polyadic decomposition, MEG, multi-subject analysis, cognitive
function, developmental neuroscience

1



Springer Nature 2021 LATEX template

2 Tensor Decomposition of MEG Data

1. Introduction

The characterization and identification of typ-
ical brain developmental patterns can provide
important insights into brain organization and
function. Brain function can be described by
cognitive processes, which may include, but are
not limited to, sensory, grammatical, semantic
processing, memory retrieval, or motor events
(Hernández, Puupponen, & Jantunen, 2022). One
method of studying the timing properties of
cognitive processes is focusing on their under-
lying brain mechanisms. This can be achieved
using functional neuroimaging techniques such as
magnetoencephalography (MEG) and electroen-
cephalography (EEG) (Hernández et al., 2022)
by extracting neural sources (latent components)
describing these processes. MEG is a powerful neu-
roimaging technique that measures the magnetic
fields generated by neuronal activity, which arises
collectively within the brain from population neu-
ronal responses to target stimuli (Hämäläinen,
Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993).
The direct measurement of neuronal currents by
MEG, its high spatial resolution, and its excellent
temporal resolution makes it an especially useful
noninvasive technique for studying brain function.
Thus, MEG is the preferred method for studying
the rapid spatiotemporal dynamics of brain activ-
ity (He & Liu, 2008). To this end, event-related
fields (ERFs) and event-related potentials (ERPs)
have been identified as important research tools
for understanding brain developmental patterns
of pediatric cohorts. ERFs and ERPs represent
a time-locked MEG/EEG activity that measures
brain responses elicited by stimuli.

Multi-subject MEG studies that focus on large
pediatric cohorts have high potential to provide
important insights into brain organization and
brain development in children and adolescents.
One approach to this is by using multi-subject
latent component analysis, through which latent
components within multiple MEG datasets are
learned jointly by exploiting dependence across
the datasets (Akhonda, Levin-Schwartz, Bhinge,
Calhoun, & Adali, 2018; Gabrielson et al., 2020).
However, as we discuss next, many existing multi-
subject latent component analysis techniques in
neuroimaging are based on matrix factorization
methods. Matrix representations cannot account
for the multiple dimensions of the data, such

as participant, stimulus condition, variations in
time and space, and the relationships across these
dimensions.

Over the past decades, substantial efforts
have been made in finding ways to model and
extract common hemodynamic or electrophysio-
logical components from multi-subject task and
resting state neuroimaging (NI) data such as
fMRI and MEG/EEG. The common components
detected during the task may be indicative of a
typical or atypical patient state and can be further
used to discover the prognostic imaging biomark-
ers. Data fusion and joint analysis methods based
on matrix decompositions such as joint indepen-
dent component analysis (jICA)(Calhoun, Adali,
Pearlson, & Kiehl, 2006), group ICA (GICA) (Cal-
houn & Adali, 2012; Calhoun, Adali, Pearlson,
& Pekar, 2001; Labounek et al., 2018; Salman et
al., 2019), dictionary learning (Akhavan, Baghes-
tani, Kazemi, Karami, & Soltanian-Zadeh, 2022;
Jin, Dontaraju, Kim, Akhonda, & Adali, 2020),
independent vector analysis and its transposed
variant (tIVA) (Adali, Levin-Schwartz, & Cal-
houn, 2015) have been used for analysis and fusion
of NI data. A reason for the popularity of these
methods is the convenience of presenting the time-
varying NI data as a matrix of time×space. It was
shown in many studies that these matrix-based
approaches are powerful for extracting meaning-
ful components (Calhoun & Adali, 2012). The
group-level ICA methods exploit high-order statis-
tics (Hyvärinen & Oja, 2000) of the data and
enable assessment of complex spatiotemporal rela-
tionships (Calhoun & Adali, 2012). However, a
primary problem of two-way techniques is that
components are defined only by two signatures,
which are not determined uniquely without fur-
ther constraints on the model. The uniqueness is
achieved by imposing constraints such as inde-
pendence or sparsity (Acar, Rasmussen, Savorani,
Næs, & Bro, 2013; Adali, Anderson, & Fu, 2014;
Akhavan et al., 2022; Jin et al., 2020; Lahat, Adali,
& Jutten, 2015). To use matrix-based methods for
the higher dimensional data, the unfolding and
the dimension reduction into a matrix is required,
which is done by concatenation or stacking of
the data (Calhoun, Liu, & Adalı, 2009; Delorme
& Makeig, 2004). Such unfolding inevitably dis-
cards the inherent multilinear structure of brain
imaging data, and therefore, may ignore complex
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important interactions between/among the folded
modes (Cong et al., 2015).

Given that most NI data can be conveniently
expressed as a high order array, tensor decom-
position techniques are preferred to represent the
original data as a mixture of the latent compo-
nents with corresponding signatures from each
dimension. In addition, certain tensor decomposi-
tions provide uniqueness under mild constraints.
The uniqueness property is critical for an unam-
biguous interpretation of the components, finding
matches with neural processes and/or component
signatures. Moreover, tensors provide a natural
representation of the inherently multidimensional
NI data and preserve the structural informa-
tion among the tensor modes, thus effectively
exploiting the multilinear correlation structure
and enabling robust group-level statistical analy-
ses for multiple datasets.

Among the tensor decomposition techniques,
the canonical polyadic (CP) decomposition and
the Tucker decomposition (Carroll & Chang, 1970;
Kolda & Bader, 2009) are particularly useful in
fMRI, MEG/EEG processing of real (Cong et
al., 2015) and complex-valued data (Kuang et
al., 2019). The main advantage of the CP model
(Carroll & Chang, 1970) is that it is essentially
unique up to scaling and permutations (Sidiropou-
los & Bro, 2000). However, it is worth noting
that the CP model cannot effectively take into
account higher-order statistical information like
ICA-based methods (Kroonenberg & De Leeuw,
1980). The disadvantage of the Tucker decomposi-
tion compared with the CP model is limited model
interpretability without imposing the orthogonal-
ity constraint, which is unrealistic for the brain
components. Thus, in this paper we chose the CP
tensor format as our primary model of interest.

Tensor-based analysis of MEG/EEG has
received increased attention during the last decade
(Chatzichristos et al., 2022; Cong et al., 2012;
Liu et al., 2021; D. Wang, Zhu, Ristaniemi, &
Cong, 2018; X. Wang, Liu, Toiviainen, Ristaniemi,
& Cong, 2020; Zhu et al., 2020). The CP model
has been extensively used for high-order decom-
positions of multi-subject EEG data (organized
as a channel × time × subject third-order ten-
sor) or wavelet EEG (organized as a channel
× time × frequency × subject) (Cong et al.,
2012; Vanderperren et al., 2013; D. Wang et al.,

2018; X. Wang et al., 2020). The specialized mul-
tiway algorithms have been proposed for ERP
analysis of EEG to deal with noisy and nonsta-
tionary signals using the Bayesian CP model (Wu
et al., 2014) and fifth-order ERP feature extrac-
tion (D. Wang et al., 2018). In (Kinney-Lang,
Ebied, Auyeung, Chin, & Escudero, 2019; Kinney-
Lang, Spyrou, Ebied, Chin, & Escudero, 2018),
authors employed the CP decomposition for devel-
opmental feature extraction from EEG pediatric
datasets. In (Liu et al., 2021; Zhu et al., 2020), the
CP model was used to study the functional con-
nectivity patterns of MEG data (organized as time
× frequency × connectivity third-order tensor).

Despite a substantial number of studies dedi-
cated to high-order ERP analysis, the multidimen-
sional nature of MEG has not been fully exploited
for the data-driven extraction of sensor-level ERF
components. MEG ERF components can better
inform about the rapid spatiotemporal dynam-
ics of brain information processing compared with
EEG due to higher spatial resolution of MEG.
Provided that ERFs are collected using the same
stimuli, the assumption is that activity elicited
by the same stimuli is highly correlated among
subjects, which can be seen as a prerequisite
for applying the CP decomposition. Thus, multi-
subject MEG studies generate ERFs that can be
naturally represented using CP tensor format.

Several works (Ablin, Cardoso, & Gram-
fort, 2021; Boonyakitanont et al., 2022; Ikeda &
Toyama, 2000; Jung et al., 2001; Stephen et al.,
2013) focus on the characterization and identifi-
cation of sensor-level MEG ERFs using matrix-
based approaches such as ICA/jICA algorithms.
The algorithms that have been used in (Ablin et
al., 2021; Boonyakitanont et al., 2022; Ikeda &
Toyama, 2000; Jung et al., 2001; Pinner, Coffman,
& Stephen, 2020; Stephen et al., 2013) inherently
transform three-dimensional (3D) multi-subject
MEG data into two-dimensional (2D) matrix rep-
resentation. For multi-subject MEG data, such
a 2D transformation loses the multidimensional
low-rank structure that may provide an intrinsic
description of the spatiotemporal interactions. On
the hand, the low-rank structure of MEG data can
be fully captured by the CP tensor format as we
propose. Hence, we model the multi-subject MEG
data as a 3D tensor with dimensions of subject ×
time × channel. This high-order representation of
the multi-subject MEG dataset maximizes the
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simultaneous use of spatiotemporal modes and
multilinear interactions across modes within the
data.

Our goal is the identification of typical brain
developmental patterns that could be used as
descriptive imaging signatures in a healthy pop-
ulation of children and adolescents. Using CP
decomposition, we propose a group-level ten-
sor analysis method to characterize and iden-
tify sensor-level ERF components in task-related
multi-subject MEG data. The proposed model
enables the analysis of a multi-subject MEG
dataset as a third-order tensor and, thus, exploits
the multidimensional nature of the group-level
data. We use hierarchical clustering on princi-
pal components (HCPC) (Argüelles, Benavides, &
Fernández, 2014; Husson, Josse, & Pagès, 2010)
approach to find subject groups using a supple-
mentary cognitive measures dataset.

We summarize our contributions as follows:
The paper presents a CP analysis framework
to robustly identify common brain developmen-
tal patterns for multi-subject sensor-level MEG
data. The proposed formulation of the CP model
shown in Fig. 3 was capable of extracting typ-
ical early (M150), and late latency (M300a and
M400) ERF components representative of visual
spatial attention, associative memory and seman-
tic processing, similar to the results reported in
existing ERF/ERP studies. We develop a group-
level inference approach that allows robust sta-
tistical inferences directly using CP component
matrices. We demonstrate the statistical signif-
icance of tensor group-level analyses by identi-
fying the discriminative ERF components that
can differentiate between high performance and
low performance groups. We show that the dis-
criminative ERF components were significantly
correlated with major cognitive domains such as
attention, episodic memory, executive function,
and language comprehension.

A preliminary work using the same MEG data
with similar clustering of subjects used ICA model
and is presented as a conference contribution
(Boonyakitanont et al., 2022). The current paper
presents a novel formulation for group-level anal-
ysis using the CP model, a detailed description
of the clustering approach (see Section 5.2), and
novel experimental results.

This paper is organized as follows. The descrip-
tion and notations for CP decomposition are

introduced in Section 2.1. We describe multidi-
mensional generative data model and CP tensor
decomposition for multi-subject MEG data in
Section 3. The experimental setup is described
in Section 4.2. In Section 5, the typical ERF
components extracted from the CP model and
the group-level tensor-based statistical inference
results are presented. The experimental results are
discussed in Section 6. The conclusions and future
work are presented in Section 8.

