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ABSTRACT

Linear latent variable models have proven effective for data fu-
sion using joint decomposition of multiple matrices. Identification
of the dependence structure of the latent variables—components—
across multiple datasets is key to this success as this helps explain the
underlying relationship across the datasets, and allows the design of
a joint decomposition model that best fits the properties of the prob-
lem. However, identification of the complete dependence structure
across more than two datasets is a difficult problem due to large num-
ber of possible dependence scenarios. In this paper, we address this
problem, i.e., the estimation of not only the number of components
that are dependent across N > 2 datasets but also their complete
dependence structure, i.e., the index of datasets across which they
are dependent. The method, complete model identification using
IVA (CMI-IVA), builds on the well-structured formulation of inde-
pendent vector analysis (IVA), which generalizes multiset canonical
correlation analysis, and provides a key step in facilitating this diffi-
cult problem. Properties of CMI-IVA are established and its perfor-
mance is first verified using simulations. We then apply the method
to real functional magnetic resonance (fMRI) data and demonstrate
that CMI-IVA provides meaningful interpretation of the data in terms
of number of components dependent across datasets and the associ-
ated components.

Index Terms— Model identification, Data fusion, FMRI, Com-
mon and distinct components

1. INTRODUCTION

Methods based on latent variable analysis have proven useful for
joint data analysis and data fusion across various disciplines such
as medical imaging, remote sensing, metabolomics, and chemomet-
rics, among others [1-4]. They allow explanation of the unique as
well as the common or dependent factors across multiple datasets
through latent variables, i.e., components. Hence, it is of particu-
lar interest to leverage these variables’ dependence structure to per-
form exploratory analysis, resulting in a more unified picture and
global view of the system of interest [5,6]. Numerous studies, such
as those in medical imaging, have focused on this very aspect, ei-
ther for fusion of different brain imaging modalities such as func-
tional magnetic resonance imaging (fMRI), electroencephalograph
(EEG), and structural MRI (sMRI) [7, 8], diffusion tensor imaging
(DTI), and magnetoencephalography (MEG) [9] or when using mul-
tiple datasets from the same imaging modality data such as fMRI
data collected for different experimental setups, conditions, tasks or
subjects [10, 11].
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Identification of the number of dependent components—or the
model order—and their dependence structure, i.e., datasets across
which they are dependent, across multiple datasets can be posed
as a model identification problem. While methods for identifying
the number of components within a single dataset are well devel-
oped, see, e.g., [12-14], methods for identifying those across multi-
ple datasets are quite limited. The latter is a more challenging prob-
lem, and the complexity of the problem increases significantly due
to the increase in possible dependence scenarios for more than two
datasets. The underlying components might be dependent across
all datasets, subsets of datasets, or none of the datasets. More-
over, the components that are dependent across datasets might not
be the ones with the highest variance. Hence, a traditional princi-
pal component analysis (PCA) based approach applied to individ-
ual datasets might eliminate these components at a first step thus
preventing their discovery in subsequent steps. Current methods
to solve the model identification problem are either limited to two
datasets [15, 16] or focused on identifying the number of depen-
dent components across all datasets [17]. One important method,
principal component analysis prior to canonical correlation analysis
(PCA-CCA), exploits CCA’s strength and is suitable for sample rich
and sample poor scenarios, but it is limited to only two datasets [16].
Another method, multiset-CCA followed by knee point detection
(MCCA-KPD), concentrates on discovering the model order only
for the components dependent across all datasets, disregarding the
dependence present across subsets of datasets [17]. On top of that,
determining only the model order without the knowledge of depen-
dence structure, i.e., identifying datasets across which components
are dependent, is often not sufficient to describe the complete under-
lying relationships among the datasets. A recently proposed method,
complete model selection (CMS) based on eigen-analysis of a joint
coherence matrix [18], provides the required flexibility, but it is com-
putationally costly and requires large memory allocation for most
applications, particularly for those in medical imaging, which we
discuss in this paper. One way to alleviate this issue is to first trans-
form the problem into a more convenient space that enables working
with a smaller dimensionality and where underlying assumptions for
the analysis can be more readily satisfied. This motivates us to pro-
pose a new method, which we introduce next.

