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AN IMPROVED SUM-PRODUCT BOUND FOR QUATERNIONS∗

ABDUL BASIT† AND BEN LUND‡

Abstract. We show that there exists an absolute constant c > 0, such that, for any finite set
A of quaternions, max{|A + A|, |AA|} & |A|4/3+c. This generalizes a sum-product bound for real
numbers proved by Konyagin and Shkredov.
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1. Introduction. By X � Y or Y � X, we mean that X ≥ cY for some
absolute constant c > 0. The expression X ≈ Y means that both X � Y and
X � Y hold. The expression X & Y or Y . X means that X � Y/(logX)c for
some absolute constant c > 0. When dependence on a certain parameter needs to be
emphasized, we write the parameter in the subscript, e.g., Y �ε X means that the
hidden constant depends on ε. All logarithms have base 2.

Given finite subsets A,B of a ring, the sum set and product set are defined,
respectively, as

A+B := {a+ b : a ∈ A, b ∈ B}
and

AB := {ab : a ∈ A, b ∈ B}.
Erdős and Szemerédi [4] conjectured that, for finite sets of integers, one of these

must be nearly as large as possible.

Conjecture 1.1 (Erdős and Szemerédi). Let A be a finite set of integers. Then,
for any δ < 1,

|A+A|+ |AA| �δ |A|1+δ.(1.1)

In their initial work on the problem, Erdős and Szemerédi showed that Conjec-
ture 1.1 holds for some fixed δ > 0. Subsequent works by Nathanson [11], Ford [5],
Elekes [2], and Solymosi [14] gave increasing values for δ. Solymosi used a beautiful
and simple geometric argument to show that Conjecture 1.1 holds with δ ≤ 1/3 − ε
for any ε > 0 whenever A is a set of real numbers. This bound stood until 2015,
when Konyagin and Shkredov [8] combined Solymosi’s geometric insight with Shkre-
dov’s work in additive combinatorics to get a slight improvement. Further incre-
mental progress was made by Konyagin and Shkredov [9], by Rudnev, Shkredov and
Stevens [12], and by Shakan [13]. Shakan’s result gives the current best bound for δ,
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showing that Conjecture 1.1 holds with δ ≤ 1/3 + 5/5277, whenever A is a finite set
of real numbers.

The conjecture has also been studied for other fields and rings. Konyagin and
Rudnev [7] generalized Solymosi’s geometric argument to finite sets of complex num-
bers, showing that Conjecture 1.1 holds with δ ≤ 1/3 − ε for any ε > 0 whenever
A ⊂ C. For quaternions, Chang [1] proved the bound δ ≤ 1/54. This was improved
upon by Solymosi and Wong [16], who showed that, for finite sets of the quater-
nions, Conjecture 1.1 holds with δ ≤ 1/3 − ε for any ε > 0. For more detail on
the sum-product conjecture and its variants, see the recent survey of Granville and
Solymosi [6].

Our contribution is to generalize Konyagin and Shkredov’s proof to quaternions,
hence passing the δ = 1/3 barrier.

Theorem 1.2. There exists an absolute constant c > 0 such that, for any finite
set A of quaternions,

|A+A|+ |AA| � |A|4/3+c.(1.2)

We make no attempt to prove Theorem 1.2 for the largest possible value of c, instead
preferring to keep the exposition relatively simple and self contained.

Overview. Our proof follows the general outline of Konyagin-Shkredov in [8] and
[9]. Since our aim is to keep this paper self contained rather than obtain the best
value for c, at various points we make weaker estimates than the ones used in these
papers.

We split the problem into two cases, depending on the additive energy of A
(see section 2 for the definitions). In the case that this additive energy is small, we
prove an appropriate generalization of Solymosi’s argument, in the spirit of Konyagin-
Rudnev [7] and Solymosi-Wong [16] (see section 4.3). In the case that this additive
energy is large, we adapt the arguments of Konyagin and Shkredov [9] to work for
quaternions (see section 4.2). This requires us to replace an application of the Sze-
merédi–Trotter theorem by a generalization proved by Solymosi and Tao [15] and to
adapt the definitions and arguments of Konyagin and Shrkedov to work when multi-
plication is not commutative. This is done in section 3.

2. Preliminaries. Given finite subsets A,B of the quaternions, H, the sum set
and product set are defined, respectively, as

A+B := {a+ b : a ∈ A, b ∈ B}

and

AB := {ab : a ∈ A, b ∈ B}.

We define the negation of A to be

−A := {−a : a ∈ A}

and the inverse of A to be

A−1 := {a−1 : a ∈ A, a 6= 0}.

The difference set is defined to be A − B, and the ratio set is defined as A/B :=
AB−1 ∩B−1A.
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Denote by δA+B(x) and by δAB(x) the number of representations of x of the form
a+ b and ab with a ∈ A, b ∈ B, respectively. Let

E+
k (A,B) :=

∑

x

δA−B(x)
k, and E∗

k(A,B) :=
∑

x

δAB(x)
k.

The additive energy of A and B, denoted by E+(A,B), is defined to be

E+(A,B) := E+
2 (A,B) =

∑

x

δA−B(x)
2 = |{(a, b, c, d) ∈ (A×B)2 : a− b = c− d}|

= |{(a, b, c, d) ∈ (A×B)2 : a− c = b− d}| =
∑

x

δA−A(x)δB−B(x)

= |{(a, b, c, d) ∈ (A×B)2 : a+ d = c+ b}| =
∑

x

δA+B(x)
2.