2. Materials and Methods

2.1. Notations and Definitions

In this paper, the mathematical notations and
definitions are adopted from (Kolda & Bader,
2009) and (Cichocki et al., 2016). We denote
scalar with the lower case letter x, vectors with
boldface lowercase letters (x,y, z, · · · ), matrices
with boldface capital letters (X,Y,Z, · · · ), and
tensors with bold calligraphic uppercase letters
(X ,Y ,Z, · · · ). The number of dimensions is called
the order, and each dimension is referred to as
a mode. ∥ · ∥F denotes the Frobenius norm, A ⊗
B denotes the Kronecker, A ⊙ B denotes the
Khatri-Rao product and ⟨a,b⟩ = aTb denotes
the inner product of two vectors. A rank-1 ten-
sor is expressed as the outer product of vectors,
i.e., X = a ◦ b ◦ c, where ◦ represents the vec-
tor outer product. The mode-n matricitization
of a given tensor along dimension n is denoted
by X(n) ∈ RIn×I1I2···In−1In+1···IN (Kolda & Bader,
2009). The n−mode product of a tensor X ∈
RI1×···×In×IN and a matrix A ∈ RJnIn along the
nth mode, denoted as X ×n A, is a tensor of size
I1 × · · · × Jn × · · · × IN .

2.2. Participants

The participants included 170 healthy children
(89 male, 81 female) and adolescents between the
ages of 9 and 15 (M = 11.92 years, SD =
1.18) with no reported clinical diagnoses from the
Mind Research Network (MRN) in Albuquerque,
New Mexico (90) and the University of Nebraska
Medical Center (UNMC) in Omaha, Nebraska
(80) as part of the Developmental Chronnecto-
Genomics (Dev-CoG) study (Stephen et al., 2021).
The participants and parents signed consent forms
approved by each institutional review board (IRB)
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prior to joining the study. All procedures were
approved by the MRN and UNMC IRBs prior to
the start of the experiment.

2.3. Neuropsychological Testing

All the participants completed the Wechsler
abbreviated scale of intelligence (Second Edi-
tion; WASI-II; (Wechsler, 2011)) to assess full-
scale IQ (FSIQ) and NIH-Toolbox Cognitive
Battery(Weintraub et al., 2013) (NIHTB-CB)
tests assessing age-adjusted neuropsychological
(T) scores in six cognitive domains: attention,
episodic memory, executive function, language,
processing speed, and working memory. The data
collection also included the Conners 3 Inatten-
tion/Hyperactivity scores (Conners, 2008) for
assessing attention-deficit hyperactivity disorder
(ADHD), and children with diagnosed ADHD
were excluded from the study. There were no sig-
nificant differences (p > 0.05) in terms of age
or gender with respect to the neuropsychologi-
cal measures in participants from the MRN and
UNMC.

2.4. MEG Experimental Paradigm

Participants completed a multisensory task while
MEG data were recorded (see Fig. 1). The visual
stimulus was a full-screen, black and white vertical
grating (0.25 cycles/degree). The auditory stimu-
lus was a 40 Hz modulated 1000 Hz tone. For mul-
tisensory stimulus, the auditory and visual stimuli
were presented simultaneously. The baseline fix-
ation was a red box in the center of the screen.
Subjects were instructed to press their index finger
when they saw anything, heard anything, or both.
Each MEG trial began with a fixation for an inter-
trial interval (ITI) that pseudo-randomly changed
between 2400 and 2600 milliseconds (ms) in 10
ms increments. Following fixation, a sensory stim-
uli (auditory (AUD), visual (VIS), or audio-visual
(AV)) was presented for 800 ms (Stephen et al.,
2021). The total task duration was approximately
18 min.

2.5. MEG Data Acquisition and
Image Preprocessing

The MEG data acquisition and preprocessing
details were previously published in (Stephen et
al., 2021). MEG recordings were acquired with

Fig. 1 Multisensory task paradigm. The presentation
started with a baseline fixation screen, followed by the
appearance of auditory (AUD), visual (VIS) or multisen-
sory stimulus (AV).

the Elekta/MEGIN MEG system with 306 mag-
netic sensors (204 gradiometers and 102 magne-
tometers) in a magnetically shielded room. The
MEG data were continuously sampled at 1000
kHz with a passband between 0.1 and 330 Hz.
We used preprocessing technique such as signal-
space separation (SSS) (Taulu & Kajola, 2005) for
MEG data denoising and to ensure comparabil-
ity between magnetometer and gradiometer source
reconstructions (Garcés, López-Sanz, Maestú, &
Pereda, 2017). The MEG sensor-level artifacts
were removed during prepossessing at both the
MRN and UNMC sites. MEG epochs between -100
to 1000 ms (1100 time points) around the stim-
ulus onset were averaged across 300 trials within
respective stimuli and formed sensor-level ERFs
time-locked to the stimulus condition (AUD, VIS,
or AV).

Prior to MEG recording 3D digitization was
performed to collect positioning data for four
head-position indicator (HPI) coils, and the
scalp surface. The HPI coils data were collected
throughout the recordings, which allowed offline
head movement correction (Stephen et al., 2021).
The Maxfilter program was used to adjust the
location of the head to a common head location
within the dewar. The movement compensation
extension of the Maxfilter program allows one to
correct for head movement throughout the scan
(effectively correcting small changes in head posi-
tion through re-mapping the MEG data to a
constant head) (Taulu & Simola, 2006). Another
use of this capability is to map each subject’s
MEG data to a common head position within
the dewar. Prior work has shown that too much
adjustment of the head position can lead to noise
amplification. Therefore, we chose a head position
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Fig. 2 Top down view of MEG magnetometers. MEG
regional division based on the sensor’s spatial adjacency
matrix. Inserts show global field power of MEG. The
approximate sensor groups were used to describe the ERF
components spatial patterns on the scalp topographic map.
R - right, L - left. Adopted from (Stephen et al., 2013).

that was the closest to the average participant
head location within the dewar and mapped all
data to this common head position. Once the data
were mapped to a common head position, the
results were compared across participants as is
often done with EEG sensor data.

We did not perform source reconstruction and
worked in sensor space when we applied tensor
decomposition. Using the sensor’s spatial adja-
cency matrix, we associated each sensor with a
sensor spatial region (Occipital, Frontal, Parietal,
Temporal, and left/right hemisphere). These sen-
sor regions shown in Fig. 2 do not correspond to
the brain regions or anatomical labels. Through-
out the paper, the approximate sensor groups were
used to describe ERF component spatial patterns
on the scalp topographic map (topomap).

3. Tensor Analysis of MEG
Data for Brain Pattern
Extraction

3.1. Multidimensional Model for
Multi-Subject MEG Data

The MEG experimental paradigm shown in Fig.
1 results in simultaneously recorded neural mea-
surements elicited in C common sensors at T
timepoints across K subjects. As a result, the
observed MEG recordings are modeled as a mix-
ture of the underlying neural sources of interest

synchronized in time across subjects within a spe-
cific task. To identify the common brain develop-
mental patterns elicited by sensory stimuli across
subjects, we applied the CP tensor decomposition
to extract the latent brain activity patterns. The
proposed approach has two important advantages.
The CP representation of MEG data allows us to
take into account the higher-order structure of the
multi-subject data to extract common patterns
across subgroups. By virtue of the CP decompo-
sition, the MEG factorization provides a unique
solution under mild constraints (Kruskal, 1977;
Sidiropoulos & Bro, 2000). The importance of the
uniqueness condition cannot be overstated since
it allows finding meaningful components unam-
biguously and matching them to the true brain
processes.

To preserve the intrinsic multidimensional
nature of multichannel MEG data, the data are
tensorized as third-order tensor X ∈ RK×T×C by
stacking subject ERF matrices Sk ∈ RC×T in sub-
ject mode. Fig. 3a shows the generative model for
multidimensional representation of multi-subject
MEG data.

3.2. Multi-Subject MEG Tensor
Decomposition

By adopting the tensorization strategy shown in
Fig. 3a, we present the CP model of the multi-
subject MEG data as a third-order tensor X ∈
RK×T×C (Rsubject×time×channel). The CP decom-
position approximates tensor X ∈ RK×T×C as a
sum of rank-1 tensors:

X ≈
R∑

r=1

λr ◦ ar ◦ br ◦ cr = Λ×1 A×2 B×3 C

(1)

where ar ∈ RK ,br ∈ RT , cr ∈ RC are the fac-
tor vectors normalized to the 2-unit norm; λr

represents the scale factor for each component,
and the norms absorbed into diagonal matrix Λ;
A ∈ RK×R,B ∈ RT×R,C ∈ RC×R are the factor
matrices and R is the rank or number of com-
ponents. Each rank-1 tensor obtained from the
λr ◦ar ◦br ◦ cr decomposition, can be interpreted
as a distinct spatiotemporal brain pattern, where
ar, br and cr are the subject weights of the time-
varying spatial patterns, timecourses, and spatial
maps, respectively, as illustrated in Fig. 3b. The
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Fig. 3 Brain developmental patterns discovery via tensor decomposition. (a)-(b)Illustration of tensor analysis for multi-
subject MEG data. (a) Tensor formation by arranging the subjects along the first dimension. (b) MEG tensor decomposition
into R rank-1 components. Each rank-1 component represents a distinct spatiotemporal brain activity pattern with sub-
ject weight (ar) and temporal (br) and spatial signatures (cr). (c) Tensor group-level analysis, which includes subgroup
identification and group-level statistical inference. (d) Left: Component association patterns with cognitive domains. Right:
Sensor spatial locations associated with the components.

CP model optimizes a least-squares fit of the
following cost function (Kolda & Bader, 2009):

f(Λ,A,B,C) =

min
Λ,A,B,C

1

2
∥X −Λ×1 A×2 B×3 C∥2F ,

s.t ∥ar∥2 = ∥br∥2 = ∥cr∥2 = 1, ∀r = 1, · · · , R.
(2)

We apply alternating least squares (ALS) to esti-
mate the factor matrices (Cichocki et al., 2016;
Kolda & Bader, 2009). The minimization problem
is solved by fixing two matrices and optimizing
over the third-one. Each least squares subproblem
is convex and has a closed-form solution (Kolda &
Bader, 2009).

3.3. Component Number Estimation

As in many dimensionality reduction methods, a
critical step is the selection of the optimal num-
ber of components. We use three methods to
make this choice for the CP decomposition: the
core consistency diagnostic (CORCONDIA/CCD)
(Bro & Kiers, 2003), the average congruence prod-
uct (ACP) (Tomasi & Bro, 2005) and the Bayesian
information criterion (BIC) (Schwarz, 1978) as a
function of tensor rank R. The CCD measures
the similarity between the estimated core and the
superdiagonal ideal core, in the absence of noise

(Bro & Kiers, 2003). According to (1), the CP core
can be estimated as

G = X ×1 ×2A
† ×3 B

† ×3 C
†. (3)

The CCD in (%) is defined as in (Bro & Kiers,
2003)

CCD(%) = 100×
(
1− ∥GR − IR∥2F

R

)
, (4)

where G × RR×R···×R and I × RR×R···×R are
the estimated and ideal CP cores, respectively.
We choose the model with the highest number of
components such that

R̂CCD = argmax
r

(CCD) s.t CCD(r) ≥ η, (5)

where 0 < η < 100% is the threshold coefficient,
with r = 1, · · ·R. Typically, 80% < η < 90% is
used.

