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Abstract— Objective: Automated registration algorithms
for a pair of 2D X-ray mammographic images taken from
two standard imaging angles, namely, the craniocaudal
(CC) and the mediolateral oblique (MLO) views, are de-
veloped. Methods: A fully convolutional neural network, a
type of convolutional neural network (CNN), is employed to
generate a pixel-level deformation field, which provides a
mapping between masses in the two views. Novel distance-
based regularization is employed, which contributes signif-
icantly to the performance. Results: The developed tech-
niques are tested using real 2D mammographic images,
slices from real 3D mammographic images, and synthetic
mammographic images. Architectural variations of the neu-
ral network are investigated and the performance is char-
acterized from various aspects including image resolu-
tion, breast density, lesion size, lesion subtlety, and lesion
Breast Imaging-Reporting and Data System (BI-RADS) cat-
egory. Our network outperformed the state-of-the-art CNN-
based and non-CNN-based registration techniques, and
showed robust performance across various tissue/lesion
characteristics. Conclusion: The proposed methods pro-
vide a useful automated tool for co-locating lesions be-
tween the CC and MLO views even in challenging cases.
Significance: Our methods can aid clinicians to establish
lesion correspondence quickly and accurately in the dual-
view X-ray mammography, improving diagnostic capability.

Index Terms— convolutional neural network, image reg-
istration, lesion correspondence, mammography, X-ray.

[. INTRODUCTION

Breast cancer is one of the leading causes of death for
women worldwide, with half a million lives lost annually,
including more than 40,000 in the United States alone [1].
Early detection has been shown to be critical for less invasive
treatment of breast cancer and for saving lives [2]. Hence,
tools and techniques that can aid clinicians in early detection
of breast cancer are invaluable.

X-ray-based mammography is the main imaging modality
used for annual breast cancer screening in asymptomatic
women. It is also used for more specialized diagnostic ex-
ams, which are performed when suspicious symptoms are
present [3]. Conventional mammography involves 2D full-
field digital mammography (FFDM) or, in recent years, digital
breast tomosynthesis (DBT). DBT involves obtaining several
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low dose mammographic images across an arc. Reconstruction
generates multiple contiguous 1 mm thick slices through the
breast, and synthesized 2D images of the entire breast [4].

Mammographic imaging typically involves imaging the
breast from at least two different angles. The most frequently
used views are the craniocaudal (CC) and the mediolateral
oblique (MLO) views. Each view involves physically posi-
tioning and compressing the breast between the detector and
a compression paddle closer to the X-ray source. The CC view
is obtained at an angle of 0 degree from the top to the bottom
of the compressed breast and the MLO view is obtained at an
angle in the range of 45 to 50 degrees from medial, near the
center of the chest, toward the axilla [5]. The breast lesions
may be visible in both views or only in one view depending
on the lesion location in the breast and the density of the
breast tissue. When the breast tissue is very dense, e.g., when
it is made up of mostly fibrous and glandular components,
it can obscure lesions, as the background breast tissue will
have similar X-ray attenuation compared to the lesion. This
is in contrast to fatty breast tissue, where lesions have much
greater density compared to the surrounding tissue, making
the lesions readily visible.

Currently, radiologists screen for breast cancer by analyzing
each image for abnormalities, and then searching for the
correspondences in the other views [6]. Seeing a lesion in
both views is an important feature signaling that the lesion is
more likely to be real rather than a false alarm. Additionally, it
supports better characterization and localization of the lesion,
which is critical. In comparing the two views, radiologists
consider certain geometrical features such as the distance
between the lesion and the nipple, the clock position of
the lesion with respect to the nipple, and the size, shape,
and textural composition of the lesion. The position of the
patient during the image acquisition procedure is also factored
in. In essence, finding correspondences between lesions is
predominantly a manual process for the radiologists.

Therefore, automated registration algorithms can signifi-
cantly enhance the workflow of the radiologists and potentially
contribute to improving diagnostic accuracy. Studies show that
a significant portion of missed lesions are detected retrospec-
tively, suggesting that an automated algorithm to help locate
the lesions in both views could have considerably increased
the detectability in earlier exams [7]. This, in turn, could
help with determining malignancy, or whether to employ other
imaging modalities or a biopsy. Registration will also be



instrumental for guiding targeted ultrasound (US) biopsies and
surgical procedures, which require accurate lesion positions.
Furthermore, computer-aided diagnosis (CAD) algorithms that
involve joint processing (or fusion) of multiple breast images
can benefit from an accurate registration module [8], [9].

However, the registration of mammographic images is par-
ticularly challenging due to the non-rigid and heterogeneous
nature of the breast tissue and the distortions that occur during
image acquisition [7]. Conventional registration techniques
often fail to account for the complexities involved in how
the anatomical features in the compressed breast are projected
onto 2D X-ray images [10]. While medical image registration
techniques often aim at obtaining one-to-one correspondences,
mammographic images involve one-to-many mappings, as a
pixel in one mammogram image may correspond to a locus
of points in the other [11]. Validation of the registration results
can be challenging as it requires the ground truth provided by
the experts. Radiologists generally record the truth only for
candidate lesion locations, and not for other tissue areas.

Our goal is to develop deep learning-based registration al-
gorithms for two-view X-ray mammography to help clinicians
establish lesion correspondence quickly and accurately. Recent
advances in machine learning techniques using deep neural
networks, in particular, convolutional neural networks (CNNs),
achieved remarkable improvement in computer vision tasks.
However, challenges still remain in achieving the desired level
of accuracy and the best approach has not yet been identi-
fied [12]-[14]. In fact, most CNN-based image registration
methods have focused on the imaging modalities that capture
slices from the same viewing angle, such as the Magnetic
Resonance Imaging (MRI) or Computed Tomography (CT)
scans [15]-[20]. Very limited research on CNN-based mam-
mographic image registration techniques has been reported
in the literature, especially without the use of other imaging
modalities [21]-[24].

