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Abstract
We prove, under suitable conditions, a lower bound on the number of pinned distances
determined by small subsets of two-dimensional vector spaces over fields. For finite
subsets of the Euclidean plane we prove an upper bound for their bisector energy.

Keywords Distinct distances · Perpendicular bisectors · Finite fields

Mathematics Subject Classification 52C10

1 Introduction

A well-known conjecture of Erdős [3] is that between the pairs of any N points in
R
2 occur at least �(N log−1/2(N )) different distances. In 2010, Guth and Katz [7]

showed that �(N log−1(N )) distinct distances must occur.
Erdős also made a refinement of this conjecture. This refinement is that among any

set A of N points in R
2, there must occur a point a ∈ A such that the remaining

points of A are at �(N log−1/2(N )) different distances from a. This is often called
the pinned distances conjecture. The best known bound of �(N 0.864...)was proved by
Katz and Tardos [11], who improved an earlier proof by Solymosi and Tóth [16].
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These problemshave also been considered over other fields, particularly finite fields.
In general, we define the algebraic distance between two points a, b ∈ F

2 to be

‖a − b‖ = (a − b) · (a − b) = (a1 − b1)
2 + (a2 − b2)

2.

The distance number and pinned distance number of A are

�(A) = |{‖a − b‖ : a, b ∈ A}| and �pin(A) = max
a∈A

|{‖a − b‖ : b ∈ A}|.

We study �pin(A). A simple lower bound of �pin(A) = �(N 1/2) comes from
the observation that either some single circle contains N 1/2 points (giving at least
1
2N

1/2 distinct distances from any point in the circle), or there are at least N 1/2 − 1
distinct distances from each point. This simple bound is tight over fields of positive
characteristic, as can be seen by taking our set of points to be the Cartesian product
of the prime subfield. In this case �(A) is contained in the prime subfield and hence
�pin(A) ≤ �(A) ≤ N 1/2.

There are two ways of proving a non-trivial pinned distance bound over fields of
positive characteristic. You can prove a lower bound that depends on the order of the
field, or you can assume that the number of points is small relative to the characteristic
of the field. In this paper, we are primarily interested in point sets that are relatively
small.

The first work on the pinned variant of the distinct distance problemover finite fields
was done by Bourgain et al. [2]. Prior to this paper, the strongest general quantitative
bound for small sets was by Stevens and de Zeeuw [17], who proved �pin(A) =
�(N 1/2+1/30) over any field of characteristic not equal to 2. Iosevich, Koh, Pham,
Shen, and Vinh [9] recently gave a stronger bound of �(A) = �(N 1/2+149/4214) for
point sets in F

2
p for prime p with p ≡ 3 mod 4. Subsequent work by Iosevich, Koh,

and Pham [10] has led to an improved bound of �(A) = �(N 1/2+69/1558), again for
point sets in F

2
p for prime p with p ≡ 3 mod 4. Our main result is quantitatively

stronger than the earlier result of of Iosevich et. al., and applies in the general setting
of Stevens and de Zeeuw.

Theorem 1.1 LetF be a fieldwith characteristic not equal to2. There exists an absolute
positive constant c > 0 with the following property. Let A ⊂ F

2. If F has positive
characteristic p, then suppose that |A| ≤ p8/5. Then, either

{‖a − b‖ : a, b ∈ A} = {0},

or there exists a ∈ A such that

|{‖a − b‖ : b ∈ A}| ≥ c|A|20/37.

We remark that our proof of Theorem1.1 remains valid if ‖·‖ is replaced by an arbitrary
quadratic form. This is because there are no restrictions on the field F (except that it
must not have characteristic 2) and so we may take it to be algebraically closed, in
which case all quadratic forms are equivalent.
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Comparing the exponent in our bound to the earlier bounds, the Stevens and de
Zeeuw exponent is 1/2 + 1/30 ≈ 0.533, the Iosevich et. al. exponent is 1/2 +
149/4214 ≈ 0.535, and our exponent is 1/2 + 3/74 ≈ 0.541.

Proving distance bounds over fields of characteristic p in the case p ≡ 1 mod 4 is
usually more complicated than in the case p ≡ 3 mod 4. This arises from the fact that
−1 is a square when p ≡ 1 mod 4, so there are non-trivial solutions to x2 + y2 = 0,
and hence the distance between distinct points can be 0. For most approaches to the
distinct distance problem (such as the one followed in this paper), it is possible to
adapt arguments for the p ≡ 3 mod 4 case to the general case with some effort. The
paper of Iosevich et. al. uses a result of Rudnev and Shkredov [15] on the additive
energy of a point set on a paraboloid that does not hold in the p ≡ 1 mod 4 case, and
so is likely to be harder to generalize.

For the case that F = Fp is a finite field of prime order p, Hanson et al. [8] proved
the complementary bound

�pin(A) ≥ cmin
{
p,

|A|3/2
p

}

(their result in fact holds over arbitrary finite fields). For |A| ≥ p8/5 this becomes
min{p, |A|7/8}. Therefore, for prime order finite fields, the current state of affairs may
be summarized as:

�pin(A) ≥ cmin{p, |A|20/37}.