Furthermore, to assess the number of compo-
nents, we computed the ACP measure of all fitted
models for a given tensor rank R. The ACP met-
ric measures the correlation between components
extracted from different models for a given tensor
rank R:

ACP = max
P

tr
(
(A(1)

r

T
A(2)

r )
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(B(1)
r

T
B(2)

r )(C(1)
r

T
C(2)

r )P
)
, (6)

where A
(k)
r ,B

(k)
r ,C

(k)
r represents the rth compo-

nent of the ith solution i = 1, · · · I, r = 1, · · ·R,
P is the permutation matrix that accounts for the
ambiguity (Harshman et al., 1970) of ordering the
solutions, and tr(·) is the trace of the matrix. We
select the model that produces the highest ACP
value such that

R̂ACP = arg max
r

(ACP), r = 1, · · ·R. (7)

We used the BIC metric further to assess the num-
ber of components as an information-theoretical
criterion. The BIC measure is based on the nega-
tive log-likelihood and the maximum a posteriori
(MAP) approximation (Stoica & Selen, 2004). The
BIC metric is defined in terms of the sum squared
error (SSE = ∥X − X̂∥2F ) (Mørup & Hansen,
2009), whereX stands for the original data tensor,
and X̂ denotes the fitted model

BIC = S log
SSE

S
+ F logS, (8)

F is the degree of freedom, and S =
∏N

n=1 In is
the number of tensor data elements. We chose the
model that produces the lowest BIC value such
that

R̂BIC = arg min
r

(BIC), r = 1, · · ·R. (9)

3.4. Clustering Analysis for Subject
Subgroup Identification

In this section, we present the clustering analysis
methodology for identifying subgroups. A prelim-
inary version of the clustering approach presented
here using cognitive measures collected during the
Dev-Cog study presented as a conference contri-
bution (Boonyakitanont et al., 2022). The detailed
clustering protocol is described in the Supple-
mentary Methods Section 3.1. We partitioned the
subject cohort (N = 170) into distinct subgroups
using a neuropsychological dataset. We performed
HCPC clustering using nine cognitive variables
from six cognitive domains, including the Connors
3 inattention/hyperactivity scores: WASI-II FSIQ,
ORRENG, PICVOCAB, PSM, LSWM, DCSS,
FICA, INATTENTION and HYPERACTIVITY.

The HCPC method (Argüelles et al., 2014; Husson
et al., 2010) combines three standard techniques
(principal component analysis (PCA), hierarchical
clustering, and the K-means algorithm) to obtain
a higher quality clustering solution. A schematic
view of the subgroup identification using the
HCPC algorithm is presented in Fig. 4.

First, the PCA algorithm is applied to the neu-
ropsychological dataset, represented as a subject
score matrix P ∈ RK×L, K = 170, L = 9, to
reduce the dataset into fewer dimensions called
principal components (PCs), which are uncorre-
lated with each other. We compute a distance
matrix D ∈ RK×K of these PCs, which uses
the dissimilarity measure such as distance cor-
relation (Székely, Rizzo, & Bakirov, 2007). The
distance correlation measure allows the detection
of nonlinear correlations (Székely et al., 2007) that
might not be identified by the Pearson correlation
(Székely et al., 2007), which may result in subop-
timal performance of the downstream tasks. Next,
we apply hierarchical clustering using Ward’s D2
(Murtagh & Legendre, 2014) method on the dis-
tance matrix D to select the clusters based on
the height of the hierarchical tree. The signif-
icant clusters are selected on the basis of the
approximately unbiased (AU) probability (Efron,
Halloran, & Holmes, 1996) p-values with p < 0.05.
The quality of clustering is assessed according to
the compactness metrics (Halkidi, Batistakis, &
Vazirgiannis, 2002a, 2002b) (see Supplementary
Methods Section 3.1 and Supplementary Fig. S.3).
The cluster stability is evaluated as a function of
the number of clusters using the Jaccard similar-
ity index (J) (Jaccard, 1912) via a nonparametric
bootstrap technique with a number of repetitions
n = 1000 (Supplementary Methods Section 3.1).
The final clustering solution is obtained by apply-
ing the K-means algorithm to the hierarchical
clustering output.

4. Numerical Experiments

4.1. Data Preprocessing

The MEG multi-subject dataset consists of 170
subjects taken from the Dev-CoG study (Stephen
et al., 2021). Before the tensor analysis, we nor-
malized the data by centering the third-order
MEG tensor across the time mode, and scaling
within the subject mode by its standard deviation
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Fig. 4 Hierarchical clustering on principal components of neuropsychological (T) scores for subject group identification
using Ward’s D2 criterion (Murtagh & Legendre, 2014). PCA is used on the subject cognitive matrix P ∈ RK×L to remove
highly correlated continuous variables. Next, we apply hierarchical clustering using Ward’s D2 method on the distance
matrix D to select the clusters based on the height of the hierarchical tree. The distance matrix D ∈ RK×K is computed
using the dissimilarity measure such as the distance correlation (Székely et al., 2007) of the PCs. The initial number of
clusters NCk

is assessed according to the compactness metrics (Halkidi et al., 2002a, 2002b), and the cluster stability is
evaluated using the Jaccard similarity index (Jaccard, 1912) via a nonparametric bootstrap technique with a number of
repetitions n = 1000 (see detailed protocol in Supplementary Methods Section 3.1). We select significant clusters based on
the approximately unbiased probability p-values (Efron et al., 1996), as shown in Fig. 8a. We provide the final clustering
solution by applying the K-means algorithm to the hierarchical clustering output.

(Bro & Smilde, 2003). We used 204 planar gra-
diometers and 102 magnetometers out of available
306 sensors after SSS preprocessing (see Section
2.5). Thus, the data preprocessing resulted in 170
C × T ERF subject datasets with C = 306,
and T = 1100. Furthermore, tensor analyses
were performed separately for three stimulus con-
ditions (AUD, VIS, and AV). We selected nine
age-adjusted cognitive (T) scores from available
neuropsychological measures (see Section 2.3) in
the data analyses: the WASI-II FSIQ, Picture
Sequence Memory (PSM) (T) score (Weintraub
et al., 2013), Picture Vocabulary (PICVOCAB)
(T) score (Weintraub et al., 2013), Oral Read-
ing Recognition (ORRENG) (T) score (Wein-
traub et al., 2013), List Sorting Working Mem-
ory (LSWM) (T) score (Weintraub et al., 2013),
Flanker Inhibitory Control and Attention (FICA)
(T) score (Weintraub et al., 2013), Dimensional
Card Sorting (DCCS) (T) score (Weintraub et al.,
2013), and the Conners 3 Inattention/Hyperactiv-
ity scores. The neuropsychological (T) scores were
aggregated to construct a cognitive score matrix
P ∈ RK×L, where K is the number of subjects
and L is the number of cognitive tests. Prior to
clustering, the matrix was standardized by the
z-score to account for scale differences. In addi-
tion to the neuropsychological (T) scores, we used
parental socioeconomic status (SES), age and gen-
der as model covariates (see the detailed protocol
in Section 4.5.1).

4.2. Experimental Design

The goal of this study was to estimate com-
mon imaging patterns representing typical brain
development in healthy children and adolescents.

Three MEG data tensors were constructed (XVIS,
XAUD, and XAV) for each stimulus condition
according to the generative model shown in Fig.
3a. The tensor rank R was estimated for each orig-
inal data tensor as described in Section 3.3. Three
separate CP decompositions were conducted for
each stimulus condition with the chosen tensor
rank. The fitted CP models resulted in three esti-
mated tensors, consisting of R-component factor
matrices A ∈ RK×R, B ∈ RT×R, C ∈ RC×R that
described the latent ERF spatiotemporal brain
patterns.

To associate brain function with the cognitive
performance observed in the neuropsychological
tests, we partitioned the subject dataset into two
distinct subgroups, high performance (HP) and
low performance (LP), using the HCPC method
(Argüelles et al., 2014; Husson et al., 2010). Thus,
we could perform group-level statistical analyses
using the extracted ERF components to iden-
tify group-level discriminative brain developmen-
tal signatures. We identify associations between
extracted latent ERF components and cognitive
processes by correlating these latent components
with children’s scores in the cognitive domains.
We hypothesize that statistically significant latent
ERF components can differentiate between chil-
dren’s brain patterns in those with low vs. high
performance and could indicate brain develop-
mental trajectory or cognitive development status.
Fig. 3 illustrates the application of tensor decom-
position to identify brain developmental patterns
using MEG data.
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4.3. Execution Details

The CP model (2) was fit using CP-ALS (Kolda
& Bader, 2009) from the TensorLy toolbox (Kos-
saifi, Panagakis, Anandkumar, & Pantic, 2019),
MNE-Python (Gramfort et al., 2013) was used
to generate topographic maps, and R software
(Team et al., 2013) version 3.6.0 (R Foundation for
Statistical Computing, Vienna, Austria) was used
for statistical analyses. All experiments were per-
formed on a Linux workstation with 4 Quad-Core
Intel Xeon 3.1 processors and 16 GB memory.

4.4. Model Selection and Evaluation

The model performance was assessed with qual-
itative and quantitative metrics. The qualitative
assessment used interpretations of the extracted
components and comparisons with existing litera-
ture findings on adolescent cohorts. We computed
the reconstruction error of the CP model as
RMSE = ∥X − X̂∥/

∏N
n=1 In, and the model fit

FIT =
(
1−∥X−X̂∥2F /∥X̂∥2F

)
. The CP-ALS stop-

ping criteria included reaching 1000 iterations or
achieving a convergence tolerance of ϵ ≤ 10−8.
We investigated the model order and stability by
running the CP-ALS algorithm 100 times for each
stimulus condition and R values of one to ten,
with each run randomly initialized. This proce-
dure allowed us to determine whether some runs
converged to local minima with high reconstruc-
tion error. The error plot in Fig. 5c reveals that
all runs at fixed R yielded the same RMSE with
a standard error of the mean (SEM) < 0.0001.
These results suggest that all CP-ALS local min-
ima are similar and presumably also similar to the
global minimum.

We assessed the number of components for
the CP model (2) by generating average CCD (4)
plots, average ACP (6) plots and average BIC
(8) plots as a function of tensor rank R for R =
1, · · · , 10. Figs. 5a–b and Fig. 5d show boxplots
of the mean CCD (4), mean APC (6) and mean
BIC (8) metrics for each stimulus, demonstrating
the sensitivity of the solution to the selection of
R and initialization parameters of the CP-ALS
algorithm.

According to (Bro & Kiers, 2003), the tensor
rank of the CP model should be chosen such that
the CCD value is greater than 90%. Fig. 5a reveals
that R = 2 should be chosen for the AUD (M =

Fig. 5 Estimation of the number of components for the
CP model, showing the mean values (N = 100) of the CCD,
ACP, BIC and RMSE metrics as a function of tensor rank
R for 100 random initializations for each stimulus condi-
tion (VIS, AUD, and AV). (a)–(b) Boxplots summarize the
distribution of the mean CCD and mean ACP as a func-
tion of tensor rank. Median values are represented by black
lines inside the boxplot, with the top of the whisker lines
indicating the 25th and 75th percentile values. Mean values
are plotted in white circles, and red circles represent out-
liers. Error bars represent the standard error of the mean.
The plot of mean values of RSME suggests that all runs at
fixed R yielded the same RMSE with a standard error of
the mean < 0.0001. These results suggest that all CP-ALS
local minima are similar and presumably also similar to the
global minimum.
(a) CCD boxplot. (b) APC boxplot. (c) Mean and stan-
dard error of the RMSE and APC as a function of tensor
rank R. (d) Mean BIC as function of tensor rank R.

