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Abstract—The problem of sequential anomaly detection
is considered, where multiple data sources are monitored
in real time and the goal is to identify the “anomalous”
ones among them, when it is not possible to sample all
sources at all times. A detection scheme in this context
requires specifying not only when to stop sampling and
which sources to identify as anomalous upon stopping,
but also which sources to sample at each time instance
until stopping. A novel formulation for this problem is
proposed, in which the number of anomalous sources is not
necessarily known in advance and the number of sampled
sources per time instance is not necessarily fixed. Instead,
an arbitrary lower bound and an arbitrary upper bound
are assumed on the number of anomalous sources, and
the fraction of the expected number of samples over the
expected time until stopping is required to not exceed an
arbitrary, user-specified level. In addition to this sampling
constraint, the probabilities of at least one false alarm and
at least one missed detection are controlled below user-
specified tolerance levels. A general criterion is established
for a policy to achieve the minimum expected time until
stopping to a first-order asymptotic approximation as the
two familywise error rates go to zero. Moreover, the
asymptotic optimality is established of a family of policies
that sample each source at each time instance with a
probability that depends on past observations only through
the current estimate of the subset of anomalous sources.
This family includes, in particular, a novel policy that
requires minimal computation under any setup of the
problem.

Index Terms—Active sensing; Anomaly detection;
Asymptotic optimality; Controlled sensing; Sequential de-
sign of experiments; Sequential detection; Sequential sam-
pling; Sequential testing.

I. INTRODUCTION

In various engineering and scientific areas data are
often collected in real time over multiple streams, and
it is of interest to quickly identify those data streams,
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if any, that exhibit outlying behavior. In brain science,
for example, it is desirable to identify groups of cells
with large vibration frequency, as this is a symptom for
the development of a particular malfunctioning [1]. In
fraud prevention security systems in e-commerce, it is
desirable to identify transition links with low transition
rate, as this may be an indication that a link is tapped
[2]. Such applications, among many others, motivate the
study of sequential multiple testing problems where the
data for the various hypotheses are generated by distinct
sources, there are two hypotheses for each data source,
and the goal is to identify as quickly as possible the
“anomalous” sources, i.e., those in which the alternative
hypothesis is correct. In certain works, e.g., [3]–[8], all
sources are sampled at each time instance, whereas in
others, e.g., [9]–[17], only a fixed number of sources
(typically, only one). In the latter case, apart from when
to stop sampling and which data sources to identify as
anomalous upon stopping, one also needs to specify
which sources to sample at every time instance until
stopping.

The latter problem, which is often called sequential
anomaly detection in the literature, can be viewed as
a special case of the sequential multi-hypothesis testing
problem with controlled sensing (or observation control),
where the goal is to solve a sequential multi-hypothesis
testing problem while taking at each time instance an
action that influences the distribution of the observations
[18]–[28]. In the anomaly detection case, the action is
the selection of the sources to be sampled, whereas
the hypotheses correspond to the possible subsets of
anomalous sources. Therefore, policies and results in
the context of sequential multi-hypothesis testing with
controlled sensing are applicable, in principle at least, to
the sequential anomaly detection problem. Such a policy
was first proposed in [18] for the case of two hypotheses,
and subsequently generalized in [20], [21] to the case of
an arbitrary, finite number of hypotheses. When applied
to the sequential anomaly detection problem, this policy
samples each subset of sources of the allowed size at
each time instance with a certain probability that depends
on the past observations only through the currently
estimated subset of anomalous sources.

In general, the implementation of the policy in [20]
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requires solving, for each subset of anomalous sources,
a linear system where the number of equations is equal
to the number of sources and the number of unknowns
is equal to the number of all subsets of sources of the
allowed size. Moreover, its asymptotic optimality has
been established only under restrictive assumptions, such
as when the following hold simultaneously: it is known
a priori that there is only one anomalous source, it
is possible to sample only one source at a time, the
testing problems are identical, and the sources generate
Bernoulli random variables under each hypothesis [21,
Appendix A]. To avoid such restrictions, it has been
proposed to modify the policy in [20] at an appropriate
subsequence of time instances, at which each subset
of sources of the allowed size is sampled with the
same probability [18, Remark 7], [25]. Such a modified
policy was shown in [25] to always be asymptotically
optimal, as long as the log-likelihood ratio statistic of
each observation has a finite second moment.

A goal of the present work is to show that the
unmodified policy in [20] is always asymptotically op-
timal in the context of the above sequential anomaly
detection problem, as long as the log-likelihood ratio
statistic of each observation has a finite first moment.
However, our main goal in this paper is to propose a
more general framework for the problem of sequential
anomaly detection with sampling constraints that (i) does
not rely on the restrictive assumption that the number of
anomalous sources is known in advance, (ii) allows for
two distinct error constraints and captures the asymmetry
between a false alarm, i.e., falsely identifying a source as
anomalous, and a missed detection, i.e., failing to detect
an anomalous source, and most importantly, (iii) relaxes
the hard sampling constraint that the same number of
sources must be sampled at each time instance, and
(iv) admits an asymptotically optimal solution that is
convenient to implement under any setup of the problem.

To be more specific, in this paper we assume an
arbitrary, user-specified lower bound and an arbitrary,
user-specified upper bound on the number of anomalous
sources. This setup includes the case of no prior infor-
mation, the case where the number of anomalous sources
is known in advance, as well as more realistic cases of
prior information, such as when there is only a non-
trivial upper bound on the number of anomalous sources.
Moreover, we require control of the probabilities of at
least one false alarm and at least one missed detection
below arbitrary, user-specified levels. Both these features
are taken into account in [6] when all sources are
observed at all times. Thus, the present paper can be seen
as a generalization of [6] to the case that it is not possible
to observe all sources at all times. However, instead
of demanding that the number of sampled sources per
time instance be fixed, as in [9]–[17], we only require

that the ratio of the expected number of observations
over the expected time until stopping not exceed a user-
specified level. This leads to a more general formulation
for sequential anomaly detection compared to those in
[9]–[17], which at the same time is not a special case
of the sequential multi-hypothesis testing problem with
controlled sensing in [18]–[28]. Thus, while existing
policies in the literature are applicable to the proposed
setup, this is not the case for the existing universal lower
bounds.

Our first main result on the proposed problem is a
criterion for a policy (that employs the stopping and
decision rules in [6] and satisfies the sampling constraint)
to achieve the optimal expected time until stopping
to a first-order asymptotic approximation as the two
familywise error probabilities go to 0. Indeed, we show
that such a policy is asymptotically optimal in the above
sense, if it samples each source with a certain minimum
long-run frequency that depends on the source itself and
the true subset of anomalous sources.

Our second main result is that this criterion for asymp-
totic optimality is satisfied, simultaneously for every
possible scenario regarding the anomalous sources, when
sampling each source at each time instance with a prob-
ability that is not smaller than the minimum long-run
frequency that corresponds to the current estimate of the
subset of anomalous sources. This implies the asymptotic
optimality of the unmodified policy in [20], as well as of
a much simpler policy, according to which the sources
are sampled at each time instance conditionally inde-
pendent of one another given the current estimate of the
subset of anomalous sources. Indeed, the implementation
of the latter policy, unlike that in [20], involves minimal
computational and storage requirements under any setup
of the problem. Moreover, we present simulation results
that suggest that this computational simplicity does not
come at the price of performance deterioration (relative
to the policy in [20]).

Finally, to illustrate the gains of asymptotic optimal-
ity, we consider the straightforward policy in which
the sources are sampled in tandem. We compute its
asymptotic relative efficiency and we show that it is
asymptotically optimal only in a very special setup of
the problem. Moreover, our simulation results suggest
that, apart from this special setup, its actual performance
loss relative to the above asymptotically optimal policies,
when the target error probabilities are not (very) small,
is (much) larger than the one implied by its asymptotic
relative efficiency.

The remainder of the paper is organized as follows:
in Section II we formulate the proposed problem. In
Section III we present a family of policies that satisfy
the error constraints, as well as an auxiliary consis-
tency property. In Section IV we introduce the family
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of probabilistic sampling rules, and in Section V we
present our asymptotic optimality theory. In Section
VI we discuss alternative sampling approaches in the
literature, and in Section VII we present the results of
our simulation studies. In Section VIII we conclude and
discuss potential generalizations, as well as directions
for further research. The proofs of all main results are
presented in Appendices B, C, D, whereas in Appendix
A we state and prove two supporting lemmas.

We end this section with some notations we use
throughout the paper. We use := to indicate the definition
of a new quantity and ≡ to indicate a duplication of
notation. We set N := {1, 2 . . . , } and [n] := {1, . . . , n}
for n ∈ N, we denote by Ac the complement, by |A|
the size and by 2A the powerset of a set A, by bac
the floor and by dae the ceiling of a positive number
a, and by 1 the indicator of an event. We write x ∼ y
when lim(x/y) = 1, x & y when lim inf(x/y) ≥ 1, and
x . y when lim sup(x/y) ≤ 1, where the limit is taken
in some sense that will be specified. Moreover, iid stands
for independent and identically distributed, and we say
that a sequence of positive numbers (an) is summable if∑∞
n=1 an < ∞ and exponentially decaying if there are

real numbers c, d > 0 such that an ≤ c exp{−dn} for
every n ∈ N. A property that we use in many proofs is
that if (an) is exponentially decaying, so is the sequence
(
∑
m≥ζn am), for any ζ ∈ (0, 1].

