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Abstract

Aim: In this work, we propose the novel use of adaptively constrained independent vector analysis (acIVA) to
effectively capture the temporal and spatial properties of dynamic blood-oxygen-level-dependent (BOLD) activ-
ity (dBA), and we efficiently quantify the spatial property of dBA (sdBA). We also propose to incorporate dBA
into the study of brain dynamics to gain insight into activity-connectivity co-evolution patterns.

Introduction: Studies of the dynamics of the human brain using functional magnetic resonance imaging (fMRI)
have enabled the identification of unique functional network connectivity (FNC) states and provided new insights
into mental disorders. There is evidence showing that both BOLD activity, which is captured by fMRI, and FNC
are related to mental and cognitive processes. However, a few studies have evaluated the inter-relationships of
these two domains of function. Moreover, the identification of subgroups of schizophrenia has gained significant
clinical importance due to a need to study the heterogeneity of schizophrenia.

Methods: We design a simulation study to verify the effectiveness of acIVA and apply acIVA to the dynamic
study of resting-state fMRI data collected from individuals with schizophrenia and healthy controls (HCs) to in-
vestigate the relationship between dBA and dynamic FNC (dFNC).

Results: The simulation study demonstrates that acIVA accurately captures the spatial variability and provides an
efficient quantification of sdBA. The fMRI analysis yields synchronized sdBA-temporal property of dBA (tdBA)
patterns and shows that the dBA and dFNC are significantly correlated in the spatial domain. Using these dynamic
features, we identify schizophrenia subgroups with significant differences in terms of their clinical symptoms.
Conclusion: We find that brain function is abnormally organized in schizophrenia compared with HCs since
there are less synchronized sdBA-tdBA patterns in schizophrenia and schizophrenia prefers a component that
merges multiple brain regions. Identification of schizophrenia subgroups using dynamic features inspires the
use of neuroimaging in studying the heterogeneity of disorders.

Keywords: adaptively constrained IVA; dynamic BOLD activity; dynamic functional network connectivity; dy-
namic study; resting-state fMRI data

Impact Statement

This work introduces the use of joint blind source separation for the study of brain dynamics to enable efficient quantification
of the spatial property of dynamic blood-oxygen-level-dependent (BOLD) activity to provide insight into the relationship of
dynamic BOLD activity and dynamic functional network connectivity. The identification of subgroups of schizophrenia
using dynamic features allows the study of heterogeneity of schizophrenia, emphasizing the importance of functional mag-
netic resonance imaging analysis in the study of brain activity and functional connectivity to gain a better understanding of
the human brain, especially the brain with a mental disorder.
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Introduction

S TUDIES OF THE DYNAMICS of human brain function using
neuroimaging data have achieved great success in identi-
fying unique biomedical patterns that enable a better under-
standing of the functional differences between the healthy
and disordered brain (Assaf et al., 2010; Etkin et al., 2009;
Hutchison et al., 2013; Lefebvre et al., 2016; Rashid et al.,
2014; Uddin et al., 2011).

Functional magnetic resonance imaging (fMRI) is one of
the most commonly used imaging modalities and measures
the blood-oxygen-level-dependent (BOLD) activity in human
brain during either resting- or task-evoked state (Allen et al.,
2014; Kucyi and Davis, 2014; Sakoglu et al., 2010; Verley
et al., 2018; Wang et al., 2010). Most dynamic studies obtain
a functional connectivity (FC) or functional network connec-
tivity (FNC) matrix, which measures the association between
the BOLD activity of different functional regions or coherent
networks, as a function of time. A dynamic FNC (dFNC) anal-
ysis allows a systematical study of evolving functional patterns
by jointly taking multiple brain networks into consideration
(Calhoun et al., 2014; Mennigen et al., 2019).

There is rich work showing that both BOLD activity and
F(N)C are related to mental and cognitive processes (Britz
et al., 2009; Hutchison and Morton, 2016; Marusak et al.,
2017; Mclntosh et al., 2008; Pereira et al., 2019). Differences
in BOLD activity and FNC have been separately reported in
multiple mental disorders, especially in schizophrenia, such
as reduced amplitude of low-frequency fluctuation (ALFF)
in cuneus (Hoptman et al., 2010; Turner et al., 2013), reduced
BOLD activation in anterior cingulate gyrus (Baiano et al.,
2007; Schultz et al., 2012), dysconnectivity in default mode
network (DMN; Mingoia et al., 2012; Van Den Heuvel and
Pol, 2010), and dysconnectivity between thalamus and sen-
sory regions (Calhoun et al., 2009; Guller et al., 2012; Kiihn
and Gallinat, 2013; Malaspina et al., 2004; Zhou et al.,
2007). However, the association between time-varying, that
is, dynamic BOLD activity (dBA) and dFNC is not well stud-
ied and it is desirable to incorporate dBA to gain insight into
the activity-connectivity co-evolution by identifying highly
correlated patterns between dBA and dFNC.

InFuetal. (2018), the authors investigate the associations be-
tween dBA and dFNC in temporal domain, that is, they measure
dBA and dFNC by using the temporal variabilities of functional
networks and observe that dBA and dFNC are significantly cor-
related in time in some cases and patients with schizophrenia
show lower or nonexistent associations between dBA and
dFNC compared with the healthy controls (HCs). However,
similar to Fu et al. (2018), most previous studies conduct a
dFNC analysis by using the time courses of BOLD activity
by assuming the spatial domain is static (Jafri et al., 2008; Cal-
houn et al., 2014; Allen et al., 2014; Weber et al., 2020).

Spatial variation of BOLD activity is observed as a change in
the volume of a functional network or variations in the activated
regions within a functional network and has started to attract at-
tention, since they enrich the dynamic study of brain function
(Iraji et al., 2019a,b, 2020). Previous studies have shown that
simultaneously considering temporal and spatial changes
yields more distinguishable resting-state networks (RSNs) be-
tween subject groups (Jie et al., 2018; Kottaram et al., 2018;
Iraji et al., 2020). Studies that compute dFNC by using the spa-
tial maps of brain networks have also emphasized the impor-
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tance of the assumption of spatial variability in a dynamic
study, by detecting significant differences between the patients
with mental disorder such as between those with schizophrenia
and the HCs (Bhinge et al., 2019a,b; Ma et al., 2014).

However, the spatial activation patterns of dBA them-
selves are not well explored primarily due to the lack of ef-
fective quantification strategies of spatial property of dBA
(sdBA). An efficient quantification of sdBA does not only
enable the investigation of the spatial activation patterns of
dBA but also leads to a study of activity-connectivity co-
evolution using sdBA and dFNC that is computed by using
the spatial maps (sdFNC) of functional networks.

The extraction and efficient quantification of the dynamic fea-
tures captured through temporal and spatial variation leads one
to analyze their importance in studying a mental disorder such
as schizophrenia. There has been significant interest in studying
the subtypes of schizophrenia (Dwyer et al., 2018; Geisler et al.,
2015; Jablensky, 2006, 2010) to gain a better understanding of
the uncertainty in whether a precision medicine is needed
(Senn, 2018) during clinical diagnosis and treatment. Subtypes
of schizophrenia have been studied by using genetic information
(Hallmayer et al., 2005; Morar et al., 2018; Sayn et al., 2013)
but not yet using neuroimaging modalities such as fMRI data
that have been successfully used in the study of schizophrenia
(Calhoun and Adali, 2009; Geisler et al., 2015; Ma et al., 2012).