We introduce complete model identification using independent
vector analysis (CMI-IVA), to estimate not only 1) the model or-
der, which includes identifying the number of components depen-
dent across all subset of datasets, but also 2) the complete depen-
dence structure of the components available in the datasets. CMI-
IVA exploits the strength of IVA framework to transform multiple
datasets into a space where we have an effective decoupling across
the subspaces such that by simply counting the number of eigenval-
ues greater than 1, we can identify the order of the dependent com-
ponents. The identity of the datasets that result in highly dependent



Fig. 1: Generative model of CMI-IVA. (a) IVA step estimates the SCVs and (b) EVD step identifies the covariance matrices of the SCVs with
eigenvalues greater than one to estimate the model order and dependece structure.

components can be found by evaluating the corresponding eigenvec-
tors. We validate the performance of the method with simulated data
as well as real fMRI data collected from healthy subjects and patients
with schizophrenia doing an auditory oddball task (AOD). First us-
ing simulations, we show that CMI-IVA outperforms other methods
with respect to the estimation results. Then with real fMRI data,
we demonstrate that the number of dependent brain maps and their
dependence structure identified by CMI-IVA provides meaningful
results and better interpretation of the task data given the knowledge
of the datasets used for the analysis.

2. METHODOLOGY

2.1. Problem formulation using IVA

Independent component analysis (ICA) is a data-driven blind source
separation (BSS) technique that decomposes a dataset into a set of
components based on the assumption of independence. ICA has
proven powerful in recovering interpretable, i.e., physically mean-
ingful, features in many studies, see e.g., [5S]. However, ICA is
limited to analyze a single dataset at a time. IVA generalizes ICA
to multiple datasets by additionally taking the dependence of the
datasets into account.

Consider K datasets, each containing 7' samples, formed from
a linear mixture of NV independent components as

xp(t) = Apsp(t),k=1,2,... K,t=1,2,....T, (1)

where A, € RV*N k= 1,2,..., K are invertible mixing ma-
trices. Given this model, IVA solution finds K demixing matri-
ces Wi, k = 1,2,..., K such that source components from

each dataset can be estimated through ux(t) = Wyxk(t). For
a given set of observations Xy, the above equation can be writ-
ten as, U, = WXy, where Xz, U, € RYXT) and U, =
[ug],uf], .. .,uLN]]T. The estimated components are indepen-
dent within a dataset while maximally dependent on corresponding
components across the datasets. This way, IVA takes the depen-
dence among the corresponding sources across multiple datasets
into account, to obtain decompositions that fully leverage the com-
monalities across the datasets. This is done by modeling the source
component vector (SCV), where nth SCV can be defined as
s eR®, n=1,2,...,N

sa(t) = [s1(t), s5(1), ... :
2)

i.e., by concatenating the nth source components from each of the
K dataset, where SL"] € R” is the nth source from the kth dataset.
Since SCVs are defined using corresponding components across all
K datasets, their covariance matrices preserve the dependence struc-
ture of the components across the data sets and can be used to solve
the model identification problem. For simplicity, we do not take

sample dependency into account in the rest of the article and con-
sider simple independent and identically distributed samples, thus
dropping index ¢ in (1). We assume all components are zero mean
and unit variance so that the covariance and the correlation matrix
coincide and are written for the nth SCV as,
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where, pgi] %, Tepresents unknown correlation coefficient between
the nth component across datasets k1 and k2. While pgg] gy = 0

represents no dependence, pgi %, 7 0 indicates dependence among
the nth components across datasets k1 and k2. Thus, one can simply
identify the SCVs with non-zero pgi &, t0 determine the dimension-
ality and the structure of the dependent components. Depending on
the density function used to model the SCVs, IVA can take both sec-
ond and higher-order statistics (SOS and HOS) into account [19].
When a multivariate Gaussian distribution is used to model the SCV,
thus taking only the SOS into account, the method is called IVA
with multivariate Gaussian distribution (IVA-G) [20]. We make use
of IVA-G to solve the model identification problem by estimating

1. the model order d, which in our case represents the total num-
ber of SCV covariance matrices with non-zero pg;] Ky and

2. the corresponding correlation structures, meaning the indices
of the datasets k1 and ks for which p}" . # 0.