Petridis [14] obtained the better cmin{p, |A|3/4} lower bound when A is a Cartesian
product.

The key idea in the proof of Theorem 1.1 that enables us to improve the bound of
Stevens and de Zeeuw is to bound the bisector energy of the point set. We say the
perpendicular bisector of points a, b ∈ F

2 with ‖a − b‖ 	= 0 is the line

B(a, b) = {x : ‖a − x‖ = ‖b − x‖}.

The bisector energy is the number of quadruples that share a bisector. In other words,
the bisector energy is

Q = |{(a, b, c, d) ∈ A4 : B(a, b) = B(c, d)}|.

If (a, b, c, d) ∈ Q, then the non-isotropic line segment with endpoints (a, c) is the
reflection of the line segment (b, d) over the non-isotropic line B(a, b) = B(c, d). In
particular, ‖a − c‖ = ‖b − d‖.

Taking A to be a collection of equally spaced points on a line or the vertices of
a regular polygon, shows that Q might be a constant multiple of |A|3. We follow a
dichotomy argument to prove Theorem 1.1 . If Q ≤ |A|3−δ for some absolute δ > 0,
then the standard argument employed by Stevens and de Zeeuw (which goes back at
least to [4]) can be improved. The key to our result is to show that if, on the other hand,
Q ≥ |A|3−δ , then there exists a line or a circle incident to many points of A. Taking
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any point of A not on such a line or circle as the pin, gives many pinned distances. In
completing this crucial step we utilize the set up of Lund et al. [13], first developed to
bound bisector energy over R. We also use results of Hanson et al. [8], who bounded
the bisector energy for large sets over arbitrary finite fields.

Our second result is progress on a conjecture of Lund et al. [13] on the bisector
energy of a point set inR2. Lund et al. made a conjecture that relatesQ to the structure
of the point set. If M is the maximum number of points of A incident to a line or to
a circle, then they conjecture that Q is in the of order MN 2. They proved the first
non-trivial result in this direction by showing that there exists an absolute positive
constant C > 0 and, for all ε > 0, a positive constant Cε > 0 such that

Q ≤ CMN 2 + CεM
2/5N 2+2/5+ε.

This confirms the conjecture for M ≥ N 2/3+δ for any δ > 0. We prove an upper
bound that is stronger when M ≥ N 1/4, and which confirms the conjecture for M ≥
(log(N )N )1/2.

Theorem 1.2 There exists an absolute positive constant C > 0 with the following
property. Let A ⊂ R

2 be a finite set of size |A| = N and Q be its bisector energy. If
there are at most M elements of A incident to any line or any circle, then

Q ≤ C
(
MN 2 + log1/2(N ) N 2+1/2).

The proof of Theorem 1.2 uses the set up, as well as the fundamental geometric
observations in [13]. Some aspects of the proof are, however, different. A powerful
polynomial partitioning result of Fox et al. [5] is not used. As a result of this, the
“main” term MN 2 appears for different reasons than in [13]. We depend instead on
Beck’s theorem [1]. In this sense Theorem 1.2 has a more elementary proof, though
it relies on the full strength of the Guth–Katz theorem for distinct distances [7].

Lund et al. [13] also considered the question of how many lines occur as perpen-
dicular bisectors of a set of points inR2. Taking A to be a collection of equally spaced
points on a line or the vertices of a regular polygon shows that a set of N points may
determine as few as N distinct perpendicular bisectors. The conjecture of Lund et al.
on this question is that, for a set A of N points inR2, either N/2 points are contained in
a single line or circle, or A determines �(N 2) distinct perpendicular bisectors. Lund
et al. showed that a set of N points, nomore than M of which are incident to any line or
circle, determines�ε(min(M−2/5N 8/5−ε, M−1N 2)) distinct perpendicular bisectors,
for any ε > 0, with the implied constant depending on ε. Lund [12] showed that a set
of N points in the plane, no more than N/2 of which are incident to any line or circle,
determines �ε(N 52/35−ε) distinct perpendicular bisectors, for any ε > 0, with the
implied constant depending on ε. A slight generalization of Theorem 1.2, combined
with the arguments of [12], gives the following improvement to Lund’s bound.

Theorem 1.3 There exists a constant C > 0 with the following property. Let A ⊂ R
2

be a set of N points. Either a single line or circle contains N/2 points of A, or
CN 3/2 log1/2(N ) distinct lines occur as perpendicular bisectors of pairs of points
of A.
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This is strictly better than Lund’s bound, and improves the bound of Lund et al. for
point sets with at most N 1/4 points on any line or circle.

2 Proof of Theorem 1.1

Let us quickly recap the method of Lund et al. [13] to bound bisector energy. For an
ordered pair of points (a, c) ∈ F

2 × F
2 with ‖a − c‖ 	= 0, we define

Sac = {(b, d) : B(a, b) = B(c, d)} ∪ {(a, d) : a ∈ B(c, d)} ∪ {(b, c) : c ∈ B(a, b)}.

In words, Sac is the set of reflections of (a, c) over lines in the plane, with the exception
of the line through the pair (a, c). The second and third term account for the case that
the line that we reflect over is incident to either a or c.