Our previous work showed that fMRI alone can identify
subgroups of schizophrenia that demonstrated significant dif-
ferences in terms of clinical symptoms and it helps understand
the heterogeneity of schizophrenia (Long et al., 2020). How-
ever, these subgroups were identified through static imaging
features. This motivates an investigation of the effectiveness
of dynamic neuroimaging features for identifying and studying
the heterogeneity of mental disorders such as schizophrenia.

Both temporal and spatial variabilities of BOLD activity are
important to gain a better understanding of brain dynamics.
However, existing methods such as group independent compo-
nent analysis (ICA; Calhoun et al., 2001) and joint ICA (Cal-
houn et al., 2006) can only effectively capture either temporal
variability or spatial variability by making relatively strong as-
sumptions. In this work, we propose the novel use of a recent
method, adaptively constrained independent vector analysis
(acIVA; Bhinge et al., 2019b), that enables us to simultaneously
capture the dFNC and dBA in the spatial and temporal domain,
and acIVA also provides an effective quantification of sdBA, as
part of the algorithm.

AclIVA is able to precisely preserve spatial variability by
adaptively tuning the constraint parameter that controls the
spatial association between reference signals and the source
estimates. More importantly, measuring the association be-
tween reference signals and the source estimates as part of
the acIVA algorithm provides an efficient quantification of
sdBA. The acIVA method also reduces the undesirable ef-
fects of high dimensionality that frequently arise during a dy-
namic study. We describe the issue of high dimensionality
and its relation to the dynamic study in the Data Formation
for Dynamic Analysis section. In addition, acIVA eliminates
the tough alignment process across multiple decompositions
due to the use of reference signals (Bhinge et al., 2019b).

To study the novel use of acIVA to capture the dynamic fea-
tures, we propose a simulation study and demonstrate that
acIVA yields a desirable performance in capturing spatial dy-
namics by accurately recovering the association between
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reference signals and the targeted estimates. The adaptively
tuned constraint parameter p provides the closest lower
bound for the association, hence preserving the spatial varia-
tion patterns across datasets.

We apply acIVA to extract dynamic features from a resting-
state fMRI dataset acquired from 179 subjects (88 schizophre-
nia subjects and 91 HCs). We quantify the temporal property
of dBA (tdBA) by using fractional ALFFs (fALFFs) of net-
work time courses to conduct a comparison between tdBA
and sdBA. To study the activity-connectivity co-evolution of
dBA and dFNC, dFNC is measured by using the dependence
among spatial maps and the correlation between sdBA and
sdENC is computed.

The analysis results show that tdBA and sdBA pairs of the
same functional network have higher correlation than those of
different networks, and sdBA yields higher correlation with
the network connectivity that is associated with the same net-
work. However, schizophrenia subjects show fewer signifi-
cantly correlated sdBA and tdBA pairs and favor a complex
component that merges multiple brain regions—super parietal,
visual, and cerebellum (SP-V-C)—when compared with HCs,
suggesting that the brain function is abnormally organized in
schizophrenia; hence, more brain regions are simultaneously ac-
tivated for a certain intrinsic function. Most importantly, we
identify subgroups of schizophrenia by using the tdBA-sdBA as-
sociation and the sdBA-sdFNC co-evolution, and we detect sig-
nificant differences across subgroups in terms of their clinical
symptoms that are measured by the positive and negative syn-
drome scale (PANSS) scores (Kay et al., 1987). This observa-
tion inspires further study of the heterogeneity of mental
disorders by using neuroimaging modalities such as fMRI.

The rest of the article is organized as follows. The Materi-
als and Methods section presents the framework of using
acIVA for dynamic analysis of fMRI data, including data for-
mation by adopting the sliding window approach, a detailed
introduction of acIVA algorithm, the extraction of reference
signal, and the quantification of dBA and dFNC. The Results
section shows the simulation results and the application to
real fMRI data. Finally, we conclude in the Discussion sec-
tion and point out the limitations of this work and possible
interesting future directions.

Materials and Methods
Institutional Review Board approval statement

Institutional Review Board approval was obtained for the
study. All participants provided informed consent. This work
is not a clinical trial.

Data acquisition and preprocessing

We used resting-state fMRI data from the Center of Bio-
medical Research Excellence (COBRE) that is available on
the collaborative informatics and neuroimaging suite data ex-
change repository (Scott et al., 2011; Cetin et al., 2014; Aine
et al., 2017). The data include 88 schizophrenia subjects (av-
erage age: 37 + 14) and 91 HCs (average age: 38 & 12). All
schizophrenia subjects had a negative toxicology screen for
drugs of abuse at the start of the study. The total olanzapine
equivalent dose of these subjects ranges from 2 to 60.2 mg/
day, with an average of 14.9mg/day. The Clinical Core
(COBRE Stability Clinic) affiliated with this project deter-
mined retrospective stability from relevant psychiatric re-

LONG ET AL.

cords, documenting no change in symptomatology or type/
dose of psychotropic medications that occurred during the 3
months before the referral.

For this study, the participants were asked to keep their eyes
open during the entire scanning period. All images were
collected on a single 3-Tesla Siemens Trio scanner with a
12-channel radio frequency coil by using the following
parameters: echo time =29 msec, repetition time =2 sec, flip
angle=75°, slice thickness=3.5mm, slice gap=1.05mm,
and voxel size 3.75x3.75x4.55 mm”. Participants were in-
structed to keep their eyes open during the scan and stare pas-
sively at a central fixation cross. Each resting-state scan
consists of 150 volumes. To eliminate the T1-related signal
fluctuations (T1 effect; Shin et al., 2013), the first 6 volumes
are removed in this study, thus 144 volumes remain for each
subject. The fMRI data are realigned with the INRIalign al-
gorithm (Freire et al., 2002) for head motion correction, fol-
lowed by slice-timing correction to account for timing
difference by using the middle slice as the reference frame.
Then, the fMRI data are spatially normalized to the standard
Montreal Neurologic Institute space (Friston et al., 1994) and
resampled to 3 x 3 x 3 mm?>, resulting in 53 x 63 x 46 voxels.
Afterward, the fMRI data are smoothed by using a Gaussian
kernel with a full-width at half-maximum of 5 mm.

Data formation for dynamic analysis

The sliding window approach facilitates the dynamic study
of fMRI data that are acquired within a certain duration (Ma
etal., 2014). In a sliding window approach, the entire scanning
period is divided into overlapping windows of length T;,, yield-
ing L windows for each subject, as shown in Figure 1. In our
case, this results in Lx 179 datasets. Joint analysis of a large
number of datasets typically involves estimation of a large
number of parameters with a limited number of samples,
which degrades the estimation of the spatiotemporal dynamic
features. This motivates the use of an algorithm that effectively
captures the variability in both the spatial and temporal do-
mains from a large number of datasets.