II. PROBLEM FORMULATION

Let (S,S) be an arbitrary measurable space and let
(Ω,F ,P) be a probability space that hosts M inde-
pendent sequences of iid S-valued random elements,
{Xi(n) : n ∈ N}, i ∈ [M ], which are generated by
M distinct data sources, as well as an independent
sequence of iid random vectors, {Z(n) : n = 0, 1, . . .},
to be used for randomization purposes. Specifically, each
Z(n) := (Z0(n), Z1(n), . . . , ZM (n)) is a vector of
independent random variables, uniform in (0, 1), and
each Xi(n) has density fi, with respect to some σ-finite
measure νi, that is equal to either f1i or f0i. For every
i ∈ [M ] we say that source i is “anomalous” if fi = f1i

and we assume that the Kullback-Leibler divergences of
f1i and f0i are positive and finite, i.e.,

Ii :=

∫
S

log(f1i/f0i) f1i dνi ∈ (0,∞),

Ji :=

∫
S

log(f0i/f1i) f0i dνi ∈ (0,∞).

(1)

We assume that it is known a priori that there are
at least ` and at most u anomalous sources, where `
and u are given, user-specified integers such that 0 ≤
` ≤ u ≤ M , with the understanding that if ` = u, then

0 < ` < M . Thus, the family of all possible subsets of
anomalous sources is

P`,u := {A ⊆ [M ] : ` ≤ |A| ≤ u}.

In what follows, we denote by PA the underlying proba-
bility measure and by EA the corresponding expectation
when the subset of anomalous sources is A ∈ P`,u, and
we simply write P and E whenever the identity of the
subset of anomalous sources is not relevant.

The problem we consider in this work is the identi-
fication of the anomalous sources, if any, on the basis
of sequentially acquired observations from all sources,
when however it is not possible to observe all of them at
every sampling instance. Specifically, we have to specify
a random time T , at which sampling is terminated,
and two random sequences, R := {R(n), n ≥ 1} and
∆ := {∆(n), n ∈ N}, so that R(n) ⊆ [M ] represents
the subset of sources that are sampled at time n when
n ≤ T , and ∆(n) ≡ ∆n ∈ P`,u represents the subset of
sources that are identified as anomalous when T = n.

The decisions whether to stop or not at each time
instance, which sources to sample next in the latter case,
and which ones to identify as anomalous in the former,
must be based on the already available information.
Thus, we say that R is a sampling rule if, for every
n ∈ N, R(n) is FRn−1–measurable, where

FRn := σ
(
FRn−1, Z(n), {Xi(n) : i ∈ R(n)}

)
FR0 := σ(Z(0)).

(2)

Moreover, we say that the triplet (R, T,∆) is a policy
if R is a sampling rule, {T = n} ∈ FRn and ∆n is
FRn −measurable for every n ∈ N, in which case we
refer to T as stopping rule and to ∆ as decision rule. For
any sampling rule R, we denote by Ri(n) the indicator
of whether source i is sampled at time n, i.e., Ri(n) :=
1{i ∈ R(n)}, and by NR

i (n) (resp. πRi (n)) the number
(resp. proportion) of times source i is sampled in the
first n time instances, i.e.,

NR
i (n) :=

n∑
m=1

Ri(m), πRi (n) := NR
i (n)/n.

We say that a policy (R, T,∆) belongs to class
C(α, β, `, u,K) if its probabilities of at least one false
alarm and at least one missed detection upon stopping
do not exceed α and β respectively, i.e.,

PA (T <∞, ∆T \A 6= ∅) ≤ α ∀A ∈ P`,u,
PA (T <∞, A \∆T 6= ∅) ≤ β ∀A ∈ P`,u,

(3)

where α, β are user-specified numbers in (0, 1), and the
ratio of its expected total number of observations over
its expected time until stopping does not exceed K, i.e.,

M∑
i=1

E
[
NR
i (T )

]
≤ K E[T ], (4)

Authorized licensed use limited to: Georgios Fellouris. Downloaded on December 30,2022 at 10:04:35 UTC from IEEE Xplore.  Restrictions apply. 



0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3177142, IEEE
Transactions on Information Theory

4

where K is a user-specified, real number in (0,M ]. Note
that, in view of the identity

M∑
i=1

E
[
NR
i (T )

]
= E

[
T∑
n=1

E
[
|R(n)| | FRn−1

]]
,

constraint (4) is clearly satisfied when

sup
n≤T

E
[
|R(n)| | FRn−1

]
≤ K. (5)

This is the case, for example, when at most bKc sources
are sampled at each time instance up to stopping, i.e.,
when |R(n)| ≤ bKc for every n ≤ T .

Our main goal in this work is, for any given `, u,K, to
obtain policies that attain the smallest possible expected
time until stopping,

JA(α, β, `, u,K) := inf
(R,T,∆)∈C(α,β,`,u,K)

EA[T ], (6)

simultaneously under every A ∈ P`,u, to a first-order
asymptotic approximation as α and β go to 0. Specifi-
cally, when ` = u, α and β are allowed to go to 0 at
arbitrary rates, but when ` < u, we assume that

∃ r ∈ (0,∞) : | logα| ∼ r | log β|. (7)

III. A FAMILY OF POLICIES

In this section we introduce the statistics that we
use in this work, a family of policies that satisfy the
error constraint (3), as well as an auxiliary consistency
property.

A. Log-likelihood ratio statistics

Let A,C ∈ P`,u and n ∈ N. We denote by ΛRA,C(n)
the log-likelihood ratio of PA versus PC based on the
first n time instances when the sampling rule is R, i.e.,

ΛRA,C(n) := log
dPA
dPC

(
FRn
)
, (8)

and we observe that it admits the following recursion:

ΛRA,C(n) = ΛRA,C(n− 1)

+
∑
i∈A\C

gi(Xi(n))Ri(n)

−
∑

j∈C\A

gj(Xj(n))Rj(n),

(9)

where ΛRA,C(0) := 0 and

gi := log (f1i/f0i) , i ∈ [M ]. (10)

Indeed, this recursion is obtained by (2) and the facts
that R(n) is FRn−1–measurable, Xi(n) is independent of
FRn−1 and its density under PA is f1i if i ∈ A and f0i

if i /∈ A, and Z(n) is independent of both FRn−1 and
{Xi(n) : i ∈ [M ]} and has the same density under PA
and PC .

For any i, j ∈ [M ] we write

ΛRA,C(n) ≡ ΛRij(n) when A = {i}, C = {j},
ΛRA,C(n) ≡ ΛRi (n) when A = {i}, C = ∅,

and we observe that the recursion in (9) implies that

ΛRi (n) =
n∑

m=1

gi(Xi(m))Ri(m), (11)

ΛRA,C(n) =
∑
i∈A\C

ΛRi (n)−
∑

j∈C\A

ΛRj (n). (12)

In particular, for any i, j ∈ [M ] we have

ΛRij(n) = ΛRi (n)− ΛRj (n).

In what follows, we refer to ΛRi (n) as the local
log-likelihood ratio (LLR) of source i at time n. We
introduce the order statistics of the LLRs at time n,

ΛR(1)(n) ≥ . . . ≥ ΛR(M)(n),

and we denote by wRi (n), i ∈ [M ] the corresponding
indices, i.e.,

ΛR(i)(n) := ΛRwRi (n)(n), i ∈ [M ].

Moreover, we denote by pR(n) the number of positive
LLRs at time n, i.e.,

pR(n) :=
M∑
i=1

1{ΛRi (n) > 0},

and we also set

ΛR(0)(n) := +∞, ΛR(M+1)(n) := −∞.

B. Stopping and decision rules

We next introduce, for any sampling rule R, a stopping
rule, TR, and a decision rule, ∆R, such that the policy
(R, TR,∆R) satisfies the error constraint (3).

The forms of TR and ∆R depend on whether the
number of anomalous sources is known in advance or
not, i.e., on whether ` = u or ` < u. Specifically, when
` = u, we stop as soon as the `th largest LLR exceeds
the next one by c > 0, i.e.,

TR := inf
{
n ∈ N : ΛR(`)(n)− ΛR(`+1)(n) ≥ c

}
, (13)

and we identify as anomalous the sources with the `
largest LLRs, i.e.,

∆R
n :=

{
wR1 (n), . . . , wR` (n)

}
, n ∈ N. (14)

When the number of anomalous sources is completely
unknown (` = 0 and u = M ), we stop as soon as the
value of every LLR is outside (−a, b) for some a, b > 0,
i.e.,

TR := inf
{
n ∈ N : ΛRi (n) /∈ (−a, b), ∀i ∈ [M ]

}
(15)
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and we identify as anomalous the sources with positive
LLRs, i.e.,

∆R
n :=

{
i ∈ [M ] : ΛRi (n) > 0

}
, n ∈ N. (16)

When ` < u, in general, we combine the stopping
rules of the two previous cases and we set

TR := inf

{
n ∈ N :

ΛR(`+1)(n) ≤− a & ΛR(`)(n)− ΛR(`+1)(n) ≥ c,
or

` ≤ pR(n) ≤u & ΛRi (n) /∈ (−a, b) ∀ i ∈ [M ],

or

ΛR(u)(n) ≥b & ΛR(u)(n)− ΛR(u+1)(n) ≥ d
}
,

(17)

where a, b, c, d > 0, and we use the following decision
rule:

∆R
n :=

{
wRi (n) : i = 1, . . . , (pR(n) ∨ `) ∧ u

}
(18)

for all n ∈ N. That is, we identify as anomalous the
sources with positive LLRs as long as their number
is between ` and u. If this number is larger than u
(resp. smaller than `), then we declare as anomalous the
sources with the u (resp. `) largest LLRs.