97.9, SD = 2.28) and VIS (M = 96.2, SD = 2.25)
conditions, while R = 3 should be chosen for the
AV (M = 93.1, SD = 1.37) condition.

The ACP values for different R was another
method for assessing the number of components.
Fig. 5b shows that adding more components
resulted in lower mean and higher SEM values
for the ACP metric. Similar to the CCD boxplot,
the ACP boxplot confirms that R = 2 is the cor-
rect number of components for the AUD (M =
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0.988, SD = 0.05) and VIS (M = 0.998, SD =
0.02) conditions, while R = 3 is the best for the
AV (M = 0.988, SD = 0.05) condition.

The BIC (8) method was used as model-driven
measure to complement the CCD and ACP met-
rics for assessing the number of components for
different R. Fig. 5d shows that for the AUD (M =
4.53 × 105, SD = 1015) and VIS (M = 6.63 ×
105, SD = 930) conditions R = 2 and for the AV
(M = 3.01×105, SD = 845) R = 3 should be cho-
sen based on the minimum BIC value. As shown in
Fig. 5d, the BIC criterion demonstrates the agree-
ment in terms of the number of components with
the CCD and ACP measures.

The final solution was selected based on the
chosen R, which produced the minimum RMSE
value, maximum CCD and ACP values, and min-
imum BIC value.

4.5. Statistical Analysis

We quantified the CP model performance to pro-
duce latent factors for differentiating subject sub-
groups using mixed measures analysis of covari-
ance (ANCOVA). We performed post hoc analyses
with two-tailed parametric t-tests and corrections
for multiple comparisons using the false discov-
ery rate (FDR) (Benjamini, Drai, Elmer, Kafkafi,
& Golani, 2001) with the significance level of
α = 0.05 to determine statistical significance.
The ANCOVA and post hoc analyses results
were accompanied with F -statistics, t-statistics,
p-values and effect size. The effect size was eval-
uated by generalized eta squared (η2G) (Olejnik &
Algina, 2003), Cohen’s d values and characterized
as small (< 0.06), medium (0.06–0.14), or large
(> 0.14), according to (Cohen, 2013). Addition-
ally, we reported the mean (M), and standard
deviation (SD) of the measures of interest.

4.5.1. Group-Level Statistical Inference
of CP Component Matrices

The columns of the factor matrices A ∈ RK×R

in subject mode contain the component loading
factors (coefficients), with the column index cor-
responding to the loading factors of the given
Rth component. The loading factors of each com-
ponent indicate how much of the component
is required to reconstruct the subject’s source
data (Acar, Schenker, Levin-Schwartz, Calhoun,

& Adali, 2019). A higher subject loading fac-
tor signifies an increased contribution of that
component (Stephen et al., 2013). Therefore,
group-discriminative components can be obtained
by statistically comparing the component load-
ing factors of subgroups to determine significant
between-group differences.

Group differences in the component loading
factors were assessed with 2 × 2 mixed measure
ANCOVAs with the stimuli condition (AUD, VIS,
or AV) as a within-subject factor and subgroup
(HP vs. LP) as a between-subject factor. The
ANCOVAs were calculated for each component
and condition while controlling for age, gender and
parental SES. In addition to the ANCOVA tests,
planned direct comparisons between HP and LP
groups were made for each component and condi-
tion separately to determine if subgroups differed
significantly in the component loading factors of
any specific stimulus condition while controlling
for the same covariates. We applied a two-tailed
level of significance (p < 0.05) and an FDR cor-
rection for the number of tests performed for each
condition.

Prior to performing group-level statistical
analyses, we examined group differences in the
subject head motion between subgroups to deter-
mine if it may cause differences in component
loading factors. We assessed group differences in
the head motion values with one-way ANCOVA
with the subgroup (HP vs. LP) as a between-
subject factor while controlling for age. There was
no significant difference in the mean values of
the head motion (F1,167 = −1.051, p > 0.05)
between subgroups. Post hoc independent samples
two-tailed t-test (FDR corrected, p < 0.05) with
unequal variances correction confirmed there was
a no significant difference in the head motion for
HP (M = 0.922, SD = 0.807) and LP (M = 1.12,
SD = 1.036) groups (t167 = −1.051, p = 0.295).
These results suggest that the head motion would
not impact results of the group-level statistical
analyses. The summary of the head motion statis-
tical analysis is presented in Supplementary Fig.
S.4.
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4.5.2. Correlation Analysis between
Component Loading Factors and
Neuropsychological (T) Scores

To identify the specific neuropsychological scores
associated with the ERF components, we sepa-
rately correlated the ERF components with the
neuropsychological (T) scores in the HP group, LP
group and full sample. The relationships were eval-
uated with Pearson’s correlation tests. Partial cor-
relation analyses (controlling for age, gender and
parental SES) were performed between the com-
ponent loading factors in subject mode (columns
of matrix A) and neuropsychological age-adjusted
(T) scores. Specifically, we computed the two-
tailed Pearson’s partial correlation coefficient (r)
between the component loading factors and the
nine cognitive variables, namely, WASI-II FSIQ,
PSM, PICVOCAB, ORRENG, LSWM, FICA,
DCCS, and the Conners 3 inattention/hyperac-
tivity scores. Partial correlations were considered
significant below the FDR-corrected threshold
(p < 0.05, N = 170).

5. Results

The proposed model was used to extract MEG
ERF components using CP decomposition, fol-
lowed by statistical group-level analyses (see
Sections 4.5.1 and 4.5.2). In this section, we
describe the results of the multi-subject tensor
analyses for extracting typical brain developmen-
tal patterns from the original MEG data.

5.1. Multi-Subject MEG Tensor
Analysis Using the CP Model

We employed CP decomposition to determine
the component structure of MEG ERF responses
to multisensory task. The MEG tensor X ∈
RK×T×C was decomposed using the CP factor-
ization model (2) shown in Fig. 3b. The data
tensor was fitted with the number of components
R as determined in Section 4.4. The average model
FIT indicates (VIS: R = 2,M = 0.93, SD =
0.01; AUD: R = 2,M = 0.91, SD = 0.01; AV:
R = 3,M = 0.91, SD = 0.01; see experimental
setup in Section 4.4) that the extracted factors
account for a large part of the explained vari-
ance of the original datasets. Supplementary Fig.
S.5 and Supplementary Table S.2 show the mean

Table 1 Summary of MEG ERF components

ERF Component

Stimulus condition Occipital/M150 Right Temporal/M300a Late Central/M400

VIS
√

-
√

AUD -
√ √

AV
√ √ √

values of FIT metric of the fitted CP decom-
position for each stimulus condition (VIS, AUD,
and AV). To quantify the common associations
between the original MEG ERF subject’s datasets
and the extracted ERF components, we performed
repeated measures correlation analyses (Bakdash
& Marusich, 2017) between these paired datasets
(see Supplementary Methods Section 3.2).

The tensor analysis yielded seven ERF com-
ponents (see Table 1), which describe patterns
of temporal variance (temporal factors), spatial
variance (spatial factors), and the subject factors.
The spatial loadings provide the measure of activ-
ity in the MEG ERF as a function of time for
each spatial factor. The subject loadings modulate
the magnitude of these spatiotemporal patterns,
representing the pattern’s activation strength for
the specific subject. We categorized the compo-
nents as functional MEG ERF components that
correspond to prominent spatiotemporal peaks
(Stephen et al., 2013), and the spatiotemporal
variance explained (R2), which was determined by
the repeated measures correlation analyses. Fig. 6
depicts the extracted temporal and spatial com-
ponents time-locked to the target stimuli after
CP tensor decomposition on the sensor-level MEG
data (magnetometer view), and the ERF compo-
nents gradiometer view is presented in Supple-
mentary Fig. S.6. The temporal ERF components
generated from individual sensor data averaged
across subject ERF components are shown. The
MEG topographic maps show the density of spa-
tial patterns that correspond to prominent time
peaks. The average ERF component (average
across sensors, in cyan) and average ERF time-
course (in yellow) for each stimulus condition are
plotted. The ERF components are well-matched
to distinct peaks present on the average ERF time-
courses. The temporal evolution of the MEG ERF
topographic maps is shown in Supplementary Fig.
S7.

The repeated measures correlation analyses
(see Supplementary Methods Section 3.2) found
significant correlations (p < 0.001) between ERF
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Fig. 6 Tensor decomposition results of sensor-level MEG data for target stimuli. Temporal and spatial patterns from the
components of the CP model. Top: The topographic maps (magnetometers view) show the density of spatial patterns that
correspond to prominent time peaks denoted with red and blue arrows. Bottom: ERF component with signal traces from all
individual MEG sensors averaged across subject ERF components. The shaded areas around each line depict the standard
error of the mean. The average stimulus-related ERF timecourse is shown in yellow, and the average ERF (average across
sensors) component is plotted in cyan. (a)–(b) Occipital 130–150 ms component in the VIS and AV conditions. (c) Right
temporal 280-300 ms component in the AUD and AV conditions. (e)–(i) Late central 350-430 ms component in the VIS,
AUD, and AV conditions.
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Fig. 7 Early latency M50 and M100 subcomponents
within 0–150 ms time window of the right temporal 280–
300 ms ERF component for the AUD (Fig. 6c) and AV
(Fig. 6d) conditions are shown. (a) AUD subcomponents.
(b) AV subcomponents.

components and the original data (VIS, AUD,
and AV conditions) for the overall common slope
(Supplementary Table S.3). The ERF components
(Supplementary Table S.3) accounted for 72%,
76%, and 74% of the spatiotemporal variance (R2)
in the VIS, AUD and AV conditions, respectively.

5.1.1. Occipital Component/M150

The occipital component was found in the VIS
and AV conditions, as shown in Figs. 6a–b. This
component was associated with the first promi-
nent visual peak at a latency of 130–150 ms. The
spatial distribution map at 145–149 ms (see Figs.
6a–b) shows that the positive deflection reflects
MEG activity in the bilateral occipital sensors.
The positive deflection resembles the visual P100
wave described in previous MEG/EEG studies
which could reflect the allocation of attentional
resources (Boehler, Schoenfeld, Heinze, & Hopf,
2008; Zhang & Luck, 2009).

5.1.2. Right Temporal
Component/M300a

The right temporal component with the peak 280–
300 ms was consistently found in the AUD and
AV conditions in the right temporal and infe-
rior left/right frontal sensors (see Figs. 6c–d).
The positive deflection at a latency of 280–300
ms corresponds to the early phase of the P300a

component, which has been linked to different pro-
cesses, such as detecting and evaluating novel and
orienting responses (Pfefferbaum, Ford, Weller,
& Kopell, 1985; Polich, 2007; Vogel, Luck, &
Shapiro, 1998).

The M300a component revealed two separate
early latency subcomponents at about 53–56 ms
(M50) and 82–86 ms (M100). These early subcom-
ponents were found in the right temporal sensors
in the AUD and AV conditions. In addition, the
M100a component followed the M100 component
in the AV condition and peaked around 148 ms.
We show a zoomed version of the M300a compo-
nent within 0–150 ms time window in Fig. 7. Fig.
7 depicts the peak latencies of the M50 and M100
subcomponents after the onset of a stimulus and
the topographic scalp distribution of these early
latency components. The M50 and M100 compo-
nents exhibit much smaller amplitudes compared
to the later M300a amplitude. It was noted that
the amplitude of the M100 component was more
robust and more evident than the M50 amplitude.