Independent vector analysis (IVA) is a data-driven tech-
nique that extends ICA to multiple datasets and makes effective
use of the dependence across datasets (Adali et al., 2014). The
IVA also relaxes the assumptions made in other joint blind
source separation solutions such as group ICA (Calhoun et al.,
2001), which assumes a common spatial signal space, and
joint ICA (Calhoun et al., 2006), which assumes a common tem-
poral signal space. The IVA simultaneously estimates the dem-
ixing matrices of all datasets to obtain dataset-specific time
courses and spatial maps, effectively capturing both the tempo-
ral and spatial variability of functional networks across datasets
(Bhinge et al., 2019a,b; Laney et al., 2014; Ma et al., 2014).
However, this flexibility comes at a cost that, with a limited
number of samples, the performance of IVA degrades as the
number of datasets and/or the model order—the number of
sources—increases (Bhinge et al., 2019b; Long et al., 2020).
This issue is referred to as a curse of high dimensionality in
IVA and is addressed by using a novel algorithm, acIVA, that
incorporates reference information into the IVA decomposition.

Adaptively constrained IVA

The acIVA algorithm is a semi-blind source separation
technique that incorporates reference information regarding
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the time courses or spatial maps into the IVA decomposition.
This reference information guides the decomposition toward
a desirable solution in high-dimensional scenarios, thereby
addressing the issue of high dimensionality (Bhinge et al.,
2019b). In this section, we introduce the general IVA
model followed by a description of the acIVA technique.
Given K datasets each containing V samples, IVA assumes
that each dataset is a linear mixture of N independent sources,

=AWt 1 <k <k 1<v<v, (1)
where XM =[x¥(1), x¥(2), .-, xk(v)] € RV*Y, sk=
[sM(1), sH(2), -, s¥(V)] € R¥*Y and AW € RV*N de-

note the observed dataset, the set of independent sources, and
the invertible mixing matrix, respectively. In addition to the as-
sumption of independence among sources within a dataset,
IVA makes effective use of dependence across multiple data-
sets by defining a source component vector (SCV) as s,(v) =
[sv), sZv), -, sE(v )]T e RE*1 1 <n <N, by col-
lecting corresponding components, where s” RY*! is the
nth source from the kth dataset. The IVA ﬁnds K demixing ma-
trices by minimizing the mutual information among the SCVs,
which results in the following cost function

W)= 3 Hly,) -

n=1

K
> 10g|detW[k] |
k=1

)

such that the estimated sources of each dataset are
obtained as yM(v)=WHKxHK(y) for k=1,...,K, where
W= {W[”,Wm, e ,W[K]} denotes the demixing matrices,
¥y, denotes the estimated SCV, H(-) denotes the (differential)
entropy, and th] is a unit vector resulting from the decou-
pling process that is perpendicular to all rows of WX/ except
wl¥ (Bhinge et al., 2017; Li and Zhang, 2007).

The acIVA algorithm guides the decomposition with prior in-
formation such as properly selected reference signals for the

Z Zlog

k=1n=1

N
=Y H(y,) — )
n=1

source components. The IVA decomposition is, hence, achieved
by minimizing the cost function in Equation (2) subject to an in-
equality constraint g, (yLk], dn) =p,— ’(y!lk])Tdn‘ < 0, where
0<p, <1 is the constraint parameter that provides the
lower bound for the similarity between the estimate yLk] and
the reference signal d,, that is measured by using Pearson cor-

relation. The cost function of acIVA is defined by incorporat-
ing an inequality constraint in the IVA cost function, yielding

J* (W) =JW)
2 2
A (K [K] — (M
ot ot ()} ()}
3)
where J (W) is the IVA cost function as defined in Equation

(2), M (0 < M < N) is the number of source estimates to be
constrained, ,u[k] is the regularization parameter, and y,, > 0
is the penalty parameter (Bhinge et al., 2019b).

Through an adaptive parameter-tuning process, acIVA
yields different values of the lower bound p for the similarity,
which allows the estimate to vary across datasets. Conse-
quently, acIVA is able to effectively capture the variability
across datasets that describes sdBA. Note that we refer to
the voxel activation conveyed in the spatial maps of estimated
components from acIVA as BOLD activity, which is different
from the raw BOLD signal in the original fMRI data. The use
of reference signals in acIVA also provides us with a useful
metric for quantifying spatial variation. Therefore, in this
work, we propose a novel use of acIVA to efficiently quantify
the spatial variability by using the similarity between the esti-
mates and corresponding reference signals.

The use of reference signals also effectively reduces the ef-
fect of high dimensionality, providing a more robust estima-
tion. In addition, it eliminates the alignment problem across
multiple decompositions. In application to the dynamic study
of resting-state COBRE fMRI data, this makes it possible
to divide the 179 subjects into multiple subsets of K, sub-
jects (yielding K = L x K, datasets) and perform multiple
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individual IVA decompositions without considering the chal-
lenging issue of component alignment. We use an IVA algo-
rithm that uses a multivariate Laplacian distribution model
for the sources, such as IVA-L (Kim et al., 2006), and addition-
ally considers the second-order statistics (IVA-L-SOS; Bhinge
et al., 2019b), since the Laplacian distribution is a good match
for fMRI data and the adding of SOS enables a full statistical
characterization of a Laplacian multivariate random vector.

Reference signal extraction

In our implementation of acIVA for extracting and quan-
tifying sdBA from multi-subject resting-state fMRI data, we
use the spatial maps of exemplar RSN components as refer-
ence signals. Possible choices for the exemplar RSNs include
the pre-defined RSN templates (Allen et al., 2011) or the
group-level RSN components extracted from the same data-
set by using group decomposition algorithms such as group
ICA (Bhinge et al., 2019a).

In this work, we apply acIVA to the resting COBRE data
collected from a schizophrenia group and an HC group, seek-
ing to gain a better understanding of schizophrenia through a
fair comparative study of dynamic features, that is, the asso-
ciation between sdBA and tdBA and the co-evolution of
sdBA and sdFNC, between groups. Therefore, instead of
using arbitrarily pre-defined or estimated RSN, it is desir-
able to use common static RSNs that are shared across the
subjects of two groups as the reference signals. We extract
common RSNs from the data of all 179 subjects by using a
common subspace analysis method (Long et al., 2020) and
use their spatial maps as reference signals. All the spatial
maps are normalized to have zero mean and unit variance.

Analysis of dBA and dFNC

Spontaneous slow fluctuations of correlated activity are a
fundamental feature of the resting brain and can be captured
as the BOLD signal that reflects neural synchrony between
brain regions (Bluhm et al., 2007; van de Ven et al., 2004).
A related measure is fALFF that quantifies the amplitude
of these low-frequency oscillations. Therefore, we measure
tdBA by computing the fALFF of time courses as the fraction
of the square root of power spectrum integrated in a low-
frequency band (0.025-0.15Hz) that summarizes the most
dominant frequencies of BOLD signal during resting state
(Zang et al., 2007; Zou et al., 2008).

Before computing fALFF, the time courses were detrended,
motion parameters were regressed (including their derivatives,
their squares, and derivatives of their squares), and finally des-
piked, which involved detecting spikes as determined by the
3dDespike algorithm that is originally included in the Analysis
of Functional NeuroImages toolbox (https://afni.nimh.nih.gov)
and replacing spikes by values obtained from third-order
spline fit to neighboring clean portions of the data.