Similarly, the multiplicative energy of A and B, denoted by E∗(A,B), is defined to be

E∗(A,B) := E∗
2 (A,B) =

∑

x

δAB(x)
2 = |{(a, b, c, d) ∈ (A×B)2 : ab = cd}|

= |{(a, b, c, d) ∈ (A×B)2 : c−1a = db−1}|
=
∑

x

δA−1A(x)δBB−1(x).

When A = B, we write E+
k (A), E+(A), E∗

k(A), and E∗(A) to simplify notation.
We note that, since multiplication of quaternions is not commutative, some care is
necessary when dealing with product sets, ratio sets, and the multiplicative energy.

The Cauchy–Schwarz inequality implies the following lower bounds on the addi-
tive and multiplicative energies:

E+(A,B) ≥ |A|2|B|2
|A+B| , and E+(A,B) ≥ |A|2|B|2

|A−B| .(2.1)

E∗(A,B) ≥ |A|2|B|2
|AB| .(2.2)

2.1. Results from incidence geometry. In this section, we set up some no-
tation and results about quaternionic lines. In section 3, these results will be used to
connect various energies with the sizes of the sum and product sets.

Define a left line to be any set in H
2 of the form {(a, b) + t(c, d) : t ∈ H} for

some a, b, c, d ∈ H with (c, d) 6= (0, 0). Similarly, define right, lr-mixed and rl-mixed
lines to be sets of the form {(a, b) + (c, d)t : t ∈ H}, {(a, b) + (tc, dt) : t ∈ H}, and
{(a, b) + (ct, td) : t ∈ H}, respectively. We say two lines are of the same type if
both are sets of the same form. It is straightforward to check that any two distinct
quaternionic lines of the same type intersect in at most one point. Throughout this
write-up, a set of quaternionic lines is restricted to have all lines of the same type.

Given a point set P and a set of quaternionic lines L, both in H
2, we say that an

incidence is a pair (p, l) ∈ P × L with the point p lying on the line l. We denote by
I(P,L) the set of incidences in P × L. The following theorem is a special case of a
result of Solymosi and Tao [15].

Theorem 2.1. Let ε > 0. Then there exists a constant A = Aε > 0 such that

|I(P,L)| ≤ A|P|2/3+ε|L|2/3 + 3

2
|P|+ 3

2
|L|
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whenever P is a finite set of points in H
2, and L is a finite set of quaternionic lines

in H
2.

As a consequence, we have the following upper bound on the number of k-rich lines
determined by a finite set in H

2:

Corollary 2.2. Let ε > 0. Then for any set P of points in H
2 and for any

integer k ≥ 2 the number of quaternionic lines containing at least k points of P,
denoted by nk, satisfies

nk �ε
|P|2+ε

k3
+

|P|
k

.

Next, we use Corollary 2.2 to obtain the following upper bound on the number
of collinear triples.

Lemma 2.3. Let ε > 0. For a finite set A of quaternions, let T be the number
of collinear triples in A × A ⊂ H

2 (where the points in a triple are not necessarily
distinct). Then

T �ε |A|4+ε.

Proof. Consider a partitioning of the set of lines into dyadic blocks, where the ith
block consists of lines containing between 2i and 2i+1 points, with 1 ≤ i ≤ dlog |A|e.
Let ni be the number of lines in the ith set. Then the number of collinear triples is

T ≤
dlog |A|e
∑

i=1

(

2i+1
)3

ni.(2.3)

This allows us to use Corollary 2.2, with |P| = |A|2 and ε′ = ε/2, to bound ni, giving

T ≤
dlog |A|e
∑

i=1

(

2i+1
)3

ni �ε′

dlog |A|e
∑

i=1

(

2i+1
)3

(

|A|4+ε′

(2i)3
+

|A|2
2i

)

�
dlog |A|e
∑

i=1

(

|A|4+ε′ + |A|222i
)

� |A|4+2ε′ .

3. Bounding energies. In this section we collect various bounds on the sizes
of sum and product in terms of energies. All the results and proofs presented in this
section have appeared in various papers. We simply present the proofs and adapt
them to our setting.

First, we give some basic estimates on additive energies using the Cauchy–Schwarz
inequality. The following appears as Lemma 2.4 and 2.5 in [10].

Lemma 3.1. Let A,B be finite sets of quaternions. Then

|B|2E+
1.5(A)2 ≤ E+

3 (A)2/3E+
3 (B)1/3E+(A,A+B).

Proof. Let Ax = A ∩ (A + x), and note that |Ax| = δA−A(x). Equation (2.1)
implies that

|Ax|1.5|B| ≤ E+(Ax, B)1/2|Ax +B|1/2|Ax|1/2.
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This gives

E+
1.5(A)2|B|2 =

(

∑

x∈A−A

(

|Ax|1.5|B|
)

)2

≤
(

∑

x∈A−A

(

E+(Ax, B)1/2|Ax +B|1/2|Ax|1/2
)

)2

≤
∑

x∈A−A

E+(Ax, B)
∑

x∈A−A

|Ax +B||Ax|

≤
∑

x∈A−A

E+(Ax, B)
∑

x∈A−A

|(A+B)x||Ax|

=

(

∑

x∈A−A

E+(Ax, B)

)

E+(A,A+B),(3.1)

where the second inequality follows from the Cauchy–Schwarz inequality, and the
third inequality is implied by the set inclusion Ax +B ⊆ (A+B)x.