5.1.3. Late Central Component/M400

The late central component was extracted for
all stimuli conditions (AUD, VIS, and AV), as
shown in Figs. 6e–i. This component consists of a
sequence of negative (VIS and AV) and positive
peaks (AUD) at approximately 126–134 ms and
a prominent peak at 350–430 ms. Figs. 6e-i show
that this component is primarily distributed in the
left temporal-parietal and right prefrontal sensors.
The prominent negative deflection resembles the
late phase of the parietally distributed N400 com-
ponent (Halgren et al., 2002; Marinković, 2004).

Additionally, the M400 component explained
early latency M100a subcomponent peaked
around 126–148 ms and was identified in the VIS,
AUD and AV conditions.

5.2. Subject Subgroup Identification

In this section, we present the clustering anal-
ysis results for identifying subgroups described
in Section 3.4. The hierarchical clustering results
using Ward’s D2 (Murtagh & Legendre, 2014)
distance are shown in the dendrogram in Fig.
8a, with the height of the branches indicating
the distance or dissimilarity between clusters. As
depicted in Fig. 8a, two significant clusters were
selected according to the approximately unbiased



Springer Nature 2021 LATEX template

Tensor Decomposition of MEG Data 15

Fig. 8 Results of the hierarchical clustering on the principal components. (a) Dendrogram of hierarchical clustering based
on Ward’s D2 criterion. The height of the branches indicates the dissimilarity between clusters. The number of retained
clusters was chosen using an approximately unbiased probability measure (AU) (Efron et al., 1996). The significant clusters
were selected based on unbiased probability p-values with p < 0.05 corrected for multiple comparisons using FDR. The
final clustering solution was obtained with the K-means algorithm. (b) Clustering solution projected on the principal
components. (c)-(d) Subgroup associations with neuropsychological (T) scores. (c) Distribution of mean PCA scores averaged
across subject subgroups. (d) Main effect of subject subgroup on neuropsychological (T) score. Independent samples two-
tailed t-test (FDR corrected, p < 0.05) showed statistically significant differences in the WASI-II FSIQ, language, memory
(p < 0.0001) and inattention scores (p < 0.01) between the LP and HP groups. Details can be found in Supplementary
Table S.1. **** p < 0.0001, ** p < 0.01.

probability (AU) (Efron et al., 1996) p-values with
p < 0.05. The clustering solution projected on
the PCs is shown in Fig. 8b. We used the HCPC
clustering output to identify two subgroups with
distinct distributions of mean PCA scores and cat-
egorized them as high (n = 89) or low (n =
81) performance. The distribution of mean PCA
scores shown in Fig. 8c indicates that subjects in
the HP group have higher PCA loading factors
than the subjects in the LP group in all six cogni-
tive domains except for the Conners 3 inattention
and hyperactivity scores where a higher score
implies greater inattention and hyperactivity.

We evaluated the effect of the subject group
(HP vs. LP) on the cognitive assessments
using independent samples two-tailed t-tests with
unequal variances corrected for multiple compar-
isons using FDR (p < 0.05). We present the
summary statistics of the neuropsychological (T)
score distribution according to subject subgroup
in Supplementary Table S.1. The groups did not
differ significantly in terms of gender (χ̃2 =
0.00, p = 0.99), age (t167 = 0.03, p = 0.97) or
parental SES (t167 = 0.517, p = 0.61). However,
the WASI-II FSIQs differed significantly (t167 =
9.16, p < 0.0001), with higher FSIQ scores in
the HP group than in the LP group. Similarly,
the language (PICVOCAB, ORRENG), memory
(PSM, LSWM), and executive function (DCCS,
FICA) (T) scores differed significantly by group
(Supplementary Table S.1; Fig. 8d; p < 0.0001),
with cognitive (T) scores higher in the HP group

than in the LP group. The Conners 3 hyperac-
tivity score differed significantly by group (t167 =
−2.17, p = 0.031), with lower scores in the HP
group than in the LP group. The Conners 3 inat-
tention score did not differ significantly between
the HP and LP groups (t167 = 0.52, p = 0.61).
Fig. 8d shows the subject subgroup distribution of
standard age-adjusted cognitive (T) scores.

5.3. Statistical Group-Level Analysis

In this section, we present the group-level anal-
ysis results described in Sections 4.5.1 and 4.5.2.
This section has two subsections. The first sub-
section evaluates the statistical significance of the
ERF components (see Section 5.1) to differenti-
ate between the subgroups identified in Section
5.2. The second subsection assesses the covari-
ant relationships between ERF components and
neuropsychological measures to correlate brain
responses with cognitive performance. The com-
ponent loading factors in subject mode (columns
of matrix A) and neuropsychological (T) scores
were evaluated for normality. All analyses were
corrected for multiple comparisons using FDR
with a significance level of α = 0.05 unless stated
otherwise.

Prior to performing the group-level statistical
(see Section 5.3.1) and component-cognitive scores
correlation analyses (see Section 5.5), we ana-
lyzed pairwise component correlations (corrected
for multiple comparisons using FDR (p < 0.05) for
the VIS, AUD, and AV conditions). There were
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Table 2 Summary of ERF components loading factor ANCOVA results

Effect
Occipital/M150 R.Temporal/M300a L.Central/M400

F (1, 336) p value F (1, 336) p value F (2, 494) p value

Condition 0.05 0.996a 0.01 0.999b 0.22 0.969a

Group 33.96 < 0.0001a 101.35 < 0.0001a 176.73 < 0.0001a

Condition × Group 28.73 < 0.0001a 6.82 0.031a 0.79 0.982a

a p values from ANCOVAs adjusted for age, gender and parental SES (FDR corrected, p < 0.05).

Fig. 9 Main effect of the subject group (N = 170, HP
vs. LP) on component loading factors in subject mode for
each stimulus condition. Boxplots summarize the distribu-
tion of the mean values of the component loading factors
in subject mode for the HP and LP groups. Median val-
ues are represented by black lines inside the boxplot, with
the top of the whisker lines indicating the 25th and 75th
percentile values. Mean values are plotted in white cir-
cles. Error bars represent the standard error of the mean.
Six components were statistically significant in the post
hoc two-tailed t-test results (FDR corrected, p < 0.05),
except for the occipital component/M150 in the AV condi-
tion, which did not differ between the HP and LP groups
(p = 0.864). The post hoc t-tests results are shown in Table
3. **** p < 0.0001, *** p < 0.001 (post hoc and FDR cor-
rected p < 0.05), which means significantly different.

no significant correlations between the CP com-
ponents (p > 0.05 for all tests; see Supplementary
Table S.6). These findings suggest that there is
no need to adjust planned group-level statistical
(see Section 4.5.1) and partial correlation analy-
ses (see Section 4.5.2) for the presence of other
CP components as model covariates. It should be
noted that the CP model produces unique com-
ponents so that the specific component or its
factors are not associated with any other factors or
other components (Kolda & Bader, 2009; Kruskal,
1977).

5.3.1. Group-Level Discriminative
Components

We applied mixed measures two-way ANCOVA
(see Section 4.5.1) on the component loading

factors in subject mode of each ERF compo-
nent and stimulus condition to determine signif-
icant effects after controlling for the covariates.
The mixed measures two-way ANCOVA compar-
ison of the component loading factors showed
a statistically significant stimulus condition ×
group interaction (see Table 2) for the Occipi-
tal/M150 (F1,336 = 28.73, p < 0.0001, η2G = 0.101)
and R.Temporal/M300a components (F1,336 =
6.82, p = 0.03, η2G = 0.098). There was no sig-
nificant stimulus condition × group interaction
for the L.Central/M400 component (F2,494 =
0.79, p = 0.982, η2G = 0.004). The main effect
of the subject subgroup was statistically sig-
nificant for each component (Table 2; Occipi-
tal/M150: (F1,336 = 33.96, p < 0.0001, η2G =
0.113; R.Temporal/M300a: (F1,336 = 101.35, p <
0.0001, η2G = 0.281; L.Central/M400: F1,494 =
176.73, p < 0.0001, η2G = 0.311). Post hoc analy-
ses with two-tailed t-tests corrected for multiple
comparisons using FDR (p < 0.05) revealed six
components with significant group differences (HP
vs. LP) in the component loading factors. The
details are shown in Table 3 and Fig. 9. Fig. 10
depicts the group ERF components as solid lines
(blue for HP and red for LP). The group ERF
components peaked at the same time as the aver-
age group ERF timecourses, drawn in dashed lines
(blue for HP and red for LP).
Occipital Component/M150:

The Occipital/M150 (130–150 ms) group com-
ponent is shown in Fig. 10a–b. The activity was
concentrated in the left and right occipital sensors.
The HP group demonstrated a higher activation
strength than LP group in the VIS condition (see
Fig. 10a). The main effect of the group (N = 170,
HP vs. LP) on the component loading factors
was statistically significant for the VIS condition
(Table 3, Fig. 9, Fig. 10a; VIS: t165 = 7.86, p <
0.0001, HP > LP, post hoc two-tailed t-test). How-
ever, there were no significant differences in the
component loading factors of the Occipital/M150
component between the HP and LP groups for
the AV condition (Table 3, Fig. 9, Fig. 10b; AV:
t165 = 0.166, p = 0.864, post hoc two-tailed t-
test).
Right Temporal Component/M300a:

The R.Temporal/M300a group component is
shown in Figs. 11a–b. The component was associ-
ated with the peak at 280–300 ms and accounted
for the activity in the right temporal and inferior
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Table 3 Comparison of ERF component loading factors by subject subgroup

Component
AUD VIS AV

HP (n = 89) LP (n = 81) t(165) p value HP (n = 89) LP (n = 81) t(165) p value HP (n = 89) LP (n = 81) t(165) p value

M(SD) M(SD) M(SD)

Occipital/M150 - - - - 0.61(0.91) -0.63(0.62) 7.86 < 0.0001a 0.015(1.07) 0.013(0.93) 0.166 0.864a

Right Temporal/M300a -0.62(0.83) 0.56(0.79) 7.31 < 0.0001a - - - - 0.54(0.85) -0.31(1.05) 5.65 < 0.001a

Late Central/M400 -0.57(0.81) 0.64(0.78) -8.5 < 0.0001a -0.51(0.75) 0.52(0.96) -7.22 < 0.0001a -0.56(0.83) 0.51(0.85) -7.20 < 0.0001a

a p values (FDR corrected, p < 0.05) from post hoc two-tailed t-tests adjusted for age, gender, and parental SES.
b the corresponding data are shown in Fig. 9.

left/right frontal sensors. Post hoc two-tailed t-
tests found a significant main effect of group (N =
170, HP vs. LP) on the component loading factors
for both the AUD and AV conditions (Table 3,
Fig. 9, Figs. 11a–b; AUD: t165 = 7.31, p < 0.0001,
HP > LP; AV: t165 = 5.65, p < 0.001, HP > LP).
Late Central Component/M400:

The L.Central/M400 group component is
shown in Figs. 11c–e. This component was associ-
ated with activity in the left temporal-parietal and
right prefrontal sensors. Two-tailed t-tests identi-
fied a significant main effect of group (N = 170,
HP vs. LP) on the component loading factors for
the VIS, AUD and AV conditions (Table 3, Fig. 9,
Figs. 11c–d; AUD: t165 = −8.5, p < 0.0001, HP <
LP; VIS: t165 = −7.22, p < 0.0001, HP < LP; AV:
t165 = −7.20, p < 0.0001, HP < LP).