The fALFF feature of each component is a vector of length
L with each entry as the fALFF value of the associated time
course in a single window. In this study, there are M RSN com-
ponents involved, hence yielding M fALFF features. Since the
variabilities of the spatial maps of RSNs reflect sdBA, we
quantify sdBA by using correlation between the spatial maps

of the estimates and the reference signals, p= ’( L"])Tdn‘.

We, hence, introduce an effective metric to quantify the spatial
variability of dBA, which enables an investigation of the rela-
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tionship between the tdBA and sdBA for identifying synchro-
nized patterns. We compute the cross-correlation between p
and fALFF to study the association between sdBA and tdBA

and denote the p-fALFF cross-correlation matrix as cl
each subject, as shown in Figure 2a.

As there is evidence that both BOLD activity and network
connectivity are related to mental and cognitive processes in
the brain, it is desirable to study the co-evolution of BOLD
activity and network connectivity. In Fu et al. (2018), the au-
thors studied activity-connectivity co-evolution by using
temporal characteristics of the BOLD signal. In this work,
we make use of an effective metric p for sdBA, enabling
the study of activity-connectivity co-evolution in the spatial
domain by using the spatial variability of the BOLD signal.
We measure sdFNC by using the normalized mutual informa-
tion among the spatial maps. Pearson’s correlation between p
and sdFNC is calculated and the activity-connectivity co-
evolution matrix is denoted as ELk] for each component and
each subject, as shown in Figure 2b.

The matrices C) and E}) are further analyzed to conduct a
comparison between the schizophrenia and HC groups. We
perform a one-sample #-test on the cross-correlation matrices
C¥ across the subjects in the schizophrenia group and HC
group separately, yielding a single matrix of #-statistics that
are significant for each group. A one-sample #-test is also per-
formed on the co-evolution matrices EL"] for two groups sep-
arately. Note that a co-evolution matrices E,[f] is associated
with a sing[le component of a specific subject. The one-sample
r-test on E yields a matrix of #-statistics that is significant for
each component in each group. We report the significant sta-
tistics with the false discovery rate (FDR) control at p <0.05.

for

Study of schizophrenia heterogeneity

We study the heterogeneity of schizophrenia by identifying
subgroups of schizophrenia subjects using k-means clustering
to cluster the p-fALFF cross-correlation matrices C¥ and the
activity-connectivity co-evolution matrices EL"] separately.
The unique entries of each matrix form a feature, with a
length of 64 for CM and 28 for EM. We use the elbow crite-
rion, which is calculated as the ratio of within-cluster distance
to between-cluster distance (Allen et al., 2014; Zhang et al.,
2018), to determine the number of subgroups Ns.

After identifying subgroups of schizophrenia, we perform
a multivariate analysis of variance (MANOVA) on CH and
EL"] to detect significant differences across the subgroups.
Four different test statistic values—Pillai’s, Wilks’, Hotel-
ling’s, and Roy’s (Rencher, 2003)—are reported. A MANOVA
provides a comprehensive comparison among multiple vari-
ables across multiple subgroups. However, it returns a single
test statistic value such that we cannot check the correlation
patterns. To visually compare the correlation patterns across
subgroups, we perform a one-sample #-test on C ¥ for each sub-
group and a univariate analysis of variance (ANOVA) on cH
across subgroups with an FDR control at p < 0.05. We then
plot the significant statistic values as a matrix to illustrate the
correlation patterns for each subgroup.

Simulation study

In the application of acIVA to real fMRI data, we use the
spatial maps of RSN as reference signals to emphasize the
importance of spatial variabilities. Therefore, we first use a
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using sdBA (p) and sdFNC (b). dBA, dynamic blood-oxygen-level-dependent (BOLD) activity; fALFF, fractional amplitude
of low-frequency fluctuation; RSN, resting-state network; sdBA, spatial property of dBA; sdFNC, dFNC that is computed by
using the spatial maps; tdBA, temporal property of dBA. Color images are available online.

simulation study to demonstrate that acIVA is able to accu-
rately recover the spatial variabilities due to the adaptive
parameter-tuning process.

The acIVA implementation enables the quantification of
sdBA by adaptively tuning the amount of correspondence be-
tween the estimated functional networks and the reference
signals. We use simulated data to demonstrate the ability
of acIVA to accurately capture the underlying spatial vari-
ability of dBA. To simulate fMRI-like sources that are
super-Gaussian distributed, we generate N=10 SCVs that
are multivariate generalized Gaussian distributed with ran-
domly selected shape parameter  ~U(0.1, 0.8) that forms
a super-Gaussian distribution, and different correlation ma-
trices R, € R'6X16 =1, ...,10, as described later in the
four cases and shown in Figure 3.

Out of the 10 SCVs, we constrain 6 SCVs, where the first
component in each of the first 6 SCVs is used as the reference

signal, and the other 15 components are used to generate
K =15 datasets. The sources for the kth dataset are obtained
by concatenating the (k + 1)th row from all SCVs. Each data-
set, X, is computed by mixing the 10 sources using a mixing
matrix, whose elements are randomly drawn from a uniform
distribution U(0, 1). We apply acIVA by using the IVA-L-
SOS algorithm on the K datasets, with the first M = 6 com-
ponents constrained by using the reference signals. The
value of constraint parameter p in acIVA is tuned from a de-
fault set P= {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
The details of four cases where the SCVs are generated to
have different correlation matrices are as follows, and the
visualization of correlation matrices is illustrated in Fig-
ure 3. If the components within an SCV are highly corre-
lated with the reference signal, it means the spatial
activation of the component is relatively stationary and
does not vary much across datasets. If the components
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FIG. 3. Visualization of the correlation matrices and the decomposition results of acIVA in the four cases of simulation. A
total of 100 independent realizations are generated for each case. In the ticklabels of x-axis in the boxplots, ““H”’ refers to the
results of components that are highly correlated (c;) with the reference signal, ‘L’ refers to the results of components that are
not highly correlated (c,), and ““diff”’ refers to the cases where we summarize the differences between the tuned values of p
and the ground truth. The boxplot displays the median, the 25th and 75th percentiles of the values with whiskers extending to
the 99.3% confidence interval and some outliers in red asterisks beyond whiskers. Color images are available online.

are barely correlated with the reference signal, it means the
component varies a lot across datasets in terms of its spatial
activation.