We abuse terminology and call Sac a variety. It is important to note that if (b, d) ∈
Sac, then ‖b − d‖ = ‖a − c‖. For r ∈ F

×, we define

�r = {(b, d) ∈ A × A : ‖b − d‖ = r} and Sr = {Sac : a, c ∈ A, ‖a − c‖ = r},

and denote by

I (�r ,Sr ) = |{((b, d), Sac) ∈ �r × Sr : (b, d) ∈ Sac}|

the number of incidences between pairs of points and varieties. Lund et al. observed
that

Q =
∑
r∈F×

I (�r ,Sr ).

Our aim is therefore to bound I (�r ,Sr ), which is zero unless r lies in the distance
set of A. We prove a slightly stronger statement.

Proposition 2.1 Let A ⊂ F
2. Suppose at most M points of A are incident to any circle

or line. For any r ∈ F
×, if P ⊆ �r , and V ⊆ Sr , then

I (P, V ) = O
(|P| + M2/3|P|2/3|V |2/3 + |P|2/3|V |).

The proof relies on the following lemma, which was proved for F = R by
Lund et al.

Lemma 2.2 Let (a, c) 	= (a′, c′) ∈ F
2 × F

2 with ‖a − c‖ = ‖a′ − c′‖ 	= 0. The
intersection Sac ∩ Sa′c′ ⊂ F

2 × F
2 is contained in the Cartesian product of either a

pair of concentric circles or a pair of parallel lines. The first circle or line contains
both a and a′, and the second circle or line contains both c and c′. Moreover these
circles or lines are uniquely determined by (a, c) and (a′, c′).

The space of line segments of length r is three-dimensional, and the space of line
segments that are axially symmetric with a fixed segment (a, c) is two-dimensional.
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Hence, wemay expect that the space of segments axially symmetric to a pair of generic
line segments of equal length is one-dimensional. The content of Lemma 2.2 is to give
a more precise geometric characterization of the segments axially symmetric to any
pair of line segments of equal length.

The lemma implies that the incidence graph on P × V contains no K2,M or KM,2
(there is clear duality between pairs of points and varieties), which leads to the bounds

I (�r ,Sr ) = O(M1/2|P|1/2|V | + |P|) and

I (�r ,Sr ) = O(M1/2|V |1/2|P| + |V |). (1)

Inserting these bounds in the calculations that follow retrieves the lower bound of
Stevens and de Zeeuw on pinned distances. This is why we need Proposition 2.1. To
prove it we will look at triple intersections of varieties.

In place of Proposition 2.1, Lund et al. gave the bound

I (�r ,Sr ) = Oε(M
2/5|�r |7/5+ε + M |�r |), (2)

for any ε > 0, with the implied constant depending on ε. They prove this bound by
combining (1) with the method of polynomial partitioning. Polynomial partitioning
is not available over general fields, but more importantly it relies on the asymmetry
between the dependence on |P| and |V | in (1). Since the main term in Proposition 2.1
is symmetric in its dependence on |P| and |V |, it cannot be improved by polynomial
partitioning, even in the case F = R. Note that Proposition 2.1 is stronger than (2) for
M ≥ |�r |1/4.

2.1 Isotropic Lines

One difficulty that arises when working over arbitrary fields is that there may be non-
zero vectors v with ‖v‖ = 0. Indeed, suppose that i = √−1 is an element of F. Then,
‖(1, i)‖ = ‖(1,−i)‖ = 0. These are isotropic vectors.

Let v ∈ F2 be isotropic, and let a ∈ F2 be arbitrary. Let � be the line defined by
a + λv, where λ ranges over F. For any b, c ∈ �, the vector b − c is isotropic. In this
case, � is an isotropic line.

In general, if F includes
√−1, then there are two isotropic lines through each point.

Otherwise, there are no isotropic lines.We collect here a few facts about isotropic lines.

Lemma 2.3 Suppose that a 	= b and ‖a − b‖ = 0. Then, either ‖a‖ = ‖b‖ = 0, or
‖a‖ 	= ‖b‖.
Proof Suppose, for contradiction, that ‖a‖ = ‖b‖ 	= 0. Then, there is a vector c with
‖c‖ = 1 and c · b = 0. Note that b and c are a basis for F2. Let a = λ1b+ λ2c. Then,

0 = ‖a − b‖ = ‖a‖ + ‖b‖ − 2(a · b) = 2‖a‖ − 2(a · b),

so

‖a‖ = a · b = (λ1b + λ2c) · b = λ1‖a‖ + λ2(c · b) = λ1‖a‖.
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Hence, λ1 = 1. Using this,

‖a‖ = ‖b + λ2c‖ = ‖b‖ + λ22‖c‖ + 2λ2(b · c) = ‖a‖ + λ22,

so λ2 = 0. Hence a = b, which contradicts assumption of the lemma. ��
Lemma 2.4 Let a 	= b, ‖a‖ = ‖b‖ 	= 0, c 	= 0, ‖c‖ = 0. Then, ‖a − c‖ 	= ‖b − c‖.
Proof

‖a − c‖ = ‖a‖ + ‖c‖ − 2(a · c) = ‖a‖ − 2(a · c).
Similarly,

‖b − c‖ = ‖a‖ − 2(b · c).
Suppose, for contradiction, that ‖a − c‖ = ‖b − c‖. Then, a · c = b · c. Hence,

(a − b) · c = 0 = c · c. Since · is a non-degenerate bilinear form, this implies that
there is some λ 	= 0 so that a − b = λc. Hence, ‖a − b‖ = 0. Applying Lemma 2.3
to the vectors a, b leads to a contradiction. ��
Corollary 2.5 Perpendicular bisectors are not isotropic.