5.4. Group-Level Sensitivity
Analyses

In this section, we evaluate the discriminative
performance of the CP decomposition and the
nonparametric method based on the permutation
statistics of the ERF in sensor space. Previous
studies have shown that statistical nonparamet-
ric mapping (SnPM) is a robust approach that
can reliably detect ERF activity in sensor space
(Nichols & Holmes, 2002; Pantazis, Nichols, Bail-
let, & Leahy, 2003).

To quantify differences between subject sub-
groups, group amplitudes were compared by run-
ning time-point by timepoint nonparametric per-
mutation two-tailed t-tests Maris and Oostenveld
(2007); Nichols and Holmes (2002) assessed at
each sensor from 0 to 800 ms poststimulus. The
nonparametric statistical threshold tmax from the
pseudo t-distribution was calculated to establish
timepoint/sensor significance at the p < 0.05 level.
The sensors and timepoints identified by these t-
tests denoted spatiotemporal regions where statis-
tically significant differences in group amplitudes
occurred.

Fig. 10 Discriminative group MEG ERF components
from the CP decomposition for the VIS and AV conditions
are shown. The ERF components are indicated by solid
lines (HP: high performance – blue, LP: low performance
– red). The average group ERF timecourses are indicated
by dashed lines. Main effect of the subject group (HP vs.
LP, N = 170) on the component loading factors in subject
mode is summarized in the boxplots. The boxplots sum-
marize the distribution of the mean values of component
loading factors in the subject mode for the HP and LP
groups. The median values are represented by black lines
inside the boxplot, and the tops of the whisker lines indi-
cate the 25th and 75th percentile values. The mean values
are plotted in dark grey. The error bars represent the stan-
dard error of the mean. Post hoc analyses with two-tailed
t-tests (FDR corrected, p < 0.05) indicate that the mean
value of the component loading factors of the HP group was
significantly different than for LP group with p < 0.001 for
six ERF components except for the occipital/M150 com-
ponent in the AV condition (AV/M150: p = 0.864). (a)-(b)
Occipital M150 component. **** p < 0.0001, *** p < 0.001
indicate significant differences (FDR corrected, p < 0.05).
The post hoc t-tests results are shown in Table 3.

To compare the group-level sensitivity of
the CP decomposition and SnPM, we com-
puted timepoint/sensor-wise t-statistics from a
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Fig. 11 Discriminative group MEG ERF M300a and
M400 components from the CP decomposition for the VIS,
AUD, and AV conditions are shown. (a)-(b) Right temporal
M300a component. (c)-(e) Late central M400 component.
See full caption and legend in Fig. 10.

two-tailed nonparametric permutation t-test and
determined the significance of the group-level
mean amplitudes between subject subgroups, tak-
ing into account the covariates. We evaluated the
group-level sensitivity by investigating the SnPM
method’s ability to discriminate between subject
subgroups. We present group-level ERF compo-
nents and the statistical images (T-maps) after
the CP and SnPM in Fig. 12 and Supplementary
Figs. S.8-S.13. The SnPM identified five signif-
icant components: Occipital/M150 in the VIS
condition (Supplementary Table S.4; VIS: p <
0.001; t165 = 6.32), R.Temporal/M300a compo-
nent in the AUD and AV conditions (Supplemen-
tary Table S.4; AUD: p = 0.022; t165 = 2.31, AV:
p = 0.038; t165 = 2.09), and L.Central/M400 in
the VIS, AUD and AV conditions (Supplementary
Table S.4; VIS: p = 0.001; t165 = −3.76; AUD:
p = 0.002; t165 = −3.41).

The ERF components and T-maps generated
after the CP and SnPM methods for the Occip-
ital/M150 component in the VIS condition at
144-145 ms are shown in Fig. 12. The results
illustrate that the CP decomposition provided
a higher number of significant sensors than the
SnPM method. We note a similar observation for
the other ERF components presented in Supple-
mentary Figs. S.8-S.13. It is evident from Fig.
12 and Supplementary Figs. S.8-S.13 that the
number of adjacent sensors is smaller for the
ERF components produced by the SnPM. We
quantify the performance of each component esti-
mation method by using Cohen’s d effect size
(the standardized magnitude difference between
groups (Sullivan & Feinn, 2012)) and p-values.
Fig. 13 and Table 4 show that the CP decompo-
sition resulted in a higher magnitude of the group
differences and higher p-values compared with the
SnPM method. In summary, the results presented
in Table 4, Figs. 12, Supplementary Figs. S.8-S.13
and Fig. 13 demonstrate that the t-statistics and
the magnitude of the effect are higher for the CP
decomposition, suggesting better sensitivity over
the nonparametric statistical approach.

5.5. Analysis of ERF Component
Association with Cognitive
Domains

To correlate neuropsychological scores with ERF
components, we performed two-tailed partial
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Fig. 12 Sensitivity analysis of the ERF components gen-
erated with different group imaging methods. Top row:
Estimation of the Occipital/M150 component for the VIS
condition by the CP decomposition and SnPM methods.
Bottom row: The group-level T-maps between HP and LP
groups for the CP and SnPM methods are shown. The T-
maps (nonparametric permutation two-tailed t-test with a
maximum t-statistics) are thresholded at p < 0.05. The
yellow circles on scalp maps show the location of signifi-
cant sensors. (a) CP VIS M150 component. (b) SnPM VIS
M150 component. The significant time interval of group
differences (140-150 ms) is depicted in the shaded area. (e)
Left: CP VIS M150 T-map at 145 ms. Right: SnPM VIS
M150 T-map at 144 ms.

Fig. 13 Effect size comparison of the ERF components
generated with different group imaging methods. The error
bars represent the standard error of the mean. Cohen’s d
effect size of group-level discriminative (HP vs. LP) compo-
nents using the CP decomposition and SnPM method for
the AUD, AV, and VIS conditions. The effect size results
are listed in Table 4.

Pearson’s correlation tests between component
loading factors in subject mode (columns of
matrix A) for the nine cognitive age-adjusted neu-
ropsychological (T) scores in each subject group

Table 4 Effect size comparison of group-level discriminative components
after the CP and SnPM methods

Component Method

SnPM CP

Cohen’s d (SEM) p value Cohen’s d (SEM) p value

Occipital/M150

VIS 1.09(0.18) p < 0.001a 1.63(0.20) < 0.0001a

AV 0.11 (0.17) 0.851a 0.10 (0.17) 0.864a

R.Temporal/M300

AUD 0.41(0.17) 0.022a 1.47(0.19) < 0.0001a

AV 0.36(0.17) 0.038a 0.69(0.18) < 0.001a

L.Central/M400

VIS -0.59(0.17) 0.001a -1.2(0.18) < 0.0001a

AUD -0.65(0.17) 0.002a -1.52(0.19) < 0.0001a

AV -0.31(0.17) 0.07a -1.27 (0.18) < 0.0001a

a p values (FDR corrected, p < 0.05) from post hoc two-tailed t-tests adjusted
for age, gender, and parental SES.
b the corresponding data are shown in Fig. 13.

Table 5 Component loading factor and cognitive (T) score associations

Cognitive (T) score

PSM

Component Condition HP (n = 89) LP (n = 81)

r t(86) p value r t(78) p value

Right Temporal AUD 0.342 3.33 0.003a 0.291 2.65 0.039a

AV 0.364 3.59 0.001a 0.297 2.71 0.016a

PICVOCAB

Late Central VIS -0.242 -2.29 0.013a -0.12 -1.051 0.295a

DCCS

Right Temporal AUD 0.267 2.42 0.018a -0.017 -0.161 0.873a

AV 0.277 2.51 0.014a -0.071 -0.564 0.561a

HYPERACTIVITY

Occipital VIS -0.233 -2.21 0.030a -0.086 -0.685 0.992a

a p values (FDR corrected, p < 0.05) from two-tailed partial Pearson’s correlation tests
adjusted for age, gender and parental SES.

(HP: n = 89; LP: n = 81) and the full sample
(N = 170) (see detailed protocol in Section 4.5.2).
The partial correlation analyses were controlled
for age, gender and parental SES. The correlations
between component loading factors and cognitive
scores were corrected for multiple comparisons
using FDR with significance threshold p < 0.05.

The correlation analyses indicated that three
functional ERF components were significantly
associated with the language, episodic memory
and attention cognitive domains (see Table. 5).
The results of two-tailed partial Pearson’s corre-
lation analyses are summarized in Table 5, Figs.
14 and 15.

Among the nine cognitive variables, the
PICVOCAB (T), PSM (T), DCCS (T), and
Connors 3 hyperactivity scores were significantly
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correlated with ERF components. We present sig-
nificant functional association patterns between
the ERF components and the cognitive scores in
Table 5.

The Occipital/M150 component in the VIS
condition (Figs. 6a and 10a) was negatively cor-
related with the hyperactivity score in the HP
group (rVIS−HYPERACTIVITY(86) = −0.233, p =
0.03; Table 5; Fig. 15b). However, the correlation
was not significant (rVIS−HYPERACTIVITY(167) =
−0.194, p = 0.051; Fig. 14a) in the full sample.
The correlation was consistent with large group
differences (HP > LP; p < 0.0001) in the occipital
component loading factors identified by two-tailed
t-tests (see Table 3).

The R.Temporal/M300a component
(Figs. 6c–d and 11a–b) had a statistically sig-
nificant positive correlation with the PSM (T)
score in both groups (Table 3; Figs. 15c–d;
HP: rAUD−PSM(86) = 0.342, p = 0.003,
rAV−PSM(86) = 0.364, p = 0.001; LP:
rAUD−PSM(78) = 0.291, p = 0.039,
rAV−PSM(78) = 0.297, p = 0.016) and the full
sample (rAUD−PSM(167) = 0.239, p = 0.004;
rAV−PSM(167) = 0.303, p = 0.001; Figs. 14c–d).

Additionally, the correlation tests
revealed significant associations between the
R.Temporal/M300a component and DCCS (T)
score (see Table 3 and Figs. 15e–f) in the HP
group (AUD: rAUD−DCCS(86) = 0.267, p = 0.018;
AV: rAV−DCCS(86) = 0.277, p = 0.014. The
correlations between the R.Temporal/M300a
component and PSM/DCCS scores were consis-
tent with group differences (HP > LP; p < 0.001)
in the component loading factors for the AUD
and AV conditions (see Table 3).

The L.Central/M400 component in the VIS
condition (Figs. 6e and 11c) was negatively cor-
related with the PICVOCAB (T) score in the
HP group (rVIS−PICVOCAB(86) = −0.242, p =
0.013; Table 5; Fig. 15a) and the full sample
(rVIS−PICVOCAB(167) = −0.208, p = 0.017; Fig.
14b).

No significant associations were found in the
HP group, LP group or full sample for the other
cognitive scores in the component loading factors
(p > 0.05 all tests). There were no significant dif-
ferences in partial correlations between the groups
(HP vs. LP) or stimulus conditions (VIS vs. AUD
vs. AV) within subject groups (p > 0.05 all tests).