Case 1: SCVs 1-3 are generated to have a uniform cor-
relation structure with correlation value ¢=0.9, which
means that all the components are highly correlated
with the reference signal. SCVs 4-6 are generated to
have a subset of components that are highly correlated
with the reference signal and have high correlation val-
ues ¢; =0.9. Those components that are not highly cor-
related with the reference signal have correlation values
that are randomly selected from a uniform distribu-

tion ¢;~U(0.1,0.2). SCVs 7-10 are generated to have
a correlation matrix with random entries, C:QQT,
Q-U(—-0.2,0.8),, that allow the components to have
different correlation values with the reference signal.

e Case 2: SCVs are generated by using the same parame-

ters as in Case 1, except that the low correlation values
in SCVs 4-6 are randomly selected from a uniform dis-
tribution ¢,~U(0.001, 0.2). The default set is updated
to be P= {0.001, 0.1, 0.2, 0.3, 0.4, 0.5,0.6, 0.7,
0.8, 0.9}.

e Case 3: SCVs 1-3 are generated to have correlation

values ¢~U(0.8,0.9). The high correlation values in
SCVs 4-6 are ¢;~U(0.8,0.9) and the low correlation



STUDY OF ACTIVITY-CONNECTIVITY CO-EVOLUTION

values are ¢;~U(0.1,0.2) for SCV 4, ¢,~U(0.2,0.3)
for SCV 3, and ¢,~U(0.3,0.4) for SCV 6. The correla-
tion values are set to be in a specific range to investigate
the sensitivity of the adaptive parameter-tuning process
to varying values in acI[VA. SCVs 7-10 are generated in
the same way as in Cases 1 and 2.

e Case 4: SCVs 1 and 2 are generated to have correlation
values ¢c~U(0.8,0.9). SCVs 3 and 4 have correlation val-
ues ¢~U(0.6,0.7). SCVs 5-10 are generated to have a
correlation matrix C=QQ", Q~U(—-0.2, 0.8). The
components in SCVs 5 and 6 have random correlation
with the reference signal.

We quantify sdBA by using correlation between the spa-
tial maps of the estimates and the reference signals. This met-
ric is reflected in the tuned value of p, which we use for
measuring the performance of the algorithm. The ground
truth of p, the lower bound of the correlation, is 0.1 if
c€10.1, 0.2], 0.2 if ¢ €[0.2, 0.3], and so on. In most
cases, p is a single value, hence we summarize the tuned val-
ues of p for a direct comparison between p and p. However,
the true p for components with small correlation values in
SCVs 4-6 of Case 2 and all the components in SCVs 5-6
of Case 4 is not a single value, because their correlation val-
ues have a large range. For example, the components in
SCVs 5-6 of Case 4 have correlation values that change
from O to 1, hence the true p of some components with
¢ € 10.1, 0.2] is 0.1 whereas for those with ¢ € [0.2, 0.3] is
0.2. We then summarize the differences between p and p
to assess the performance of acIVA in these scenarios.

Results

We summarize the experimental results of both the simu-
lation study and the application to real fMRI data in this sec-
tion. With the simulation study, we demonstrated that aclVA
accurately preserves the spatial variabilities across datasets.
When applied to real fMRI data, we investigated the associ-
ation between the tdBA and sdBA and study the activity-
connectivity co-evolution by using spatial variabilities.

Simulation results

We had 100 independent realizations for each of the four
cases introduced in the Simulation study section and summa-
rized the results in Figure 3. We used the box plot for com-
paring values of the tuned p and the ground truth p as well as
the correlation between the estimates and true sources. The
simulation results demonstrated that the values of p were
very close to the ground truth values, suggesting that
acIVA is able to tune the closest lower bound for the corre-
lation between the estimates and reference signals in differ-
ent scenarios. With the constraint of the reference signals, the
estimates were accurately recovered and hence yielding high
correlation values with the true sources. When applied to real
fMRI data for a dynamic study where the sources come from
a sequence of windows, the correlation between the spatial
maps of the estimates and the reference signals can be a
good measure for sdBA.

Application to fMRI data

We obtained L=16 datasets for each subject by using a
sliding window of length T, =24 with a 66.67% (2/3) over-
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lap, yielding 2864 datasets in total. Instead of performing
a single acIVA on the whole data, we divided the sub-
jects into 45 subsets of Kp=4 subjects and performed
acI[VA decomposition on each subset. Each subset has
K =LxK,=64 datasets, a value that is higher than the opti-
mal value of the number of datasets that allows a reliable reg-
ular IVA decomposition (Long et al., 2020). It should be
noted that the last subset of HC only has three subjects,
hence 48 datasets. The model order used for each acIVA de-
composition was 20, and the dimension of each dataset was
reduced from 24 to 20 by using principal component analysis.

Using the common subspace extraction method, we
obtained eight components that were shared across all 179
subjects. The spatial maps of M =8 common components
were used as reference signals to constrain 8 out of 20 com-
ponents that were estimated. The eight common components
include medial visual (RSN1), sensorimotor (RSN2), cere-
bellum (RSN3), DMN (RSN4), SP-V-C (RSNS), frontopar-
ietal (RSN6), supplementary motor area (SMA, RSN7),
and frontal (RSN8) components, as shown in Figure 4 (ana-
tomical regions are summarized in Supplementary Table S1).
An example of the tuned value of p and the computed value
of p across 16 windows for one schizophrenia subject and
one HC subject is shown in Figure 5. We can clearly see
that the spatial variabilities of dBA in the same functional
network vary significantly across different subjects.

We also computed the normalized mutual information be-
tween the estimates and reference signals and compared their
values with the correlation values p. We plot normalized
mutual information values against p in Supplementary
Figure S1 and showed that they are coherent. In this work,
we used p for the quantification of sdBA because these val-
ues were part of the acIVA to quantify the association be-
tween the estimates and reference signals. We used spatial
maps of the DMN component as an example to demonstrate
how p quantifies spatial variability. High values of p mean
that the estimates are very similar to the reference signal,
whereas low values mean that the estimates deviate from
the reference signal, indicating higher variability. It shows
that the DMN component varies more across windows for
the HC individual than for the schizophrenia individual.

Co-evolution of activity and connectivity. We first investi-
gated the association between sdBA and tdBA (referred to as
Case 1 for simplicity in the following context) by computing
the cross-correlation between p and fALFF. The mean p-
fALFF cross-correlation matrices C that were averaged across
the subjects in the schizophrenia group and the HC group and
the one-sample #-test results are shown in Figure 6a. From
Figure 6a, we see that the significant correlation values are
mostly computed between sdBA and tdBA of the same net-
work. The results indicate that the temporal variabilities and
spatial variabilities of dBA of the same brain functional net-
work are more likely to be significantly correlated than those
of different networks. The schizophrenia group has fewer
significantly correlated sdBA and tdBA pairs when com-
pared with the HC group, indicating an abnormally orga-
nized brain function in schizophrenia.

The investigation of the activity-connectivity co-evolution
in the spatial domain (referred to as Case 2 for simplicity in
the following context) is shown in Figure 6b by demonstrat-
ing the mean co-evolution matrices E for two groups and the
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FIG. 4. Spatial maps of the eight common RSN components extracted by using IVA-CS for HC and SZ groups. DMN,
default mode network; HC, healthy control; IVA-CS, IVA for common subspace analysis; SMA, supplementary motor
area; SP-V-C, super parietal, visual, and cerebellum; SZ, schizophrenia. Color images are available online.

t-statistics of a one-sample r-test. There is a component
(RSNY) yielding significant co-evolution between its sdBA
and sdFNC in both schizophrenia and HC groups. This com-
ponent is a complex component that merges multiple brain
regions—SP-V-C—and it is the only component that shows
significant correlation between sdBA and sdFNC for schizo-
phrenia. Its sdBA activity significantly correlates to more con-
nectivity patterns in sdFNC for the schizophrenia group
compared with the HC group. It should be noted that these con-
nectivity patterns are associated with this complex component.
The HC group has an additional component (RSN7), the supe-
rior and middle frontal component (SMA), that yields signifi-
cant co-evolution between its sdBA and sdFNC.