Next, note that
∑

x

E+(Ax, B) =
∑

x

∑

y

δAx−Ax
(y)δB−B(y) =

∑

x

∑

y

δAy−Ay
(x)δB−B(y)

=
∑

y

∑

x

δAy−Ay
(x)δB−B(y) =

∑

y

δA−A(y)
2δB−B(y)

≤
(

∑

y

δA−A(y)
3

)2/3(
∑

y

δB−B(y)
3

)1/3

= E+
3 (A)2/3E+

3 (B)1/3,(3.2)

where the second to last step is a standard application of Hölder’s inequality.
The statement of the lemma now follows by combining (3.1) and (3.2).

The following lemma establishes a connection between the additive energy and
the size of the product set and appears as Theorem 9 in [8]. The technique used here
was introduced by Elekes and Ruza in [3].

Lemma 3.2. Let ε > 0, and A be a finite set of quaternions, with 0 /∈ A. Then

E+(A)4 �ε |AA||A|10+ε.

Proof. In order to bound E+(A), we may restrict our attention to elements that
have many realizations in A+A. Let F be the set of such elements, i.e.,

F =

{

x ∈ A+A : δA+A(x) >
E+(A)

2|A|2
}

.

Now
∑

x/∈F

δA+A(x)
2 ≤ E+(A)

2|A|2
∑

x/∈F

δA+A(x) ≤
E+(A)

2
.

In particular, we have

E+(A) ≤ 2
∑

x∈F

δA+A(x)
2.
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Let P = (A ∪ F ) × (A ∪ F ). We will double count the number of collinear triples in
P (where points in a triple are not necessarily distinct), denoted by T .

Denote by δF the quantity
∑

x∈F δA+A(x). Since, for all x, δA+A(x) ≤ |A|, we
have

δF =
∑

x∈F

δA+A(x) ≥
∑

x∈F

δA+A(x)
2

|A| ≥ E+(A)

2|A| .

This gives

|F |+ |A| ≤
∑

x∈F

(

δA+A(x) ·
2|A|2
E+(A)

)

+ |A|
(

δF · 2|A|
E+(A)

)

=
4|A|2δF
E+(A)

.

Combining the above with Lemma 2.3 (with ε′ = ε/2) implies

T �ε′ |A ∪ F |4+ε′ �
( |A|2δF
E+(A)

)4+ε′

.(3.3)

We now obtain a lower bound on T . For each a ∈ A, let Fa = {b ∈ A : a+b ∈ F}.
Fix (a, b) ∈ A2, and consider a quadruple of the form (c, d, e, f) ∈ (Fa × Fb)

2 with
cd = ef , or equivalently df−1 = c−1e. Note that the line {(a, b) + (ct, tf) : t ∈ H}
contains the points

(a, b), (a+ c, b+ f), (a+ e, b+ d) ∈ P,

with t = 0, t = 1, and t = df−1 = c−1e, respectively. Since the quadruples (c, d, e, f)
and (e, f, c, d) give the same collinear triple, by (2.2), each pair (a, b) ∈ A2 gives at
least

1

2

( |Fa|2|Fb|2
|FaFb|

)

� |Fa|2|Fb|2
|AA|

distinct collinar triples. It follows that the number of collinear triples in P is at least

T �
∑

a,b∈A

|Fa|2|Fb|2
|AA| =

1

|AA|

(

∑

a∈A

|Fa|2
)2

≥ 1

|AA|





1

|A|

(

∑

a∈A

|Fa|
)2




2

=
δ4F

|AA||A|2 .(3.4)

Combining (3.3) and (3.4) gives

E+(A)4+ε′ �ε′ |A|10+2ε′δε
′

F |AA|.

Finally, since E+(A) ≥ |A|2 and δF =
∑

x∈F δA+A(x) ≤ |A|2, we get

E+(A)4 �ε |AA||A|10+ε.

An important tool in connecting incidence results and sum-product estimates is
the quantity d∗(A) defined below, which captures the multiplicative structure of A.
We define

d∗(A) := min
t>0

min
∅ 6=Q,R⊂H\{0}

|Q|2|R|2
|A|t3 ,

where the second minimum is taken over all setsQ andR such that |Q|≥max{|A|, |R|},
and, for every a ∈ A, the bound |Q ∩Ra| ≥ t holds.
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Comment. Note that the definition of d∗(A) is different from that in [9], where
it was only required that max{|Q|, |R|} ≥ |A|. Noncommutativity of multiplica-
tion for the quaternions means that we require the stronger condition that |Q| ≥
max{|A|, |R|}. When A is a subset of the real numbers (or the complex numbers), we
can assume, without loss of generality, that |Q| ≥ |R|. This change in definition does
not affect any of the proofs later.

The sets Q = A and R = {1} show that d∗(A) ≤ |A|. Roughly speaking, the
closer d∗(A) is to |A|, the less multiplicative structure A has. The following is a
key lemma concerning d∗(A) and will be used to connect additive energies with the
product set. The version for real numbers appeared as Lemma 13 in [9].

Lemma 3.3. Let ε > 0, and A,B be finite sets of quaternions, and τ ≥ 1 an
integer. Then

|{x : δA−B(x) ≥ τ}| �ε
|A||B|2+ε

τ3
d∗(A)1+ε.

Proof. Note that we may assume A and B are large (with respect to the hidden
constant), since otherwise the statement is trivially true. Let Q,R ⊂ H \ {0} with
|Q| ≥ max{|A|, |R|}, and t > 0 an integer such that, for all a ∈ A, |Q ∩ Ra| ≥ t. For
any integer τ ≥ 1, let

Dτ = {x ∈ A−B : δA−B(x) ≥ τ}.