We use IVA-G since it generalizes MCCA without the constraint of
an orthogonal demixing matrix [19, 20]. As such, IVA-G is read-
ily applicable to any problem for which MCCA has proved useful.
Moreover, strong identifiability condition of IVA-G—i.e., the abil-
ity to uniquely identify a wide range of signals under very general
conditions—allows IVA-G to identify components as long as any
subset of the components inside an SCV do not share a unique de-
pendence structure [21]. This property allows IVA-G to preserve
dependence structure more efficiently compared with other methods
such as CCA and MCCA.

PCA-CCA, developed for K = 2, defines model order as
diy ey = {1 : k1, k2 = 1,2 for which p{") ,  # 0}, while MCCA-
KPD, developed for K > 2, defines model order, dan = {n :
pgg] ko 7 OVE1, k2}, dependent across all datasets. Since model

order only represents the number of components correlated across
a fixed number of datasets, estimating it without the proper knowl-
edge of correlation structure does not provide complete relationship
across multiple datasets. The method proposed in [18], CMS, es-

timates both the model order and the correlation structure across



multiple datasets. It concatenates all the datasets into a large matrix
to estimate an NK x N K block-diagonal coherence matrix, and
uses the eigenvalue decomposition to solve the model identification
problem. Given the fact that number of samples N can be quite
large, as in our fMRI example, the memory allocation requirement
is significant. As we discuss next, when the problem is first trans-
formed into a decoupled domain through the use of IVA-G as the
first step, we can then work with smaller K x K SCV covariance
matrices by building on the development in [18] as we describe
next. The individual SCV covariance matrices estimated by IVA-
G compactly summarize the dependence structure across datasets
while providing an effective decoupling across the SCVs through
uncorrelatedness requirement built into the IVA-G estimation.

2.2. Complete model identification using IVA (CMI-IVA)

We propose a novel method, named CMI-IVA, to solve the com-
plete model identification problem. CMI-IVA uses the robust IVA-G
framework to transform multiple datasets jointly into a space where
there is an effective decoupling among the subspaces and use that
information in subsequent steps to identify and estimate the model
order and the corresponding correlation structure. We perform CMI-
IVA in two significant steps: an IVA-G step followed by an eigen-
value decomposition step. We start from the SCV definition of IVA-
G and show that eigenvalues and eigenvectors of SCV covariance
matrix R, in (3) can be used to completely characterize the underly-
ing relationship across the datasets. This result builds on results from
Theorem 1 and 2 in [18] and the Perron-Frobenius theorem [22], and
is established in our case—with highly correlated components—to
identify the eigenvalues greater than one and their corresponding
eigenvectors. We decompose R, using eigenvalue decomposition
as

R, = QDQ', )

where Q is the K x K matrix whose ith column q; € R is the
ith eigenvector of R,,, and D is a diagonal matrix whose diagonal
elements are the corresponding eigenvalues \;, i = 1,2,... K.
We start by showing that the largest eigenvalues of R.,,, where n =
1,2,..., N, can be used to identify the model order and then use the
corresponding eigenvectors to identify the index of datasets across
which the correlation structure is defined. This requires that com-
ponents are uncorrelated within each transformed dataset and cor-
related only among the corresponding components across datasets.
This is an important assumption made in the development of CMS
in [18] as it works directly with observation matrices. When IVA-G
is used as a first step as we propose to do, this condition is automat-
ically satisfied.