Proposition 3.1: Let R be an arbitrary sampling rule.
• When ` = u, (R, TR,∆R) satisfies the error

constraint (3) if

c = | log(α ∧ β)|+ log(`(M − `)) (19)

• When ` < u, (R, TR,∆R) satisfies the error
constraint (3) if

a = | log β|+ logM,

b = | logα|+ logM,

c = | logα|+ log((M − `)M),

d = | log β|+ log(uM).

(20)

Proof: When all sources are sampled at all times,
this is shown in [6, Theorems 3.1, 3.2]. Essentially the
same proof applies when K < M , for any sampling rule.

In view of Proposition 3.1, in what follows we assume
that the thresholds in TR are selected according to (19)
when ` = u and according to (20) when ` < u. While
this is a rather conservative choice, it is sufficient for
obtaining asymptotically optimal policies of the form
(R, TR,∆R). For this reason, in what follows we say
that a sampling rule, R, that satisfies the sampling
constraint (4) with T = TR, is asymptotically optimal
under PA, for some A ∈ P`,u, if

EA
[
TR
]
∼ JA(α, β, `, u,K)

as α and β go to 0 at arbitrary rates when ` = u and
so that (7) holds when ` < u. We simply say that R
is asymptotically optimal if it is asymptotically optimal
under PA for every A ∈ P`,u. We next introduce a
weaker property, which will be useful for establishing
asymptotic optimality.

C. Exponential consistency
For any sampling rule R and any subset A ∈ P`,u we

denote by σRA the random time starting from which the
sources in A are the ones estimated as anomalous by
∆R, i.e.,

σRA := inf
{
n ∈ N : ∆R

m = A for all m ≥ n
}
, (21)

and we say that R is exponentially consistent under PA
if PA(σRA > n) is an exponentially decaying sequence.
We simply say that R is exponentially consistent if it is
exponentially consistent under PA for every A ∈ P`,u.
The following theorem states sufficient conditions for
exponential consistency under PA.

Theorem 3.1: Let A ∈ P`,u and let R be an arbitrary
sampling rule.
• When ` < u, R is exponentially consistent

under PA if there exists a ρ > 0 such that
PA
(
πRi (n) < ρ

)
is exponentially decaying for ev-

ery i ∈ A if |A| > ` and for every i /∈ A if |A| < u.
• When ` = u, R is exponentially consistent

under PA if there exists a ρ > 0 such that
PA
(
πRi (n) < ρ

)
is exponentially decaying either

for every i ∈ A or for every i /∈ A.
Proof: Appendix B.

Remark: Theorem 3.1 reveals that when |A| = ` > 0
or |A| = u < M , it is possible to have exponentially
consistency under PA without sampling at all certain
sources. Specifically, when |A| = ` < u (resp.
|A| = u > `) it is not necessary to sample any source
in A (resp. Ac). On the other hand, when |A| = ` = u,
it suffices to sample either all sources in A or all of
them in Ac.

IV. PROBABILISTIC SAMPLING RULES

In this section we introduce a family of sampling rules
and we show how to design them in order to satisfy the
sampling constraint (5) and be exponentially consistent.
Thus, we say that a sampling rule R is probabilistic if
there exists a function

qR : 2[M ] × P`,u → [0, 1]

such that, for every n ∈ N, D ∈ P`,u, B ⊆ [M ],

qR (B;D) := P
(
R(n+ 1) = B | FRn ,∆R

n = D
)
, (22)
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i.e., qR (B;D) is the probability that B is the subset
of sampled sources when D is the currently estimated
subset of anomalous sources. If R is a probabilistic
sampling rule, then for every i ∈ [M ] and D ∈ P`,u
we set

cRi (D) := P
(
Ri(n+ 1) = 1 | FRn ,∆R

n = D
)

=
∑

B⊆[M ]: i∈B

qR (B;D) , (23)

i.e., cRi (D) is the probability that source i is sampled
when D is the currently estimated subset of anomalous
sources.

We refer to a probabilistic sampling rule R as
Bernoulli if, for every D ∈ P`,u and B ⊆ [M ],

qR(B;D) =
∏
i∈B

cRi (D)
∏
j /∈B

(
1− cRj (D)

)
, (24)

i.e., if the sources are sampled at each time instance con-
ditionally independent of one another given the currently
estimated subset of anomalous sources. Indeed, such a
sampling rule admits a representation of the form

Ri(n+ 1) = 1
{
Zi(n) ≤ cRi

(
∆R
n

)}
, n ∈ N (25)

for all i ∈ [M ], where Z1(n), . . . , ZM (n) are iid and
uniform in (0, 1), thus, its implementation at each time
instance requires the realization of M Bernoulli random
variables.

The following proposition provides a sufficient
condition for a probabilistic sampling rule to satisfy the
sampling constraint (5), and consequently (4), for any
{FRn }-stopping time T .

Proposition 4.1: If R is a probabilistic sampling rule
such that

M∑
i=1

cRi (D) ≤ K for every D ∈ P`,u, (26)

then (5) holds for any {FRn }-stopping time T .
Proof: For any n ∈ N and any probabilistic sam-

pling rule R,

E
[
|R(n)| | FRn−1

]
=

M∑
i=1

P
(
Ri(n) = 1 | FRn−1

)
=

M∑
i=1

cRi (∆R
n ).

(27)

As a result, if (26) is satisfied, then (5) holds for any
{FRn }-stopping time, T .

Finally, we establish sufficient conditions for the
exponentially consistency of a probabilistic sampling

rule.

Theorem 4.1: Let R be a probabilistic sampling rule.

• When ` < u, R is exponentially consistent if, for
every D ∈ P`,u, cRi (D) is positive for every i ∈ D
if |D| > ` and every i /∈ D if |D| < u.

• When ` = u, R is exponentially consistent if, for
every D ∈ P`,u, cRi (D) is positive either for every
i ∈ D or for every i /∈ D.

Proof: The proof consists in showing that the suf-
ficient conditions of Theorem 3.1 are satisfied for every
A ∈ P`,u, and is presented in Appendix B.

Remark: Theorem 4.1 implies that when ` < u, a
probabilistic sampling rule is exponentially consistent if,
whenever the number of estimated anomalous sources
is larger than ` (resp. smaller than u), it samples
with positive probability any source that is currently
estimated as anomalous (resp. non-anomalous). When
` = u, on the other hand, it suffices to sample with
positive probability at any time instance either every
source that is currently estimated as anomalous or every
source that is currently estimated as non-anomalous.

Remark: The proof of Theorem 4.1 relies on two Lem-
mas, B.1 and B.2, which we state in Appendix B, and is
one of the main contributions of this work. We note that
the proof would simplify considerably if we strengthened
the assumption of the theorem and assumed that every
source were sampled with positive probability at every
time instance, i.e., if we assumed that cRi (D) > 0 for
every i ∈ [M ] and D ∈ P`,u. Indeed, in this case Lemma
B.2 would be redundant and the proof would essentially
rely on ideas from [18]. However, such an assumption
would unnecessarily and considerably limit the scope of
the asymptotic optimality theory we develop in the next
section.

V. ASYMPTOTIC OPTIMALITY

In this section we present the asymptotic optimality
theory of this work and discuss some of its implications.
For this, we first need to introduce some additional
notation.

A. Notation

For A ⊆ [M ] with A 6= ∅ we set

I∗A := min
i∈A

Ii, IA :=
|A|∑

i∈A(1/Ii)

K̂A := |A| I
∗
A

IA
,

(28)
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for A ⊆ [M ] with A 6= [M ] we set

J∗A := min
i/∈A

Ji, JA :=
|Ac|∑

i/∈A(1/Ji)

ǨA := |Ac| J
∗
A

JA
,

(29)

and for A ⊆ [M ] with 0 < |A| < M we set

θA := I∗A/J
∗
A. (30)

That is,
• I∗A is the minimum and IA the harmonic mean of

the Kullback-Leibler divergences in {Ii : i ∈ A},
• J∗A is the minimum JA the harmonic mean of the

Kullback-Leibler divergences in {Ji : i /∈ A},
• K̂A (resp. ǨA) is a positive real number smaller or

equal to the size of A (resp. Ac), with the equality
attained when Ii = I (resp. Ji = J) for every i in
A (resp. Ac).

• θA is a positive real number that is equal to 1 when
Ii = Ji for every i ∈ [M ].

In Theorem 5.1, for each A ∈ P`,u we also introduce
two quantities,

xA(r, `, u,K) and yA(r, `, u,K), (31)

which play an important role in the formulation of all
results in this section. Although their values depend on
r, `, u,K , in order to lighten the notation we simply
write xA and yA unless we want to emphasize their
dependence on one or more of these parameters.

B. A universal asymptotic lower bound
Theorem 5.1: Let A ∈ P`,u.
(i) Suppose that ` = u. Then, as α, β → 0,

JA(α, β, `, u,K) &
| log(α ∧ β)|
xA I∗A + yA J∗A

, (32)

where if K̂A ≤ θAǨA,

xA := (K/K̂A) ∧ 1

yA :=
(
(K − K̂A)+/ǨA

)
∧ 1,

(33)

and if K̂A > θAǨA,

xA :=
(
(K − ǨA)+/K̂A

)
∧ 1

yA := (K/ǨA) ∧ 1.
(34)

(ii) Suppose that ` < u and let α, β → 0 so that (7)
holds.
• If ` < |A| < u, then

JA(α, β, `, u,K) &
| logα|
xA I∗A

∼ | log β|
yA J∗A

xA :=
K

K̂A + (θA/r)ǨA

∧ (r/θA) ∧ 1

yA :=
K

ǨA + (r/θA)K̂A

∧ (θA/r) ∧ 1.

