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Abstract— This paper proposes an independent component
analysis (ICA)-based framework for exploring associations
between neural signals measured with magnetoencephalog-
raphy (MEG) and non-neuroimaging data of healthy sub-
jects. Our proposed framework contains methods for subject
group identification, latent source estimation of MEG, and
discriminatory source visualization. Hierarchical clustering on
principal components (HCPC) is used to cluster subject groups
based on cognitive scores, and ICA is performed on MEG
evoked responses such that not only higher-order statistics
but also sample dependence within sources is taken into
account. The clustered subject labels and estimated sources are
jointly analyzed to determine discriminatory sources. Finally,
discriminatory sources are used to calculate global difference
maps (GDMs) for the summary. Results using a new data set
reveal that estimated sources are significantly correlated with
cognitive measures and subject demographics. Discriminatory
sources have significant correlations with variables that have
not been previously used for group identification, and GDMs
can effectively identify group differences.

Index Terms— MEG, ICA, GDM, HCPC, correlation

I. INTRODUCTION

Magnetoencephalography (MEG) records brain signals
that are observed via magnetic flux induced from neural
activities. Because of the advantages of high temporal and
spatial resolution, MEG has been increasingly utilized in the
study of brain function, e.g., MEG was used to determine
language dominance in epileptic patients [1]. Blind source
separation using MEG and, in particular, independent compo-
nent analysis (ICA), a matrix decomposition method which
demixes a linear mixture of latent sources based on the as-
sumption of their statistical independence [2], has also been
of interest to researchers for localizing neural sources [3].
ICA has also been used to reveal subject group differences
of brain networks involved in major depressive disorder for
MEG [4]. However, the full potential of ICA applied to MEG
data, especially by exploiting sample autocorrelation within
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sources, has not yet been explored. In addition, associations
between MEG evoked responses and cognitive characteristics
of typical individuals have not been examined. Therefore, we
propose an ICA-based framework to jointly analyze MEG
and neuropsychological test results. We demonstrate that
global difference maps (GDMs) [5], originally developed
for functional magnetic resonance imaging analysis, can be
effectively used to summarize the analysis results of the
MEG data. Results show that sources estimated by ICA
can identify subject groups with different neuropsychological
scores. Age and social economic status also show significant
correlation with the discriminatory sources.

This paper is organized as follows. Section II describes the
data set [6] and the analysis methods, including hierarchical
clustering on principal components (HCPC), ICA, and GDM,
that are used in this work. Section III reports experimental
results, and Section IV concludes the summary.

II. MATERIALS AND METHODS
A. MEG and Non-neuroimaging Data

This study uses MEG, demographics, and cognitive mea-
sures of participants in the Developmental Chronnecto-
Genomics (Dev-CoG) study [6]; see the list of the cognitive
measures in Table I. The Dev-Cog study contains multi-
modal neuroimaging data, neuropsychological testing, and
parent questionnaires with the aim of understanding brain
development from healthy subjects across the age range of
9-14 years. The data was collected from Mind Research
Network (MRN) and University of Nebraska Medical Center
(UNMC). Each participant was assigned to perform auditory,
visual, and multisensory tasks, and neuroimaging data was
acquired during these tasks. In each task, participants were
asked to press the index finger in response to the auditory
and visual stimuli. The visual stimulus was a screen of black
and white vertical grids, the auditory stimulus was a 40
Hz modulated 1 kHz sound, and both auditory and visual
stimuli simultaneously presented in the multisensory task.
MEG recordings were acquired simultaneously using a 306-
channel MEG system when participants performed the task.
For each trial, the fixation was presented with a red box at
the center for a random duration of 2.4-2.6 seconds, followed
by a stimulus for 0.8 seconds.

B. Methods

Consider the proposed framework of MEG analysis con-
sisting of group identification, ICA, and GDM as shown
in Figure 1. First, groups of subjects are identified by



TABLE I
LIST OF COLLECTED VARIABLES WHERE AGE AND SOCIOECONOMIC
STATUS ARE NON-COGNITIVE MEASURES.

Name Description

AGE Age

SES Socioeconomic Status

INATT Conners 3 Inattention Score [7]

HYPER Conners 3 Hyperactivity Score [7]

FSIQ Full Scale IQ Composite Score [8]

DCCS Dimensional Card Sorting Score [9]

FICA Flanker Inhibitory Control and Attention Score [9]
LSWM List Sorting Working Memory [9]

ORRENG Oral Reading/Recognition Comprehension Score [9]
PSM Picture Sequence Memory Score [9]

PICVOCAB  Picture Vocabulary Score [9]

using the cognitive scores. Next, MEG data and the subject
groups are jointly used to determine latent sources that can
discriminate between the groups by using ICA and false
discovery rate (FDR)-controlling procedure. Moreover, cor-
relations are calculated between the estimated MEG sources
and behavioral measures. Finally, sources that discriminate
between subject groups are summarized by GDMs. With
this framework, we can analyze neuroimaging and non-
neuroimaging data jointly for cognitive study.
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Fig. 1. The proposed framework of MEG analysis.