Identification of subgroups of schizophrenia using dynamic
features. We identified subgroups of schizophrenia sub-
jects by clustering CH and E,[f] separately. To determine
the number of subgroups N, we ran the elbow algorithm
100 times, yielding the mean value and standard deviation
of 4.31£0.51 and 4.63 +0.69 for the two cases, respectively.
We conducted an extensive investigation on the influence of
N by forming three scenarios where four, five, and six sub-
groups of schizophrenia subjects were identified by cluster-
ing the dynamic features into four, five, and six clusters.

The mean cross-correlation matrices Csgi,i=1, ...,6
that were averaged across the subjects in each subgroup
for the three scenarios are shown in Figure 7 for Case 1.
The MANOVA test results show that there exist significant
differences across subgroups in all three scenarios with dif-
ferent values of Ns. We also plot the statistic values of the
one-sample ¢-test and ANOVA on CH across subgroups to
illustrate the correlation patterns. The results from Figure 7
show that each subgroup has a unique cross-correlation
patterns and within each subgroup, there are statistically
significant correlation values, except for subgroup 5
when N =6.

We looked in detail at subjects that were clustered into each
subgroup, and we identified some subject clusters that were
consistently grouped together, as shown in Figure 7 with num-
bers denoting subject indices ((k=1, ..., 88) under the corre-
lation matrices. We refer to these consistent subject clusters as

subclusters. The numbers in bold font and color refer to sub-
clusters that were detected in all three scenarios, and those in
regular font and color refer to clusters that were detected in
two arbitrary scenarios. The black numbers refer to subjects
that did not belong to any consistent subclusters. The numbers
in brackets denote the number of subjects in each subgroup. In
Case 2 where the co-evolution matrices ELk] are used to iden-
tify the subgroups of schizophrenia subjects, we also detect
significant differences across subgroups by using statistical
tests and find clusters of subjects that are consistently grouped
together in three scenarios of different values for Ng. The re-
sults are summarized in Supplementary Figure S2.

We also compared the clinical symptoms measured by
PANSS scores (Kay et al., 1987) across the schizophrenia sub-
groups that were identified by using neuroimaging data. There is
a total of 7 positive, 7 negative, and 16 general PANSS scales
that were measured for each subject. To compare the scores
across the identified subgroups, we performed a MANOVA
on five statistics—mean, standard deviation, median, minimum,
and maximum—of all the 30 PANSS across subgroups. The sta-
tistics of each PANSS were computed by using the values of all
subjects in a single subgroup. Therefore, in this MANOVA, five
variables—mean, standard deviation, median, minimum, and
maximum—with 30 samples were tested across the Ny sub-
groups. The MANOVA detected significant differences across
subgroups for the scenario of Ny=6 with F-score=2.1148
(p=0.0012) when using cross-correlation feature and
F-score=1.7942 (p=0.0100) when using co-evolution feature.

Positive, negative, and general PANSS are three indepen-
dent categories that can be investigated separately (Kayahan
et al., 2005; Peralta and Cuesta, 1994). Therefore, we also in-
vestigated the differences across the identified subgroups by
looking at the correlation between their positive, negative,
and general PANSS for the case when Ny =6. We found that
the subgroups demonstrated different trends in the correlation
between the positive and negative PANSS, as shown in Fig-
ure 8. In Case 1, subgroups 1 and 4 show positive correlation,
subgroups 3 and 5 show negative correlation, and the positive
and negative PANSS of subgroups 2 and 6 are almost not cor-
related. Though all subgroups showed positive correlation be-
tween their positive/negative PANSS and general PANSS,
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by using z,=2. Color images are available online.

only the correlation of the two subgroups—subgroups 1 and
4—that showed positive correlations between their positive
and negative PANSS was significant. In Case 2, four sub-
groups showed positive correlation between their positive
and negative PANSS scores and the other two subgroups
showed negative correlation. More subgroups showed signif-
icant positive correlation between their positive and general
PANSS than between their negative and general PANSS.

Discussion

In this work, we proposed the use of a semi-blind source sep-
aration method acIVA to extract both the spatial and temporal

variations across multiple datasets. We first demonstrated that
acIVA yielded preferable performance in preserving the spatial
variabilities across multiple datasets when using the spatial
maps as reference signals by conducting a simulation study.
The use of acIVA in the analysis has a number of advantages.
First, acIVA is a flexible model that makes use of reference sig-
nals, hence providing a more reliable estimation by reducing
the effect of dimensionality issue in IVA. Second, through
the use of reference signals, acIVA eliminates the alignment
issue of components across multiple decompositions and en-
ables the study of variabilities of a set of target components.
Although there are a significant number of works studying
the functional dynamics in the human brain, most of these
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have a focus on temporal variabilities (Fu et al., 2018; Jafri
et al., 2008; Weber et al., 2020). This is true, primarily be-
cause it is straightforward to withdraw temporal variability
by applying the window strategy to the time series of raw
fMRI or time courses of functional networks that are esti-
mated from the original fMRI data. The extraction of spatial
variability requires effective analysis of a large number of
windowed datasets, such as the use of acIVA on the win-
dowed datasets in this study.

There is evidence that functional patterns change in both
spatial and temporal domains, thus also taking spatial vari-
ability into account is expected to enrich the dynamic
study of the brain (Iraji et al., 2019a,b, 2020; Jie et al.,
2018; Kottaram et al., 2018). Data-driven source separation
techniques enable the extraction of dataset-specific variabil-
ities (Bhinge et al., 2019a,b; Laney et al., 2014; Ma et al.,
2014). However, a consistent estimation of functional net-
works from windowed datasets is challenging due to the iter-
ative nature of data-driven algorithms and the alignment
issue across multiple decompositions. The AcIVA desirably
addresses these issues through the use of a set of reference
signals and is able to extract both temporal and spatial vari-
ations from a large number of windowed datasets, allowing
for a more comprehensive study of brain dynamics.

In the application of acIVA to the dynamic study of fMRI
data, we investigated the effect of using different values as
the window length and decided to obtain the windowed data-
sets by using a sliding window of length 24TR with a 66.67%
(8TR) overlap. We ensured the window length to be in the
suggested range of 30—60 sec for capturing brain dynamics
(Allen et al., 2014; Damaraju et al., 2014; de Lacy et al.,
2017; Rashid et al., 2014; Shirer et al., 2012). In our recent
study using the same dataset (Long et al., 2020), there
were 14 common components identified for subjects with
schizophrenia and 16 for the HCs. Eight of these common

components are aligned across the two groups. We decided
to use 20 as the model order when applying acIVA to the
windowed datasets to allow the estimation of all of the com-
mon components for each group as well as a small number of
subject-specific components. Therefore, the smallest window
length we can use in this study is 20TR (40 sec).