(35)

• If |A| = `, we distinguish two cases.

If ` = 0 or r ≤ 1, then

JA(α, β, `, u,K) &
| log β|

xA I∗A + yA J∗A
,

where xA := 0

yA := (K/ǨA) ∧ 1.

(36)

If ` > 0 and r > 1, we set

zA := θA/(r − 1)

and we distinguish two further cases:
If zA ≥ 1 or K ≤ K̂A + zA ǨA, then

JA(α, β, `, u,K) &
| log β|
yA J∗A

∼ | logα|
xA I∗A + yA J∗A

,

(37)

where

xA :=
K

K̂A + zA ǨA

∧ (1/zA) ∧ 1

yA :=
K

ǨA + (1/zA) K̂A

∧ zA ∧ 1.
(38)

If zA < 1 and K > K̂A + zA ǨA, then

JA(α, β, `, u,K) &
| logα|

xA I∗A + yA J∗A
, (39)

where

xA := 1

yA :=
(
(K − K̂A)/ǨA

)
∧ 1.

(40)

• If |A| = u, then we distinguish again two cases.

If u = M or r ≥ 1, then

JA(α, β, `, u,K) &
| logα|

xA I∗A + yA J∗A
where yA := 0

xA := (K/K̂A) ∧ 1.

(41)

If u < M and r < 1, we set

wA := (1/θA)/(1/r − 1)

and we distinguish two further cases:
If wA ≥ 1 or K ≤ ǨA + wAK̂A, then

JA(α, β, `, u,K) &
| logα|
xA I∗A

∼ | log β|
xA I∗A + yA J∗A

,

(42)

Authorized licensed use limited to: Georgios Fellouris. Downloaded on December 30,2022 at 10:04:35 UTC from IEEE Xplore.  Restrictions apply. 



0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3177142, IEEE
Transactions on Information Theory

8

where

yA :=
K

ǨA + wAK̂A

∧ (1/wA) ∧ 1

xA :=
K

K̂A + (1/wA)ǨA

∧ wA ∧ 1.
(43)

If wA < 1 and K > ǨA + wAK̂A, then

JA(α, β, `, u,K) &
| log β|

xA I∗A + yA J∗A
, (44)

where

yA := 1

xA :=
(
(K − ǨA)/K̂A

)
∧ 1.

(45)

Proof: The proof is presented in Appendix C. It
follows similar steps as the one in the full sampling
case in [6, Theorem 5.1], with the difference that it uses
a version of Doob’s optional sampling theorem in the
place of Wald’s identity and requires the solution of a
max-min optimization problem, in each of the cases we
distinguish, to determine the denominator in the lower
bound.

Remark: By the definition of xA and yA in Theorem
5.1 we can see that
• they both take values in [0, 1] and at least one of

them is positive,
• they are both increasing as functions of K,
• at least one of them is equal to 1 when K = M ,
• if xA = 0 (resp. yA = 0), then |A| = ` (resp.
|A| = u).

In the next section we obtain an interpretation of the
values of xA and yA.

C. A criterion for asymptotic optimality

Based on the universal asymptotic lower bound of
Theorem 5.1, we next establish the asymptotic optimality
under PA of a sampling rule R that satisfies the sampling
constraint and samples each source i ∈ [M ], when the
true subset of anomalous sources is A, with a long-run
frequency that is not smaller than

c∗i (A) :=

{
xA I

∗
A/Ii if i ∈ A,

yA J
∗
A/Ji if i /∈ A.

(46)

Theorem 5.2: Let A ∈ P`,u and let R be a sampling
rule that satisfies (4) with T = TR. If for every i ∈ [M ]
such that c∗i (A) > 0 the sequence PA

(
πRi (n) < ρ

)
is summable for every ρ ∈ (0, c∗i (A)), then R is
asymptotically optimal under PA.

Proof: The proof consists in establishing asymptotic
upper bounds for EA[TR], when the thresholds are
selected according to (19)-(20), that match the universal
asymptotic lower bounds of Theorem 5.1. The proof is

presented Appendix D.

Remark: For any A ∈ P`,u, by the properties of xA
and yA and the definition of {c∗i (A) : i ∈ [M ]} in (46)
it follows that:
• c∗i (A) ∈ [0, 1] for every i ∈ [M ],
• xA = 0 ⇔ c∗i (A) = 0 for every i ∈ A,
• yA = 0 ⇔ c∗i (A) = 0 for every i /∈ A,
• xA > 0 ⇔ c∗i (A) > 0 for every i ∈ A,
• yA > 0 ⇔ c∗i (A) > 0 for every i /∈ A.

Therefore, Theorem 5.2 implies that when xA (resp.
yA) is equal to 0, it is not necessary to sample any
source in A (resp. Ac) in order to achieve asymptotic
optimality under PA.

Remark: By (46) and the definitions of IA and JA in
(28) and (29) we can see that

xA =
IA/I

∗
A

|A|
∑
i∈A

c∗i (A) when A 6= ∅,

yA =
JA/J

∗
A

|Ac|
∑
i/∈A

c∗i (A) when A 6= [M ].

(47)

Therefore, xA (resp. yA) is equal to the average of the
minimum limiting sampling frequencies of the sources
in A (resp. Ac) required for asymptotic optimality under
PA, multiplied by IA/I∗A (resp. JA/J∗A).

Remark: By the definitions of K̂A and ǨA in (28) and
(29), we can see that (47) implies

M∑
i=1

c∗i (A) = xAK̂A + yAǨA. (48)

Moreover, by a direct inspection of the values of xA and
yA we have

xAK̂A + yAǨA ≤ K, (49)

and consequently:
M∑
i=1

c∗i (A) ≤ K. (50)

D. Asymptotically optimal probabilistic sampling rules

Using the criterion Theorem 5.2, we next obtain
a sufficient condition for the asymptotic optimality,
simultaneously under every possible scenario, of an
arbitrary probabilistic sampling rule, R, in terms of the
quantities {cRi (A) : i ∈ [M ], A ∈ P`,u}, defined in (23).

Theorem 5.3: If R is a probabilistic sampling rule such
that, for every A ∈ P`,u,

cRi (A) ≥ c∗i (A), ∀ i ∈ [M ], (51)
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then it is exponentially consistent. If also R satisfies (26),
then it is asymptotically optimal.

Proof: Exponential consistency is established by
showing that the conditions of Theorem 4.1 are satisfied,
and asymptotic optimality by showing that the conditions
of Theorem 5.2 are satisfied. The proof is presented in
Appendix D.

In the next corollary we show that both conditions of
Theorem 5.3 are satisfied when the equality holds in (51)
for every A ∈ P`,u.

Corollary 5.1: If R is a probabilistic sampling rule
such that, for every A ∈ P`,u,

cRi (A) = c∗i (A), ∀ i ∈ [M ], (52)

then R is exponentially consistent and asymptotically
optimal.

Proof: By Theorem 5.3 it clearly suffices to show
that (26) holds, which follows directly by (50).

While (52) suffices for the asymptotic optimality of
a probabilistic sampling rule under PA, it is not always
necessary. In the following proposition we characterize
the setups for which the necessity holds.

Proposition 5.1: Let A ∈ P`,u.
(52) holds for any probabilistic sampling rule R that

satisfies (26) and (51)
⇔ xAK̂A + yAǨA = K.

Proof: For any probabilistic sampling rule R that
satisfies (26) and (51) we have

K ≥
M∑
i=1

cRi (A) ≥
M∑
i=1

c∗i (A) = xAK̂A + yAǨA, (53)

where the equality follows by (48).
(⇐) If K = xAK̂A + yAǨA, then by (53) we obtain

M∑
i=1

cRi (A) =
M∑
i=1

c∗i (A).

In view of (51), this proves that cRi (A) = c∗i (A) for
every i ∈ [M ].

(⇒) We argue by contradiction and assume that
xAK̂A + yAǨA = K does not hold. By (48) and (49) it
then follows that

M∑
i=1

c∗i (A) < K.

Corollary 5.1 then implies that there is a probabilistic
sampling rule that satisfies (51) with strict inequality
for at least one i ∈ [M ], and also (26). Thus, we have
reached a contradiction.

E. The optimal performance under full sampling

Corollary 5.1 implies that the asymptotic lower bound
in Theorem 5.1 is always achieved, and as a result it
is a first-order asymptotic approximation to the optimal
expected time until stopping. By this approximation it
follows that, for any A ∈ P`,u,

JA(α, β,`, u,K) ∼ JA(α, β, `, u,M)

⇔ K ≥ QA,
(54)

where QA ≡ QA(r, `, u) is defined as follows:

QA := xA(r, `, u,M) K̂A + yA(r, `, u,M) ǨA. (55)

Moreover, by an inspection of the values of xA and yA
in Theorem 5.2 it follows that

QA = min

{
K ∈ (0,M ] :

xA(r, `, u,K) = xA(r, `, u,M)

and yA(r, `, u,K) = yA(r, `, u,M)

}
.

(56)

The equivalence in (54) implies that if QA < M and
K ∈ [QA,M), then the optimal expected time until
stopping under PA under full sampling can be achieved,
to a first-order asymptotic approximation as α, β → 0,
without sampling all sources at all times.