Fig. 14 Significant (FDR corrected, p < 0.05) two-
tailed partial Pearson’s correlations (correlation coefficient,
r) between ERF components and neuropsychological (T)
scores in the full sample. The linear fit and 95% confidence
intervals (CIs) are shown. The blue dots denote HP group,
and red dots denote LP group. (a) The occipital compo-
nent was negatively correlated with the hyperactivity score
in the VIS condition. (b) The late central component was
negatively correlated with the PICVOCAB score in the VIS
condition. (c)-(d) The right temporal component was pos-
itively correlated with the PSM (T) score in the AUD and
AV conditions.

6. Discussion

This paper presents a tensor analysis-based model
of MEG multi-subject data for identifying ERF
components representative of typical brain devel-
opmental patterns in a healthy population of
children and adolescents. The tensor analyses and
tensor-based group-level statistical inferences out-
lined in this paper establish a foundational frame-
work for extracting latent factors associated with
children’s brain development from MEG datasets.

We contribute to the developmental neuro-
science literature on the relationship between
MEG activity and cognition by correlating ERF
components from a healthy pediatric population
with neuropsychological age-adjusted cognitive
(T) scores and attentional indices.

6.1. ERF Components Extraction

To the best of our knowledge, this is the first
study that modeled event-related field MEG data
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Fig. 15 Significant (FDR corrected, p < 0.05) two-tailed partial Pearson’s correlations (correlation coefficient, r) between
ERF components and neuropsychological (T) scores in the HP and LP groups (HP: blue dots, LP: red dots). The group
linear fit and 95% CIs are shown (HP: blue line, LP: red line). (a) The late central (VIS) component was negatively correlated
with the PICVOCAB score and significant in the HP group. (b) The occipital (VIS) component was negatively correlated
with the hyperactivity score and significant in the HP group. (c)-(d) The right temporal component (AUD/AV) was
positively correlated with the PSM score and significant in both groups. (e)-(f) The right temporal component (AUD/AV)
was positively correlated with the DCCS score, significant in the HP group and showed a negative trend in the LP group.
The correlation results are listed in Table 5.

as a low-rank third-order tensor. We demon-
strated that CP factorization could produce latent
factors that result in functionally relevant ERF
components and reveal meaningful spatiotempo-
ral brain patterns. The CP model was shown to
be highly effective in capturing informative data
representation. For example, Fig. 6 and Supple-
mentary Table. S.2 illustrate that ERF compo-
nents were well-matched with the average ERF
waveforms and demonstrated significant correla-
tions (p < 0.001) with the original datasets (see
Supplementary Methods Section 3.2; Supplemen-
tary Table. S.3). The tensor analysis successfully
identified latent brain developmental patterns
across subjects for each stimulus condition. As
expected, the Occipital/M150 component simi-
lar to the visual P100/M100 wave, was extracted
from the VIS and AV conditions, as shown in
Figs. 6a–b. We observed P300 component in the
R.Temporal/M300a component (see Fig. 6c–d)
extracted from the AUD and AV conditions. The
absence of the visual Occipital/M150 component
in the AUD condition and the absence of the

R.Temporal/M300a component in the VIS con-
dition confirms that the CP model can extract
meaningful patterns corresponding to expected
ERF responses. The L.Central/M400 component
(Figs. 6e–i) was extracted from the AUD, VIS,
and AV conditions, representing activity in the left
temporal-parietal sensors and likely capturing the
motor response required in all three conditions.

In the present study, we found the M50/M100
subcomponents less dominant in terms of ampli-
tude for the AUD and AV conditions. Our results
agree with previous MEG studies (Cardy, Fer-
rari, Flagg, Roberts, & Roberts, 2004; Edgar et
al., 2014; Kotecha et al., 2009), which reported
that children do not show the M50/M100 adult-
like waveforms until early adolescence. It was
shown in (Bruneau, Roux, Guerin, Barthelemy, &
Lelord, 1997; Kotecha et al., 2009; Ponton, Egger-
mont, Kwong, & Don, 2000) that the amplitude
of the auditory component becomes more promi-
nent with increasing and remains stable through
adulthood. Our future work may include longitu-
dinal studies of the same MEG dataset where we
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can explore the latency and amplitude-age depen-
dencies on the characteristics of the early auditory
components.

6.2. Comparison of Group-Level
Sensitivity Analyses

A significant problem in MEG research involves
the detection of significant effects while control-
ling the FWER rate. In section 5.4, we compared
the sensitivity and statistical power of the CP
tensor decomposition model and conventional sta-
tistical nonparametric approach based on permu-
tation testing. We have demonstrated that the CP
model provides 1.5–2 times higher effect sizes and
lower p-values (see Fig. 13). The lower sensitiv-
ity of the SnPM method is most likely caused by
a higher significance threshold required to con-
trol the FWER. Evidently, better performance
of the CP model is associated with a lower rate
of false negatives. Thus, tensor-based group-level
inference alleviates the multiple comparison prob-
lem due to dimensionality reduction and provides
higher statistical power.

6.3. Functional Associations of
Group-Discriminating
Components

The CP decomposition of the multi-subject MEG
data provides insight into how tensor analysis
can be used to explore relationships between
brain patterns and cognitive function in high- and
low-performance subjects. The statistical tests
confirmed the effect of the cognitive group on
the relationship between the component loading
factors and designated pediatric subgroups (see
Section 5.3). We showed that children in the HP
group were significantly different from those in the
LP group (HP vs. LP; Table 3) in terms of the six
components, with large effect sizes (η2G > 0.113,
see Section 5.3.1). The group differences (HP >
LP) were consistent with the neuropsychological
(T) score t-tests, with the HP group scoring signif-
icantly higher than the LP group on all cognitive
and behavioral tests, except for the Connors 3
inattention and hyperactivity scores. The subjects
in the HP and LP groups did not show differences
in the spatial distributions of all components;
however, they demonstrated significant differences

in the spatial activation strength and timecourse
amplitude.

To identify ERF components as informative
signatures of cognitive function, we correlated
the ERF components with neuropsychological (T)
scores in the full sample and each subject group.
In the full sample, we found statistically signifi-
cant correlations between neuropsychological (T)
scores and specific ERF components (see details in
Section 5.5), namely, the PSM (T), PICVOCAB
(T) and Connors 3 hyperactivity scores.

The correlation analyses between the ERF
components and neuropsychological scores
revealed significant associations between ERF
components and PSM (T) score in both the
HP and LP pediatric groups, whereas the
PICVOCAB (T), DCCS (T) and hyperactivity
scores were significantly correlated with ERF
components only in the HP group.

It was shown in the literature that the PSM
test measures episodic memory (Dikmen et al.,
2014), and the DCCS test measures cognitive flex-
ibility and executive function (Weintraub et al.,
2013). The PICVOCAB test measures verbal abil-
ity and language comprehension (Weintraub et al.,
2013), and the Connors 3 hyperactivity score is
an attentional index (Conners, 2008). These cog-
nitive indices are foundational cognitive processes
that change rapidly during development and vary
across individuals.

6.3.1. Early Latency Components

The hyperactivity score was negatively correlated
with the Occipital/M150 component in the VIS
condition using the full sample data. In addi-
tion, the analyses revealed a significant negative
correlation between the hyperactivity score and
the Occipital/M150 component in the HP group.
Finally, as shown in Supplementary Table S.1,
the hyperactivity score was significantly lower in
the HP group than in the LP group. These find-
ings suggest that the Occipital/M150 component
patterns were consistent between the correlation
results and ERF component group-level analy-
ses (HP > LP; Table 3), as well as with the
group-level neuropsychological (T) score analy-
ses (Supplementary Table S.1). It was shown
in the literature (Ghani, Signal, Niazi, & Tay-
lor, 2020; Sokhadze et al., 2017) that early and
mid-latency ERP components (N100, N200, and
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P200) are related to involuntary attention selec-
tion mechanisms. Our findings are consistent with
the literature on healthy individuals (Allison &
Polich, 2008; Ghani, Signal, Niazi, & Taylor, 2021;
Kramer, Trejo, & Humphrey, 1995) and children
with ADHD (Liotti, Pliszka, Higgins, Perez III,
& Semrud-Clikeman, 2010; van Meel, Heslenfeld,
Oosterlaan, & Sergeant, 2007), which reported
lower early latency component amplitudes with
increasing cognitive workload in patients relative
to healthy controls.

6.3.2. Late Latency Components

The right temporal/M300a component in the
AUD and AV conditions was positively associated
with the PSM (T) score (p < 0.01) in the HP
group, LP group, and the full sample. The par-
tial correlation analyses for the PSM (T) score
shown in Figs. 14c–d and 15c-d suggest that the
increase in the value of the component loading fac-
tors was associated with a better PSM (T) score.
Additionally, the right temporal/M300a compo-
nent was significantly positively correlated with
the DCCS (T) score in the HP group, which
is consistent with the component loading factor
group difference (HP > LP; Table 3). Similarly,
the correlation analyses for the DCCS (T) score
shown in Fig. 15e–f and Table 5 suggest that the
increase in value of the component loading fac-
tors associated with a higher DCCS (T) score.
The HP group scored significantly higher (Sup-
plementary Table S.1; p < 0.0001) than the
LP group in terms of both the PSM (T) and
DCCS (T) scores. According to the literature, the
P300a/M300a component amplitude represents an
orienting response, reflecting involuntary orienta-
tions to attention-catching changes (Sur & Sinha,
2009). Additionally, the P300a/M300a compo-
nent was categorized as an indicator of implicit
memory and item familiarity (Friedman & John-
son Jr, 2000; Graf & Schacter, 1985; Rugg et
al., 1998). The existing literature shows that the
P300a/M300a component could indicate sustained
attention and decreases in P300a amplitude with
increasing cognitive workload (Berti & Schröger,
2003; Dyke et al., 2015; Horat et al., 2016).

The late central/M400 component showed a
significant negative correlation with the PICVO-
CAB (T) score in the HP group and full sample.
Similar to the N400 (Kutas & Federmeier, 2000)

ERP component, the spatial scalp distribution
was maximally concentrated in the left temporal-
parietal sensors.

The association of the late central/M400 com-
ponent with the PICVOCAB (T) score (see Figs.
14b and 15a) demonstrated that the reduced M400
component amplitude results in a higher PICVO-
CAB (T) score. The literature indicates (Fitz &
Chang, 2019) that N400 component ERPs may
reflect prediction error signals needed for learning;
thus, larger ERP amplitudes could be correlated
with errors.

6.4. Comparison of Group-Level
Imaging Methods

In group-level brain imaging studies, the goal
is to determine spatiotemporal patterns of vari-
ability between/among groups or conditions. The
sensitivity and statistical power of group-level
inferences is dependent on the stability and unique
presentation of these patterns to determine where
and when a specific brain activity occurs.

In MEG research, the most common approach
to identify a location of brain activity is to
employ mass-univariate hypotheses testing meth-
ods (Groppe, Urbach, & Kutas, 2011). Mass-
univariate hypothesis testing is based on executing
multiple tests, which most often involves comput-
ing a parametric or nonparametric t-test for each
timepoint/sensor. However, mass-univariate anal-
yses in MEG have many shortcomings, such as (1)
the high dimensionality of data requires a large
number of tests corrected for multiple compar-
isons; (2) potentially overlapping sources of brain
activity; (3) not taking into account interactions
between timepoints/sensors; and (4) sensitivity of
peak/mean amplitude measures to the analysis
window (Luck & Gaspelin, 2017). Nonparamet-
ric approaches based on randomized permutation
and cluster-based permutation tests (Groppe et
al., 2011; Maris & Oostenveld, 2007) have been
developed that inherently address multiple com-
parison problems (Westfall & Young, 1993) and
locate the spatiotemporal effect of interest. How-
ever, the important drawback of nonparametric
statistics is that with the increase in the num-
ber of tests, the power of the permutation test
is diminished due to an overly conservative esti-
mate of the significance threshold (Groppe et al.,



Springer Nature 2021 LATEX template

24 Tensor Decomposition of MEG Data

2011). Thus, with an increase in the dimensional-
ity of multi-subject MEG data, the strong FWER
control of the permutation method may impact
the sensitivity of the analyses, resulting in Type
II error.

