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1. Introduction

Let P be a set of n points in d-dimensional real affine space. For any integers 0 ≤ k ≤ d and 1 ≤ r ≤ n, a k-flat (k-
dimensional affine subspace) � is r-rich if it contains at least r points of P . A k-flat � is spanned by P if � contains k + 1
points of P that are not contained in a (k − 1)-flat. This paper gives new results on two well-studied questions:

1. How many r-rich k-flats can be determined by P ?
2. How few k-flats can be spanned by P ?

A fundamental result in combinatorial geometry is the Szemerédi-Trotter theorem [13], which gives an upper bound on 
the number of r-rich lines determined by a set of points.

Throughout this paper, n is used for a positive integer, and P is used for a set of n points in real affine space. None of 
the theorems depend on the dimension of the space.

Theorem 1 (Szemerédi, Trotter). For any integer r > 1, the number of r-rich lines determined by P is bounded above by O (n2r−3 +
nr−1).

An alternate, and perhaps more well known, formulation of Theorem 1 is that the number of incidences between sets of 
n points and m lines in real space is bounded above by O (n2/3m2/3 + m + n). These formulations are equivalent.

The first result of this paper is an upper bound on r-rich k-flats, for k > 1. In order to prove a nontrivial bound in this 
context, we need to place some restriction on the points or the flats. To illustrate this point, let L be a set of planes that 
each contain a fixed line, and P a set of n points contained in the same line. Then, each plane of L is r-rich for all r ≤ n.

Several point-flat incidence bounds have been proved, using a variety of nondegeneracy conditions. Initial work on point-
plane incidences was by Edelsbrunner, Guibas, and Sharir [7], who considered point sets with no three collinear points, and 
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also incidences between planes and vertices of their arrangement. Agarwal and Aronov [2] gave an asymptotically tight 
bound on the number of incidences between vertices and flats of an arrangement of k-flats; this bound was generalized 
by the author, Purdy, and Smith [11] to incidences between vertices of an arrangement of flats and a subset of the flats 
of the arrangement. Brass and Knauer [5], as well as Apfelbaum and Sharir [3], showed that a point-flat incidence graph 
with many edges must contain a large complete bipartite graph. Sharir and Solomon [12] obtain a stronger bound than that 
of Apfelbound and Sharir for point-plane incidences by adding the condition that the points are contained in an algebraic 
variety of bounded degree.

In this paper, we use the nondegeneracy assumption introduced by Elekes and Tóth [8]. For any real α ∈ (0, 1), a k-flat 
� is α-nondegenerate if at most α|P ∩ �| points of P lie on any (k − 1)-flat contained in �. Using this definition, Elekes and 
Tóth proved the following Szemerédi-Trotter type theorem for points and planes.

Theorem 2 (Elekes, Tóth). For any real α with 0 < α < 1 and integer r > 2, the number of α-nondegenerate, r-rich planes determined 
by P is bounded above by Oα(n3r−4 + n2r−2).

The subscript in the O -notation indicates that the implied constant depends on those parameters listed in the subscript.
Elekes and Tóth generalized Theorem 2 to higher dimensions in the following, weaker form.

Theorem 3 (Elekes, Tóth). For each k > 2 there is a positive real constant βk such that, for any real α with 0 < α < βk and integer 
r > k, the number of α-nondegenerate, r-rich k-flats determined by P is bounded above by Oα,k(nk+1r−k−2 + nkr−k).

Elekes and Tóth remarked that their argument can not be improved to replace the constants βk with 1 for k > 2 in 
Theorem 3. Afshani, Berglin, van Duijn, and Nielsen [1] used Theorem 2 for an algorithm to determine the minimum number 
of 2-dimensional planes needed to cover a set of points in R3, with a running time that depends on the required number 
of planes. They mention that one of the obstacles to generalizing their algorithm to higher dimensions is the lack of a full 
generalization of Theorem 2.

The contribution of this paper is the following strong generalization of Theorem 2, which removes this limitation of 
Theorem 3.

Theorem 4. For each integer k ≥ 1, real α with 0 < α < 1, and integer r > k, the number of α-nondegenerate, r-rich k-flats is bounded 
above by Oα,k(nk+1r−k−2 + nkr−k).

The case k = 1 of this theorem is Theorem 1, and the case k = 2 is Theorem 2. For k > 2, it is new.
One well-known application of an incidence bound between points and lines is Beck’s theorem [4]. Proving a conjecture 

of Erdős [9], Beck used a slightly weaker incidence bound than Theorem 1 to show that, if P is a set of n points such that 
no more than s points of P lie on any single line, then the number of lines spanned by P is �(n(n − s)). In the same paper, 
Beck gave the following bound for flats of higher dimensions.

Theorem 5 (Beck). For each k ≥ 1, there is are constants ck and c′
k such that either ckn points of P are contained in a single k-flat, or 

P spans c′
knk+1 k-flats.

How large can the constant ck be in Theorem 5? For k = 1, Beck showed that Theorem 5 holds for any c1 < 1. For k = 2, 
if P is a set of n points of which n/2 lie on each of two skew lines, then P spans n planes, but no plane contains more than 
n/2 + 1 points of P . Hence, Theorem 5 does not hold for c2 = 1/2. Beck’s proof yields a constant ck of the form ck = e−ck

for some real c > 0. Do [6] improved this by showing that Theorem 5 holds for any ck < 1/k.
The second result of this paper is the following improvement to Theorem 5.

Theorem 6. For each integer k ≥ 1, at least one of the following holds:

1. at least (1 − o(1))n points of P are contained in a single k-flat, or
2. at least ( 1

2 − o(1))n points of P are contained in a single (k − 1)-flat, or
3. k is odd and (1 − o(1))n points of P are contained in the union of k lines, or
4. P spans �k(nk+1) k-flats.

An immediate corollary of Theorem 6 is that, for any ck < 1/2, there is a constant c′
k such that Theorem 5 holds with 

for these choices of ck and c′
k . Indeed, for odd k, any set of (k + 1)/2 lines are contained in some k-flat. Hence, if the 

third alternative in Theorem 6 holds, a simple averaging argument shows that some k-flat contains at least (1 − o(1))((k +
1)/2)(n/k) > (1 − o(1))n/2 points of P .

As noted above, we cannot take c2 = 1/2 in Theorem 5. In fact, we can not take ck = 1/2 for any k > 1. To see this, 
suppose that P is contained in the union of a (k − 1)-flat � and a line �, with each of � and � containing n/2 points. In 
this case, any k-flat spanned by P contains either � or �, and so P spans at most n/2 + (n/2) = O (nk−1) k-flats.
k−1
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We remark that all of the new results in this paper hold for point sets in complex space, using the generalization of the 
Szemerédi-Trotter bound to complex space proved by Tóth [14] and Zahl [15].

2. Projective geometry and essential dimension

In this section, we fix notation and review some basic facts of projective geometry, as well as results and definitions we 
need from [10]. For convenience, we work in the d-dimensional real projective space Pd(R) instead of real affine space. 
This does not affect any of the results.

The span of a set X is the smallest flat that contains X , and is denoted X . We denote by �,� the span of � ∪ �. It is a 
basic fact of projective geometry that, for any flats �, �,

dim(�,�) + dim(� ∩ �) = dim(�) + dim(�). (1)

More generally, using the fact that dim(� ∩ �) ≥ −1, we have for any set H of flats that

dimH ≤ |H| − 1 +
∑
�∈H

dim(�). (2)

For any k-flat � in Pd(R), the (k + 1)-flats that contain � correspond to the points of Pd−k−1(R). The projection from 
� is the map π� :Pd(R) \ � →Pd−k−1(R) that sends a point p to the k + 1 flat p,�.

Defined in [10], the essential dimension K = K (P ) of P is the minimum t such that there exists a set G of flats such that

1. P is contained in the union of the flats of G ,
2. each flat � ∈ G has dimension dim(�) ≥ 1, and
3.

∑
�∈G dim(�) = t .

Denote by fk the number of k-flats spanned by P . For each non-negative integer i, let gi be the largest number of points 
of P contained in a set of essential dimension i. For example, g1 is the largest number of points contained in any single 
line, and g2 is the largest number of points contained in any single plane, or the union of any pair of lines. Note that 
1 = g0 ≤ g1 ≤ . . . ≤ gK = n. A classical theorem of Beck [4] is that f1 = n(n − g1). This was generalized to all dimensions in 
[10], and this generalization is the main tool used here.

Theorem 7. For each k, there is a constant ck such that, if n − gk > ck, then

fk = 	k

(
k∏

i=0

(n − gi)

)
.

If n − gk = 0 (i.e. k ≥ K ), then

fk = O K

⎛
⎝2(K−1)−k∏

i=0

(n − gi)

⎞
⎠ ,

and either fk−1 = fk = 0 or fk−1 > fk .

3. Proof of Theorem 4

Recall from the introduction that a k-flat � is α-nondegenerate if at most α|P ∩ �| points of P lie on any (k − 1)-flat 
contained in �. We further say that � is essentially-α-nondegenerate if for each P ′ ⊂ P ∩� such that the essential dimension 
of P ′ is at most k − 1, we have |P ′| ≤ α|P ∩ �|. Note that an essentially-α-nondegenerate flat is also α-nondegenerate, but 
not necessarily the other way around.

The following bound on essentially-α-nondegenerate flats was proved by Do [6].

Theorem 8 (Do). For any integer k ≥ 1, any real α with 0 < α < 1, and any integer r > k, the number of essentially-α-nondegenerate, 
r-rich k-flats is bounded above by Oα,k(nk+1r−k−2 + nkr−k).

Theorem 8 is also an immediate consequence of Theorem 7 together with the following theorem of Elekes and Tóth [8]. 
A k-flat � is γ -saturated if � ∩ P spans at least γ |� ∩ P |k different (k − 1)-flats.

Theorem 9 (Elekes, Tóth). For any positive real γ , any integer k ≥ 1, and any integer r > k, the number of r-rich γ -saturated k-flats is 
at most Oγ ,k(nk+1r−k−2 + nkr−k).
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To prove Theorem 8 from Theorem 7 and Theorem 9, observe that Theorem 7 implies that essentially-α-nondegenerate 
k-flats are γ saturated, for an appropriate choice of γ depending on α and k.

In the remainder of this section, we deduce Theorem 4 from Theorem 8.

3.1. The case k = 3

The case k = 3 admits a simpler proof than the general theorem, which we give first. The proof for arbitrary k does not 
depend on this special case, but is built around a similar idea.

Theorem 10. For any real α with 0 < α < 1 and integer r > 3, the number of α-nondegenerate, r-rich 3-flats is bounded above by 
Oα(n4r−5 + n3r−3).

Proof. By Theorem 8, the number of essentially-α1/2-nondegenerate r-rich 3-flats is bounded above by Oα(n4r−5 + n3r−3). 
If an r-rich 3-flat � is α-nondegenerate but not essentially-α1/2-nondegenerate, then at least α1/2|P ∩ �| ≥ α1/2r points of 
P are contained in the union of two skew lines, neither of which contains more than α|P ∩ �| points of P ; hence, each of 
these lines contains at least (α1/2 − α)r points. By the Szemerédi-Trotter theorem (Theorem 1), the maximum number of 
pairs of ((α1/2 − α)r)-rich lines is bounded above by Oα(n4r−6 + n2r−2), which implies the conclusion of the theorem. �
3.2. The general case

The proof of Theorem 10 given above does not generalize to higher dimensions, but the basic approach of bounding the 
number of r-rich α-nondegenerate flats that are not also essentially-α′-nondegenerate (for a suitable choice of α′) does still 
work in higher dimensions.

It turns out that a distinguishing property of rich flats that are α-nondegenerate but not essentially-α′-nondegenerate is 
that they are special, according to the following definition. If a k-flat � is (r, α)-special, then � contains a set G of flats so 
that

1. G = �,
2. for each G ′ ⊆ G with |G ′| > 1, we have 

∑
�∈G′ dim(�) < dim(G′), and

3. each flat of G is r-rich and α-nondegenerate.

We first show that each rich flat that is α-nondegenerate but not essentially-α′-nondegenerate is special.

Lemma 11. Let 0 < α < 1, and let r and k be positive integers. If � is an r-rich, α-nondegenerate k-flat that is not also essentially-α′-
nondegenerate, then it is (r′, α′)-special, for α′ = (k + α)(k + 1)−1 and r′ = (1 − α′)|P ∩ �|.

Proof. From the definition of essentially-α′-nondegenerate, there is a collection G′ of sub-flats of � with 
∑

�∈G′ dim(�) < k
such that | ⋃�∈G′ � ∩ P | > α′|P ∩ �|. We modify G′ to obtain a set G satisfying the three conditions needed to show that 
� is special, as follows.

If � ∈ G′ is not α′-nondegenerate, then replace � with the smallest flat �′ ⊂ � that contains at least (α′)dim(�)−dim(�′)|P ∩
�| points. Note that, since any flat �′′ ⊂ �′ with dim(�′′) = dim(�′) − 1 contains fewer than (α′)dim(�)−dim(�′)+1|P ∩ �| ≤
α′|P ∩ �′| points of P , it follows that �′ is α′-nondegenerate. Furthermore, the number of points in � that are not also in 
�′ is at most (1 − (α′)dim(�)−dim(�′))|P ∩ �|.

Since 0 < α′ < 1, we have for any integer j ≥ 1 that

1 − (α′) j = α′(1 − (α′) j−1) + 1 − α′ ≤ 1 − (α′) j−1 + 1 − α′.

Hence by induction, 1 − (α′) j ≤ j(1 − α′). Consequently, the number of points in � that are not also in �′ is at most 
(dim(�) − dim(�′))(1 − α′)|P ∩ �|.

For any subset G′′ ⊂ G′ such that 
∑

�∈G′′ dim(�) = dim(G′′), replace G′′ with G′′ . Note that this does not increase ∑
�∈G′ dim(�). Repeat this procedure until the second condition in the definition of special holds.
Remove from G′ any flat that contains fewer than (1 − α′)|P ∩ �| points to obtain the final set G . Each remaining flat in 

G is α′-nondegenerate and (1 − α′)|P ∩ �|-rich. The number of points that are contained in flats of G′ but not in flats of 
G is at most 

∑
�∈G′ dim(�)(1 − α′)|P ∩ �| < k(1 − α′)|P ∩ �| = (α′ − α)|P ∩ �| points. Hence, | ⋃�∈G � ∩ P | > α|P ∩ �|. If 

dim(G) < k, then � is not α-nondegenerate, contrary to our assumption. Hence, dim(G) = k, and � is (r′, α′)-special. �
Next, we show that the number of special flats is asymptotically smaller than the upper bound on the number of 

essentially-α-nondegenerate flats coming from Theorem 8.

Lemma 12. For any 0 < α < 1 and positive integers r, k, the number of (r, α)-special k-flats for P is Oα,k(nk+1r−k−2 + nkr−k).
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Proof. We proceed by induction on k. The base case of k = 1 is handled by Theorem 1. Let k > 1, and suppose that 
Theorem 4 has been shown to hold for all k′ < k.

Let F be the set of (r, α)-special k-flats. We partition F into subsets Fb for each integer 1 ≤ b < k, and separately bound 
the size of each Fb , as follows.

First we assign each flat to one of the parts. For each � ∈ F , let G� be a minimal set of flats that shows that � is 
special. Since G� is minimal, we have that G� = � but G� \ � � � for each � ∈ G� . Let �� be an arbitrary flat in G� , let 
b� = dim(G� \ ��), and let G′

� = G� \ �� . Note that G′
� is (r, α)-special. Assign � to Fb�

.
Now we fix b, and bound |Fb|. The inductive hypothesis implies that

|{G′
� : � ∈ Fb}| = Oα,b(n

b+1r−b−2 + nbr−b).

Hence, it will suffice to bound the number of flats � ∈ Fb that share any fixed associated set G′
� by Oα,k(nk−br−k+b).

Let R ∈ {G′
� : � ∈Fb}. Recall that πR denotes the projection from R. Let M be a multiset of points in Pd−1−b , with the 

multiplicity of a point q equal to the number of points p ∈ P so that π(p) = q.
For each � ∈ Fb such that G′

� = R, there is an α-nondegenerate, r-rich flat � such that �,R = �. Since �,R = � and 
πR(�) is disjoint from R, we have that dimπR(�) = k − 1 − b. We claim that πR(�) is (1 −α)r-rich and α-nondegenerate 
relative to M . First, note that |πR(�) ∩ M| = |� ∩ P | − |� ∩ R ∩ P |. Since � is α-nondegenerate, |� ∩ R ∩ P | < α|� ∩ P |, 
so πR(�) is (1 − α)r-rich. Let �′ be a subflat of πR(�), and let π−1(�′) ⊂ � be the preimage of �′ in �. Note that 
dimπ−1(�′),R∩ � < dim�, hence |�′ ∩ πR(P )| ≤ α|� ∩ P | − |� ∩ R ∩ P | ≤ α|πR(�) ∩ πR(P )|. Hence, πR(�) is α-
nondegenerate.

To complete the proof, we will use the following lemma, proved below.

Lemma 13. Let M be a multiset of points with total multiplicity n. The number of r-rich, α-nondegenerate k-flats spanned by M is 
bounded above by (1 − α)−knk+1r−k−1 .

From Lemma 13, we get the required bound of O (nk−brb−k) on the number of (1 −α)r-rich, α-nondegenerate (k −1 −b)-
flats spanned by πR(P ), and this completes the proof of Theorem 4. �

Here is the proof of Lemma 13.

Proof of Lemma 13. There are nk+1 ordered lists of k + 1 points in M (with repetitions allowed). We show below that 
for any r-rich, α-nondegenerate k-flat �, there are at least (1 − α)krk+1 distinct lists of k + 1 affinely independent points 
contained in �. Since k + 1 affinely independent points are contained in exactly one k-flat, this implies the conclusion of 
the lemma.

Let � be an r-rich, α-nondegenerate k-flat. We will show that, for each 0 ≤ k′ ≤ k, � contains (1 − α)k′
rk′+1 distinct 

ordered lists of k′ +1 affinely independent points of M . We proceed by induction on k′ . The base case of k′ = 0 is immediate 
from the fact that � is r-rich. Let k′ > 0, and suppose that � contains (1 − α)k′−1rk′

distinct ordered lists of k′ affinely 
independent points of M .

Let V be the set of pairs (v, p), where v is an ordered list of k′ affinely independent points of M contained in �, and p
is a point of M contained in � \ v. By the inductive hypothesis, we know that there are (1 − α)k′−1rk′

choices for v. Since 
dim v = k′ − 1 ≤ k − 1, the hypothesis that � is α-nondegenerate implies that |v ∩ M| ≤ α|� ∩ M|. Consequently, for a fixed 
choice of v, there are at least (1 − α)r choices for p. Hence |V | ≥ (1 − α)k′

rk′+1, as claimed. �
Now the proof of Theorem 4 is done. Theorem 8 gives the required bound on the number of essentially-α-nondegenerate 

flats. Lemma 11 shows that the flats that are α-nondegenerate but not essentially-α-nondegenerate are special, and 
Lemma 12 gives the required bound on special flats.

4. Proof of Theorem 6

In this section, we show that Theorem 6 follows from Theorem 7.

Proof. Let ck be the constant in the lower bound of Theorem 7. If fk ≥ cknk+1, then the third alternative of Theorem 6
holds and we are done.

Suppose that fk < cknk+1. Theorem 7 implies that there is a set G of flats such that 
∑

�∈G dim(�) ≤ k, at least (1 −o(1))n
points of P lie in some flat of G , and each flat of G has dimension at least 1. If G consists of a single flat, then the first 
alternative holds and we’re done. Suppose that |G| > 1. We show below that, unless k is odd and G is the union of k
lines, we can partition G into G1, G2 such that dimG1, dimG2 ≤ k − 1. Since either |P ∩ (∪�∈G1�)| ≥ (1/2)|P ∩ (∪�∈G�)| or 
|P ∩ (∪�∈G2�)| ≥ (1/2)|P ∩ (∪�∈G�)|, this is enough to prove the theorem.

Let G = {�1, �2, . . . , �m}, with dim(�1) ≤ dim(�2) ≤ . . . ≤ dim(�m). Let G1 = {�1, �2, . . . , �m1 }, with m1 chosen as large 
as possible under the constraint dimG1 ≤ k − 1.
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Let s = dim�m1+1. Note that dimG1 + s ≥ k − 1, since otherwise �m1+1 would be included in G . Since each flat in G1 has 
dimension at most s, by (2) we have∑

�∈G1

dim � ≥ dimG1 + 1 − |G1|,

≥ k − s − 1

s

∑
�∈G1

dim �.

Hence,

k −
∑
�∈G2

dim � ≥
∑
�∈G1

dim � ≥ k − s

1 + s−1 ,

and so∑
�∈G2

dim � ≤ s + ks−1

1 + s−1 .

Since each flat in G2 has dimension at least s, we have |G2| ≤ 1
s

∑
�∈G2

dim�. Applying (2), we have

dimG2 ≤ |G2| − 1 +
∑
�∈G2

dim�,

≤ (1 + s−1)
∑
�∈G2

dim� − 1,

≤ s + ks−1 − 1,

≤ k,

with equality only if s = 1 and |G2| = 1
s

∑
�∈G2

dim�; this occurs only if G is a set of lines. Note that the case s = k is 
eliminated by the assumption that |G| > 1 together with the fact that 

∑
�∈G dim(�) ≤ k.

If G is a set of lines and k is even, then G2 consists of at most k/2 lines, which span at most a (k − 1)-flat. Hence, if 
dimG2 = k, then G must be a set of lines, and k must be odd. Since dimG1 ≤ k − 1 by construction, this completes the 
proof. �
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[6] Thao Do, Extending Erdős-Beck’s theorem to higher dimensions, arXiv:1607.00048, 2016.
[7] Herbert Edelsbrunner, Leonidas Guibas, Micha Sharir, The complexity of many cells in arrangements of planes and related problems, Discrete Comput. 

Geom. 5 (1) (1990) 197–216.
[8] György Elekes, Csaba D. Tóth, Incidences of not-too-degenerate hyperplanes, in: Proceedings of the Twenty-First Annual Symposium on Computational 

Geometry, ACM, 2005, pp. 16–21.
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