Proof Suppose that � is the perpendicular bisector of a, b. By the definition of a
perpendicular bisector, we exclude the possibility that ‖a − b‖ = 0. Consequently, if
c ∈ �, then ‖a − c‖ = ‖b − c‖ 	= 0. By translating, we may assume that 0 ∈ �, so
that ‖a‖ = ‖b‖ 	= 0. Let c ∈ � be a non-zero point, so that ‖a − c‖ = ‖b − c‖ 	= 0.
Then, by Lemma 2.4, since ‖a‖ = ‖b‖ 	= 0, we have that ‖c‖ 	= 0. Hence, � is not
isotropic. ��

2.2 Rotations and Reflections

The proof of Lemma 2.2 relies on the properties of transformations of F2 that preserve
‖a − b‖ for all a, b ∈ F

2. We call these transformations isometries.
We assume a few basic facts about the orthogonal group associated to an arbitrary

quadratic form over a field with characteristic not equal to 2; see, for example, chapters
4–6 in [6]. Any linear transformation of F2 that preserves ‖·‖ belongs to an associated
orthogonal group. As matrices, the orthogonal transformations have determinant 1 or
−1. If the determinant is 1, the transformation is positively oriented.

If τ is an orthogonal transformation, then a → τ(a) + v preserves ‖a − b‖ for
all a, b ∈ F

2. Positively oriented orthogonal transformations are rotations around the
origin and the identity, so the positively oriented isometries of ‖a − b‖ are rotations
around any point in F2, pure translations, and the identity.

For any vector u with ‖u‖ 	= 0, the orthogonal transformation σu with

σu(a) = a − 2
a · u
‖u‖ u

is the reflection over the non-isotropic line
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{v : u · v = 0}

through the origin. Note that σu(u) = −u and σu(v) = v if u · v = 0. Note also that
σu(a) = σλu(a) for λ 	= 0. Reflections over lines through the origin have order 2, and
the composition of reflections is positively oriented.

More generally, let u with ‖u‖ 	= 0, let w with u · w = 0, and let λ1 ∈ F. The
transformation

r�(a) = σu(a) + 2λ1u

is a reflection over the line

� = {λ1u + v : u · v = 0}.

In general, for any non-isotropic line �, we denote the reflection over � by r�.

Lemma 2.6 For any two points a, b ∈ F
2 with ‖a − b‖ 	= 0 and non-isotropic line �,

we have r�(a) = b if and only if � = B(a, b).

Proof If r�(a) = b and p ∈ �, then ‖p − a‖ = ‖p − b‖ since r� is an isometry.
It remains to show that such an r� always exists. Let u = a−b. It is always possible

to choose λ so that

b = a − 2

(
a · (a − b)

‖a − b‖ − λ

)
(a − b),

which shows that r�(a) = b for the line � = {λ(a − b) + v : (a − b) · v = 0}. ��
Lemma 2.7 The composition of a pair of reflections is a positively oriented isometry
of ‖a− b‖. In particular, r� ◦ r�′ is the identity if � = �′, is a translation if � is parallel
to �′, and is otherwise a rotation around � ∩ �′.

Proof Let r� = σu(a) + 2λu, and r�′ = σu′(a) + 2λ′u′ for some u, u′ depending on
�, �′. Then

r� ◦ r ′
�(a) = σuσu′(a) + 2λ′σu(u′) + 2λu.

This is a positively oriented orthogonal transformation σuσu′ composed with a trans-
lation that does not depend on a.

Given distinct points a and a′, there is a unique line � such that r�(a) = a′.
Consequently, if r�r�′(a) = a, then either � = �′ or a is a fixed point of both r� and r�′ ,
and hencemust be in their intersection. The lemma follows because the only positively
oriented isometries without fixed points are pure translations and the only positively
oriented isometries with a single fixed point are pure rotations. ��
Lemma 2.8 Given any quadruple of points a, c, a′, c′ with ‖a − c‖ = ‖a′ − c′‖ 	= 0,
there is a unique positively oriented isometry τ such that (τ (a), τ (c)) = (a′, c′).
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Proof First translate a to a′, then apply the unique rotation that takes c to c′. ��

We are now ready to prove Lemma 2.2.

Proof of Lemma 2.2 Let (b, d) ∈ Sac ∩ Sa′c′ . Since B(a, b) is defined only when ‖a −
b‖ 	= 0, we can assume that either a = b or ‖a − b‖ 	= 0, and likewise for the pairs
(a′, b), (c, d), and (c′, d).

If a 	= b, then let �1 = B(a, b). Otherwise, if c 	= d, then let �1 = B(c, d).
Otherwise, let �1 be the line through the pair (a, c) = (b, d). Define �2 similarly,
using (a′, b′) in place of (a, b). Note that we must have �1 	= �2, since if they were
equal we would have (a, c) = (a′, c′).

Let τ be the unique rotation or translation that carries (a, c) to (a′, c′). Since (b, d) ∈
Sac ∩ Sa′c′ , we have by Lemma 2.6 that τ is the composition of a reflection over �1
followed by a reflection over �2. If τ is a translation, then �1 must be parallel to �2, so
b is in the line that contains (a, a′) and d is in the line that contains (c, c′). If τ is a
rotation, then, by Lemma 2.7, �1 ∩ �2 must be the fixed point p of τ . If p = a, then
a = b = a′. Otherwise, ‖a − p‖ = ‖b − p‖ = ‖a′ − p‖ 	= 0, and so b is contained
in the circle with center p that contains (a, a′). The very same reasoning applies for
d, using (c, c′) in place of (a, a′). ��

2.3 BoundingQ

Having established Lemma 2.2, we are ready to prove Proposition 2.1.

Proof of Proposition 2.1 We set |P| = m and |V | = n. We also denote ordered pairs
of points (b, d) ∈ P by x and ordered pairs of points (a, c) such that Sac ∈ V by v.
For each x ∈ P let

i(x) = |{Sv ∈ V : x ∈ Sv}|

be the number of varieties it is incident to. Applying Hölder’s inequality we get

I (P, V ) =
∑
x∈P

i(x) ≤ m2/3
( ∑
x∈P

i(x)3
)1/3

.

We next use the fact that i3 = O(1 + i(i − 1)(i − 2)) to obtain

I (P, V ) = O

⎛
⎝m2/3

(
m +

∑
x∈P

i(x)(i(x) − 1)(i(x) − 2)

)1/3
⎞
⎠

= O

⎛
⎝m + m2/3

(∑
x∈P

i(x)(i(x) − 1)(i(x) − 2)

)1/3
⎞
⎠ .
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We next expand the bracketed term.

∑
x∈P

i(x)(i(x) − 1)(i(x) − 2) =
∑
x∈P

∑
pairwise distinct

v1,v2,v3

1x∈Sv1
1x∈Sv3

1x∈Sv3

=
∑
x∈P

∑
pairwise distinct

v1,v2,v3

1x∈Sv1∩Sv2∩Sv3

≤
∑

pairwise distinct
v1,v2,v3

∑

x∈F4
1x∈Sv1∩Sv2∩Sv3

=
∑

pairwise distinct
v1,v2,v3

|Sv1 ∩ Sv2 ∩ Sv3 |.

In view of Lemma 2.2 we observe that (b, d) = x ∈ Sv1 ∩ Sv2 ∩ Sv3 if and only if x
lies in all three intersections Svi ∩ Sv j with 1 ≤ i < j ≤ 3. Therefore, by Lemma 2.2,
if x ∈ Sv1 ∩ Sv2 ∩ Sv3 , then both b and d belong to the intersection of three circles
or lines. We may solely focus on b because knowing b and that x ∈ Sv uniquely
determines (the common perpendicular bisector and hence) d. There are two separate
cases to consider.

The first case is when all three lines or circles are the same. Then there are at most
M possibilities for x = (b, d) because b is incident to this line or circle (there is
only one possibility for d). There are at most 2n2M possibilities for the vi = (ai , ci )
because once v1 and v2 have been selected, they determine the circles or lines on
which a3 and c3 must be incident to. Hence there are at most M possibilities for a3.
Since |a3c3| = r , c3 belongs to the intersection of two circles and there are at most
two possibilities for c3. In total, the contribution to the bracketed term coming from
this case is O(M2n2).

The second case is when at least two of the lines or circles are distinct. Then b lies
in the intersection of two lines or circles, so there are at most two possibilities for b
and hence for x . There are at most n3 possibilities for the vi = (ai , ci ). In total, the
contribution to the bracketed term coming from this case is O(n3).

Putting everything together yields

I (P, V ) = O

⎛
⎜⎝m + m2/3

⎛
⎜⎝

∑
pairwise distinct

v1,v2,v3

|Sv1 ∩ Sv2 ∩ Sv1 |
⎞
⎟⎠

1/3⎞
⎟⎠

= O
(
m + m2/3

(
M2n2 + n3

)1/3)

= O
(
m + M2/3m2/3n2/3 + m2/3n

)
. ��

Summing over the distances in F gives a bound on Q, as follows.
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Corollary 2.9 Let A ⊆ F
2. If, for each r ∈ F

×, mr = |{(a, b) ∈ A×A : ‖a−b‖ = r}|,
then

Q = O

⎛
⎜⎝M2/3|A|4/3

⎛
⎝ ∑

r∈F×
m2

r

⎞
⎠

1/3

+ |A|1/3
⎛
⎝ ∑

r∈F×
m2

r

⎞
⎠

2/3
⎞
⎟⎠ .

Proof We saw above that

Q =
∑
r∈F×

I (�r ,Sr ).

Applying Proposition 2.1 with P = �r and V = Sr , and noting that |�r | = |Sr | =
mr , gives

Q = O

⎛
⎝ ∑

r∈F×
M2/3m4/3

r + m5/3
r

⎞
⎠ = O

⎛
⎝ ∑

r∈F×
M2/3m2/3

r m2/3
r + m1/3

r m4/3
r

⎞
⎠ .

Applying Hölder’s inequality twice gives

Q = O

⎛
⎜⎝M2/3

⎛
⎝ ∑

r∈F×
mr

⎞
⎠

2/3 ⎛
⎝ ∑

r∈F×
m2

r

⎞
⎠

1/3

+
⎛
⎝ ∑

r∈F×
mr

⎞
⎠

1/3 ⎛
⎝ ∑

r∈F×
m2

r

⎞
⎠

2/3
⎞
⎟⎠ .

The final observation is
∑

r∈F× mr ≤ |A|2 (because each ordered pair of vertices
contributes at most 1 to the sum) and the claim follows. ��

2.4 Distance Quadruples and Isosceles Triangles

The next step in the proof of Theorem 1.1 is to obtain an upper bound for the sum∑
r m

2
r . This step is fairly standard. It relies on a point-line incidence bound of Stevens

and de Zeeuw. We begin by bounding this sum in terms of

T = |{(a, b, c) ∈ A × A × A : ‖a − b‖ = ‖a − c‖ 	= 0}|,

which equals the number of ordered isosceles triangles with all three vertices in A.
From Lemma 2.3, we know that, if (a, b, c) ∈ T , then ‖b − c‖ 	= 0.

Lemma 2.10 Let A ⊆ F
2 and T be the number of ordered isosceles triangles with all

three vertices in A. If mr is the number of ordered pairs of elements of A a distance r
apart, then

∑
r∈F×

m2
r ≤ |A| T .
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Proof For each a ∈ A and r ∈ F
× let fr ,a : A → {0, 1} be the function defined

by fr ,a(b) = 1 if ‖a − b‖ = r and fr ,a(b) = 0 otherwise. The following string of
inequalities proves the result.

∑
r∈F×

m2
r =

∑
r∈F×

(∑
a∈A

∑
b∈A

fr ,a(b)

)2

≤ |A|
∑
r∈F×

∑
a∈A

(∑
b∈A

fr ,a(b)

)2

= |A| T . ��

To bound T we apply the aforementioned point-line incidence bound of Stevens
and de Zeeuw. This bound is stated in Table 1 of [17].

Theorem 2.11 (Stevens and de Zeeuw) Let P ⊂ F
2 be a set and L be a collection of

lines. Suppose that |P| ≤ p8/5. The number of incidences between points in P and
lines in L is

I (P,L) = O
(|P|11/15|L|11/15 + |P| + |L|).

Lemma 2.12 Let A ⊆ F
2, Q be the bisector energy of A, and T be the number of

ordered isosceles triangles with all three vertices in A. If |A| ≤ p8/5, then either
Q ≤ log15/4(|A|) |A|5/4 or

T = O
(|A|5/3Q4/15).

Proof We denote |A| by m. We use the following identity:

T =
∑

i(�)b(�),

where b(�) is the number of ordered pairs of elements of A whose perpendicular
bisector is �, i(�) is the number of points in A incident to �, and the sum is over all non-
isotropic lines � ⊂ F

2 with b(�) ≥ 1. The identity is true because ‖a − b‖ = ‖a − c‖
is equivalent to a being incident to the perpendicular bisector of (b, c). We will break
up the above sum in two parts, depending on whether b(�) ≤ Q/m2, and apply dyadic
decomposition to each part.

For k ≥ 1, set Lk be the collection of non-isotropic lines � ⊂ F
2 that satisfy

k ≤ b(�) < 2k. We decompose the sum in dyadic intervals. To simplify the notation
we call integers of the form 2 j for some j ≥ 0 dyadic (note the smallest dyadic integer
is 1).

T =
∑

�:i(�)>1

i(�)b(�) ≤
∑

dyadic k≤m

2k
∑
�∈Lk

i(�) =
∑

dyadic k≤m

2k I (A,Lk).

We wish to apply the theorem of Stevens and de Zeeuw and so we need an upper
bound on |Lk |. Note that m2 is equal to

∑
b(�) minus the number of pairs of points

on isotropic lines, and in particular m2 ≥ ∑
b(�). Hence,
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m2 ≥
∑

b(�) ≥ k|Lk |.

Also note that

Q =
∑

b(�)2 ≥ k2|Lk |.

Combining these bounds,

|Lk | ≤ min
{m2

k
,
Q
k2

}
.

We apply the former upper bound to dyadic integers 1 ≤ k ≤ Q
m2 and the latter to

Q
m2 ≤ k ≤ m.

T ≤
∑

dyadic k≤Q/m2

2k I (A,Lk) +
∑

dyadic k∈(Q/m2,m]
2k I (A,Lk)

= O

⎛
⎝ ∑

dyadic k≤Q/m2

k
(
m11/15|Lk |11/15 + m + |Lk |

)

+
∑

dyadic k∈(Q/m2,m]
k
(
m11/15|Lk |11/15 + m + |Lk |

)
⎞
⎠

= O

⎛
⎝ ∑

dyadic k≤Q/m2

(
m33/15k4/15 + km + m2)

+
∑

dyadic k∈(Q/m2,m]

(
m11/15Q11/15k−7/15 + km + Qk−1)

⎞
⎠

= O
(
m2 log(m) + m33/15(Q/m2)4/15 + m11/15Q11/15(Q/m2)−7/15)

= O
(
m2 log(m) + m5/3Q4/15).

If Q > log15/4(m)m5/4, then m2 log(m) < m5/3Q4/15 and the lemma follows. ��

2.5 Finishing Up

Applying the trivial, yet sometimes sharp, bound Q ≤ |A|3 to Lemmata 2.10 & 2.12
leads to the Stevens and de Zeeuw bound on

∑
m2

r . We will use Proposition 2.1
to characterize sets with nearly maximum bisector energy. This characterization is
crucial for the proof of Theorem 1.1. The qualitative statement is that a set with nearly
maximum bisector energy must have many points incident to a single circle or line.
We state it in terms of a dichotomy.
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Corollary 2.13 Let A ⊆ F
2, Q be the bisector energy of A, and M be the maximum

number of points of A incident to any circle or line. Either Q = O(|A|3−1/37) or
M ≥ |A|27/37.
Proof Denoting |A| bym, and combining Corollary 2.9 and Lemmata 2.10 & 2.12 (in
Lemma 2.12 we may assume that Q > log14/5(m)m5/4) gives

Q = O
(
M2/3m4/3Q4/45m8/9 + m2/3Q8/45m16/9)

= O
(
M2/3m20/9Q4/45 + m22/9Q8/45).

This implies

Q = O
(
M30/41m100/41 + m110/37).

If M ≤ m27/37, then second term dominates, and the theorem follows. ��
We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1 Recall that M is the maximum number of points of A incident to
any circle or line. Using an element of A on a non-isotropic circle or line incident to
M points of A gives at least (M − 1)/2 pinned distances. If the circle or line incident
to M points is isotropic, we use as a pin the point of A not on it and obtain at least
M pinned distances. In both cases, if the second conclusion of Corollary 2.13 applies,
then we have at least a constant multiple of N 27/37 ≥ N 20/37 pinned distances and we
are done. We may therefore assume Q = O(N 110/37).

Cauchy–Schwarz together with an averaging argument yields there exist at least
nearly N 3/T pinned distances. Recall that fr ,a(b) is the indicator function for ‖a −
b‖ = r . We use δa to denote the number of non-zero distances r at which there is a
point b ∈ A such that ‖a − b‖ = r . We use �pin(A) = maxa δa to denote the pinned
distance number. Since there are at most two isotropic lines through each point, for
each a ∈ A there are at most 2M points b such that ‖a − b‖ = 0.

�pin(A)T ≥
∑
a∈A

|δa |
∑
r∈F×

(∑
b∈A

fr ,a(b)

)2

≥
∑
a∈A

∑
r∈F×

∑
b∈A

fr ,a(b) ≥ N (N − 2M − 1)2 = �(N 3).

Lemma 2.12 implies there are �(N 4/3/Q4/15) pinned distances. The hypothesis
Q = O(N 110/37) implies this number is �(N 20/37). ��

3 Proof of Theorem 1.2 and Sketch of Proof of Theorem 1.3

For the proof of Theorem 1.3, we need the following slight generalization of Theo-
rem 1.2.
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Theorem 3.1 There exists an absolute positive constant C > 0 with the following
property. Let A ⊂ R

2 be a finite set of size |A| = N, and let RM ⊂ A2 be the set
of pairs of points of A that are not contained in any line or circle that contains more
than M points of A. If

QM = |{(a, b, c, d) ∈ A4 : (a, b) ∈ RM , B(a, b) = B(c, d)}|,

then

QM ≤ C
(
MN 2 + log1/2(N ) N 2+1/2).

If no circle or line contains more thanM points of A, thenQM = Q, andwe recover
Theorem 1.2. Theorem 1.3 follows from the arguments in [12] by using Theorem 3.1
in place of [12, Lem. 11].

The main step of the proof of Theorem 3.1 is analogous to Proposition 2.1, and
we rely on the definitions of �r and Sr given at the beginning of Sect. 2. Given any
sets P ⊂ �r and V ⊂ Sr , we denote by IM (P, V ) the number of incidences between
points of Pr and surfaces in Sr , not counting any incidence ((b, d), Sac) such that the
pair (a, b) is contained in a circle or line that contains more than M points of A.

Proposition 3.2 Let A ⊂ R
2. If P ⊆ �r , and V ⊆ Sr , then

IM (P, V ) = O
(
M |P| + |P|3/2 + |P|1/2|V |).

Proof We set |P| = m and |V | = n. We also denote ordered pairs of points (b, d) ∈ P
by x and ordered pairs of points (a, c) such that Sac ∈ V by v. We set V1 ⊂ R

2 to be
the “first coordinate projection” of V : V1 = {a : Sac ∈ V for some c ∈ A}.

For each (b, d) ∈ P we denote by

i((b, d)) = |{Sac ∈ V : (b, d) ∈ Sac, (a, b) ∈ RM }|.

Hence

IM (P, V ) =
∑
x∈P

i(x).

We begin by bounding the contribution coming from those x for which i(x) ≤ CM
for some sufficiently large (and absolute)C . The value ofC depends onBeck’s theorem
[1], and will only be implicitly determined. Set

P1 = {x ∈ P : i(x) ≤ CM}.

We immediately get

IM (P1, V ) =
∑
x∈P1

i(x) ≤ CM |P1| ≤ CMm.
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We are left with bounding the contribution to I (P, V ) coming from

P2 = P\P1 = {x ∈ P : i(x) > CM}.

A first step is to apply Cauchy–Schwarz for

IM (P2, V ) =
∑
x∈P2

i(x) ≤ |P2|1/2
⎛
⎝∑

x∈P2

i(x)2

⎞
⎠

1/2

≤ m1/2

⎛
⎝∑

x∈P2

i(x)2

⎞
⎠

1/2

.

The second, and more substantial, step is to use Beck’s theorem to bound i(x)2 for
x ∈ P2.

Let x = (b, d) ∈ P2, which we temporarily fix. The point x is incident to i(x)
varieties Sac ∈ V such that (a, b) ∈ RM . It is crucial to note that all these a are distinct
(in other words, if (b, d) ∈ Sac and (b, d) ∈ Sac′ , then c = c′). This is because if
(b, d) ∈ Sac holds and a, b, d are known, then c is uniquely determined—being the
fourth vertex of an isosceles trapezoid. We know that x belongs to

(i(x)
2

)
intersections

of the form Sac ∩ Sa′c′ with a 	= a′ and c 	= c′. By Lemma 2.2, for each of these
intersections there is a line or circle containing a, a′, and b. By applying an inversion
centered at b, we transform these lines or circles to lines. We end up with i(x) points
(the images of the a), no more than M < i(x)/C of which are contained in any single
line. By Beck’s theorem [1], for sufficiently large C , at least c i(x)2 lines contain at
most C ′ of the a, for some absolute constants c and C ′. After inverting back to the
original setting, i(x)2 is at most c−1 times the number of ordered pairs (v, v′) ∈ V ×V
such that the circle or line �vv′ in Sv ∩ Sv′ that contains both a, a′ and b is incident
to at most C elements of V1 coming from varieties of V incident to x (V1 is the “first
coordinate projection” of V ).

Summing over all x ∈ P2 we get

∑
x∈P2

i(x)2 ≤ c−1T ,

where T is the number of ordered triples (x, v, v′) ∈ P×V ×V such that the circle or
line �vv′ in Sv ∩ Sv′ that contains both a, a′ and b is incident to at most C ′ elements of
V1 coming from varieties of V incident to x . We partition in two parts: T = T1 ∪ T2,
where T1 is the number of ordered triples where b is the only element of P2 in �vv′
and T2 is the number of ordered triples for which there exist at least two elements of
P2 in �vv′ . We bound T1 and T2 separately.

Each ordered triple (x, v, v′) ∈ T1 is determined by v and v′ and so T1 ≤ |V |2 = n2.
For each ordered triple in T2 there exist at least two elements b, b′ ∈ �vv′ , at

least two elements a ∈ �vv′ , and at most C ′ elements a ∈ �vv′ . Hence there exist
(b, d), (b′d ′) ∈ P and Sac, Sa′c′ such that both (b, d) and (b′, d ′) are incident to both
Sac and Sa′c′ . By Lemma 2.2, the points (b, d) and (b′, d ′) uniquely determine �vv′ .
Once �vv′ has been determined there are at most C ′2 possibilities for a and a′ and
hence for v and v′. Hence T2 ≤ C ′2|P|2 = C ′2m2.
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Therefore

I (P2, V ) ≤ m1/2

⎛
⎝∑

x∈P2

i(x)2

⎞
⎠

1/2

≤ c−1/2m1/2(T1 + T2)
1/2

≤ c−1/2m1/2(n2 + C ′2m2)1/2

≤ c−1/2m1/2(n + C ′m).

Putting everything together we get the desired bound:

IM (P, V ) = IM (P1, V ) + IM (P2, V ) ≤ CMm + c−1/2m1/2(n + C ′m)

= O(Mm + m3/2 + m1/2n). ��

Theorem 1.2 follows from Proposition 3.2 and the full strength of the celebrated
Guth–Katz theorem on distinct distances [7].

Proof of Theorem 1.2 Using the notation established above and setting mr = |�r | =
|Sr | we get from Proposition 3.2,

QM =
∑
r∈R

IM (�r ,Sr ) = O

(∑
r

Mmr + m3/2
r

)
.

It is immediate that

∑
r

mr = |A|2 = N 2.

Guth and Katz proved the optimal upper bound [7]

∑
r

m2
r = O(log(N )N 3).

These imply, via Cauchy–Schwarz,

∑
r

m3/2
r ≤

(∑
r

mr

)1/2( ∑
r

m2
r

)1/2

= O(N 5/2 log1/2(N )).

This finally gives the desired bound

QM = O
(
MN 2 + N 5/2 log1/2(N )

)
. ��
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