A more promising approach to overcome the
shortcomings of mass univariate approaches is to
use an effective multivariate approach to summa-
rize the data. Group-level tensor decomposition
is a multivariate latent space group-analysis tech-
nique that has been shown to be capable of (1)
localization of common unique patterns of brain
activity for a group of subjects in a data-driven
way (Cong et al., 2012; Tangwiriyasakul et al.,
2019; D. Wang et al., 2018); (2) dimensional-
ity reduction (Cichocki et al., 2016); (3) extrac-
tion of region-of-interest independent signatures
for group-level inferences (Acar, Levin-Schwartz,
Calhoun, & Adali, 2017; Cong et al., 2012; Tang-
wiriyasakul et al., 2019); (4) inherent alleviation
of multiple-comparison problem; and (5) higher
sensitivity by capturing complex spatiotemporal
interactions (Acar et al., 2019; Kinney-Lang et
al., 2019; Kinney-Lang, Spyrou, Ebied, Chin, &
Escudero, 2017).

As we show next, we discuss the differences
in statistical assessments of the CP model and
conventional sensor/source level imaging methods.
For the further discussion below, we assume that
the time-frequency source reconstruction where
subject datasets S ∈ RC×T×F joined in the sub-
ject mode forming a fourth-order tensor X ∈
RK×T×C×F (Rsubject×time×sensor×frequency).

6.4.1. Tensor Analysis in the
Sensor/Source Level Space

After the MEG/EEG data are factorized by the
CP model, the underlying component matrices
can be readily analyzed by group-level statisti-
cal inference algorithms (Cong et al., 2015). Since
the CP model performs simultaneous factorization
and is fully multivariate, each factor of the latent
CP component is identified at all levels of other
factors.

Hence, the magnitude of the underlying CP
component is quantified at each timepoint and
sensor in the sensor-level space, which eliminates
the necessity of selecting specific timepoints and
sensor sites (timepoint, sensor and frequency at

the source level) for the group amplitude extrac-
tion in the group-level inferences. Thus, statistical
inference can be directly applied to the selected
component signatures. For example, as shown in
Fig. 3c, to determine the discriminative groups
in the subject mode, the rth subject loading fac-
tor ar ∈ RK is used in multifactorial ANCOVAs
to evaluate the experimental conditions. Simi-
larly, the spatial cr ∈ RC , temporal signatures
br ∈ RT or frequency signatures fr ∈ RF

can be statistically evaluated to determine the
significance of the spatiotemporal extent or fre-
quency bands. Notably, due to dimensionality
reduction, the required number of tests to reach
statistical significance is dramatically reduced
since only the limited number of samples (order
of 102) is used from each signature instead of
all spatiotemporal/space-time-frequency features
(order of 106 or higher).

Thus, the CP model reduces the problem of
multiple comparisons in the group-level analyses
since the extracted component signatures are used
to determine discriminatory ERF components. As
a result, the CP model could provide a higher
sensitivity by reducing Type II error. In contrast,
the univariate and nonparametric tests may fail to
find a significant effect if they are applied to the
full subject× time× sensor data cube.

In summary, the CP tensor decomposition
offers the following advantages compared with
univariate parametric and nonparametric statis-
tical methods, such as data-driven source sepa-
ration, a region-of-interest independent measure
for group-level analyses, identification of common
spatiotemporal patterns for a group of subjects,
and alleviation of multiple comparison problems
due to dimensionality reduction, which could
result in higher statistical power and better sensi-
tivity as shown in Sections 5.4 and 6.2.

6.4.2. Tensor Analysis for Source
Localization

The localization of brain sources based on
MEG/EEG recordings has been an ongoing topic
of active research due to increased demand in
clinical applications (Asadzadeh, Rezaii, Beheshti,
Delpak, & Meshgini, 2020).

In the past decade several works have pro-
posed tensor-based preprocessing (Becker, Albera,
Comon, Gribonval, & Merlet, 2014; Becker,
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Albera, Comon, Haardt, et al., 2014; De Vos et
al., 2007; Mørup, Hansen, Herrmann, Parnas, &
Arnfred, 2006) for source localization. Primar-
ily, the proposed tensor-based source localization
approaches are based on the transformation of
the evoked field data in the sensor space using a
space-time-frequency (STF) or space-time-wave-
vector (STWV) transform and subsequent appli-
cation of the CP decomposition using the STF
or the STWV transformed data. The details of
transformations are described in (Becker, Albera,
Comon, Haardt, et al., 2014). The tensor group-
level analysis in the source space would be sim-
ilar to the tensor analysis in the sensor space
(see Sections3.2, 6.4.1 and 5.3). As suggested in
(Becker, Albera, Comon, Haardt, et al., 2014) in
order to fit the dipole model, the STF data ten-
sor of each subject should be constructed with one
source per time and frequency under the hypoth-
esis of oscillatory signals. We further refer our
readers to the existing key papers (Asadzadeh
et al., 2020; Becker, Albera, Comon, Gribon-
val, & Merlet, 2014) for the history, and various
applications.

7. Limitations and Future
Work

The proposed generative model using CP decom-
position implies that all subjects have the same
number of latent components R, and all subjects
share the common matrices B and C. In other
words, the CP model imposes strict assumptions
such that the underlying brain patterns have iden-
tical timecourses and spatial maps across subjects.
However, with real ERF MEG data, individual
differences may exist in the timing and origin
of the subject’s neural responses to the stimuli.
For example, individual differences in the cog-
nitive processing of the stimuli would result in
differences in the timing and spatial distribution
in MEG. To allow a variable number of com-
ponents and spatiotemporal variability of brain
patterns across subjects, a more flexible model
can be used, such as constrained PARAFAC2
(Parallel Factor Analysis) (Afshar et al., 2018;
Chatzichristos, Kofidis, Morante, & Theodoridis,
2019; Helwig & Snodgress, 2019), or higher-order
block term decomposition (BTD2) (Chatzichris-
tos et al., 2019). It has been shown in (Harshman

et al., 1972; Helwig & Snodgress, 2019) that
PARAFAC2 can handle the heterogeneity of sub-
ject’s responses and allows a variable number
of latent components per subject (Afshar et al.,
2018) via sparsity constraints. To address this
limitation, our future work may include using
the PARAFAC2 or BTD2 models to account for
subject’s individual differences.

Another limitation of our generative model
is fitting each stimulus condition as a separate
CP decomposition. Alternatively, the multi-task
multi-subject MEG data could be modeled as
a coupled tensor–tensor decomposition (CTTD)
(Chatzichristos et al., 2022; Jonmohamadi et al.,
2020), where each stimulus (VIS, AV, and AV)
represented as a third-order tensor and coupled in
the subject mode. The multi-task joint learning
enables the use of the complementary information
(Acar et al., 2013; Lahat et al., 2015) from mul-
tiple stimuli and thus could result in the latent
components with a higher discriminative power.

The extracted ERF components could be used
as bioimaging markers for classification or predic-
tion. Specifically, the subject loading factors found
from MEG data using the CP model can be inter-
preted as feature extraction. The combination of
machine learning techniques and multi-task tensor
decomposition of MEG data could identify more
reliable bioimaging markers that may enable the
exploration of neurological differences associated
with symptom onset, enabling early intervention.
Thus, the application of multi-subject MEG ten-
sor decomposition in context of machine learning
is a promising direction for future research in
cognitive neuroscience.

8. Conclusion

We demonstrated that CP decomposition can be
used for the effective identification and charac-
terization of latent spatiotemporal components of
multi-subject MEG data. We described the gener-
ative model for the multidimensional representa-
tion of multi-subject MEG data, latent component
extraction and group-level statistical inference
methodologies. We demonstrated that the group-
level tensor decomposition recovers meaningful
distinct brain patterns of varying spatiotemporal
brain activity across subjects in healthy popula-
tion of children/adolescents and in subgroups. The
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advantages of the proposed method include suc-
cessful identification of the underlying latent brain
patterns in the form of factor matrices via tensor
factorization to allow for statistical assessment of
the identified sources. The presented tensor-based
group-level inference using CP component matri-
ces eliminates the need to select specific regions of
interest, such as time windows or specific sensor
sites.

Using the proposed approach, we show that
the tensor group-level analyses and tensor-based
feature extraction allow us to investigate differ-
ences in brain activity between different sub-
ject groups. Given the importance of group-level
inferences in neuroimaging studies, the extracted
latent ERF components could be used to study
differences in brain patterns across groups and
aid in understanding how spatiotemporal brain
activity can explain cognitive function and devel-
opmental changes directly from electrophysiologi-
cal measurements. The application of MEG tensor
decomposition used in this study is a promising
direction for future research on other popula-
tions with different age ranges or developmental
disorders.
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E. (2017). Choice of magnetometers and
gradiometers after signal space separation.
Sensors , 17 (12), 2926.

Ghani, U., Signal, N., Niazi, I.K., Taylor, D.
(2020). ERP based measures of cogni-
tive workload: A review. Neuroscience &
Biobehavioral Reviews , 118 , 18–26.

Ghani, U., Signal, N., Niazi, I.K., Taylor, D.
(2021). Efficacy of a single-task ERP mea-
sure to evaluate cognitive workload during
a novel exergame. Frontiers in Human
Neuroscience, 519.

Graf, P., & Schacter, D.L. (1985). Implicit and
explicit memory for new associations in nor-
mal and amnesic subjects. Journal of Exper-
imental Psychology: Learning, memory, and
cognition, 11 (3), 501.

Gramfort, A., Luessi, M., Larson, E., Engemann,
D.A., Strohmeier, D., Brodbeck, C., . . .
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Székely, G.J., Rizzo, M.L., Bakirov, N.K. (2007).
Measuring and testing dependence by corre-
lation of distances. The annals of statistics ,
35 (6), 2769–2794.

Tangwiriyasakul, C., Premoli, I., Spyrou, L., Chin,
R.F., Escudero, J., Richardson, M.P. (2019).
Tensor decomposition of TMS-induced EEG
oscillations reveals data-driven profiles of
antiepileptic drug effects. Scientific reports ,
9 (1), 1–11.

Taulu, S., & Kajola, M. (2005). Presentation of
electromagnetic multichannel data: the sig-
nal space separation method. Journal of
Applied Physics , 97 (12), 124905.

Taulu, S., & Simola, J. (2006). Spatiotemporal
signal space separation method for rejecting
nearby interference in meg measurements.
Physics in Medicine & Biology , 51 (7), 1759.

Team, R.C., et al. (2013). R: A language and
environment for statistical computing.

Tomasi, G., & Bro, R. (2005). PARAFAC and
missing values. Chemometrics and Intelli-
gent Laboratory Systems , 75 (2), 163–180.

Vanderperren, K., Mijović, B., Novitskiy, N., Van-
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