2.2.1. Model order estimation

In this section, we show that if nth component is correlated across
any subset of K datasets with pgi ko # 0 for k1 # ko and k1, ko =
1,2,..., K, then R,, has at least one eigenvalue greater than one.
We start with the case where the nth component at each dataset share
no correlation across datasets.

Case 1 (pﬁ]’kz = 0V ki,k2): If nth components across all K
datasets are all uncorrelated to each other, R,, is an K x K iden-
tity matrix and has eigenvalues all equal to one, i.e., \; =1, ¢ =
1,2,... K.

Case 2 (pk’ﬂ gy = 1V k1, k2): If nth components are fully correlated

across all K datasets with pg;]’ &, = 1, then R, is a matrix of ones.

The characteristic polynomial of R., is (A — K)A®~!. The rank

of the matrix is 1 and eigenvalues are equal to K with multiplicity
1 and 0 with multiplicity K — 1 [23]. If nth components are fully
correlated across any subset of K datasets with dimension L, R,
has one eigenvalue equal to or greater than L.

Case 3 (pgﬂ ko, 7 0t 3 k1, k2): If nth components are correlated
across any subset of K with non-zero correlation values, R,, can be
written as

0 I (5

F 0
Rn - { ) } ’
where F,, is an L. X L matrix similar to R, where L. < K. We
assume that all correlation values are transitive within the F',, ma-
trix, meaning if the nth component is correlated across datasets /1
and [», and across datasets l> and I3, it is also correlated across

datasets [, and [3, and the values of pyﬂlz are either 0, or greater

than ((L —1)/L)? for L > 4 datasets. Under these assumptions, we
have the results from Theorem 1 in [18] to show that F',, has at least
one positive eigenvalue greater than one as long as correlation exists
among nth components across any L datasets. Since F,, is similar
to R, then R,, also has at least one eigenvalue greater than one.

The above three cases indicate that the largest eigenvalue of R,,
is bounded by 1 and K, and it is greater than one if correlation ex-
ist across any subset of datasets. That means if d components are
correlated across multiple datasets we will have d SCV covarinace
matrices with largest eigenvalue greater than one. One can use this
property of the SCV covariance matrix to identify the model order
or number of components correlated across datasets.

2.2.2. Correlation structure identification

We show that we can identify the model order d using the eigenval-
ues of R,,’s. However, eigenvalues alone are not enough to iden-
tify the datasets across which these d components are correlated.
Eigenvectors of R.,,, on the other hand, especially the ones corre-
sponding to the eigenvalues greater than one, preserves the identity
of the datasets in their non-zero elements. To show that we start
from the case where R, is an K x K identity matrix and has no
eigenvalues greater than one. Since diagonal elements of R,, are
all zeros, no correlation structure exists across any datasets. When
R, is a matrix of ones and has one eigenvalue equal to K and rest
of the eigenvalues as zeros, the eigenvector corresponding to the
eigenvalue K is the vector of all ones [23], meaning all datasets
are contributing equally and nth component is correlated across all
K datasets. When R, has the structure in (5) and has at least one
eigenvalue greater than one, we have the results of Theorem 2 in [18]
to show that non-zero elements of the eigenvectors corresponding to
the eigenvalues greater than one preserves the indices of the datasets
lj, 7 =1,... L, across which the nth component is correlated. This
implies that the non-zero elements of the eigenvectors of R, asso-
ciated with the eigenvalues greater than one preserves the identity
of the datasets across which the components are correlated. Based
on this information, one can identify components that are correlated
across all, subset of datasets and no dataset and form the correlated
and distinct subspaces.

3. IMPLEMENTATION AND RESULTS

3.1. Simulation example

This section generates simulation examples for K = 3 datasets
to compare the relative performance of PCA-CCA, MCCA-KPD,
CMS and CMI-IVA. We compare the relative performance of all four
methods to estimate the model order and evaluate the performance of



CMS and CMI-IVA only for the estimation of the correlation struc-
ture. This is because PCA-CCA and MCCA-KPD are limited to es-
timate only the model order. For each dataset, we generate N = 10
components from Laplacian distribution with 7" = 1000 indepen-
dent and identically distributed (i.i.d.) samples. We select Laplacian
distribution since it is a good match to fMRI data [24]. We intro-
duce correlation to three components from each dataset with corre-
lation values 0.9, 0.7, and 0.5. These are the components correlated
across all three datasets. In addition to that, we make a single com-
ponent correlated across datasets 1 and 2 and another component
across datasets 2 and 3, both using correlation value 0.5. Hence,
there are d = 5 components correlated across datasets—3 across all
datasets and 2 across pairwise datasets—and 5 are distinct to each
dataset. These latent sources are then linearly mixed with mixing
matrices, A, € RV*Y | = 1,2, 3, with elements from a standard
Gaussian distribution N (0,1) resulting datasets X, € RV*7T for
k = 1,2, 3. Finally, the Gaussian noise of dimension N x 1" with
variance v is added to each dataset.

We evaluate each method’s performance by changing the num-
ber of samples, correlation values, or signal to noise ratio (SNR)
while keeping other parameters fixed. In the first case, we change
the number of samples in each dataset from 200 to 2000. In the sec-
ond case, we change the correlation values of only the pairwise cor-
related components from 0.1 to 0.9, where a small correlation value
indicates less association across pairwise datasets, and a higher cor-
relation value indicates the opposite. Finally, we adjust the SNR of
the datasets by varying noise variance v to test each method’s ro-
bustness under different noise levels. The performance of all three
methods are averaged across 50 runs and shown in Figure 2.

In Figure 2, the first column shows the model order estimation
performance of all four methods, and the second column shows CMS
and CMI-IVA’s performance for the identification of the correspond-
ing correlation structure. We use Frobenius norm distance between
true and estimated structures to determine the estimation error. Since
PCA-CCA is limited to two datasets, we run PCA-CCA for all pair-
wise combinations of datasets and show the average order. We note
that CMI-IVA and CMS estimate model order closer to the true or-
der d = 5 compared with the other two methods in all three simu-
lation cases. MCCA-KPD and PCA-CCA, due to their limitations,
estimate model order lower than the actual value d = 5. In Figure
2(a), CMI-IVA and CMS’s performance to estimate both model or-
der and correlation structure improves with the increase in the num-
ber of samples. CMS provides better performance for small sample
number compared with CMI-IVA, however CMI-IVA results lower
structure estimation error than CMS as the the number of sample
increases. Performance of MCCA-KPD for model order estimation
also improves with the increase in sample number since both IVA
and MCCA require large sample support for efficient estimation of
SCVs. However, the performance of PCA-CCA remains unchanged
due to its robustness for both large and small sample size scenarios.
In Figure 2(b), model order estimated by the CMI-IVA and CMS
switch from d = 3 to d = 5 and estimation error reduces as the
correlation value of pair-wisely correlated components increases. It
shows that as the association between the pairwise datasets grow
strong, these two methods identify those associations and estimates
model order accordingly. The performance of MCCA-KPD and
PCA-CCA remain unchanged since both methods are unable to iden-
tify the components correlated across pairwise datasets. Finally, all
four methods’ performance improves as the SNR increases in Fig-
ure 2(c). Estimation error of CMI-IVA and CMS for the correla-
tion structure also decreases with the increase in SNR values, where
CMI-IVA provides more stable results with smaller error bars com-

pared with CMS. Overall, the model order estimated by the CMI-
IVA and CMS represents all the correlated components across the
datasets and along with the estimated correlation structure, repre-
sents the true underlying relationship among the datasets better than
MCCA-KPD and PCA-CCA. CMI-IVA, because of initial IVA-G
step, provides more accurate estimation of correlation structure than
CMS, specially for higher sample size, correlation values and lower
SNRs. Given the large memory requirement for CMS, we use only
CMI-IVA in the application to real data discussed next.