Our approach is to employ a fully convolutional neural
network (FCN) [25], which processes a pair of images from
the CC and MLO views, to generate a deformation field that
provides a mapping between the two views. A key idea is
to incorporate the associated lesion location masks into the
training loss function, in the form of a regularizer that captures
the distance between the registered lesions. It turns out that
our distance-based regularization significantly enhances the
network’s ability to match the corresponding lesion tissue
between the two views. In the operational stage, given a CC
and MLO pair, a deformation field is inferred without lesion
masks, providing a mapping between masses in the two views.

In our conference precursor [21], we used 2D-projected
images of 3D handwritten digit shapes to perform preliminary
tests of the CNN-based registration algorithms. In the tests
involving real X-ray images, the lesion distance-based regular-
ization was not employed. In this paper, careful performance
analysis is carried out in terms of different regularizers, the
choice of tissue texture similarity measures, and architectural
variations of the CNNs. Furthermore, the methods are tested
on different X-ray image types, including conventional 2D X-
ray mammography, slices from DBT data (3D mammography),
and in silico (i.e., computer-modeled) phantom-based syn-

thetic mammographic images. Performance is characterized
for different image resolutions and breast densities, as well
as with respect to the lesion attributes such as the size, level
of subtlety, and Breast Imaging-Reporting and Data System
(BI-RADS) category [26].

In our experiments with 2D X-ray imagery, our techniques
achieved registration success rates of up to 90.4%. Lesion cor-
respondence between the CC and MLO views was established
reliably even for dense tissue cases. Furthermore, when the
network was trained on 2D X-ray imagery and then tested
on slices from DBT X-ray imagery, up to 96.7% registration
success rates were achieved. Our network outperformed the
state-of-the-art CNN-based and non-CNN-based deformable
image registration techniques. Experiments with synthetic
mammogram images also revealed that they can improve the
performance when used to augment real training images.

The rest of this paper is organized as follows. In Sec. II,
a brief review of the related works is given. The registration
problem is formulated in Sec. III, and our proposed methods
are put forth in Sec. IV. The experimental results are pre-
sented in Sec. V. Some discussions are given in Sec. VI and
conclusions are provided in Sec. VII.

Il. RELATED WORKS

Medical image registration has been an area of active
research [14], [27]-[30]. Prior to deep learning, diffeomor-
phic non-rigid registration techniques achieved state-of-the-
art performance [31]-[33]. Recently, CNN-based approaches
gained much attention [15]-[20], [34]-[36]. They typically
aim to learn a deformation field that provides a mapping
between two or more images, in self-supervised [15], or semi-
supervised manners [16], [36]. Spline-based interpolation was
employed in [17], [19], [34], whereas the deformation vectors
of individual pixels were estimated directly in [15], [16], [37].
Some ingested full image frames [36], while others operated
on patches [15], [18], [20]. Despite the significant develop-
ments, however, existing CNN-based registration techniques
have mostly focused on images taken from the same viewing
angle, and not many addressed the registration of breast tissue.

Breast image registration poses unique challenges due to the
inhomogeneous, anisotropic, soft-tissue, and non-rigid nature
of breast tissue [7], which, combined with the physical com-
pression and patient position alteration, results in significant
diversity in the tissue appearances and displacement patterns.
Thus, it is often advocated to incorporate other data modalities
such as the MRI, DBT, and US [38]-[40], as well as various
modeling assumptions [41]. When it comes to the registration
of the CC and MLO views using only X-ray images, early
non-CNN efforts focused on finding correspondence between
lesions in different views [42]-[44].

Most CNN-based techniques that process multiple mam-
mographic views have been geared towards malignancy clas-
sification [45]. Two CNNs were employed to process a full
mammographic X-ray image as well as their patches for
malignancy detection [46]. A Siamese CNN architecture was
employed for classifying matching versus non-matching pairs
of lesions between the CC and MLO views [9]. The symmetry



information in the CC and MLO views of both left and
right breasts was exploited for cancer screening [47]. While
these works highlight the benefit of processing two or more
mammographic views, they do not specifically tackle the
problem of multi-view tissue/lesion registration.

To our knowledge, only limited research has been done on
CNN-based techniques for registering the CC and MLO views.
A U-Net was employed in [22] to register mammographic
images from the same view (e.g., CC to CC or MLO to MLO).
In [23], an affine transformation was learned for registration of
CC and MLO views in a semi-supervised manner using a spa-
tial transformer module [48]. Densely connected CNN blocks
with shared weights were employed to obtain discriminative
features and find correspondence between detected masses in
CC and MLO views in [24].

Some recent CNN-based medical image registration tech-
niques share important characteristics with our proposed CC-
to-MLO registration method, such as the use of FCNs with
skip connections and the incorporation of additional ground
truth mask images for training. In [15], voxel-wise registration
of MRI slices of brain tissue was proposed using a FCN with
a skip architecture. The method did not use other ground
truth labels, but took a self-supervised approach based on an
intensity-based similarity measure with total variation regular-
ization. The registration of cardiac features in MR images was
tackled using a U-Net architecture in [35]. A diffeomorphic
parameterization of the deformation field was adopted and the
ground truth segmented shapes of anatomical features were
employed to aid training. The algorithm in [16] also involved a
U-Net architecture, which, in addition to the input image pair,
optionally incorporated a pair of binary segmentation masks of
anatomical features into the regularization term of the training
cost. The authors of [36] similarly utilized binary anatomical
label images in addition to input image pairs in a U-Net-
like architecture to perform multi-modal image registration
of MR and US images of the prostate region. They adopted
a multi-scale Dice similarity measure, based on Gaussian-
blurred versions of the fixed and warped label images for
training but did not use intensity-based similarity measures.

I1l. PROBLEM FORMULATION

A moving (source) image I,,,(x) and a fixed (target) image
I¢(x) are defined with 2D pixel coordinates € 2 C R?. Our
goal is to learn a function Dg (I, I,;,) = d(x), represented by
a CNN with parameter vector @, which yields a deformation
field d : 2 — () that warps the moving image to match the
fixed one. That is, it is desired that (I, o d)() is similar to
It(x) in terms of a suitable similarity measure S. In order to
govern the nature of the resulting deformation field based on
prior knowledge, a regularizer R(d) is also incorporated. The
loss function is then defined as

L(vajm) = 7S(If7]m © DG(valm)) + )‘R(DB(va L))
(D

where A > 0 is a weight to balance the similarity and the
regularization terms. The CNN training amounts to solving

mein Ep{L(I;, L)} 2)

where Ep{-} represents taking an average with respect to the
data set D of the fixed and moving image pairs (I7, I,,).
Although (1) is formulated to obtain a pixel-wise mapping
d(x) for each image pair, our goal is not so much to achieve
precise pixel-level registration, as to establish a useful corre-
spondence between regions of interest, such as lesions.! That
is, our objective is that when a clinician selects a candidate
lesion location « in one view, the trained network can present a
likely location d(x) of the lesion in the other view accurately.

A. Similarity Measure

Two alternative similarity measures are considered in our
work. The similarity measure based on the sum absolute
error (SAE) is the negative of the average difference in the
individual pixel intensities, defined as

Ssap(li, ) = _ﬁ S h(2) - L) G
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where |(2| is the number of pixels in the images.

The second one is normalized cross-correlation (NCC)
which is also known as the Pearson correlation coefficient.
Upon defining the mean intensity of image I as I :=
Q|71 Y cq I(x), the NCC is defined as
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which yields a value between —1 and 1.

The SAE measure is suitable for comparing images that
have similar intensity distributions, and is more robust to large
intensity differences due to outliers than the sum of squared
errors, since the latter places far more emphasis on the pixels
with large absolute residuals [49]. The NCC metric is more
suitable when the intensity and contrast distributions vary
significantly over images as the denominator in (4) effectively
normalizes the measure [50].

B. Regularization

1) Total Variation Regularization: Regularization allows for
the incorporation of prior knowledge on the learned deforma-
tion fields and also prevents overfitting when the number of
parameters in @ is large, which is often the case with deep
CNNs. Non-rigid deformation field-based registration algo-
rithms commonly employ a form of smoothness-promoting
regularization on the deformation field. For instance, Tikhonov
regularization can be employed to penalize the /5-norm of the
Jacobian of the deformation field, enforcing smoothness [51].
When sharp transitions are expected, Tikhonov regularization
may not be suitable. In our context, the anisotropic total

Tn this work, we focus on masses, corresponding to one of the two main
categories of breast lesions. Masses and calcifications are commonly treated
separately in mammographic image analysis research.



variation regularization (TVR) is considered, which is the ;-
norm of the deformation field Jacobian Vd(x), given by

Rryr(d) := [|Vd(z)[x (5)

where || - ||; is the sum of the absolute values of all entries in
the Jacobian matrix. It can handle large, non-smooth displace-
ments, which can occur in mapping the anatomical features
between the CC and the MLO images [52].

2) Incorporating Ground Truth Lesion Masks: The second
regularization we considered utilizes the ground truth lesion
locations in the CC and MLO views, which are provided
through the lesion masks available with the CC/MLO im-
age pairs. Lesion masks have been exploited in CNN-based
registration algorithms by capturing the amount of overlap of
known anatomical features after registration [16], [36]. In the
dual-view X-ray mammography, however, the amount of over-
lap may not provide a strong enough supervision signal due
to the severe distortions in the mammographic views. (Indeed,
there may be no overlap at all.) Instead, we propose a new
regularization function, termed distance-based regularization
(DBR), which penalizes the (normalized) distance between the
lesion locations after registration.

Let A;") : Q — {1,0} be the mask image that has the pixel
intensity of 1 within the n-th lesion, and 0 outside, in the fixed
view ;. In the paired moving image I, AW Q {1,0}
represents the corresponding lesion mask. Define the centroid
wu(A) € R? of a mask A as

. Z{m:A(w):l} T
N =T )

Then, the DBR function is defined as

(6)

N (n) (n)
- 1 = [(AFY) = p(Am” 0 d)x
RDBR(d; {Agf )’Agn)}) = N E : ! (n) (n)
n=1 ||M(Af ) - M(Am )”1
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where N is the number of lesions in the given image pair
(I s I,,,). Note that in general there can be zero, one, or more
than one annotated lesions in (Iy,I,,). The regularization
function is simply set to zero if there are no lesions annotated.
For a term inside the sum in (7), the numerator is the distance
between the centroids of the lesions in the fixed view and in
the moving view after the warping is done according to d.
Hence, if the displaced lesion pixels are close to the lesion
location in the other view, the penalty will be low. The ¢;-
norm-based Manhattan distance is adopted as it is less sensitive
to the outliers than e.g. the Euclidean distance. On the other
hand, the denominator is the distance between the lesion
centroids before registration. Thus, the regularizer penalizes
more heavily the case where the ground truth displacement
is small, and more leniently when a large displacement is
expected. This provides the balance necessary for training the
network to work well in all cases. It is also emphasized that
the DBR is used only in the training, and not in the operational
testing stage.

2The modified Hausdorff distance, which computes the distance accounting
for the entire set of points, was also tested. The results are presented in App. H
in the Supplementary Material.

Fig. 1: Lesion distances before and after registration. The CC and the MLO
views are superimposed and the ground truth lesion masks in the CC/MLO
views, as well as the warped CC lesion (marked as CC’), are indicated.
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Fig. 2: The proposed CNN architecture.

Fig. 1 illustrates the example lesion masks in an overlapped
CC/MLO image. The lesions marked as CC and MLO are
the ground truth lesions, and the one marked with CC’ is the
warped version of the CC lesion. In this example, it can be
seen that the distance between the MLO and the CC’ lesions
has been reduced by registration, but they still do not overlap.
Thus, a regularization function based on the amount of lesion
overlap will not provide any supervision signal in this case,
while our DBR function can still capture useful information.

IV. PROPOSED CNN ARCHITECTURES

A CNN is often used for image classification, where the
input is an image and the output is a class label for the image.
The CNN architecture processes the input image through
multiple layers of convolution, pooling, and element-wise
nonlinear operations, to produce discriminative features. The
features are then fed to fully-connected layers to produce
the label. In our work, the CNN is adopted to generate a
deformation field d(x) based on the input images I;(x) and
I,,,(x), where the inputs and the outputs are defined over the
same domain € (). That is, the inputs and the outputs are
“images” of the same size. In FCNSs, instead of fully-connected
final layers, upsampling convolution (or up-convolution) layers
are employed to yield an output that is of the same size as the
input [25], [53]. Therefore, FCNs are natural candidates for
CNN-based image registration [14]-[16].

Fig. 2 shows our CNN architecture. Similar to [25], [15],
two variants are considered. One is the serial architecture,
consisting of a single path of layers from the input to the
output, which is depicted by the solid arrows in Fig. 2. The
other variant is the skip architecture, which has additional
branches for tapping the features at various depths of layers, as
indicated by the dashed arrows in Fig. 2. The number on top of
each layer in Fig. 2 represents the number of the feature maps
at the output of the layer. The convolution layers also include
batch normalization and nonlinear activation using the rectified
linear units (ReLUs), except for the final convolution layers



in all paths (i.e., Conv 5, 6, and 7 layers). The kernel sizes
and the strides at the individual layers depend on the input
image size. The table of kernel sizes and strides is included
in App. A in the Supplementary Material.

The input to both architectures is the pair of CC/MLO
images (which are input as two channels). The network output
is Ad(x), which captures the relative displacement of pixel x
in the moving image. The deformation field is given as

d(z) =z + Ad(x). (8)

During the training, only the displacements arriving at the
pixels within the image boundary are actually employed. When
DBR is used, the available lesion masks are incorporated.

A. Serial Architecture

The serial architecture contains five convolution layers, two
pooling layers, and two up-convolution layers. The final layer
results in two feature maps that correspond to the vertical and
the horizontal displacements in Ad(x). The training loss for
the serial architecture is given by

Lo(I,I,) = — S(I, Iy o d) + aRryvr(d)
+ BRppr(d; {ATY, A} ©)

where o« and [ are nonnegative weights for balancing the
regularization terms.

B. Skip Architecture

The branching paths in the skip architecture capture the
higher-resolution features from the early, shallow layers, which
are combined with the lower-resolution yet larger-scale fea-
tures obtained by the deeper layers. The skip connections
help with predicting fine details in the output [25]. In our
implementation, two additional branches are taken at the
outputs of the first and the second pooling layers, which
are appropriately upsampled to match the resolution of the
output of the main path. Let us denote the deformation fields
from the first and the second skip paths as d;(x) and da(x),
respectively. Define the loss function L,, for the p-th skip path
in the same way as in (9), with d replaced by d,, where
p € {1,2}. Then, the skip architecture is trained based on
the overall loss function L that averages the individual paths’
losses using nonnegative weights {/u,}2_ as

va Zﬂp If>

(10)

V. EXPERIMENTS
A. Experiment Setup

1) Data Sets: Three X-ray image data sets were utilized
in our experiments. The primary data set is the Curated
Breast Imaging Subset of the Digital Database for Screening
Mammography (CBIS-DDSM), a publicly available set of
digitized scanned-film mammography data, curated by trained
mammographers [54]. The data set includes the CC and MLO
X-ray image pairs for each breast along with corresponding

binary image masks indicating the lesion locations. Informa-
tion describing each image view, lesion type, pathology, and
diagnosis is also provided.

The second data set consists of a limited number of de-
identified DBT images with accompanying lesion location and
diagnostic information, obtained as part of a research effort in
Johns Hopkins Medicine (JHM) [IRB00185772, 12/3/2018].

The third data set involves synthetic mammogram images
generated using software tools developed through the Virtual
Imaging Clinical Trial for Regulatory Evaluation (VICTRE)
project in the United States Food and Drug Administration
(FDA) [55]. In-silico X-ray images were generated from
3D phantoms, simulating physical compression of the breast,
different imaging angles, and insertion of lesions.

Table I summarizes some details regarding the images used
in the experiments, which will be explained later.

2) Preprocessing: Prior to ingestion to the networks, the
images were preprocessed. First, the images were re-oriented
so that the chest is on the left and the nipple is on the right
side of the image frame. Then, artifacts such as the burned-
in annotations were removed using a simple histogram-based
technique that detects bright pixels in the narrow regions along
the top, bottom, and right sides of the image. Next, the breast
tissue boundary was extracted in order to generate a breast
tissue mask, which is useful for limiting processing to only the
breast tissue areas, and thus, improving the training process.
The nipple location and its distance to the chest wall were
also detected to help distinguish between multiple lesions in
a breast when such cases arise. In our experiments, however,
only single-lesion cases were used due to the limited avail-
ability of ground truth for evaluating multiple-lesion cases.
For the MLO images, an extra step is applied to detect and
mask the pectoral muscle, which is outside the breast tissue
area, to prevent the networks from processing this area. For the
training data, slight rotations (up to +15°) were applied as a
means of data augmentation to generate extra training images.
More details on the last two steps are provided in App. B
of the Supplementary Material. The images were resampled
to the resolutions of 330 x 220, 660 x 440, and 990 x 660,
for comparison of the registration performance under different
image and mini-batch sizes. The original image sizes are
shown in Table I. The pixel intensities were also normalized
to the range of [0, 1].

3) Training: The networks were implemented in MATLAB.
For training, Adam optimizer was employed with an initial
learning rate of 0.001 and random weight initialization [56].
Around 60 to 100 epochs were used for training, with the
mini-batch sizes ranging from 8 to 32, based in part on
the available GPU memory. For the skip architecture, the
weights for the main path and the first and second skip
branches were set to © = 0.22, p = 0.13, and p = 0.65,
respectively. Here again, although our training formulation
accommodates multiple lesions per image pair [cf. (7)], we
used only the images with single lesions, due to the lack of
ground truth information on lesion correspondence. Matching
multiple lesions per image pair for training is left for future
research.



TABLE I: Image sizes and counts in data sets.

Fig. 3: Determining the registration success. (a) Input CC view with a lesion.
(b) Input MLO view with the corresponding lesion. (c) The projected pixels
in magenta fall inside the ROI indicated by the black circle in the CC/MLO
overlay.

4) Testing: To assess the registration performance, a metric
based on the ground truth lesion locations is defined. This is
motivated by the clinical usage of registration, where clinicians
desire to quickly establish correspondence between the candi-
date lesion locations in different views. Specifically, for a given
pair of test images, the deformation field computed by the
trained network is applied to the moving image. In particular,
the pixels in the lesion locations in the moving image are
translated to hopefully match the lesion pixels in the fixed
image. A region of interest (ROI) is defined in the fixed image
as a disc centered around the ground truth lesion, with a radius
equal to 7.5% of the height of the image. The registration is
deemed successful if any of the translated pixels fall inside
the ROI. The performance metric is the percentage of the
image pairs with successful registration. A sensitivity analysis,
in terms of the ROI size and the fraction of overlapping pixels,
is provided in App. C in the Supplementary Material. See also
the related discussion in Sec. VI

In the case of the skip architecture, the union of the pixels
translated by the three deformation fields is used. The union
is preferred to the average as the centroid of the union turns
out to be usually closer to the target lesion location than
the centroid of the average. Although the union results in
a somewhat larger displacement area, it is still substantially
smaller than the entire breast tissue area, and thus is useful
for the clinicians for finding the lesion locations.

Fig. 3 illustrates the test process. Fig. 3(a) is a CC view with
a visibly distinct lesion. Fig. 3(b) is the corresponding MLO
view. In Fig. 3(c), the masks for the CC and the MLO view
lesions are superimposed, where the translated lesion pixels
are depicted in magenta. As some of (in fact, in this example,
most of) the magenta pixels fall inside the ROI indicated by
the black circle, the registration is counted successful.

It is noted that medical image registration algorithms are
often assessed using the mean-square error (MSE) or the Dice
metrics [7]. However, for breast image registration, there are
significant distortions and occlusions in different views due
to the non-rigid nature of the breast and the physical com-
pression process. Thus, direct pixel-wise comparison may be

Data sets Average original | Original image Number of Augmentations | Total training | Validation /
image size resolution (um) | training pairs per image pairs test pairs
CBIS-DDSM 5280 x 3131 N/A 496 8 4464 146 / -
JHM DBT slices 2457 x 1975 70 - - - - /60
FDA synthetic 2000 x 1500 76 2250 4 11250 103 / 95
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Fig. 4: Registration success rates versus 3. Each box indicates the range of 25

to 75 percentiles with the red line showing the median. The outliers depicted
by the red plus markers are roughly outside the +2.7¢ range.

too strict to reflect the registration performance meaningfully.
Our performance metric takes advantage of the ground truth
lesion masks provided with curated mammography data sets,
and falls in with the fact that even rough lesion location
correspondence in an automated fashion can be very helpful in
clinical settings. More discussion on the metric can be found
in Sec. VL

B. CBIS-DDSM Data Set

Several sets of experiments were conducted with the CBIS-
DDSM data. We maintained the CBIS-DDSM’s established
division of training and test data. For training, 496 CC and
MLO image pairs containing single masses were selected,
which we increased to 4,464 pairs using augmentation, as
noted in Table I. Similarly, 146 pairs of test images, with single
masses, were used from the designated test set. As the breast
tissue and lesions occur in a wide variety of sizes, shapes, and
characteristics, instead of further sub-dividing the data set into
separate training and validation sets, the test data set was used
also for determining the best model parameters and the optimal
validation performances are reported. It is later verified that
the model does not overfit by testing the trained networks on
a completely different data set in Sec. V-C.

1) Parameter Tuning: Parameters « and [ in (9) were tuned
based on the registration success rate. Since DBR was found
to have a greater influence on the performance than TVR,
the DBR parameter $ was first tuned without TVR (that is,
with a = 0). Then, o was optimized in search of further
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performance improvement. We used the input resolution of
330 x 220, as our preliminary trials found that the results
gave a good indication of the trends at higher resolutions.
Furthermore, numerous parameter combinations could be ex-
perimented with lower training burden.

Fig. 4 depicts the registration success rates at different
levels of DBR by adjusting § for the serial and the skip
architectures and using the SAE and NCC similarity measures.
For each (8 value, nine training trials were performed with
different random initializations of the network weights. The
blue boxes in Fig. 4 represent [25, 75] percentile ranges of the
resulting success rates, and the red lines indicate the medians.
It can be seen that the performance improves significantly
with DBR compared to the cases with the similarity measure
alone (8 = 0). This is because DBR guides the networks to
recognize the lesions and put more effort toward registering
them correctly.

It turns out that for optimal DBR settings, incorporating
TVR does not yield significant improvement in performance
beyond what was obtained with DBR. For this reason, we set
o = 0 henceforth for simplicity. Performance plots involving
the tuning of « for the optimal [ settings are presented in
App. D in the Supplementary Material.

2) Performance of Proposed Networks: Fig. S5 shows the
highest registration success rates observed from the proposed
algorithm with different input image resolutions, similarity
measures, and network architectures using optimal DBR pa-
rameters. It can be seen that as the input image size increases,
the registration performance also improves in general. The
NCC measure generally yields better success rates than SAE.
Between the serial and the skip architectures, it is clear that
the skip architecture outperforms the serial architecture, which
can be attributed to the multiple resolutions in the deformation
fields obtained from different skip levels. However, the skip ar-
chitecture has higher computation and memory requirements.

3) Comparison with Existing Algorithms: The registration
performance of our algorithm was compared to those of three
existing non-rigid medical image registration methods. First,
Thirion’s Demons algorithm as implemented in the MATLAB
imregdemons function was compared [32], [57]. Demons
algorithm is a diffeomorphic image registration technique,
which performs an iterative optimization for each image pair
using a multi-resolution pyramid approach. The symmetric
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Fig. 6: Performance comparison with existing algorithms.

image normalization (SyN) method was also tested using the
implementation in the Advanced Normalization Tools (ANTSs)
software package [33]. The SyN method is another diffeomor-
phic technique, based on maximizing cross-correlation within
the space of diffeomorphic maps. Finally, the VoxelMorph
algorithm was tested, which is based on the U-Net CNN ar-
chitecture. It can also incorporate the ground truth anatomical
features into the training based on a Dice metric [16].

The registration performances achieved with the input image
size of 330 x 220 are shown in Fig. 6. For our technique,
NCC was employed and the results both with and without
DBR (8 = 4 and 8 = 0, respectively) are shown. TVR
was not enabled (o = 0). For VoxelMorph, we experimented
with the MSE and NCC similarity metrics and a range of
diffusion regularizer weights [16]. This was done both with
and without the Dice-based regularization. The results using
MSE, with a diffusion regularization weight of A = 0.01,
with and without the Dice-based regularization, were selected
as these yielded the highest registration success rates. It can
be seen that our proposed techniques significantly outperform
the existing methods. Comparing the CNN-based methods (our
methods and VoxelMorph) with the traditional diffeomorphic
registration algorithms, one can clearly observe the superiority
of the CNN-based approaches. Note that the diffeomorphic
methods are computationally more intensive than the CNN-
based ones due to their iterative optimization. The CNN-based
methods take 30 msec or less for registering images of size
330 x 220, while Demons algorithm takes about 500 msec
and SyN around 5 sec., using an Intel Xeon CPU @ 2.20
GHz. More importantly, it can be seen that our proposed
techniques perform much better than VoxelMorph, especially
with DBR. As discussed in Sec. III-B.2, due to the significant
distortions in mammographic images, the network training
may not generate deformation fields that can move the source
lesion pixels far enough to actually overlap with the target
lesions. In such cases, the Dice metric will not provide useful
signals for training, while our DBR metric can still quantify
the relative quality of registration by means of the distance
between the moved and the target lesions. Interestingly, our
serial network architecture without DBR still outperforms the
VoxelMorph algorithm with Dice regularization, although the
margin becomes narrower compared to the case with DBR.
This shows that our optimized CNN architecture already has
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Fig. 7: Exemplar registration results.

merits over the VoxelMorph architecture for our application.
Note that VoxelMorph was designed for brain MRI data, which
involve much more correlated images with far less deformation
due to the same viewing angle.

Some typical registration results obtained from the proposed
and the existing methods are depicted in Fig. 7, based on the
input size of 330 x 220. Fig. 7(a) shows the case of fatty
tissue and Fig. 7(b) dense tissue. In either plot, the top panel
in column (i) is the CC view with the lesion encircled in red.
The bottom panel in the same column displays the overlay of
the CC and the MLO masks, highlighting the locations of the
lesions in green for CC and in magenta for MLO, respectively.
Columns (ii)—(viii) show exemplar registration results from the
various algorithms and architectures tested.

The top panels in columns (ii)—(viii) depict the MLO images
with the ground truth lesion location encircled in blue and the
evaluation metric ROIs indicated by black circles. (In Fig. 7(b),
the size of the MLO lesion is similar to the ROI size, rendering
the blue and the black circles to almost coincide.) The red
circles indicate the centroid locations of the displaced CC
lesion pixels with their diameters set equal the lesion size in
the CC view. In the bottom panels, the projected lesion pixels
are shown in magenta. For the skip architecture, the union of
the displaced pixels from all three branches are depicted. The
deformation vectors are displayed in quiver plots, showing the
individual pixel displacements. The arrows for the lesion pixels
are shown in red with higher density. For the skip architecture,
the arrows corresponding to the average of the deformation
vectors are shown for simplicity of visualization.

It can be seen from Fig. 7 that our registration networks
place the CC lesion pixels closer to the target MLO lesion
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location, compared to the other algorithms. Overall, this is
consistent with the registration performance results in Fig. 6.
Even in the dense tissue case, where the lesions are more
difficult to discern, our algorithms are seen to more closely
land the displaced CC lesions at the location of the MLO
lesions. Note that VoxelMorph does move the CC lesions in
the direction toward the MLO lesions, but often falls short of
making the full distance.

4) Performance by Lesion/Tissue Characteristics: The reg-
istration performance of the proposed method was also eval-
uated based on the lesion BI-RADS assessment categories,
lesion subtlety ratings, lesion sizes, and the density of breast
tissue. BI-RADS is a categorization system in breast imag-
ing, including mammography. BI-RADS assessment categories
range from 0 to 6, with O denoting incomplete assessment, 1
negative, 2 benign, 3 probably benign, 4 suspicious, 5 highly
suggestive of malignancy, and 6 biopsy proven malignancy.
Only BI-RADS categories 0 to 5 were available in our subset
of the CBIS-DDSM data set.

BI-RADS also provides an assessment of breast tissue
density with four density descriptors: 1 almost entirely fatty,
2 scattered fibroglandular, 3 heterogeneously dense, and 4
extremely dense [26]. Dense tissue makes it more difficult
to identify masses, as dense tissue can overlap and obscure
breast lesions. The CBIS-DDSM data set also contains subtlety
ratings, which are not part of BI-RADS, but were generated
by experienced radiologists. The subtlety ratings range from
1 (subtle) to 5 (more obvious). We also categorized the
lesions by their diameters into five groups. The registration
performances are based on the 990 x 660 resolution images
with NCC and DBR. TVR was not used (a = 0).

To aid the interpretation of the results, the distribution of
the test data set is presented first. Fig. 8 shows the number of
images with each BI-RADS and subtlety category. It can be
seen that most lesions in the CBIS-DDSM test set are in the
higher BI-RADS categories and appear more obvious. Fig. 9
shows the lesion size distributions for each BI-RADS category.
The blue and red circles denote successful and unsuccessful
registrations, respectively, using the serial architecture.

Fig. 10a shows the success rates for different BI-RADS
categories using both the serial and the skip architectures. The
number of images in each category is indicated at the bottom
of the figure. The success rates are seen to be uniformly above
78% in all cases. Note that the images with ratings 1 or 2 are
too few to draw meaningful conclusions. Fig. 10b shows the
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performance versus subtlety categories. Again, it is seen that
rates above 80% are achieved across the board.

Fig. 10c depicts the success rates by the diameters of
the lesions® It can be seen that the registration success rate
generally increases with the lesion size. In the largest diameter
range of [120, 145] pixels, only one of nine lesions was mis-
registered by the serial architecture, and a close examination
of this case makes us question the accuracy of the ground
truth based on the nipple-to-lesion distance in each view. In
fact, our algorithms actually appear to map the CC lesion
close to the expected location in the MLO view. Regarding
the slightly lower success rates in the smallest-size group with
the diameter range of [20, 44] pixels, the registration algorithm
had difficulty especially when the small lesions were located
far away in the two views.

Fig. 10d shows the registration performance for different
categories of breast tissue density. It can be seen that high
registration success rates are maintained even for dense tis-
sue (category 4). This is encouraging since the dense tissue
presents greater challenges for radiologists in discerning the
lesions. Further examination of the extremely dense cases
in our test set revealed that there were not as many small
lesions and not as many lesions with large separation distances
between the two views. The lack of cases with ground truth for
very small lesions in extremely dense tissue is conceivable in
that these would be difficult for clinicians to identify visually.
Hence, these factors give some explanation for the high
registration success rates in this category. The somewhat lower
performance in the fatty breast tissue category is attributed to a
few image pairs with very small lesions and yet another case
with questionable ground truth. In general it is encouraging
that our algorithm performs relatively well across the board.

Several additional factors should be considered in interpret-

3The pixel resolution in microns was not available for the CBIS-DDSM
data set. Hence, the diameters were measured in pixels.
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Fig. 12: Exemplar registration results for DBT slices based on model trained
on CBIS-DDSM images. (a) Input CC image (top) and the CC/MLO mask
overlay (bottom). (b) Result from serial architecture. (c) Result from skip
architecture.

ing or comparing the registration results, in particular with
respect to Figs. 10a and 10d. For instance, BI-RADS and
breast density assessments can vary among clinicians [58],
[59]. Additionally, the BI-RADS assessment category for
lesions may be updated at different stages of the examination
process [60]. The BI-RADS scale is also nonlinear [61]. These
and other factors are discussed in detail in App. E in the
Supplementary Material.

C. Experiments with Other Data Sets

1) Experiments with DBT Slices: We also applied the net-
works, which were trained on CBIS-DDSM images, to a
completely different data set in order to see how well the
networks can generalize. The JHM DBT data set is a 3D
mammography data set containing the CC and MLO cubes
for 60 patient cases. Each case involved a single mass-type
lesion. One slice from each CC cube and another from the
corresponding MLO cube were extracted such that the slices
intersect with a lesion. (The result was not very sensitive to
which slice in a cube was used as the DBT slices are highly
correlated across slices.) The images were then resampled to
the input resolution for which the networks were trained. Note
that the CC/MLO slices from DBT cubes were used only for
testing, and not for training.

Fig. 11 shows the success rates achieved on DBT data based
on the the same configurations and models used for Fig. 5. It



TABLE II: Registration success rates by lesion size for JHM DBT slices.

Diameter (pixels) | 22 ~ 44 |45 ~ 69 | 70 ~ 94 | 95 ~ 119 | 120 ~ 145
Avg. diam. (cm) 0.6 1.1 1.6 2.1 2.5
Serial arch. 71.4% | 93.3% | 93.8% 100% 100%
Skip arch. 71.4% 100% 100% 100% 100%
Image counts 7 15 16 13 9

TABLE Ill: Registration success rates by breast density for JHM DBT slices.

Breast density category 1 2 3 4
Serial architecture 0% 90% 97.3% | 100%
Skip architecture 0% | 100% | 97.3% | 100%

Image counts 1 20 37 2

can be seen that the success rates are generally comparable to
those achieved on the CBIS-DDSM data in Fig. 5. This shows
that the models trained using CBIS-DDSM images are not
overfit, and that the registration performance is quite robust.

Fig. 12 shows exemplar registration results using both
networks with NCC for the 990 x 660 resolution test images.
Columns (b) and (c) depict the results from the serial and
the skip architectures, respectively. As can be seen in the top
panels of columns (b) and (c), both architectures displace the
CC lesion indicated by the red circle to the vicinity of the
MLO lesion indicated by the blue circle. However, it was gen-
erally observed that the deformation vectors in the lesion areas
for the DBT data tend to vary less uniformly in terms of the
directions and magnitudes, compared to those for the CBIS-
DDSM data. This seems to indicate increased uncertainty for
the networks that were trained in one data set and used on
another. Indeed, the DBT data involves completely different
imaging processes than those of the digitized scanned-film
images in the DDSM data set.

Tables II and III show the performance on the DBT data
by lesion size and breast density, respectively. An image
resolution of 990 x 660 pixels was used with the NCC measure.
From Table II, it can be seen that the networks perform
better with larger lesions, similar to the CBIS-DDSM case.
The average success rate of above 90% was achieved. From
Table III, it is seen that the DBT data almost entirely consists
of scattered fibroglandular (category 2) and heterogeneously
dense tissue (category 3), and the success rates are maintained
above 90% in these categories. The BI-RADS assessments for
the DBT data were not available.

2) Experiments with Synthetic X-ray Images: Here, our goal
is to see if further improvement in performance can be
achieved by augmenting the real training images with syn-
thetic ones [55]. The CBIS-DDSM training set was combined
with the synthetic X-ray images generated from 3D breast
phantoms, designed to represent scattered fibroglandular tissue
with single mass-type lesions. The lesion diameters were in
the range of around 1.0 cm to 1.2 cm (approximately 23 to
28 pixels at the 330 x 220 resolution) due to the constraints
in the software and computing platform.

We first conducted training and testing using only the
synthetic data set. The training set contained 2,250 synthetic
image pairs plus 4-fold augmentations, totaling 11,250 image
pairs. The sizes of the validation set and the test set were
103 and 95 image pairs, respectively. The 330 x 220 image
resolution was used with SAE and DBR. A registration success
rate of 82.5% was obtained using the serial architecture. This
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Fig. 13: Registration success rates when trained using a mixture of real and
synthetic X-ray images.

is comparable to the performance achieved on the real data set
for similar lesion sizes; see Fig. 10c. Fig. S8 shows an example
synthetic image pair, with the registration results using the
serial and the skip architectures.

Then, the CBIS-DDSM training set with 4464 image pairs
was combined with the synthetic images in different ratios.
We experimented with the real to synthetic image ratios of
1: z, with z equal to 0,0.25,0.5,1, and 2, resulting in 4464,
5580, 6696, 8928, and 13392 training image pairs in total,
respectively. The trained networks were tested on 146 real
test image pairs as before.

Fig. 13 shows the resulting registration success rates for
both architectures. It can be observed that the synthetic images
can indeed help boost the performance for the mix ratios up to
1 : 1, but beyond that the performance begins to degrade as the
discrepancy between the real and the synthetic data kicks in.
Fig. S9 shows the registration examples. Columns (b) and (c)
represent the results from the serial architecture without and
with the 1 : 1 synthetic data mixing, respectively. Similarly,
columns (d) and (e) correspond to the skip architecture case. In
both cases, the improvement in performance using the mixed
data set for training is visible in achieving closer displacements
to the target location.

VI. DISCUSSION

There are some limitations to our algorithms and experi-
ments. First, our experiments involved limited data. However,
the results from applying our models to a different imaging
modality and the improvement observed from using computer-
generated data for augmentation indicate promising directions
to address data limitation—a general challenge in this area.

The ROI-based criterion for registration success may be
deemed less precise for assessing registration accuracy than
the conventional pixel-level metrics such as the MSE or Dice.
Our ROI-based metric is motivated by the mammography
radiologists’ practices and the need to capture the degree of
usefulness in aiding them to establish the lesion correspon-
dence. A radiologist first finds a lesion in one view. Then,
with the given knowledge of the size and other features such
as textural composition, spiculations, and various geometrical
features (such as the relative distance/orientation toward the
nipple), she tries to find the matching lesion in the other view.
Thus, a ROI that indicates the approximate location of the
lesion can already be very helpful to the radiologist. In fact,
in breast image registration, there are significant distortions
and occlusions in different views, and assessments based on
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Fig. 14: Demons algorithm results. The warped CC view in panel (b) appears
to move the lesion near the desired location in the MLO view in (c) (encircled
in blue). Yet, the deformation field in (d) indicates that the bright pixels in
(b) were moved from non-lesion locations.

matching the lesions in the pixel level may not adequately
capture the level of helpfulness from the clinicians’ standpoint
and can even be misleading. This can be verified from the
example in Fig. 7(b), for which the Dice metric is evaluated
to be only 0.13 for our serial network with DBR. Still, the ROI
can aid the radiologist to quickly locate the matching lesion.
More justification based on a sensitivity analysis is provided
in App. C of the Supplementary Material.

Our method tries to displace individual pixels in the moving
image and it is not guaranteed that a continuous region is
mapped to a continuous region. The TVR constraint can
promote this, but as we mentioned in Sec. V-B.1, strong TVR
actually comes at odds with the registration performance; see
also App. D in the Supplementary Material. Furthermore, the
lesions at different views often have very different sizes, as
was the case again in Fig. 7(b). Mapping a smaller lesion in
one view toward a larger one in another view inevitably results
in dispersing the pixels.

Related, it was observed in Sec. V-B.3 that our algorithm
yields deformation fields that are not as smooth as those from
other algorithms, except for the deformation vectors for the
lesion locations. This is because, with DBR, the training of our
networks places more emphasis on registering the lesion tissue
than the normal tissue areas. Hence, the network inherently
learns to detect the lesions and register the corresponding
pixels better. In fact, our experiments revealed that smoother
deformation fields are sometimes obtained by trying to match
the overall shape of one breast scene to the other. That is, it
was observed that in some cases algorithms move pixels from
non-lesion locations to form regions of high intensity in the
target lesion areas. An instance of this is illustrated in Fig. 14
based on Demons algorithm, which incorporates a form of
smoothness regularization [32], [57]. Fig. 14(a) shows the CC
view with the lesion location. Fig. 14(b) depicts its warped
version, which appears to show that the projected CC lesion
pixels are near the desired lesion location in the MLO view
shown in Fig. 14(c). However, the deformation field shown in
Fig. 14(d) indicates that the pixels forming the bright region in
Fig. 14(b) are actually moved from areas unrelated to the CC
lesion. In fact, the displaced CC lesion, indicated by the red
circle in Fig. 14(c), has not moved very far from its original
location.

Our experiments were also limited to mass-type lesions.
Indeed, there are other common abnormalities such as calcifi-
cations, architectural distortions, and asymmetries [26]. How-
ever, due to the distinct attributes of the different abnormali-

ties, it is common to design an algorithm for a specific lesion
type [45], [62]. We also excluded the multiple lesion case
from our study, similar to other recent studies [24]. First, the
single lesion occurrences are much more frequent [63]. While
the CBIS-DDSM and other curated mammography data sets
contain cases with multiple lesions, the ground truth related
to matching the lesions is usually not available. Establishing
such ground truth in sufficient quantities requires significant
expertise and effort. Although beyond the scope of the present
work, some indication of the performance of our networks on
multi-lesion cases can be viewed for a few examples provided
in App. F in the Supplementary Material.

Although we do try to capture the correlations in the tissue
areas other than the lesions through the SAE or the NCC
measures, the resulting registration in the non-lesion areas is
seen rather weak. The limitation can be ascribed to the modest
number of training samples and the large distortions inherent
in the mammographic views. Additional regularization based
on geometrical priors such as the nipple distance or angular
positions may be useful [21], [42], [43], but this is left for
future research.

VII. CONCLUSIONS

An automated registration method for the CC and MLO
views of 2D X-ray mammography has been proposed based
on CNNs with serial and skip architectures. A custom reg-
ularization technique using binary masks of ground truth
lesion locations was incorporated to significantly enhance the
registration performance. The proposed networks were tested
using a real mammography data set (the CBIS-DDSM data
set), and the performance was characterized from various
aspects. Our method outperformed state-of-the-art CNN-based
and non-CNN-based image registration techniques in the dual-
view mammography registration task. We also tested the
trained networks for registering DBT slices, which verified
the robust performance of the networks across related mam-
mographic imaging modalities. Finally, the networks were
trained using the real data set mixed with the computer-
generated synthetic mammography data set to achieve even
better performance. Our method has a potential for aiding
the radiologists to quickly establish correspondence for the
lesions in different mammographic views. Future research
directions include utilizing multiple lesions per image pairs
and producing confidence estimates.
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