We designed a hybrid simulation study similar to that in
Long et al. (2020) to investigate the effect of changes in win-
dow length and compare three scenarios where 20TR, 24TR
(48sec), and 28TR (56 sec) were used as window lengths.
We summarized the results in Supplementary Figure S3.
The results illustrate that there is no significant difference
across the three scenarios. Therefore, we finally chose
24TR as the window length in this work since it is in the mid-
dle of the suggested range for studying brain dynamics.

Most previous studies compute dF(N)C matrices and do
not require a decomposition of a large number of windowed
datasets. They identify discrete dF(N)C states by using these
matrices; hence, a sliding step of 1TR avoids missing a single
potential state. In this work, we did not identify dFNC states
but extracted dynamic features such as dBA and dFNC to
study the correlation among the extracted dynamic features.
To extract dynamic features, we performed acIVA on the
windowed datasets.

We chose a relatively large sliding step of 8TR when di-
viding the data into overlapping windows to avoid a signifi-
cant increase in the computational cost. With 24TR as the
window length, we compared the p-fALFF cross-correlation
matrices for the cases when 1TR and 8TR was used as the
sliding size separately. The results demonstrated that the
cross-correlation values did not yield a significant difference
between the two cases. Therefore, we chose 8TR as the slid-
ing size, which helps to significantly decrease the computa-
tional cost without affecting the statistical analysis results.
A relatively large sliding step was also commonly used in



"QUITUO d[qe[IeA. I8 soSewr
10[0D) "ddURLIBA JO SISATRUR dJeLIBANNW ‘Y AQONVIA {90UBLIEA JO SISA[EUR ‘Y AQONYV [01U0D Y] YA JuedoyruSis Jou aIe Sonjea UONEB[ALIOd dU) [[e ‘OLIeuadS PIIy) oy ul (¢OS)
dnoi3qns yiyy oy ur jey) pajou oq prnoys Iy ‘dnorSqns yoea ur s309[qns Jo IOqUINU dY) JJOUIP S}ONOrIq UI SIdqUINU Y], "SISN[OqNS JUAISISU0D Aue 03 Suo[aq jou op Jey) sjoalqns
0] SI9JaI YOr[q UI JUOJ S ], 'SOLIBUDS 0] ISBI[ JB UI PIJO3Jop 1L ey} SI9ISN[OqNS 0} SI9JAI JUOJ PIO[0 Je[nTal Sy} PUB ‘SOLIBUIS SIY) [[B UI PI)O3)ap AIUSISISUOD IB JBY) SIASN[O
-qns 0} SI9JaI P[Oq UI JUOJ PAIO[OJ JYJ, *SIO[0D JUSISIP SUISN SOOLIBW UONB[AIIOD dY} JOpUn pajsy| oIk g8 *** ‘] =y siequunu Sursn £q pajouap aIe ey} s1oalqns 7S Jo s101snjogns
JUQISISUOD Y], “SN JO SON[BA JUQIQMIP YA SOLIBUDS 921y} 10J ([ONU0D JY(I] U YIIM) S}[NSal )59} [eonsnels oy) pue dnoiSqns yoes JO SOOLNEW UONR[OLIO0-SSOI UBSIN  *L O

[t 0L 62
BSESOP B 64 698955 9% 9 295 [9BSBYBES 8 18 2L 92 S8O0SL BzEZ
Z9OPSEZLLLE 8808VS2SEPVE YO LY EFOELZ6LOLELOLED 2L5909 4595 BEEE VT 12 02 ZBYVLELLLED IS WY LV BEEZ 22 £8 8L 99 19 6¥ LE ¥E 92 GZ LI SL b1

VAONYIN (o)) ) f81) o) s1) A
0Lx69°L ee'g Aoy p z :
L0
(0L X €5 9g'e BuieloH 8l
e1-0LX P8 95'E SHIM
p1-0LX2L6 BYE ‘Bl

sdnoiBgns xig
5885
6. 69 B9 55 G 9€ s e 0L 62 [0
BE9BPSESEP P E SR AL RIer e d ¥B 18 L9 53 91 L1 OBZES
VAONVIN ZoorSezL L g VYO LFEFOELZELOLELOLED ZLSOD9LSOSEEEERT LT 0T LBPLELILED ISPV IPBEEZ EZ £8°8.99 19 6F LE ¥ 9Z ST LL SL L]

(81) (02) (81 (51 to0)

s0LX¥92 p¥gL oy
g0k x5l sy Buyelon
¢ 0L XQEE 627 SIM
¢ 0L X007 96°E ‘fElid

1eis-7 o]

| sdnosBans en4 | VAONY cos

GLI9BSESEYOPEL | ZBO0BESOSEZLS \E B2
BBOBVPSES TPV E ¥8 18 LL 9L SBEL0L6989555P9E2E 2 €8 BL 99 L9 6F LE ¥E 9T ST LI Sk P
YAONYWN ZISPSETLLLE TLSO09 L5995 BEEEVE 1T 02 LBVLELILED IS PP LV BEET TT YO L EPOELZELOLELOLBO

(12} 2 (12)

gOLX LL'L 6F'G Aoy
SenieA UoEIBLOD g-0L X096 8€'€ :BulioH
£0 20 10 0 b0 Zo- gp |eOLX 20T EFE SUIM

N U |60} X807 87 il

St 00 § 0 S D0 S

sanen onsneIS sdnoJbgns Jnog4 _

uol1e|a1109-SS0.10 u_n_n_ﬁ.m‘ Buisn uoneoynuapi dnoibgng

M



"QUIUO 9[qB[IBAE 918 SOSeWI J0[0)) "PAISI[ [QAJ] S0UBOYIUSIS PIIBIOOSSE S)I PUEB IN[BA
uone[R1I0d Ay} YPm sdnoi3qns fenprarpur jo eyep ayj joid JYSLI sI1 UO SIBYD [[eWS Y} pue ‘uosLiedwod [ensiA ISISE Uk J0J 13301 sdnoi3qns x1s Jo eiep oy sjofd 1reyo a31e] oy,
(J-P) 7 9seD pue (9—8) [ ase)) 10J 9 =N uaym dnoi3qns Yoea 10} SOI00S 9[eds SWOIPUAS aaneSau pue aanIsod [e1ouad pue ‘oAaneSou ‘aanisod oY) UsoMIaq UONR[AII0) 8§ “OL]

anneban anjeban
angeBay aaeBay 5 se 02 St ot S2 0z St ot

99s @ mum%c co.m_u. Sk 01 £ S 02 SL 0k S8 02 Sk 0k o m s

gos @ o= . e *f0

2Lro=d 3 | L8 .

e | = o

298 ©

los @

anneBan

0z SL 0L - Sz 02 SL 01
-
S e LH
g il P |
: g - |
L ” g * GEE |
cwzo=d FTego=d 7 ° °
“sgo=y W ozo=y4 st «t 5 I3
298 108
]
annisog ans0g anrsod ansod aags0d ans0y

SL 0 ¥ S 02 Sk 0L

2L 05152000 §L

Lzoo=d
. 50=H
£9S zos n
angsod anisod
SLLOSLSZL00L SL 02 SL O
- oL e !
£, S
.iulliiuil.ﬂu.m_-w —— |
o .ON . |
150=d m.mw so0=d ) omde
# 8po=d sko-=4 . | . 20=H z
998 s9s &
annisod anjisod ansod . B
E 52 02 Sb 0L 0z St 02 8l 2z 8 ln 2
ve ® oL se00=d .« =
e v50=H"" o .
* sk
‘sro=d 5 e
£0-=4 .
cos™ e

ON4dPs pue ygps :g 8se) VEP} pue ygps Y aseQ

442



STUDY OF ACTIVITY-CONNECTIVITY CO-EVOLUTION

previous studies, especially those that require following pro-
cesses such as decomposition for feature extraction (Bhinge
et al., 2019b; Demirtag et al., 2016). Nevertheless, it is of in-
terest to conduct future work that uses reduced sliding steps
to explore brain dynamics at faster time scales.