To prove the lemma, it suffices to show that

|Dτ | �ε
|Q|2+ε|R|2+ε|B|2+ε

t3τ3
.(3.5)

Let σ = |{(a, b, x) : a− b = x, a ∈ A, b ∈ B, x ∈ Dτ}|, and note that, by definition,

σ =
∑

x∈Dτ

δA−B(x) ≥ τ |Dτ |.(3.6)

On the other hand, for each a ∈ A, |Q ∩ Ra| ≥ t implies that δR−1Q(a) ≥ t. This
gives

σ ≤ |{(r, q, b, x) : r−1q − b = x, r ∈ R, q ∈ Q, b ∈ B, x ∈ Dτ}| · t−1.(3.7)

By ignoring the condition x ∈ Dτ , (3.7) immediately implies the bound

σ ≤ |Q||R||B|
t

.(3.8)

When t2τ2 � |Q||R||B|, (3.6) and (3.8) imply

|Dτ | ≤
|Q||R||B|

tτ
� |Q|2|R|2|B|2

t3τ3
,

allowing us to restrict our attention to the case when t2τ2 � |Q||R||B|.
In this scenario, we reformulate (3.7) as an incidence problem. For r ∈ R and

d ∈ Dτ , let lr,d = {(x, y) : r−1y − x = d} be a quaternionic line. Consider the family
L = {lr,d : r ∈ R, d ∈ Dτ} of |R||Dτ | lines. Let P be the point set B × Q. Now, by
Theorem 2.1, for ε′ = ε/3, we have

σ ≤ |I(P,L)| · t−1

�
(

Aε′ |P|2/3+ε′ |L|2/3 + |P|+ |L|
)

· t−1.(3.9)
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If the first term in (3.9) dominates, we have

tτ |Dτ | � Aε′ |P|2/3+ε′ |L|2/3 = Aε′(|Q||B|)2/3+ε′(|R||Dτ |)2/3.
Rearranging gives

|Dτ | �ε
|Q|2+ε|B|2+ε|R|2

t3τ3
.

Now suppose that the bound (3.5) does not hold. If the second term dominates,
then

|Q|2|R|2|B|2
t2τ2

� tτ |Dτ | � |P| = |Q||B|.(3.10)

Note that we must have t ≤ min{|Q|, |R|} = |R|, τ ≤ |B|, and τ ≤ |A| ≤ |Q|.
Together with (3.10), this gives a contradiction.

Finally, if the third term dominates, then

tτ |Dτ | � |L| = |R||Dτ |.
Combined with the assumption that t2τ2 ≥ |Q||R||B|, this implies

|Q||B||R| � |R|2.
But this is a contradiction, since |Q| ≥ |R| and B is large enough.

We now give some consequences of Lemma 3.3. The proof of all three corollaries
follows the same basic outline.

Corollary 3.4. Let ε > 0, and A be a finite set of quaternions. Then

E+(A) �ε |A|1+εd∗(A)1/3+εE+
1.5(A)

2/3.

Proof. Let ∆ be a parameter to be specified later, and recall that

E+(A) =
∑

x

δA−A(x)
2 =

∑

x : δA−A(x)<∆

δA−A(x)
2 +

∑

x : δA−A(x)≥∆

δA−A(x)
2.

We first consider sums with fewer than ∆ realizations.
∑

x : δA−A(x)<∆

δA−A(x)
2 ≤ max

x : δA−A(x)<∆
{δA−A(x)

1/2}
∑

x : δA−A(x)<∆

δA−A(x)
1.5

≤ ∆1/2E+
1.5(A).(3.11)

To bound the contribution of sums with more than ∆ realizations, we use a dyadic
decomposition along with Lemma 3.3 (with B = A and ε′ = 3ε/2):

∑

x : δA−A(x)≥∆

δA−A(x)
2 =

dlog |A|e+1
∑

j=1

∑

x : ∆2j−1≤δA−A(x)<∆2j

δA−A(x)
2

�ε′

dlog |A|e+1
∑

j=1

|A|3+ε′d∗(A)
1+ε′

(∆2j−1)3
(∆2j)2

� |A|3+2ε′d∗(A)1+2ε′

∆
.(3.12)

Combining (3.11), (3.12), and setting ∆ = ( |A|3+2ε′d∗(A)1+2ε′

E+
1.5(A)

)2/3 finishes the proof.
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Corollary 3.5. Let ε > 0, and A,B be finite sets of quaternions. Then

E+(A,B) �ε |A||B|3/2+εd∗(A)
1/2+ε.

Proof. Let ∆ be a parameter to be specified later. Then

E+(A,B) =
∑

x

δA−B(x)
2

=
∑

x : δA−B(x)<∆

δA−B(x)
2 +

dlog |B|e+1
∑

j=1

∑

x : ∆2j−1≤δA−B(x)<∆2j

δA−B(x)
2

�ε ∆|A||B|+
dlog |B|e+1
∑

j=1

|A||B|2+εd∗(A)1+ε

(∆2j−1)3
(∆2j)2

� ∆|A||B|+ |A||B|2+2εd∗(A)1+2ε

∆
.

Setting ∆ = (|B|1+2εd∗(A)
1+2ε)1/2 completes the proof.

Corollary 3.6. Let ε > 0, and A be a finite set of quaternions. Then

E+
3 (A) �ε |A|3+εd∗(A)

1+ε.

Proof.