Corollary 5.2: If QA < M and K ∈ [QA,M) for
some A ∈ P`,u, then there is a probabilistic sampling
rule R such that, for any α, β ∈ (0, 1),

(R, TR,∆R) ∈ C(α, β, `, u,K),

when the thresholds are selected according to (19)-(20),
cRi (A) < 1 for some i ∈ [M ], and

EA[TR] ∼ JA(α, β, `, u,M).

Proof: This follows by Corollary 5.1 and (54).

The next proposition, in conjunction with Proposition
5.1, shows that QA can also be used to characterize
the setups for which the equality must hold in (51). In
particular, it shows that this is always the case when
K ≤ 1.

Proposition 5.2: For every A ∈ P`,u, QA ≥ 1 and

xAK̂A + yAǨA = K ⇔ K ≤ QA.

Proof: By the definition of K̂A, ǨA in (28), (29) it
follows that

K̂A =
∑
i∈A

(I∗A/Ii) ≥ 1 for A 6= ∅

ǨA =
∑
i/∈A

(J∗A/Ji) ≥ 1 for A 6= [M ].

Authorized licensed use limited to: Georgios Fellouris. Downloaded on December 30,2022 at 10:04:35 UTC from IEEE Xplore.  Restrictions apply. 



0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3177142, IEEE
Transactions on Information Theory

10

Since also at least one of xA(r, `, u,M) and
yA(r, `, u,M) is equal to 1, by the definition of QA in
(55) we conclude that QA ≥ 1. It remains to prove the
equivalence. (⇒) It suffices to observe that since xA,
yA are both increasing in K, by the definition of QA in
(55) we have xAK̂A + yAǨA ≤ QA. (⇐) Follows by
direct verification.

F. The Chernoff sampling rule

When K is an integer, we will refer to a probabilistic
sampling rule as Chernoff if it satisfies the conditions
of Theorem 5.3 and samples exactly K sources per
time instance. Indeed, such a sampling rule is implied
from [18], [20], [21] when these works are applied
to the sequential anomaly detection problem (with a
fixed number of sampled sources per time instance). In
fact, if the class C(α, β, `, u,K) is restricted to policies
that sample exactly K sources per time instance, the
asymptotic optimality of this rule under PA is implied
by the general results in [20], as long as xA and yA
are both positive. However, this is not always the case.
Indeed, in the simplest formulation of the sequential
anomaly detection problem, where it is known a priori
that there is only one anomaly (l = u = 1), only one
source can be sampled per time instance (K = 1), and
the sources are homogeneous, i.e., f0i = f0, f1i = f1

for every i ∈ [M ], then one of xA and yA is 0 for
every A ∈ P`,u. In this setup, the asymptotic optimality
of a Chernoff rule was shown in [21, Appendix A] if
also f0, f1 are both Bernoulli pmf’s. Our results in this
section remove all these restrictions and establish the
asymptotic optimality of the Chernoff rule for any values
of `, u, r,K , and without artificially modifying it at a
subsequence of sampling instances, as in [25].

From a practical point of view, in order to implement
a Chernoff rule one needs to determine a function qR

that satisfies simultaneously the conditions of Theorem
5.3 and also

qR (B;D) = 0 for all D ∈ P`,u
and B ⊆ [M ] with |B| 6= K.

(57)

This can be a computationally demanding task unless
the problem has a special structure or K = 1 and
should be compared with the implementation of the
asymptotically optimal Bernoulli sampling rule, which
does not require essentially any computation under any
setup of the problem.

G. The homogeneous setup

We now specialize the previous results to the case
that Ii = I and Ji = J for every i ∈ [M ], where the

quantities in (28), (29), (30), (51) simplify as follows:

IA = I∗A ≡ I, JA = J∗A ≡ J,
K̂A = |A|, ǨA = |Ac|, θA = I/J ≡ θ,

c∗i (A) =

{
xA, if i ∈ A,
yA, if i /∈ A.

(58)

• Suppose first that the number of anomalous sources
is known in advance, i.e., ` = u. Then, xA and yA do
not depend on A, we denote them simply by x and y
respectively, and present their values in Table I.

(M − `)I ≥ J` (M − `)I ≤ J`
x min{K/`, 1} (K −M + `)+/`
y (K − `)+/(M − `) min{K/(M − `), 1}

TABLE I: x ≡ xA and y ≡ yA when ` = u, Ii = I ,
Ji = J for every i ∈ [M ].

From Table I and (55) it follows that QA = M for
every A ∈ P`,u. Then, from Propositions 5.1 and 5.2
it follows that if R is a probabilistic sampling rule that
satisfies the conditions of Theorem 5.3, then it samples at
each time instance each source that is currently estimated
as anomalous (resp. non-anomalous) with probability x
(resp. y), i.e.,

cRi (A) =

{
x, if i ∈ A
y, if i /∈ A,

∀ A ∈ P`,u. (59)

Moreover, we observe that the first-order asymptotic
approximation to the optimal performance is independent
of the true subset of anomalous sources. Specifically, for
every A ∈ P`,u,

JA(α, β, `, u,K) ∼ | log(α ∧ β)|
x I + y J

. (60)

• When the number of anomalous sources is not
known a priori, i.e., ` < u, we focus on the special case
that r = 1 and θ = 1, or equivalently, I = J . Then,
the values of xA and yA, presented in Table II, do not
depend on I , and the optimal asymptotic performance
under PA takes the following form:

I
JA(α, β, `, u,K)

| logα|

∼


max{(M − `)/K, 1}, |A| = `,

M/K, ` < |A| < u,

max{u/K, 1}, |A| = u.

(61)

From (54) and (61) we further obtain

QA =


M − `, if |A| = `,

M, if ` < |A| < u,

u, if |A| = u.

(62)
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Note that, in this setup, QA = M if and only if one of
the following holds:

` < |A| < u, |A| = ` = 0, |A| = u = M.

Moreover, from Theorem 5.2 it follows that, in each
of these three cases, asymptotic optimality is achieved
by any sampling rule, not necessarily probabilistic, that
satisfies the sampling constraint and samples all sources
with the same long-run frequency. This is the content
of the following corollary.

Corollary 5.3: Let R be a sampling rule such that
• the sampling constraint (4) holds with T = TR,
• P

(
|πRi (n)−K/M | > ε

)
is summable for every

ε > 0 and i ∈ [M ].
If ` < u, r = 1, and Ii = Jj for every i, j ∈ [M ], then R
is asymptotically optimal under PA for every A ∈ P`,u
with ` < |A| < u. If also ` = 0 and u = M , then R is
asymptotically optimal.

Proof: This follows directly by Theorem 5.2, in
view of Table II.

The conditions of Corollary 5.3 are satisfied when R
is a probabilistic sampling rule with cRi (A) = K/M
for every i ∈ [M ] and A ∈ P`,u, e.g., when R is a
Bernoulli sampling rule that samples each source at each
time instance with probability K/M , independently of
the other sources. Moreover, in the setup of Corollary 5.3
it is quite convenient to find and implement a Chernoff
rule (Subsection V-F). Indeed, when K is an integer,
the conditions of Corollary 5.3 are satisfied when we
take a simple random sample of K sources at each time
instance, i.e., when

qR(B;D) = 1/

(
M

K

)
for all D ∈ P`,u

and B ⊆ [M ] with |B| = K.

(63)

Finally, in Subsection VI-A we will introduce a non-
probabilistic sampling rule that satisfies the conditions
of Corollary 5.3.

H. A heterogeneous example

We end this section by considering a setup where M
is an even number, ` < M/2 < u, r = 1, and

Ii = Ji =

{
I, 1 ≤ i ≤M/2,

I/φ M/2 < i ≤M,
(64)

for some φ ∈ (0, 1]. Moreover, we focus on the case
that the subset of anomalous sources is of the form A =
{1, . . . , |A|}. Then, the optimal asymptotic performance
under PA takes the following form:

• when |A| = `,

JA(α, β, `, u,K)

∼ | logα|
I/φ

max

{
(φ+ 1)M/2− `

K
, 1

}
,

(65)

• when ` < |A| < u,

JA(α, β, `, u,K)

∼ | logα|
I

max

{
(φ+ 1)M/2

K
, 1

}
,

(66)

• when |A| = u,

JA(α, β, `, u,K)

∼ | logα|
I

max

{
(1− φ)(M/2) + φu

K
, 1

}
.

(67)

From these expressions and (54) we also obtain

QA =


(φ+ 1)M/2− `, |A| = `,

(φ+ 1)M/2, ` < |A| < u,

(1− φ)(M/2) + φu, |A| = u,

(68)

and we note that QA is always strictly smaller than M
in this setup as long as φ < 1.

VI. NON-PROBABILSTIC SAMPLING RULES

In this section, we discuss certain non-probabilistic
sampling rules.

A. Sampling in tandem

Suppose that K is an integer and consider the straight-
forward sampling approach according to which the
sources are sampled in tandem, K of them at a time.
Specifically, sources 1 to K are sampled at time n = 1,
and if 2K ≤M , then sources K+ 1 to 2K are sampled
at time n = 2, whereas if 2K > M , then sources K+ 1
to M and 1 to 2K −M are sampled at time n = 2, etc.
In this way, each source is sampled exactly K times in
an interval of the form ((m−1)M,mM ], where m ∈ N,
to which we refer as a cycle. This sampling rule satisfies
the conditions of Corollary 5.3, which means that in the
special case that ` < u, r = 1, and Ii = Jj for every
i, j ∈ [M ], it achieves asymptotic optimality under PA
when ` < |A| < u, and for every A ⊆ [M ] when ` = 0
and u = M .

In general, by the formula for the optimal asymptotic
performance under full sampling, which is obtained by
the lower bound of Theorem 5.1 with K = M , we
can see that if sampling is terminated at a time that
is a multiple of M , the expected number of cycles
until stopping is, to a first-order asymptotic approxi-
mation, equal to J (α, β, `, u,M)/K. Since each cycle
is of length M , the expected time until stopping is,
again to a first-order asymptotic approximation, equal to
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|A| = ` = 0 |A| = u = M ` < |A| < u 0 < ` = |A| < u ` < |A| = u < M
xA 0 K/M K/M 0 min{K/u, 1}
yA K/M 0 K/M min{K/(M − `), 1} 0

TABLE II: xA and yA when ` < u, r = 1, Ii = Jj for every i, j ∈ [M ].

(M/K)J (α, β, `, u,M). Thus, the asymptotic relative
efficiency of this sampling approach can be defined as
follows:

ARE :=
M

K
lim
α,β→0

JA(α, β, `, u,M)

JA(α, β, `, u,K)
, (69)

where the limit is taken so that (7) holds when ` < u.
Consider in particular the homogeneous setup of Sub-

section V-G, where (58) holds. When ` = u, by (59) and
(60) we have:
• if θ ≥ `/(M − `),

ARE =
θ

1 + θ

M

max{`,K}
+

1

1 + θ

(1− `/K)+

1− `/M
,

(70)
• if θ < `/(M − `),

ARE =
1

1 + θ

M

max{M − `,K}

+
θ

1 + θ

(1− (M − `)/K)+

`/M
.

(71)

When ` < u and r = θ = 1, by (61) we obtain:

ARE =
M/max{M − `,K}, |A| = `,

1, ` < |A| < u,

M/max{u,K} |A| = u.

(72)

On the other hand, in the heterogeneous setup of
Subsection V-H, by (65), (66), (67) we obtain:

ARE =
M/max{(φ+ 1)M/2− `, K}, |A| = `,

M/max{(φ+ 1)M/2, K}, ` < |A| < u,

M/max{(1− φ)M/2 + φu, K}, |A| = u.

B. Equalizing empirical and limiting sampling frequen-
cies

We next consider a sampling approach, which has
been applied to a general controlled sensing problem
[28], as well as to a bandit problem [29], and we show
that not only it may not achieve asymptotic optimality
in the sequential anomaly detection problem, but it may
even lead to a detection procedure that fails to terminate
with positive probability.

To be more specific, we consider the homogeneous
setup of Subsection V-G with K = 1. In this setup, a
probabilistic sampling rule that satisfies the conditions

of Theorem 5.3 samples a source in D (resp. Dc) with
probability xD (resp. yD), whenever D ∈ P`,u is the
subset of sources currently identified as anomalous. The
sampling rule R that we consider in this Subsection is
not probabilistic, as it uses not only the currently esti-
mated subset of anomalous sources, but also of the cur-
rent empirical sampling frequencies. Specifically, if D is
the subset of sources currently estimated as anomalous,
for every source in D (resp. Dc) it computes the distance
between its current empirical sampling frequency and xD
(resp. yD), and it samples next a source for which this
distance is the maximum. That is, for every n ∈ N and
D ∈ P`,u, R(n+1) is on the event {∆R

n = D} a subset
of

argmax
{
|πRi (n)− xD|,

|πRj (n)− yD| : i ∈ D, j /∈ D
}
.

(73)

Without any loss of generality, we also assume that
each source has positive probability to be sampled at
the first time instance, i.e.,

PA(i ∈ R(1)) > 0 ∀ i ∈ [M ], A ∈ P`,u. (74)

Proposition 6.1: Consider the homogeneous setup of
Subsection V-G with K = 1 and let R be sampling rule
that satisfies (73)-(74). Suppose further that there is only
one anomalous source, i.e., that the subset of anomalous
source, A, is a singleton, and also that xA + yA < 1.
Then, there is an event of positive probability under PA
on which

(i) the same source is sampled at every time instance,
(ii) and if also ` = 0 and u = M , TR fails to terminate

for any selection of its thresholds.
Proof: If (i) holds, there is an event of positive

probability under PA on which all LLRs but one are
always equal to 0. Thus, (ii) follows directly from (i) and
the fact that when ` = 0 and u = M , the stopping rule
(15) requires that all LLRs be non-zero upon stopping.
Therefore, it remains to prove (i).

Without loss of generality, we set A = {1}. Moreover,
we recall the definition of g1 in (10) and define the event

Γ :=

{
n∑

m=1

g1(X1(m)) > 0 ∀ n ∈ N

}
. (75)

Since {g1(X1(n)) : n ∈ N} is an iid sequence with
expectation I > 0 under PA (see, e.g., [30, Proposition
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7.2.1]), Γ has positive probability under PA. This is also
the case for {R1(1) = 1}, due to (74). Since these
two events are independent, their intersection also has
positive probability under PA. Therefore, it suffices to
show that only source 1 is sampled on Γ∩{R1(1) = 1}.
Indeed, on this event sampling starts from source 1
and, as a result, the vector of empirical frequencies,
(πR1 (n), . . . , πRM (n)) at time n = 1 is (1, 0, . . . , 0).
Moreover, the estimated subset of anomalous sources at
n = 1 is A = {1}, independently of whether ` < u or
` = u. Since xA + yA < 1, or equivalently,

|π1(1)− xA| = |1− xA|
= 1− xA
> yA = |yA − 0| = |πi(1)− yA|

(76)

for every i 6= 1, by (73) it follows that source 1 is
sampled again at time n = 2 and, as a result, the
vector of empirical frequencies remains (1, 0, . . . , 0) at
time n = 2. Applying the same reasoning as before, we
conclude that source 1 is sampled again at time n = 3.
The same argument can be repeated indefinitely, and this
proves (i).

Remark: When ` = 0, u = M , each f0i is exponential
with rate 1, and each f1i is exponential with rate λ > 0,
the conditions of the previous proposition are satisfied
as long as M > 2. Indeed, in this case we have

θ = I/J =
− log(λ) + λ− 1

log(λ) + 1/λ− 1
,

xA =
1

1 + (M − 1)θ
, yA = θxA,

and, as a result, xA + yA < 1⇔M > 2.

C. Sampling based on the ordering of the LLRs

A different, non-probabilistic sampling approach,
which goes back to [18, Remark 5], suggests sampling
at each time instance the sources with the smallest,
in absolute value, LLRs among those estimated as
anomalous/non-anomalous. Such a sampling rule was
proposed in [12], in the homogeneous setup of Sub-
section V-G, under the assumption that the number of
anomalous sources is known a priori, i.e., ` = u.
An extension of this rule in the heterogeneous setup
was studied in [13], under the assumption that ` = u
and K = 1. A similar sampling rule, that also has a
randomization feature, was proposed in [16] when ` = u,
as well as in the case of no prior information, i.e., when
` = 0, u = M . For each of them, the criterion of
Theorem 5.2 can be applied to establish their asymptotic
optimality. Its verification, however, is a quite difficult
task that we plan to consider in the future.

VII. SIMULATION STUDY

In this section we present the results of a simulation
study in which we compare two probabilistic sampling
rules, Bernoulli (Section IV) and Chernoff (Subsection
V-F), between them and against sampling in tandem
(Subsection VI-A). Throughout this section, for every
i ∈ [M ] we have f0i = N (0, 1) and f1i = N (µi, 1), i.e.,
all observations from source i are Gaussian with variance
1 and mean equal to µi if the source is anomalous and
0 otherwise, and as a result Ii = Ji = (µi)

2/2. We
consider a homogeneous setup where

µi = µ, ∀ i ∈ [M ], (77)

as well as a heterogeneous setup where

µi =

{
µ, 1 ≤ i ≤M/2

2µ, M/2 < i ≤M,
(78)

in which case (64) holds with I = µ2/2 and φ = 0.25.
In both setups we set α = β, M = 10, K = 5, ` = 1,
u = 6, µ = 0.5, we assume that the subset of anomalous
sources is of the form A = {1, . . . , |A|}, and consider
different values for its size. The two probabilistic sam-
pling rules are designed so that (52) holds for every
A ∈ P`,u. As a result, by Corollary 5.1 it follows that, in
both setups, they are asymptotically optimal under PA
for every A ∈ P`,u. On the other hand, by Corollary
5.3 implies that sampling in tandem is asymptotically
optimal under PA only in the homogeneous setup (78)
and when l < |A| < u, since 0 < l < u < M .

In Figure 1 we plot the expected value of the stopping
time that is induced by each of the three sampling
rules against the true number of anomalous sources.
Specifically, in Figure 1a we consider the homogeneous
setup (77) and in Figure 1b the heterogeneous setup (78).
In all cases, the thresholds are chosen, via Monte Carlo
simulation, so that the familywise error probability of
each kind is (approximately) equal to α = β = 10−3.
The Monte Carlo standard error that corresponds to each
estimated expected value is approximately 10−2. From
Figure 1 we can see that the performance implied by the
two probabilistic sampling rules is always essentially the
same. Sampling in tandem performs significantly worse
in all cases apart from the homogeneous setup with
` < |A| < u, where all three sampling rules lead to
essentially the same performance. We note also that, in
both setups and for all three sampling rules, the expected
time until stopping is much smaller when the number of
anomalous sources is equal to either ` or u than when
it is between ` and u.
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(b) Heterogeneous case

Fig. 1: Expected value of the stopping time that
corresponds to each of the three sampling rules versus
the number of anomalous sources (α = β = 10−3).
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(b) |A| = 6

Fig. 2: In both graphs the x-axis represents | log10(α)|
and the y-axis the ratio of the expected value of the
stopping time implied by sampling in tandem over that
implied by the asymptotically optimal Bernoulli rule in
the homogeneous setup (77). The horizontal line refers
to the value of (72).

In Figures 2 and 3 we plot the ratio of the expected
value of the stopping time induced by sampling in
tandem over that induced by the Bernoulli sampling rule
against | log10(α)| as α ranges from 10−1 to 10−10. (We
do not present the corresponding results for the Chernoff
rule, as they are almost identical). Specifically, in Figure
2 we consider the homogeneous setup (77) when the
number of anomalous sources is 1 and 6, whereas in
Figure 3 we consider the heterogeneous setup (78) when
the number of anomalous sources is 1, 3, and 6. For each
value of α, the thresholds are selected according to (20)
and each expectation is computed using 104 simulation
runs. The standard error for each estimated expectation
is approximately 1, whereas the standard error for each
ratio is approximately 10−2 in the homogeneous setup
and 3 · 10−2 in the heterogeneous setup. Moreover, in
each case we plot the limiting value of this ratio, which
is the limit defined in (69). In the homogeneous case this
is given by (72) and is equal to{

10/max{10− 1, 5} ≈ 1.1, |A| = 1,

10/max{6, 5} ≈ 1.6, |A| = 6.
(79)

In the heterogeneous case it is given by (VI-A) and is

equal to
10/max{1.25 · 5− 1, 5} ≈ 1.9, |A| = 1,

10/max{1.25 · 5, 5} ≈ 1.6, 1 < |A| < 6,

10/max{0.75 · 5 + 0.25 · 6, 5} ≈ 1.9, |A| = 6.

From Figures 2 and 3 we can see that, in all cases,
the efficiency loss due to sampling in tandem is (much)
larger than the one suggested by the corresponding
asymptotic relative efficiency when α is not (very) small.
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(b) |A| = 3
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(c) |A| = 6

Fig. 3: In all graphs the x-axis represents | log10(α)|
and the y-axis the ratio of the expected value of the
stopping time implied by sampling in tandem over that
implied by the asymptotically optimal Bernoulli rule in
the heterogeneous setup (78). The horizontal line refers
to the value of (VI-A).

VIII. CONCLUSIONS AND EXTENSIONS

In this paper we propose a novel formulation of the
sequential anomaly detection problem with sampling
constraints, in which arbitrary, user-specified bounds
are assumed on the number of anomalous sources, the
probabilities of at least one false alarm and at least one
missed detection are controlled below distinct tolerance
levels, and the number of sampled sources per time
instance is not necessarily fixed. We obtain a general
criterion for achieving the optimal expected time until
stopping, to a first-order asymptotic approximation as
the error probabilities go to 0, as long as the log-
likelihood ratio statistic of each observation has a finite
first moment. We show that asymptotic optimality is
achieved, simultaneously under every possible subset
of anomalous sources, for any version of the proposed
problem, using the unmodified sampling rule in [20],
to which we refer as Chernoff, but also using a novel
sampling rule whose implementation requires minimal
computations, to which we refer as Bernoulli. Despite
their very different computational requirements, these
two rules are found in simulation studies to lead to
essentially the same performance.

In various works in the relevant literature, such as
[12], [13], [16], it has been shown, in simulation studies
under various setups, that non-probabilistic sampling
rules as the ones discussed in Subsection VI-C can lead
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to significantly better performance in practice compared
to the Chernoff rule. The study of sampling rules of
this nature in the general sequential anomaly detection
framework we propose in this work is an interesting
problem that we plan to consider in the future. An-
other interesting problem is that of establishing stronger
asymptotic optimality properties, as it was done in [23],
[24] for certain special cases of the sequential multi-
hypothesis testing problem with controlled sensing.

The results of this paper can be shown, using the
techniques in [8], to remain valid for a variety of error
metrics beyond the familywise error rates that we con-
sider in this work, such as the false discovery rate and the
false non-discovery rate. However, this is not the case for
the generalized familywise error rates proposed in [31],
[32], for which different policies and a different analysis
is required. These error metrics have been considered in
[4], [5], [7] in the case of full sampling, whereas certain
results in the presence of sampling constraints have been
presented in [33].

The results in this work can also be generalized in a
natural way when the sampling cost varies per source,
as in [15], or when the two hypotheses in each source
are not completely specified, as it is done for example
in [7] in the case of full sampling. Another potential
generalization is the removal of the assumption that the
acquired observations are conditionally independent of
the past given the current sampling choice, as it is done
in [27] in a general controlled sensing setup. Finally,
another direction of interest is a setup where the focus
is on the dependence structure of the sources rather than
their marginal distributions, as for example in [34].
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APPENDIX A

In this Appendix we state and prove two auxiliary
lemmas that are used in the proofs of various results of
this paper. Specifically, we fix A ∈ P`,u, and for any
any sampling rule, R, i ∈ [M ], and n ∈ N, we set

Λ̃Ri (n) := Λ̃Ri (n− 1)

+
(
gi(Xi(n))− EA[gi(Xi(n))]

)
Ri(n),

Λ̃Ri (0) := 0,

(80)

and comparing with (11) we observe that

Λ̃Ri (n) =

{
ΛRi (n)− IiNR

i (n), i ∈ A
ΛRi (n) + JiN

R
i (n), i /∈ A.

(81)

Lemma A.1: Let R be an arbitrary sampling rule,
i ∈ A, j /∈ A, ρ ∈ (0, 1], and ε > 0. Then, the sequences

PA

(
1

n
ΛRi (n) < ρIi − ε, πRi (n) ≥ ρ

)
,

PA

(
1

n
ΛRj (n) > −ρJj + ε, πRj (n) ≥ ρ

)
,

PA

(
1

n
ΛRij(n) < ρIi − ε, πRi (n) ≥ ρ

)
PA

(
1

n
ΛRij(n) < ρJj − ε, πRj (n) ≥ ρ

)
are exponentially decaying.

Proof: We prove the result for the third proba-
bility, as the proofs for the other ones are similar.
To lighten the notation, we suppress the dependence
on R and we write Λ̃ij(n), Λ̃i(n), πi(n),Fn instead of
Λ̃Rij(n), Λ̃Ri (n), πRi (n),FRn . By (81), for every n ∈ N
we have

Λij(n) = Λi(n)− Λj(n)

= Λ̃i(n)− Λ̃j(n) + n(Iiπi(n) + Jjπj(n)),

which shows that if πi(n) ≥ ρ, then

Λij(n) ≥ Λ̃i(n)− Λ̃j(n) + nρIi

Thus, for every n ∈ N,

PA

(
1

n
Λij(n) < ρIi − ε, πi(n) ≥ ρ

)
≤ PA

(
Λ̃i(n)− Λ̃j(n) < −n ε

)
≤ PA

(
Λ̃i(n) < −n ε/2

)
+ PA

(
−Λ̃j(n) < −n ε/2

)
,

and it suffices to show that the two terms in the upper
bound are exponentially decaying. We show this only for
the first one, as the proof for the second is similar. For
this, we fix δ ∈ (0, ε/2) and we observe that, for any
t > 0 and n ∈ N, by Markov’s inequality we have

PA
(

Λ̃i(n) < −n ε/2
)

≤ exp{−n (ε/2) t}EA
[
exp

{
−t Λ̃i(n)

}]
.

(82)

By (80) and the law of iterated expectation it follows
that the expectation in the upper bound can be written
as follows:

EA

[
exp

{
−t Λ̃i(n− 1)

}
· EA [exp {−t (gi(Xi(n))− Ii)Ri(n)} | Fn−1]

]
.

(83)
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Since R(n) is an Fn−1-measurable Bernoulli random
variable and Xi(n) is independent of Fn−1 and has the
same distribution as Xi(1),

EA [exp {−t (gi(Xi(n))− Ii)Ri(n)} | Fn−1]

= EA [exp {−t (gi(Xi(1))− Ii)}]Ri(n)

= EA [exp {t (−gi(Xi(1)) + Ii − δ + δ)}]Ri(n)

≤ exp {Ri(n) (ψi(t) + t δ)} ,

where ψi is the cumulant generating function of
−gi(Xi(1)) + Ii − δ, i.e.,

ψi(t) := log EA [exp {t(−gi(Xi(1)) + Ii − δ)}] , t > 0.

Since ψi is convex on (0, 1), ψi(1) = Ii − δ <∞, and

ψ′i(0+) = EA[−gi(Xi(1)) + Ii − δ] = −δ < 0,

there is an s > 0 such that ψi(s) < 0, and as a result

exp {Ri(n) (ψi(s) + s δ)} ≤ exp {s δ} .

Therefore, setting t = s in (82)-(83) we obtain

PA
(
Λ̃i(n) < −n ε/2

)
≤ exp{−n(ε/2)s+ δs}·

· EA
[
exp

{
−sΛ̃i(n− 1)

}]
.

(84)

Repeating the same argument n− 1 times we conclude
that there exists an s > 0 such that

PA
(

Λ̃i(n) < −nε/2
)
≤ exp {−n(ε/2− δ)s} .

Since δ ∈ (0, ε/2), this completes the proof.

Lemma A.2: Let i ∈ A, j /∈ A, ζ > 0, ρi, ρj ∈ [0, 1],
and let R be an arbitrary sampling rule.
(i) If ρi > 0 and PA(πRi (n) < ρi) is summable, then

so is
PA

(
1

n
ΛRi (n) < ρiIi − ζ

)
.

(ii) If ρj > 0 and PA(πRj (n) < ρj) is summable, then
so is

PA

(
1

n
ΛRj (n) > −ρjJj + ζ

)
.

(iii) If ρi + ρj > 0 and both PA(πRj (n) < ρi) and
PA(πRj (n) < ρj) are summable, then so is

PA

(
1

n
ΛRij(n) < ρiIi + ρjJj − ζ

)
.

Proof: For (i), by the law of total probability we
have

PA

(
1

n
ΛRi (n) < ρiIi − ζ

)
≤PA

(
πRi (n) < ρi

)
+ PA

(
1

n
ΛRi (n) < ρiIi − ζ, πRi (n) ≥ ρi

)
.

The first term in the upper bound is summable by
assumption, whereas the second one is summable, as
exponentially decaying, by Lemma A.1.

The proof of (ii) is similar and is omitted. Since (iii)
follows directly by (i) and (ii) when ρi and ρj are both
positive, it suffices to consider the case where only one
them is positive. Without loss of generality, we assume
that ρi > 0 = ρj . Then, by the law of total probability
again we have

PA

(
1

n
ΛRij(n) < ρiIi + ρjJj − ζ

)
≤PA

(
πRi (n) < ρi

)
+ PA

(
1

n
ΛRij(n) < ρiIi − ζ, πRi (n) ≥ ρi

)
.

The first term in the upper bound is summable by
assumption, whereas the second one is summable, as
exponentially decaying, by Lemma A.1.

APPENDIX B

In this Appendix we prove Theorems 3.1 and 4.1,
which provide sufficient conditions for the exponential
consistency of a sampling rule. In order to lighten the
notation, throughout this Appendix we suppress depen-
dence on R and we write πi(n), Λi(n),Λij(n),∆n,
ci(A), σA instead of πRi (n), ΛRi (n), ΛRij(n), ∆R

n , cRi (A),
σRA .

Proof of Theorem 3.1: We prove the result first
when ` = u. By the definition of the decision rule in
(14) it follows that when σA > n, there are m ≥ n,
i ∈ A, j /∈ A such that Λij(m) ≤ 0. As a result, by the
union bound we have

PA(σA > n) ≤
∑

i∈A, j /∈A

∞∑
m=n

PA (Λij(m) ≤ 0) .

Therefore, to show that PA(σA > n) is exponentially
decaying, it suffices to show that this is the case for
PA (Λij(n) ≤ 0) for every i ∈ A and j /∈ A. To show
this, we fix such i and j and we note that, by assumption,
either PA(πi(n) < ρ) or PA(πj(n) < ρ) is exponentially
decaying for ρ > 0 small enough. Without loss of
generality, suppose that this is the case for the former.
By an application of the law of total probability we then
obtain

PA (Λij(n) ≤ 0) ≤ PA(Λij(n) ≤ 0, πi(n) ≥ ρ)

+ PA(πi(n) < ρ).

As mentioned earlier, the second term in the upper bound
is, by assumption, exponentially decaying for ρ > 0
small enough. By Lemma A.1 it follows that this is also
the case for the first one.
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We next prove the result when ` < u, and consider
first the case that ` < |A| < u. By the definition of the
decision rule in (18) it follows that when σA > n, there
is an m ≥ n such that either Λi(m) < 0 for some i ∈ A,
or Λj(m) > 0 for some j /∈ A. As a result, by the union
bound we have

PA(σA > n) ≤
∑
i∈A

∞∑
m=n

PA(Λi(m) < 0)

+
∑
j /∈A

∞∑
m=n

PA(Λj(m) ≥ 0).

Therefore, to prove that PA(σA > n) is exponen-
tially decaying, it suffices to show that this is true for
PA (Λi(n) < 0) and PA (Λj(n) ≥ 0) for every i ∈ A
and j /∈ A. This can be shown similarly to the
case ` = u, in view of the fact that the sequences
PA(πi(n) < ρ) and PA(πj(n) < ρ) are, by assumption,
both exponentially decaying for ρ > 0 small enough and
for every i ∈ A and j /∈ A.

The two remaining cases are ` < |A| = u and ` =
|A| < u. We consider only the former, as the proof for
the latter is similar, and assume that ` < |A| = u. By the
definition of the decision rule in (14) it follows that when
σA > n, there is an m ≥ n such that either Λij(m) ≤ 0
for some i ∈ A and j /∈ A, or Λi(m) < 0 for some
i ∈ A. As a result, by the union bound we have

PA(σA > ζn) ≤
∑
i∈A

∞∑
m=n

PA(Λi(m) < 0)

+
∑

i∈A,j /∈A

∞∑
m=n

PA(Λij(m) ≤ 0).

Since |A| > `, the sequence PA(πi(n) < ρ) is, by
assumption, exponentially decaying for every i ∈ A and
ρ > 0 small enough. Therefore, similarly to the previous
cases we can show that each term in the upper bound is
exponentially decaying.

In the remainder of this Appendix we prove Theorem
4.1, whose proof relies on two preliminary lemmas. To
state those, for every D ∈ P`,u and n ∈ N we denote
by τDn the first time instance m at which D has been
estimated as the subset of anomalous sources for at least
2 ζ m times since dn/2e, i.e.,

τDn := inf

{
m ≥ dn/2e :

m∑
u=dn/2e

1{∆u−1 = D} ≥ 2ζm

}
,

(85)

where ζ > 0 is an arbitrary constant, which in the proof
of Theorem 4.1 will be selected to be small enough.

The first preliminary lemma intuitively says that
if a source i ∈ [M ] has positive probability to be
sampled whenever a subset D ∈ P`,u is estimated as
the one containing the anomalous sources, then it is
unlikely that in the long run both D will be frequently
estimated as the anomalous subset and source i will be
infrequently sampled. Note that this lemma does not
require any of the conditions of Theorem 4.1.

Lemma B.1: Let D ∈ P`,u and i ∈ [M ]. If ci(D) > 0,
then, for any ρ > 0 small enough, the sequences

P(τDn ≤ n, πi(τDn ) < ρ)

P(τDn ≤ n, πi(n) < ρ)

are exponentially decaying.

Proof: We prove the two claims together by show-
ing that P(τDn ≤ n, πi(σn) < ρ) is exponentially
decaying for all ρ > 0 small enough, where σn stands
for either n or τDn . For any given n ∈ N we set

π̃i(n) :=
1

n

n∑
m=1

(Ri(m)− ci(∆m−1))

= πi(n)− 1

n

n∑
m=1

ci(∆m−1), n ∈ N.

On the event {τDn ≤ n} we have n/2 ≤ τDn ≤ σn ≤ n
and, as a result,

πi(σn)− π̃i(σn) =
1

σn

σn∑
m=1

ci(∆m−1)

≥ ci(D)

n

τDn∑
m=dn/2e

1{∆m−1 = D}

≥ ci(D)

n
2 ζ τDn ≥ ci(D) ζ,

where in the last inequality we have used the definition
of τDn . Consequently, for every ρ > 0 and n ∈ N ,

{τDn ≤ n, πi(σn) ≤ ρ}
⊆ {τDn ≤ n, π̃i(σn) ≤ ρ− ci(D) ζ}.

Since ci(D) > 0, there is an ε > 0 such that, for all
ρ ∈ (0, ci(D)ζ − ε),

{τDn ≤ n, πi(σn) ≤ ρ} ⊆
{

max
dn/2e≤m≤n

|π̃i(m)| ≥ ε
}
.

Therefore, it suffices to show that, for all ε > 0, the
sequence

P

(
max

dn/2e≤m≤n
|π̃i(m)| ≥ ε

)
(86)

is exponentially decaying. This follows by the fact that
(Ri(n) − ci(∆n−1)) is a uniformly bounded martin-
gale difference, in view of (23), and an application of
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the maximal Azuma-Hoeffding submartingale inequality
(see, e.g., [35, Remark 2.3]).

The second lemma intuitively says that the conditions
of Theorem 4.1 imply that, in the long run, it will
be unlikely to frequently identify, incorrectly, a subset
whose size is either ` or u as the one containing the
anomalous sources.

Lemma B.2: Let A,D ∈ P`,u be such that
|D| ∈ {l, u} and D 6= A. If R is a sampling rule
that satisfies the conditions of Theorem 4.1, then the
sequence PA(τDn ≤ n) is exponentially decaying.

Proof: We consider first the case that ` < u, where
we only prove the result when |D| = u, as the proof
when |D| = ` is similar. Since A ∈ P`,u, |D| = u
and D 6= A, there exists a j ∈ D \ A. Moreover, since
|D| = u > `, the assumptions of Theorem 4.1 imply
that cj(D) > 0. Thus, by Lemma B.1 it follows that

PA
(
τDn ≤ n, πj(τDn ) < ρ

)
(87)

is an exponentially decaying sequence for ρ > 0 small
enough. It remains to show that this is also the case for

PA
(
τDn ≤ n, πj(τ

D
n ) ≥ ρ

)
. (88)

Indeed, by the definition of τDn in (85) it follows that on
the event {τDn < ∞} we have ∆(τDn − 1) = D. Since
|D| = u and j ∈ D, by the definition of the decision
rule in (18) it follows that Λj(τ

D
n − 1) > 0. Therefore,

PA
(
τDn ≤ n, πj(τ

D
n ) ≥ ρ

)
= PA(τDn ≤ n, Λj(τ

D
n − 1) > 0, πj(τ

D
n ) ≥ ρ)

≤
n∑

m=dn/2e

PA (Λj(m− 1) > 0, πj(m) ≥ ρ) ,

where the inequality holds because τDn takes values in
[n/2, n] on the event {τDn ≤ n}. