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Abstract—Dynamic functional connectivity (dFC) analysis en-
ables us to capture the time-varying interactions between brain
regions and can lead to powerful biomarkers. Most dFC studies
are focused on the study of temporal dynamics and require sig-
nificant postprocessing to summarize the results of the dynamics
analysis. In this paper, we introduce an effective framework that
makes use of independent vector analysis (IVA) with fractional
amplitude of low frequency fluctuation (fALFF) features ex-
tracted from task functional magnetic resonance imaging (fMRI)
data. Our approach, which is based on IVA with fALLF features
as input, (IVA-fALLF) produces an effective summary of the
dynamics also greatly facilitating the study of both spatial
and temporal dynamics in a more concise manner. IVA-fALLF
captures the spatial and temporal dynamics of sensorimotor task
data and identifies a component with significant difference in
dynamic behavior between healthy controls (HC) and patients
with schizophrenia (SZ). We also demonstrate aberrant behavior
in the brain networks of patients with SZ as they show more
variability and less consistency than HC. Finally, our post
analysis using behavioral scores finds significant correlation
between brain imaging data and the associated behavioral scores,
increasing confidence on our results. Our results are consistent
with the previous data-driven dFC analysis as we find similar
brain networks showing abnormal behavior in patients with SZ.
Moreover, our analysis identifies component behavior in task and
rest windows separately and provides additional confirmation of
results through correlation with behavioral scores.

Index Terms—Independent vector analysis (IVA), fractional
amplitude of low frequency fluctuation (fALFF), sensorimotor
(SM) task data, dynamic functional connectivity, behavioral
scores

I. INTRODUCTION

The human brain consists of functionally connected regions
that interact continuously with each other. Static connectiv-
ity analysis cannot capture time-varying interactions across
brain networks while dynamic connectivity analysis has been
successfully used to capture dynamic patterns from healthy
controls and patients with a variety of disorders [1]–[6]. Un-
usual functional connectivity has helped us to identify various
disorders such as schizophrenia [7]-[10], bipolar disorder [11],
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generalized anxiety disorder [12], attention deficit hyperactiv-
ity disorder [13] and mild cognitive impairment [14].

Most dynamic functional connectivity (dFC) investigation
procedures only consider the temporal dependence of the
brain regions while overlooking the connectivity of the spatial
regions. Few of the studies that analyze changes in spatial
networks can be broadly categorized as model or data driven.
Model-driven methods make stronger assumptions about the
nature of the data, such as in-region of interest (ROI) based
methods make use of pre-defined brain networks [15]-[17].
Data-driven methods such as independent component anal-
ysis (ICA) can extract brain networks with minimal prior
assumptions and have been used to study dynamics [18]-[19].
Independent vector analysis
(IVA) extends ICA to multiple datasets [20]-[21] and can
effectively capture the variability in both the spatial and
temporal directions. Ma et al., [1] and Bhinge et al., [22]-[23]
used resting state fMRI data with IVA to study dynamics using
a windowed approach. One issue with the application of IVA
for dynamics studies is the fact that as the number of datasets
increases, precision of IVA can be compromised [23]-[24]. In
addition, study of dynamics primarily consider use of resting
state data [1], [22]-[23] while cognitive tasks require responses
from participants and a dynamic analysis can show how brain
networks evolve with the task [19] and provides synchrony
among subjects. The amplitude of low frequency fluctuation
(ALFF) approach has been used as an effective summary in a
number of studies such as [25]-[26]. In this paper, we introduce
the use of fractional ALFF (fALFF) features using task fMRI
data for studying spatial and temporal dynamics using IVA.
This effectively alleviates the dimensionality issue in IVA
and provides another important advantage in summarizing
the dynamics. In general, in dynamics studies, following
the extraction of spatial and/or temporal maps, summary of
dynamics is obtained using a number of post-processing steps
[1], [22]-[23], [27]. Our approach based on IVA with fALLF
features as input also produces an effective summary of the
dynamics also greatly facilitating the study of spatial and
temporal dynamics in a more concise manner.

We use a sensorimotor (SM) data collected from 147 healthy
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Fig. 1. IVA framework for capturing dynamic brain activity using fALFF features. (a) Windowing fMRI data with no overlap for task-rest blocks. (b)
Extracting fALFF features for the windowed data. Each windowed fALFF for all the subjects are concatenated together form one dataset. (c) IVA is used to
capture the dynamics.

controls (HC) and 106 patients with schizophrenia (SZ). We
show that the proposed IVA framework with fALLF captures
both the spatial and temporal changes successfully. We iden-
tify a motor component with significant difference between
HC and SZ across the windows. Component variability and
consistency are also reported to illustrate the differences for
the two components. These results clarify that brain networks
of patients with SZ show more fluctuation and less consistency
than those of healthy controls during the task. We also perform
a post analysis using behavioral scores and identify a number
of behavioral variables that significantly correlate with the
subject variations extracted using IVA, further increasing our
confidence on the final results.

The remainder of the paper is organized as follows. Section
II presents the fALFF feature extraction and background of
IVA. It also shows the proposed IVA framework that we use
to capture the dynamics. Section III shows the implementation
details and results on the feature data. Section IV provides a
discussion of the results and points out future directions.

II. MATERIALS AND METHODS

A. Dataset

We use the MIND Clinical Imaging Consortium (MCIC)
dataset (publicly available at http://coins.trendscenter.org)
comprised of 253 participants: 147 healthy controls (HC) and
106 patients with schizophrenia (SZ) with an age range of 18
to 60 years [28]. The dataset consists of fMRI scans collected
from both HC and SZ groups while performing a sensorimotor
task from four sites: the University of New Mexico (UNM),
the University of Minnesota (UMinn), Massachusetts General
Hospital (MGH) and the University of Iowa (UIowa).

The task captures the auditory and somatosensory response
with the change of audio tones of different frequencies.
Subjects were presented with a sequence of auditory stimuli
consisting of 16 different tones each lasting 200 ms and
ranging in frequency from 236 Hz to 1,318 Hz with a 500

ms inter-stimulus interval. The first tone presented was set
at the lowest pitch and each subsequent tone was higher
than the previous one until the highest tone was reached, at
which point the order of the tones were reversed. Each tonal
change required a button press with the right thumb. A total
of 15 increase-and-decrease blocks were alternated with 15
rest (fixation) blocks, with each block lasting 16 seconds in
duration.

The fMRI images were collected on a 3-T Siemens Trio
scanner in UMinn, UIowa and MGH where UNM used a
Siemens 1.5-T Sonata scanner. For all sites prospective acqui-
sition correction (PACE) corrected, whole-brain, single-shot
EPI data parallel to the AC-PC line (in-plane resolution 3.4
mm, 27 slices, slice thickness = 4 mm, 1 mm skip, slice order
interleaved, TE = 30 ms for 3T, TE = 40 ms for 1.5T, TR = 2
s, FA= 90, FOV = 22 cm, 3DDAs (dummy data acquisition),
bandwidth = 3126Hz/pixel) were acquired.

The fMRI data was preprocessed using an automated anal-
ysis pipeline [29] carried out in SPM. The pipeline consisted
of: 1) aligning all the images with the first image as the
reference using INRIalign approach [30] to correct minor
motion of the subject; 2) correcting for time differences
between the slices using the middle slice as the reference;
and 3) spatial normalization to MNI space, including reslicing
to 3× 3× 3mm3, resulting in 53× 63× 46 voxels. Data were
then spatially smoothed with a 10-mm FWHM Gaussian filter.
The preprocessed fMRI data is masked to remove the non-
brain voxels using the Group ICA of fMRI Toolbox (GIFT)
[31]. After masking the dimension of the fMRI data for each
subject is 120× 67, 747 (number of timepoints(T ) × number
of voxels(V )).

B. Data windowing and fALFF feature extraction

We propose a three stage framework to use fALLF features
in our dynamic study. The detailed framework is shown in
Figure 1.



In the first stage, a sliding-window approach is used to
divide the data into task and rest windows. Each window is
of length L = 8 time points (16 seconds) as both task and
rest block consists of 8 time points. We exclude the first 5
time points as the first auditory stimulation (task) window
starts from T = 6. B[m,k] ∈ RL×V , denotes the kth window
of the mth subject, where M (m = 1, ..., 147 are HC and
m = 148, ..., 253 are SZ) is the number of subjects and K
is the number of windows. Windowing the data results in
K = 14 windows (from T = 6 to 117) with no overlap and
with alternating task-rest blocks. fALFF maps are computed
using the REST software (http://resting-fmri.sourceforge.net)
on the windowed data. To compute the fALFF features,
windowed data is first transformed to the frequency domain
and then sum of the frequencies in the low frequency band
(0.01 − 0.15 Hz) is obtained. For each voxel, the ratio of
the averaged square root of the power spectrum within the
0.01− 0.15 Hz frequency band to that of the entire detectable
frequency range is calculated. In the second stage, the fALFF
features computed for all the subjects for one window are
concatenated together, yielding K = 14 datasets as shown in
Figure 1.

We perform dimension reduction by applying PCA on the
feature dataset and retaining N principal components. We
denote the dimension reduced dataset as X[k] ∈ RN×V and
use 90% as the threshold for the variance preserved which
gives us order N = 40.

C. IVA and the model for dynamics

ICA is a blind source separation technique which decom-
poses a given set of observations into a mixing matrix and
sources by assuming that observed data is generated from
a linear mixture of independent sources [32]. It has proven
effective in fMRI data analysis [33]-[34], however it is de-
signed for a single dataset. Independent vector analysis (IVA)
is an extension of ICA to multiple datasets which enables the
use of statistical dependence of latent (independent) sources
across datasets by exploiting both second order and higher
order statistics [35].

Given K datasets, each consists of V samples, each dataset
is a linear mixture of N independent sources,

x[k](v) = A[k]s[k](v), 1 ≤ k ≤ K, 1 ≤ v ≤ V, (1)

where, A[k] ∈ RN×N , k = 1, ...,K denotes the invertible
mixing matrix. For a given set of observations, IVA generative
model can be written as, X[k] = Â[k]S[k]. X[k] ∈ RN×V

denotes the observations and S[k] ∈ RN×V are the latent
sources. IVA estimates K demixing matrices, W[k], k =
1, ...,K so that the dataset specific sources can be estimated
as, Ŝ[k] = W[k]X[k].
The demixing matrices are estimated such that the following
IVA cost function is minimized,

JIVA =
N∑

n=1

[
K∑

k=1

H(ŝ[k]n )− I (̂sn)
]
−

K∑
k=1

log
∣∣det(W[k])

∣∣(2)

IVA defines a source component vector (SCV) as, ŝn =
[

ŝ
[1]
n , ..., ŝ

[K]
n

]T
∈ RK , where ŝ

[K]
n is the nth component of

the kth dataset. I (̂sn) denotes the mutual information of the
nth SCV. The entropy, H(ŝ

[k]
n ) and mutual information term

balance the independence within the dataset and dependence
across the datasets by minimizing the IVA cost.

Application of IVA on the fALFF feature dataset, X[k], k =
1, ...,K, results in maximally independent components (ICs),
S[k], k = 1, ...,K . We obtain the subject-specific spatial
maps, using dual regression [31], which are denoted as
s
[m,k]
n , meaning nth IC of mth subject in kth window. The

estimated mixing matrices, Â[k], are back reconstructed to
obtain dataset-specific mixing matrices, A[k],∈ RM×N , using,
A[k] = (D[k])−T Â[k], where D[k] is the data reduction
matrix. The reduction matrix, D[k], comprises of the N eigen-
vectors, corresponding to the first N largest eigenvalues of the
covariance matrix of X[k]. Each column of A[k] ∈ RM×N ,
indicated as a

[k]
n , n = 1, ..., N , represents the weight of the

corresponding source s
[k]
n on each subject. It quantifies each

subject’s contribution to the ICs and hence is referred to as
subject covariations of the ICs.

In this study, we use an IVA implementation which com-
bines two IVA algorithms: IVA-G [20] and IVA-L-SOS [23].
IVA-G takes only second order statistics (SOS) into account
by assuming the SCVs are multivariate Gaussian while IVA-L-
SOS (IVA-L with SOS) utilizes a multivariate Laplace prior for
SCV distribution. IVA-L-SOS takes both SOS and higher order
statistics (HOS) into account by calculating the covariance
matrix of each SCV and it is a good match for fMRI data.
We initialize IVA-L-SOS with a solution from IVA-G to take
the advantage of both algorithms.

As IVA is an iterative algorithm, the decomposition re-
sults vary from different initialization points. Hence, we use
a technique based on cross joint inter-symbol interference
(cross-jISI), an extension of the technique proposed in [36]
to multiple datasets, in order to select the most consistent IVA
run from 30 independent runs with random initializations.

III. RESULTS AND POST-ANALYSIS

A. Experimental results

1) Estimated ICs: We obtain N = 40 ICs for each of the
K = 14 windows from IVA. First, we take the Z-score of the
ICs which measures the distance of raw scores from population
mean in standard deviation units. Then we convert the voxels
with Z-score greater than threshold 1.5(|Z| ≥ 1.5) from MNI
coordinates to Talairach coordinates to assign anatomical and
functional labels for the left and right hemispheres. Of the 40
ICs we select 8 task-related ICs for our dynamic study from
visual inspection. These networks are labeled based on the
following classes: default mode network (DMN), sensorimotor
(SM), auditory (AUD), cerebellum (CB), motor (MC), medial
temporal (MT), visual (VIS) and frontal (FRO). In an IVA
decomposition the corresponding estimated ICs across the
windows are maximally dependent and they form a SCV
together. For a better visualization, we take the mean of each



Fig. 2. Spatial maps of the mean ICs are categorized into 8 domains: default
mode network (DMN), sensorimotor (SM), auditory (AUD), cerebellum (CB),
motor (MC), medial temporal (MT), visual (VIS) and frontal (FRO). Red
voxels indicate positive activated and blue voxels indicate negative activated.

selected IC across the windows and show the spatial maps
of the eight mean ICs (mean SCVs) in Figure 2.

2) Dynamics of subject covariation: In order to study the
difference in dynamic behavior between healthy controls and
patients, we use the subject covariation matrices, A[k] ∈
RM×N , k = 1, ...,K obtained after back reconstructing the
mixing matrices from IVA. The values in each column of
subject covariation matrices, a[k]mn, n = 1, ..., N,m = 1, ...,M ,
quantify the contribution of subjects to each IC.

Dynamics of ICs across windows: We perform a two-
sample t-test on subject covariations to identify components
that show group difference between the HC and SZ group. We
summarize the p-values (a) and t-values (b) of the test results
for the 8 ICs across 14 windows in Figure 3. A positive t-
value indicates higher activation in HC and a negative t-value
means higher activation in SZ. All components except VIS
show group difference in at least one window where MC shows
group difference in most of the windows hence that advocates
our component selection for the dynamic study.

Mean subject covariation across windows for HC and pa-
tients: We calculate the mean of subject covariation values
for the two groups, HC and SZ, separately to compare their
contribution in each IC and show the behavior of subject
covariation for the two groups in Figure 4. It depicts a clear
on-off pattern in most of the windows as the SM task has a
paradigm of task-rest blocks. Two ICs, CB+ADMN and MC,
are used for example, as CB+ADMN shows higher intensity
for SZ in most of windows and MC shows higher intensity
for HC in all the windows. The asterisk indicates that the
subject covariation yields significant difference between the
two groups in that particular window. These plots provide
complementary information of the dynamics of subject co-
variation.

B. Quantification of dynamics

A quantitative study of the spatio-temporal imaging features
can help identify unique biomedical patterns of SZ. Compo-
nent variability and functional connectivity are features that
have been individually investigated in previous studies [1],
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Fig. 3. Dynamic change of group difference for selected ICs. Two sample
t-test on the corresponding subject covariations reveals statistically significant
difference between the two groups (HC vs. SZ) (a) p-value of components
across windows where MC shows group difference in most of the windows. (b)
t-value of components across windows where positive t-value means higher
activation in HC and negative t-value means higher activation in SZ.

[23]. In this paper, we use two metrics, component variability
and component consistency to study the difference between
HC and SZ regarding dynamics.

1) Component similarity: We study how each component
fluctuates across the windows by investigating the component
similarity. For subject m it is computed as follows,

rm = |corr(s[m,k]
n , s[m,k+1]

n )| (3)

i.e., rm is the absolute value of Pearson’s correlation coeffi-
cient between the nth component at window k, s[m,k]

n and nth
component at window k + 1, s[m,k+1]

n . A higher value of this
metric suggests that the spatial network is less variable. Figure
5(a) shows the results for the components that demonstrate
significant differences (p < 0.05) between HC and SZ. The
DMN+SM, AUD, MC, MT and FRO+ADMN component
shows less variability in HC. SM and MC were also identified
less variable among HC in previous dynamic study as SZ
patients show deficit in perception and motor regions.

2) Component consistency in task and rest blocks: In order
to compare the difference of dynamics between HCs and SZs
during task and rest separately, we define a metric, component
consistency. For the nth component we compute the absolute
Pearson’s correlation coefficient for all pairwise combinations
of task windows and all pairwise combinations of for rest
windows separately. We repeat this process for all M subjects
which gives us the component consistency in task windows
and rest windows. Figure 5(b), 5(c) shows that all the selected
components except FRO+ADMN are significantly consistent
for HC in task, but in rest only DMN+SM, AUD and MC
show significant consistency in HC compare to SZ. The results
illustrate that dynamic behavior of the participants change
with task and rest where brain networks of HC show a better
organized or more regular change between states.

C. t-maps of the ICs

To summarize the change in spatial maps, we perform both
one sample and two sample t-test on the spatial maps of each
IC for HCs and SZs either with the task and rest windows.
As shown in Figure 6(a), 6(b), both CB+ADNN and VIS

DMN+SM

AUD

CB+ADMN

MT

VIS

FRO

FRO+ADMN

MC



1 2 3 4 5 6 7 8 9 10 11 12 13 14

-3

0

3

6

9
In
te
n
s
it
y

10
-3

HC

SZ

Windows

♦ ♦
1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.014

0.018

0.022

0.026

In
te
n
s
it
y

HC

SZ

Windows

Fig. 4. Mean subject covariation across windows for HC and patients. (a)
change of subject covariation in CB+ADMN with time. (b) change of subject
covariation in MC with time. Asterisk means group different in a particular
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yield significant difference between HC and SZ in terms of
the number and location of activated voxels. Interestingly,
CB+ADNN shows more significant difference in task windows
and VIS shows more significant difference in rest windows.

D. Behavioral scores

Along with brain imaging data, behavioral scores have been
used recently to study the aberrant behavior in SZ [28], [37]-
[38]. A total of 51 behavioral variables (BVs) were available
for 253 subjects. We show how our previous results help to
identify unique biomedical behaviors in SZ.

First, we consider one BV as a distinct feature, each feature
is of length m, the number of subjects for a correlation study
between spatial maps and the BVs. Hence, we calculate the
Pearson’s correlation coefficient between each feature and
average subject covariation across all windows for each of
the selected ICs and select 8 features that show the highest
correlation. The eight BVs are: Wechsler Adult Intelligence
Scale (WAIS-III) [39], Benton Visual Retention Test (BVRT)
[40], Wechsler Memory Scale-III (WMS-III) [39] , Hopkins
Verbal Learning Test-Revised (HVLT) [41], Grooved Pegboard
Test (GP) [42], California Computerized Assessment Package
(CalCap)and F-A-S verbal test. We concatenate the behav-
ioral scores as the 15th dataset, yielding E = 15 datasets,
X

[e]
behav ∈ RP×M , e = 1, ..., E,E = 15, P = 8,M = 247. We

perform a second level IVA-G on the 15 datasets to validate
a interpret our results.

After the decomposition, we check the correlation struc-
ture of SCVs where 15th row corresponds to the correlation
between features extracted from the behavioral scores and
one IC across the windows. We perform a two sample t-
test to calculate the group difference between HC and SZ
in all the SCVs and only show the results for SCV3 as
it yields the highest group difference. From 3rd column of
the mixing matrix for dataset 15, [A

[e]
behav ]

T ∈ RP×P , e =
1, ..., E,E = 15, P = 8 we calculate the contribution of the
behavioral scores to SCV3. WMS-3, WMS-3 delay and GP are
the most dominant one as shown in Table I where WMS-3,
WMS-3 delay are highly associated with working and visual
memory and GP is associated with motor functions. Regarding

the components, we measured the mean of the 3rd column
of Abehav , across dataset= 1,...,14 and see MC, CB+ADMN,
FRO+ADMN are the ones contributing most in SCV3 than
other ICs. MC is related to motor activity and CB+ADMN,
FRO+ADMN are related to motor and memory functions.
From these results, the BVs and spatial maps are showing
clear correlation as their associated functions overlap. Also,
all the contributing components in SCV3 are related to motor
activity which validate our previous results.

TABLE I
CONTRIBUTION OF BEHAVIORAL SCORES AND ICS IN SCV3

Contribution of BVs Contribution of ICs
BVs Percentage

of
contribution

ICs Percentage of
contribution

WMS-3 30 MC 52
WMS-3 de-
lay

25 CB+ADMN 12

GP 20 FRO+ADMN 10
Other BVs 25 Other ICs 26

IV. DISCUSSION

Recently, time-varying spatial and temporal brain networks
have been of great interest in neuroimaging studies. IVA cap-
tures the spatio-temporal variability with minimal assumptions
but has been applied to a small number of subjects due to
the decreased precision when working with large number of
datasets. Our proposed IVA framework mitigates this issue
as we work with extracted fALFF features from the fMRI
data. We use SM task data to identify differences in brain
dynamics for SZ patients compared with healthy controls
along the time windows. Our framework successfully captures
the group difference between HC and SZ without the need
for additional post-processing steps. The analysis identifies the
networks, SM, MC showing abnormal behavior in SZ as in the
previous studies [43]-[44]. SZ shows higher variability than
HC as in [1], [23], but in addition, our analysis shows the
component variability and consistency both in task and rest
windows. Correlation study between the brain networks and
behavioral scores yields meaningful correlations. There are a
number of important future directions. For example, we can
study different overlap of windows as well as window sizes
and can further study patient subgroups using the behavioral
scores.
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t-maps for HC and SZ both in task and rest. (II) shows two sample t-maps between HC and SZ in task and rest.
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