w

_of [ecmI-va -
3 mmccakrDl| S VA
B PCACCA WEd® 1
o l>-CMS p
°
(a) £ 5[, S-o-e—0-0-0—0-0-0, S1F
© ©
€ |drng-u-tipiul £
k7] »of
w w
1t
. 4 ) ) )
0 1000 2000 0 500 1000 1500 2000
Sample Size Sample Size
ol cM-va - |4 3 i
9] mccAkr[| 5
b PCACCA £ ot cms | J
(@) CcMS w
o c
(b) 25} © e—e-e-9-0 | O} 1
154 , 7 ©
.g S B S St & g ok |
17 [7]
w w
1
L -1 L
0 0.5 1 0 0.5 1
Correlation Values Correlation Values
T 3 -
5% :\:A’\égll\\//}\(PD |
[} - 5 CcMS
° PCACCA 2 2r, 1
] CMS '-'é'
(C)Es- - o-0-0 - -%1- 1
< rﬂ’.
E |-t e 8 5w as. £
@ |7 g or |
w
1
-1 L

0 0 5
SNR (db) SNR (db)

Fig. 2: Performance of PCA-CCA, MCCA-KPD, CMS and CMI-
IVA for different (a) samples, (b) correlation values and (c) SNR.
The first column shows the model order estimation performance
of all four methods, and the second column shows the correlation
structure estimation performances of only CMS and CMI-IVA since
PCA-CCA and MCCA-KPD estimate only the model order and do
not provide information about the correlation structure.

3.2. FMRI data and extracted features

We use multiset fMRI data collected from 150 healthy controls and
121 patients with schizophrenia performing auditory odd ball task
(AOD). The fMRI datasets are from the Mind Research Network
Clinical Imaging Consortium Collection [25] (publicly available at
http://coins.mrn.org). During the collection process, subjects are lis-
tening to three different types of auditory stimuli; frequent low-tone
stimuli (standard), infrequent task-irrelevant stimuli (novel), and in-
frequent task-relevant stimuli (target) requiring a button-press re-
sponse. Infrequent tones are allocated in a pseudo-random man-
ner to ensure randomness in the process. In this study, we use re-
gressors created by modeling target+standard, novel, and only target
stimuli as delta functions and convolving the functions with the de-
fault hemodynamic response function (HRF) in statistical parametric
mapping (SPM) toolbox [26]. Subject averaged contrast images be-
tween the three stimuli tones are then used as multivariate features.
Thus the feature datasets are formed for target+standard (target+std),
novel, and target tones and have dimension, X, € R?71x48546 1 —
1,2, 3. All three datasets are then reduced to dimension 25, signal



subspace order estimated using minimum description length crite-
rion and by taking sample dependency into account [14]. We note
that ‘target+std’” and ‘target’ are the task-relevant datasets since they
include responses related to the button-pressing task, while ‘novel’
is the task-irrelevant dataset. This particular selection of feature
datasets allows us to test our expectations in terms of what can be
expected to be shared and unshared across these three datasets.

3.3. Results and discussion

We use CMI-IVA to identify the number of correlated components
and their corresponding correlation structure across three AOD fea-
ture datasets. We also use PCA-CCA and MCCA-KPD, but only to
estimate the model order since they do not estimate the correspond-
ing components or correlation structure. We do not able to use CMS
here due to its limitation with large sample datasets. To enable better
reproducibility of the results, we run CMI-IVA 25 times and select
the most consistent run using cross intersymbol interference (Cross-
ISI) measure [27]. In addition to that, we use ¢ = 0.2 as a threshold
to remove the insignificant correlation values from the SCV covari-
ance matrices. In total, CMI-IVA identifies 24 components corre-
lated across datasets, where 20 components are correlated across all
three datasets and 4 components are correlated across the datasets
‘target+std” and ‘target’. To compare with the existing methods,
PCA-CCA and MCCA-KPD estimate 18 and 16 as the model order.
Since the data is from healthy controls and patients with schizophre-
nia, we perform a two-sample t-test on the columns of the estimated
mixing matrices to identify the columns that show group difference
(p < 0.05) between healthy controls and patients. We refer to the
components associated with these columns as discriminative compo-
nents. Estimated components identified as correlated across datasets
and showing group differences are then thresholded at Z = 2 and
shown in Figure 3.

Figure 3(a) shows the components correlated across all three
datasets, while Figure 3(b) shows the components correlated across
‘target+std” and ‘target’ datasets. Figure 3(c) shows the correlation
matrices of components in Figure 3(a) and 3(b) across three feature
datasets. In figure 3(a) and 3(b), the color red, orange, and yellow
mean higher activation in healthy controls over the patient, and blue
means the opposite. Here, estimated components show higher acti-
vation in dorsal default mode network (DMN) and visual areas for
healthy controls, while in auditory, motor, and sensory-motor areas
for patients with schizophrenia. These are the areas known to differ-
entiate between healthy controls and patients with schizophrenia in
many prior studies, e.g., [8,28,29], thus increasing our confidence
in the method. Looking at the components in Figure 3(a), we note
that components show group differences in DMN, auditory, and vi-
sual areas for all three datasets. These components are not directly
related to the button-pressing task and have similar p-values across
all three datasets. On the other hand, components in the first row of
Figure 3(b) identified as correlated across two task-relevant datasets
show activations in motor and sensory-motor areas, strongly related
to the button-pressing task. Moreover, the components show lower
p-values, i.e., higher differentiation between healthy subjects and pa-
tients, in task-relevant datasets. Overall, components identified as
correlated across all datasets have similar p-values and show activa-
tion in areas not related to the task, while components identified as
correlated across task related datasets have lower p-values and show
activation in areas strongly related to the task. This explains the rela-
tionship among the datasets, where task-related datasets share more
commonality between them compared with the non-task ones.

Target+std
™ p=00097

Novel Target

= 5 50065

p = 0.0093

p = 0.1487

N

1 2 3 1 2 3 0

Fig. 3: Estimated brain components identified by CMI-IVA as linked
across (a) all datasets and (b) ‘target+std’ and ‘target’ datasets, and
(c) their corresponding correlation matrices. We are only showing
the components that are correlated across datasets and at least one as-
sociated component showing group difference between healthy con-
trols and patients. In (a) and (b), the color red, orange and yellow
means higher activation in controls and blue means higher activa-
tion in patients. Here, components in (a) show activations in dorsal
DMN, auditory and visual areas, while components in (b) show ac-
tivations in motor and sensory motor areas.

4. CONCLUSION

In this paper, we introduce CMI-IVA for solving the complete model
identification problem. We compare the method’s performance in
simulations with PCA-CCA, MCCA-KPD and CMS and then apply
our method to real fMRI data. We find that CMI-IVA can identify the
number of correlated components as well as the corresponding corre-
lation structure across multiple datasets. When applied to real fMRI
data, we show that task-related components estimated by CMI-IVA
are correlated across task-related datasets, and non-task related com-
ponents are correlated across all datasets, thus explaining the nature
of the datasets’ relationship in a meaningful way. One practical as-
pect of the implementation is that the exact threshold for eigenvalues
will not be at exactly zero. In our implementation, we found out that
simple zero-imputation of insignificant correlation values in the SCV
covariance matrices provided satisfactory performance. However, it
is desirable to make this threshold data driven as well. Possible ways
to achieve this include use of information-theoretic criterion (ITC) or
bootstrap based hypotheses tests [18]. Although we use multiset data
in this work, CMI-IVA can also be used with multimodal datasets.
In addition, the success of the method using IVA-G in this context
inspires us to use other IVA algorithms such as those that take HOS
of the data into account and apply for the fusion of more challenging
problems such as subgroup identification in multi-subject data, com-
mon and distinct subspace identification in medical and behavioral
datasets, remote sensing applications, among others.
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