C. Behavioral Measures Clustering

HCPC is an unsupervised method for clustering data into
groups by performing hierarchical clustering on projected
inputs [10]. This method can be used for both continuous
and categorical variables. Suppose that a feature matrix
contains data of M subjects and F' features for clustering.
The features are projected onto S principal components to
reduce dimensions of the data. Subsequently, a hierarchy
of the clusters is generated from the projected features
using Ward’s method [11] and distance correlation [12].
Finally, the optimal number of clusters is determined by an
approximately unbiased p-value [13] less than 0.05.

D. MEG Analysis

Artifact and movement were corrected in the MEG data by
using the Neuromag Maxfilter software [14]. The Maxfilter
software was also used to register each data set to a common
head position within the area (average head position across
participants) allowing for comparison of sensor level data

across participants. Once corrected, epochs that range from
—0.1 to 1 second were extracted relative to the presentation
of the stimulus triggers with the stimulus presented at time 0.
Epochs within the condition were averaged, and the resulting
averaged evoked response was used for ICA.

Given an observation matrix X € RV*7 where N and
T are the number of mixtures and the number of samples,
respectively, the ICA formulation can be expressed as

X = AS, (1)

where A = [ay,...,ac] € RV*Y is an unknown mixing
matrix, S € RE*T is a source matrix of which the rows
are assumed to be statistically independent [2], and C' is the
number of latent sources. The i-th column of the mixing
matrix, a;, presents the weight of the i-th source across the
mixtures (subjects) . As the goal of this work is to find latent
information that describe differences between subject groups,
the weights can be used to determine which sources demon-
strate significant group differences. To determine the source
matrix, a demixing matrix W that maximizes independence
between the sources S = [81,...,8¢]" € RO*T, described
by S = WX, is estimated.
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Fig. 2. Observation matrix construction.

In this study, we construct the observation matrix X by
horizontally concatenating the temporal MEG data from each
sensor of one subject into a row vector, and concatenating
row vectors from all subjects vertically as shown in Figure 2.
This construction allows each of the estimated sources to
describe both temporal and spatial variations across subjects,
and thus the ICA estimated discriminatory sources can reveal
how both the temporal and spatial differences manifest in
the different groups. Each row of X is then standardized
to have zero mean and unit variance. Finite memory length
model (ER-FM) and autoregressive model (ER-AR) [15] are
applied to estimate the model order (the number of latent
sources), and principal component analysis (PCA) is then
used for dimension reduction using the estimated order C'. To
perform ICA, the demixing matrix W is estimated using an
entropy rate bound minimization (ERBM) algorithm which
exploits not only higher order statistics, but also sample
dependence within sources [16]. The sample dependence
is especially prevalent in MEG temporal data, and, to the
best of our knowledge, has not previously been exploited for
MEQG analysis.

E. Summarizing MEG Sources via GDM

GDM is a way to effectively summarize group differ-
ences using multiple discriminatory sources [5]. The idea



is to reveal underlying brain regions that show significant
differences between two groups of subjects. When explaining
the methodology, due to the permutation ambiguity of ICA,
we assume that the first m sources are discriminatory. The
GDM is computed by the weighted average of discriminatory
sources as follows

ScpMm = Z Z Sn7 2
1= 1

where t,, is the ¢-statistic calculated from the n-th column of
A, and t,, is positive or is made to be positive by multiplying
—1to a,, and §,,. Because of the sign ambiguity of ICA, this
multiplication does not change the estimated solution (aside
from flipping the sign of sources), and keeps the product
t, 8, the same. From temporal and spatial structures in §,,,
the GDM demonstrates the summary of group differences
by signals corresponding to MEG sensors. Note that §,, is
standardized to have zero mean and unit variance before the
computation. In addition, the weight for the GDM is similarly
calculated by

acpm = Z Z 3)
1= 1

This weight is used to calculate the p-value using the two-
sample ¢-test to determine the discriminative power of GDM.

III. RESULTS AND DISCUSSION

In this research, we used MEG evoked responses and
behavioral scores of 170 healthy subjects from the Dev-CoG
study [6]. For MEG analysis, only planar gradiometer sensors
were chosen for the analysis, since their peak sensitivity
corresponds more closely to the spatial location of the
source than magnetometer sensors. As MEG recordings were
originally pre-processed with a 60 Hz low-pass filter, we
resampled the data from 1000 Hz to 125 Hz to decrease
computational complexity without the loss of useful infor-
mation. In each stimulation task, we selected the demixing
matrix W that was the most similar to others from multiple
runs based on inter-symbol interference (ISI). From the order
selection, the model orders returned by both ER-AM and
ER-FM were 30, 22, and 13 for the auditory, visual, and
multisensory tasks, respectively.

Figure 4 reveals that estimated sources are significantly
correlated with many non-neuroimaging variables defined
in Table I. Specifically, correlations between sources and
AGE, INATT, ORRENG, and PSM were common across all
tasks. Remarkably, AGE and SES, which are not included in
cognitive measures, were also associated with some sources.
This means that the estimated sources provide information of
not only cognitive measures but also demographic and social
standing of participants.

For the group identification, nine cognitive measures, ex-
cluding AGE and SES, were used. We validated the optimal
number of clusters by using internal cluster validation indices
(Dunn index [17], Calinski-Harabasz index [18], Davies-
Bouldin index [19], McClain-Rao index [20], Bayesian in-
formation criterion, cluster entropy [21]) and external cluster

stability index (Jaccard Similarity index [22]). The results
showed that the optimal number of clusters was consistently
two. Furthermore, as shown in Figure 3, Group 1 is clearly
demonstrated by low values of INATT and HYPER and high
values of the other cognitive scores compared to Group 2.
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Fig. 3. Differences of cognitive scores in group identification.

According to the number of subject groups, discriminatory
sources were consequently determined by two-sample ¢-tests
performed on the columns of A, and corrected for multiple
comparisons using a FDR-controlling procedure with p <
0.05 [23]. As a result, the numbers of the discriminatory
sources for auditory, visual, and multisensory tasks were 7, 3,
and 4, respectively. As illustrated in Figure 4, discriminatory
sources are associated with AGE and PSM for all tasks.
It is worth noting that AGE, a variable not included in
the cognitive scores, is involved with the subject groups
identified by those scores. This underlines the importance of
including participants’ age in studies of brain development.

In addition, Figure 5 illustrates that, from the p-values
calculated using agpm, GDMs significantly demonstrate
group differences across subjects with different cognitive
scores. The GDMs show that discriminatory sources start
to respond about 0.1 seconds after the stimulation. The
estimated activity was dominant over temporal lobe in the
auditory task, while occipital lobe and surrounding regions
were active in the visual and multisensory tasks, consistent
with the expected behaviors for these tasks. This suggests
that these brain areas reflect brain development and are influ-
enced by the participants’ age during a simple multisensory
task.

IV. CONCLUSION

This study aimed to examine associations between neural
activities observed via MEG and cognitive test outcomes
of healthy participants taken from the Dev-CoG study. We
applied HCPC to cognitive scores for clustering subjects,
and performed ICA on MEG data to estimate latent sources.
The application of ICA to the MEG data revealed estimated
sources which described variation in both spatial and tempo-
ral domains. Furthermore, we implemented ICA-ERBM to
exploit not just higher order statistics, but also the strong
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(c) Multisensory task.

Fig. 4. Significant correlations between sources (ICs) and subject
characteristics where discriminatory sources are emphasized in red. The
sources are sorted by p-values from two-sample ¢-tests for determining the
discriminatory sources.
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Fig. 5. GDMs calculated using discriminatory sources. Signals are GDMs
corresponding to MEG channels, and topographical maps show the absolute
values of the GDMs at peaks of global field potentials as marked. The stimuli
start at time O.



prevalence of sample dependence within the MEG data.
The clusters and latent sources were jointly analyzed to
determine sources that can discriminate between groups.
All estimated discriminatory sources were then used to
calculate GDMs that summarize their discriminative power.
Experimental results showed that the estimated sources were
significantly correlated with cognitive test results without
prior information, and age had most associations with dis-
criminatory sources. These results are interesting because
sensory responses are typically viewed as developing early,
and less emphasis is put on examining basic sensory-level
development in the 9-14 year age range. These results also
indicate that sensory and cognitive processes continue to
develop throughout adolescence. Furthermore, the GDMs
revealed brain networks involved in the underlying group
differences. In addition, the proposed method, which was
performed in sensor space, could be extended to analyze
MEG evoked responses in source space to obtain more
specific details of spatial localization of brain regions.
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