E+
3 (A) =

∑

x

δA−A(x)
3 =

dlog |A|e+1
∑

j=1

∑

x : 2j−1≤δA−A(x)<2j

δA−A(x)
3

�ε′

dlog |A|e+1
∑

j=1

|A|3+ε′d∗(A)1+ε′

(2j−1)3
(2j)3 � |A|3+2ε′d∗(A)

1+2ε′ .

We now give the main result of this section. The following theorem will be used
in section 4.2 when the multiplicative energy is small.

Theorem 3.7. Let ε > 0, and A be a finite set of quaternions. Then

|A+A| �ε
|A|14/9−ε

d∗(A)5/9
.

Proof. The proof combines (2.1), Corollary 3.4, Lemma 3.1, Corollary 3.5, and
Corollary 3.6 (in the specified order). This gives, for ε′ = 9ε/22,

|A|12
|A+A|3 ≤ E+(A)3

�ε′ |A|3+3ε′d∗(A)
1+3ε′E+

1.5(A)
2

≤ |A|1+3ε′d∗(A)
1+3ε′E+

3 (A)E+(A,A+A)

�ε′ |A|2+3ε′d∗(A)
3/2+4ε′E+

3 (A)|A+A|3/2+ε′

�ε′ |A|5+4ε′d∗(A)
5/2+5ε′ |A+A|3/2+ε′ .

This implies

|A+A|9/2+ε′ �ε′
|A|7−4ε′

d∗(A)5/2+5ε′
.

The theorem now follows by noting that |A+A| ≤ |A|2 and d∗(A) ≤ |A|.
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4. Main theorem. We are finally ready to prove Theorem 1.2. The section is
organized as follows: in section 4.1, we use standard arguments to find a large subset
of A with properties that will be convenient to work with. Section 4.2 will deal with
the case when the additive energy of this subset is large, and section 4.3 will deal with
the case when the additive energy is small.

4.1. Initial setup and pigeonholing. Let A be a finite set of quaternions.
Since we are not concerned about constants, it suffices to prove (1.2) for a subset
A′ ⊆ A containing a positive proportion of elements of A. We view a quaternion
a = w + xi + yj + zk as a vector (w, x, y, z) ∈ R

4 and say that w and (x, y, z) are,
respectively, the real and imaginary parts of a. By a simple pigeonholing argument,
there exists a set A′ of size at least |A|/16 such that all elements of A′ lie in the same
orthant of R4. We assume that 0 /∈ A′ and that each element of A′ has nonnegative
real part. The latter is without loss of generality since multiplication by reals is
commutative and, hence, doesn’t affect the sizes of the sum and product sets. To
simplify notation, we identify A′ with A, and assume that A satisfies the properties
that we need.

To estimate the multiplicative energy, we will consider a subset of A/A, which
we build incrementally. Let R0 = {λ ∈ A/A : δA−1A(λ) ≥ δAA−1(λ)}, and assume,
without loss of generality, that

∑

λ∈R0

δA−1A(λ)δAA−1(λ) ≥
∑

λ/∈R0

δA−1A(λ)δAA−1(λ).

This gives

E∗(A) =
∑

λ∈A/A

δA−1A(λ)δAA−1(λ) ≤ 2
∑

λ∈R0

δA−1A(λ)δAA−1(λ) ≤ 2
∑

λ∈R0

δA−1A(λ)
2.

Next, we restrict our attention to λ ∈ R0 with δA−1A(λ) ≥ E∗(A)/4|A|2. Let R1 =
{λ ∈ R0 : δA−1A(λ) ≥ E∗(A)/4|A|2}. This is possible because ratios in R0 \ R1 can
not account for too much the multiplicative energy, i.e.,

∑

λ∈R0\R1

δA−1A(λ)
2 <

E∗(A)

4|A|2
∑

λ∈R0\R1

δA−1A(λ) ≤
E∗(A)

4
≤ 1

2

∑

λ∈R0

δA−1A(λ)
2.

This implies that ratios in R1 give the following bound on the multiplicative energy:

E∗(A) �
∑

λ∈R1

δA−1A(λ)
2.(4.1)

For a positive integer τ , let S′
τ be the set S′

τ = {λ ∈ R1 : τ ≤ δA−1A(λ) < 2τ}. Since
1 ≤ δA−1A(λ) ≤ |A|, a dyadic decomposition of the summation in (4.1) gives

∑

λ∈R1

δA−1A(λ)
2 =

dlog |A|e
∑

i=0

∑

λ∈S′

2i

δA−1A(λ)
2.

It follows, by the pigeonhole principle, that there exists a τ ≥ E∗(A)/4|A|2 such that
elements of S′

τ contribute at least 1/dlog |A|e to the sum. This implies

E∗(A) .
∑

λ∈S′

τ

δA−1A(λ)
2 � |S′

τ |τ2.
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Finally, for each λ ∈ S′
τ , consider the set Aλ := A ∩ Aλ. Then |Aλ| = δA−1A(λ),

which implies that τ2 ≤ E+(Aλ) ≤ 8τ3. A dyadic decomposition of this interval,
along with the pigeonhole principle, implies that there exists K ≥ 1 such that the set
Sτ = {λ ∈ S′

τ : τ3/2K ≤ E+(Aλ) < τ3/K} has cardinality |Sτ | & |S′
τ |.

To sum up, for an integer

τ � E∗(A)/|A|2,(4.2)

we have found a set Sτ ⊆ A/A such that

E∗(A) . |Sτ |τ2,(4.3)

and, for every λ ∈ Sτ , we have

δA−1A(λ) ≥ δAA−1(λ), |Aλ| = δA−1A(λ) ≈ τ, and E+(Aλ) ≈ τ3/K for some K ≥ 1.