When applied to real fMRI data, we demonstrated that
acIVA extracted both the temporal and spatial variabilities
and provided an efficient measure of the sdBA in the study
of brain dynamics. A desirable measure of sdBA enables us
to investigate the cross-correlation between the two types
of dBA as well as a first attempt in studying the activity-
connectivity co-evolution patterns in the spatial domain.
Our study of the cross-correlation between sdBA and tdBA
illustrated that spatial and temporal variations of BOLD sig-
nal synchronously reflected the functional dynamics.

The results showed that the schizophrenia group had fewer
significantly correlated sdBA and tdBA pairs when compared
with the HC group, which may illustrate the dysconnectivity
in the brain of patients with schizophrenia. The investigation
of the activity-connectivity co-evolution in the spatial domain
yielded a complex component that merges multiple brain
regions—SP-V-C. This was the only component that yields
significant co-evolution patterns for schizophrenia. Compared
with HC, this complex component even yielded more sig-
nificant co-evolution patterns; hence, it can be interpreted as
performing a more centralized role in the brain for schizo-
phrenia. The preference of this complex component suggested
the reduced efficiency of brain function in schizophrenia, be-
cause more regions were simultaneously activated for a certain
intrinsic function in their brain.

The additional SMA component (RSN7) that yielded sig-
nificant activity-connectivity co-evolution patterns for the
HC group may reveal that HCs show better functional organi-
zation in terms of the spatial variation patterns in the superior
and middle frontal cortex compared with the schizophrenia
group. The frontal cortex has been widely studied to better un-
derstand schizophrenia, and there is rich work showing the
functional deficits in the frontal lobe for schizophrenia (Cal-
licott et al., 2000, 2003; Carter et al., 1998; Hahn et al.,
2018; Manoach, 2003; Mubarik and Tohid, 2016; Perlstein
et al., 2001; Sheffield and Barch, 2016).

The dynamic features—cross-correlation and co-evolution
patterns—were used to study schizophrenia heterogeneity by
identifying schizophrenia subgroups. We validated the re-
sults by detecting significant differences across the identified
subgroups and summarized the results in Figure 7 and Sup-
plementary Figure S1. A study of the relationship between
the findings of imaging data and clinical data is of great in-
terest. PANSS scores are important clinical diagnostic data
of schizophrenia and have been widely used in studies to
gain a better interpretation of schizophrenia (Kayahan
et al., 2005; Peralta and Cuesta, 1994).

We performed statistical tests on all 30 PANSS scores and
compared the three independent PANSS categories across
the schizophrenia subgroups that were identified by using
imaging data. As shown in Figure 8a, schizophrenia sub-
groups 3 and 5 demonstrate a negative correlation between
their positive and negative PANSS. These two subgroups
yielded two extreme cases regarding the p-fALFF cross-
correlation matrices that are shown in Figure 7. Subgroup 3
yielded the most significant correlation values, whereas sub-
group 5 yielded no significant correlation values. More spe-
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cifically, the component that yielded the most significant
correlation values in subgroup 3 was the DMN component
(RSN4), highlighting the potential important role of DMN
in illuminating some of the heterogeneity in schizophrenia.

There has been rich work showing that schizophrenia sub-
jects demonstrate dysconnectivity in DMN (Mingoia et al.,
2012; Van Den Heuvel and Pol, 2010) and this work provides
novel evidence that the dynamics of DMN also help better
interpret schizophrenia. More importantly, our work shows
that biological data suggest multiple subgroups that also cor-
respond to unique aspects of the clinical symptom scores.
Although it is tempting to label these as schizophrenia sub-
types, additional work is needed to further confirm this. Rep-
lication of these results would be important, and ideally, we
would like to also evaluate a broader sampling of the psy-
chosis spectrum for a further validation. However, this pre-
liminary work showcases the potential of an approach that
lets the biological data drive the categorizations by using
the (often ignored) spatial dynamic information and sug-
gests a way forward for linking self-reported symptoms to
biological markers. With the increase in emphasis of person-
alized therapy for schizophrenia, a joint analysis of multi-
domain data that helps gain a better understanding of the
heterogeneity may help improve treatment strategies.

Given the interesting results discussed earlier, there are
certain limitations of our work and some of the limitations
lead to promising future research directions. First, we used
dynamic features of eight aligned components that are com-
mon across subjects of both the schizophrenia and HC groups
to identify the schizophrenia subgroups for the study of het-
erogeneity in schizophrenia since this work involves a com-
parative study between the two groups. However, it might be
also reasonable to use components that are only common
within the schizophrenia group and in this case more compo-
nents might be involved, hence yielding more comprehensive
observations. Second, we studied the association between two
types of dBA and the co-evolution of dBA and dFNC by
using the resting-state COBRE data and we drew interesting
conclusions. The co-evolution of dBA and dFNC is a very
promising research topic and should be further investigated
in more datasets and other mental disorders.

Conclusion

We investigated the effectiveness of dynamic functional
features extracted from fMRI in studying the heterogeneity
of schizophrenia by identifying subgroups of schizophrenia
subjects. Besides the dFNC information that is widely used
in dynamic studies, BOLD activity is also shown to be re-
lated to mental and cognitive processes in the human brain,
making a strong case for the desirability of using both
BOLD activity and FC when studying dynamics. We pro-
posed a novel use of a recent method, acIVA, to effectively
capture tdBA and sdBA and to quantify sdBA as part of the
algorithm. The efficient quantification of sdBA allows the
study of the association between tdBA and sdBA as well
as the activity-connectivity co-evolution in the spatial do-
main by using sdBA and sdFNC.

We conducted a simulation study to demonstrate that the
adaptive parameter-tuning process in acIVA helps accurately
capture the spatial variabilities and provides a nice metric to
efficiently quantify the sdBA. The application of acIVA to
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the dynamic study of multi-subject resting-state fMRI data
shows that dBA demonstrates synchronized patterns in tempo-
ral and spatial domains, and dBA and dFNC are significantly
correlated in the spatial domain. The results illustrate that the
brain function is differently organized in schizophrenia sub-
jects compared with HCs. In addition, we identify unique sub-
groups of schizophrenia subjects that demonstrate different
dynamic patterns by using the cross-correlation and co-
evolution matrices separately. More importantly, significant
differences are detected across the subgroups in terms of
their clinical symptoms that are measured by PANSS. This ob-
servation inspires further study of the heterogeneity of mental
disorders by using neuroimaging modalities such as fMRI.
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