4.2. The case when K is small. We will show that there exists a large set
A′ ⊆ A such that d∗(A

′) is small. The result will then follow by using Theorem 3.7.
Recall that for λ ∈ A/A, Aλ = A ∩ Aλ ⊆ A. We will require the Katz–Koester

inclusion, i.e., for any λ ∈ A/A, AλAλ ⊆ (AA) ∩ (AA)λ. Clearly AλAλ ⊆ (AA), so
it suffices to show AλAλ ⊆ (AA)λ. To see this, consider a = b · c ∈ AλAλ. Since
c ∈ Aλ, there exists c′ ∈ A such that c = c′λ, that is, c′ = cλ−1 ∈ A. Now we may
write a = b · c = b · c · λ−1 · λ = b · c′λ ∈ (AA)λ.

Note that
∑

a∈A

|A ∩ aSτ | =
∑

λ∈Sτ

|A ∩Aλ| ≥ |Sτ |τ.

Then, by the pigeonhole principle, there exists a ∈ A such that A′ := A ∩ aSτ has
size at least |Sτ |τ/|A|. Observe that Lemma 3.2 implies that, for all λ ∈ Sτ ,

|AλAλ| �ε′
E+(Aλ)

4

|Aλ|10+ε′
≈ τ2−ε′

K4
.

Now, for b ∈ A′ we can write b = aλ for some λ ∈ Sτ . This implies

|(AA) ∩ (AAa−1)b| = |(AA) ∩ (AA)λ| ≥ |AλAλ| �ε′
τ2−ε′

K4
.

Since this holds for any b ∈ A′, we get

d∗(A
′) �ε′

|AA|4
|A′|(τ2−ε′/K4)3

=
|AA|4K12

|A′|τ6−3ε′
,

by letting Q = AA, R = AAa−1, and t = τ2−ε′/K4 in the definition of d∗(A
′).

Combining this with Theorem 3.7 gives

|A+A|9 �ε′
|A′|14−ε′

d∗(A′)5
�ε′

|A′|19−ε′τ30−15ε′

K60|AA|20 .
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We then apply (4.3), (4.2), and (2.2), in the specified order, to get

K60|AA|20|A+A|9 �ε′ |A′|19−ε′τ30−15ε′ ≥
( |Sτ |τ

|A|

)19−ε′

· τ30−15ε′

=
(

|Sτ |τ2
)19−ε′ · τ

11−14ε′

|A|19−ε′
& E∗(A)19−ε′ · τ

11−14ε′

|A|19−ε′

=

(

E∗(A)

|A|

)19−ε′

· τ11−14ε′ �
(

E∗(A)

|A|

)19−ε′

·
(

E∗(A)

|A|2
)11−14ε′

=
E∗(A)30−15ε′

|A|41−29ε′
≥ 1

|A|41−29ε′
·
( |A|4
|AA|

)30−15ε′

=
|A|79−31ε′

|AA|30−15ε′
.

That is, we have

|AA|50|A+A|9 &ε
|A|79−ε

K60
.

When K ≤ |A|δ for some fixed δ > 0, this implies |A + A| + |AA| > |A|4/3+c

where c > 0 is an absolute constant.

4.3. The case when K is large. Now we handle the case that K > |A|δ,
where δ is the parameter chosen at the end of the previous section. For convenience
of notation, we label the slopes in Sτ by distinct integers, and let Ai = Aλi

= A∩Aλi

for each λi ∈ Sτ .
A key observation, first exploited by Solymosi in the real case [14] and by Solymosi

and Wong [16] for quaternions, is that, for distinct λi, λj ∈ Sτ and a1, a2 ∈ Ai, b1, b2 ∈
Aj with (a1, b1) 6= (a2, b2), we have (a1, a1λi) + (b1, b1λj) 6= (a2, a2λi) + (b2, b2λj).
Indeed, since λi 6= λj , we have that (λi − λj) is invertible. Hence, given x, y ∈ H, we
can solve the equations

a+ b = x, aλi + bλj = y

uniquely for a, b.
For pairs of distinct elements {λi, λj}, {λk, λ`} ∈

(

Sτ

2

)

, we say that {λi, λj} con-
flicts with {λk, λ`} if {λi, λj} 6= {λk, λ`} and

((Ai +Aj)× (Aiλi +Ajλj)) ∩ ((Ak +Al)× (Akλk +Alλl)) 6= ∅.

In order to find a large set of distinct elements of (A + A) × (A + A), we will
consider sums ((a, aλi) + (b, bλj)) ∈ ((Ai, Aiλi) + (Aj , Ajλj)) for edges {λi, λj} in a

carefully selected graph G ⊂
(

Sτ

2

)

. We construct G so that few pairs of edges conflict.
For each pair of edges that does conflict, we apply an observation of Konyagin and
Shkredov [8] (adapted from the real to quaternionic case) to bound the number of
elements of (A+A)× (A+A) that we count more than once.

First we give the observation of Konyagin and Shkredov. Using the assumption
on the additive energy of each Ai, we can bound the number of repeated sums coming
from each pair of conflicting edges.

Lemma 4.1. Let {λi, λj}, {λk, λ`} be a pair of conflicting edges. Then,

|((Ai +Aj)× (Aiλi +Ajλj)) ∩ ((Ak +A`)× (Akλk +A`λ`))| . τ2K−1/2.(4.4)
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Proof. Suppose, without loss of generality, that λ` is distinct from λi and λj .
Note that quadruples (ai, aj , ak, a`) ∈ Ai × Aj × Ak × A` that contribute to (4.4)
satisfy

ai + aj = ak + a`,(4.5)

aiλi + ajλj = akλk + a`λ`.(4.6)

Subtracting (4.5) multiplied by λ` on the right from (4.6), we obtain

ai(λi − λ`) + aj(λj − λ`) = ak(λk − λ`).(4.7)

Hence, |((Ai +Aj)× (Aiλi +Ajλj)) ∩ ((Ak +A`)× (Akλk +A`λ`))| is bounded
above by the number T of (ai, aj , ak) ∈ Ai ×Aj ×Ak that satisfy (4.7).

Applying Cauchy–Schwarz twice, we obtain

T ≤ |Ak|1/2E+(Ai(λi − λl), Aj(λj − λl))
1/2,

≤ |Ak|1/2E+(Ai)
1/4E+(Aj)

1/4.

By construction, |Ai| ≈ τ and E+(Ai) ≈ τ3K−1 for each i. Hence,

T . τ2K−1/2,

as claimed.

We also need to limit the number of pairs (λi, λj), (λk, λ`) ∈ G for which this inter-
section is nonempty. This involves controlling when such intersections can occur and
choosing G accordingly.

First, we establish that any ratio (ai + aj)
−1(aiλi + ajλj) with ai ∈ Ai, aj ∈ Aj

must be close to λi. This is Lemma 7 in Solymosi and Wong [16].

Lemma 4.2. For any distinct λi, λj ∈ Sτ and ai ∈ Ai, aj ∈ Aj, we have

‖(ai + aj)
−1(aiλi + ajλj)− λi‖ ≤ ‖λj − λi‖.

Proof. Recall that ai and aj are in the same orthant, so ‖ai + aj‖ ≥ ‖aj‖. Using
the identity (ai + aj)

−1 = (1− (ai + aj)
−1aj)a

−1
i , we have

‖(ai + aj)
−1(aiλi + ajλj)− λi‖ = ‖(1− (ai + aj)

−1aj)λi + (ai + aj)
−1ajλj − λi‖,

= ‖(ai + aj)
−1aj(λj − λi)‖,

= ‖λj − λi‖ ‖aj‖ ‖ai + aj‖−1,

≤ ‖λj − λi‖.

Now we define G. Let M be a positive integer parameter that we will fix later.
Let G be the graph on vertex set Sτ formed by joining each λ ∈ Sτ to its M closest
neighbors, breaking ties arbitrarily. Since the degree of each vertex of G is at least
M , the number of edges in G is at least M |Sτ |/2. We also need to bound the number
of conflicting pairs of edges in G.

Let Bi be the smallest closed ball centered at λi that contains at least M + 1
points of Sτ (including λi itself), and let Ri be the radius of Bi. While a given ball
Bi may contain an arbitrary number of points of Sτ , the interior of each ball contains
at most M points.
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Note that if {λi, λj} ∈ G, then at least one of λi ∈ Bj or λj ∈ Bi. In addition,
from Lemma 4.2, we have that, for any distinct λi, λk, if there exist λj ∈ Bi, λ` ∈ Bk

such that {λi, λj} conflicts with {λk, λ`}, then Bi ∩Bk 6= ∅.
For each λi, let Li be the set of λj such that Rj ≥ Ri and Bi ∩ Bj 6= ∅. Given

any λi, and λj ∈ Li, the number of pairs of edges {λi, λk}, {λj , λ`} that conflict
is bounded above by the product of the degrees of λi and λj . Hence, to bound the
number of conflicting pairs of edges, it will suffice to place upper bounds on the degree
of each vertex of G, and the size of each set Li. This is done in Lemmas 4.4 and 4.5,
respectively.

The proofs of both Lemma 4.4 and 4.5 both rely on similar geometric averaging
arguments. In each case, for a fixed λi, we bound the number of interesting λj in an
arbitrary cone of constant size with vertex λi. By linearity of expectation, this gives
an upper bound on the number of interesting λj in all directions from λi.

The following simple geometric lemma used in both proofs.

Lemma 4.3. Let x,y be arbitrary vectors in R
4, and let u be a unit vector. Let

x⊥ and y⊥ be the projections of x and y onto the subspace orthogonal to u. Then,

‖x− y‖2 ≤ ‖x‖2 + ‖y‖2 − 2(x · u)(y · u) + 2‖x⊥‖‖y⊥‖.

Proof.

‖x− y‖2 = ‖(x · u− y · u)u+ x⊥ − y⊥‖2,
= (x · u− y · u)2 + ‖x⊥ − y⊥‖2,
≤ (x · u− y · u)2 + (‖x⊥‖+ ‖y⊥‖)2,
= ‖x‖2 + ‖y‖2 − 2(x · u)(y · u) + 2‖x⊥‖‖y⊥‖.

Lemma 4.4. For each i, the degree deg(λi) of λi in G is bounded by

deg(λi) � M.

Proof. Take λi to be at the origin. Let u be an arbitrary unit vector, and let C
be the cone

C = {x : x · u > (
√
3/2)‖x‖}.

We will use the decomposition x = (x · u)u+ x⊥. Note that if x ∈ C, then

‖x⊥‖2 = ‖x‖2 − (x · u)2 < (1/4)‖x‖2.

Let x,y be vectors in C with ‖x‖ ≥ ‖y‖. By Lemma 4.3,

‖x− y‖2 ≤ ‖x‖2 + ‖y‖2 − 2(x · u)(y · u) + 2‖x⊥‖‖y⊥‖,
< ‖x‖2 + ‖y‖2 − ‖x‖‖y‖,
≤ ‖x‖2.

To put this another way, the distance between any pair of points in C is less than
the distance from the more distant point to λi.

Consequently, λi has at mostM neighbors in C. Indeed, suppose for contradiction
that there are M + 1 neighbors in C, and let λ be a neighbor at the largest distance
from λi. Then, all of the remaining M of the neighbors are closer to λ than λi is.
This is a contradiction, since only the M closest points to λ are selected as neighbors.
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The preceding argument applies for an arbitrary unit vector u. Suppose, for
contradiction, that λi has more than cM neighbors for a sufficiently large constant
c. Then, the expected number of neighbors in the cone corresponding to a uniformly
random u will be greater than M , but we have shown that there cannot be any u for
which this number is greater than M .

Next we bound |Li| for an arbitrary λi.

Lemma 4.5. For each i,
|Li| � M.

Proof. Take λi to be at the origin. Let u be an arbitrary unit vector, and let C
be the cone

C = {x : x · u > 0.99‖x‖}.
Note that, if x ∈ C, then

‖x⊥‖2 = ‖x‖2 − (x · u)2 < 0.02‖x‖2.

If x,y are vectors in C, then by Lemma 4.3,

‖x− y‖2 ≤ ‖x‖2 + ‖y‖2 − 2(x · u)(y · u) + 2‖x⊥‖‖y⊥‖,
< ‖x‖2 + ‖y‖2 − 1.92‖x‖‖y‖.(4.8)

Define the following subsets of C:

C1 = {x ∈ C : ‖x‖ < Ri},
C2 = {x ∈ C : Ri ≤ ‖x‖ < 1.5Ri},
C3 = {x ∈ C : 1.5Ri ≤ ‖x‖}.

We will show that each of C1, C2, and C3 contains at most M points of Li.
Since every point of Sτ that is at distance less than Ri from λi is a neighbor of

λi, it is immediate that C1 contains fewer than M points of Sτ .
Let x,y be vectors in C2 with Ri ≤ ‖y‖ ≤ ‖x‖ < 1.5Ri. By (4.8),

‖x− y‖2 < ‖x‖2 + ‖y‖2 − 1.92‖x‖‖y‖,
≤ ‖x‖2 + ‖x‖‖y‖ − 1.92‖x‖‖y‖,
≤ ‖x‖2 − 0.92‖x‖Ri,

< 0.87R2
i .

In other words, each pair of vectors in C2 is at distance less than Ri. By assump-
tion, if R is the radius of the ball associated to any λ ∈ Li, we have R ≥ Ri. If there
are M +1 points of Li in C2, then the ball associated to each of these points contains
all M +1 of the points in its interior, which contradicts the construction of the balls.

Let x,y be vectors in C3 with 1.5Ri ≤ ‖y‖ ≤ ‖x‖. We claim that

‖x− y‖2 < (‖x‖ −Ri)
2.(4.9)

From (4.8), in order to prove (4.9), it is enough to show that

‖y‖2 + 2‖x‖Ri − 1.92‖x‖‖y‖ −R2
i < 0,(4.10)

under the assumption that ‖x‖ ≥ ‖y‖ ≥ 1.5Ri.(4.11)
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When the left-hand side of (4.10) is constrained to the line ‖x‖ = ‖y‖, we have

−0.98‖x‖2 + 2‖x‖Ri +R2
i .

The derivative of this is negative for ‖x‖ ≥ 1.5Ri. Furthermore, when ‖y‖ ≥ 1.5Ri,
the left-hand side of (4.10) is decreasing in ‖x‖. Hence, it suffices to consider the
point ‖x‖ = ‖y‖ = 1.5Ri. At this point, the left-hand side of (4.10) is −.07Ri < 0,
as claimed.

The meaning of (4.9) is that, given any two points in C3, the distance from the
point that is further from λi to the nearest point of Bi is greater than the distance
between the two points. Consequently, if C3 contains M + 1 points of Li, the ball
around the furthest point (which intersects Bi) must contain all M +1 points strictly
in its interior, which is a contradiction.

Let T ⊂ G2 be the set of pairs of edges in G that conflict. Applying Lemmas 4.4
and 4.5,

|T | ≤
∑

i

deg(λi)
∑

λj∈Li

deg(λj) � |Sτ |M3.(4.12)

We have

(A+A)× (A+A) ⊃
⋃

{λi,λj}∈G

(Ai +Aj)× (Aiλi +Ajλj).

Using inclusion-exclusion and Lemma 4.1, this implies that

|(A+A)× (A+A)| ≥ |G|τ2 − c|T |τ2K−1

for some c > 0. Since the degree of each λi ∈ G is at least M , we have |G| ≥ |Sτ |M/2.
Together with (4.12), we get

|(A+A)× (A+A)| ≥ |Sτ |Mτ2/2− c|Sτ |M3τ2K−1/2.

Taking M = c′K1/6 for a sufficiently small constant c′, we obtain

|A+A|2 � |Sτ |τ2K1/6 & E∗(A)K1/6 ≥ |A|4|AA|−1K1/6.

Assuming that K > |A|δ for some fixed δ > 0, this shows that |A + A| + |AA| &
|A|4/3+δ/18, as claimed.
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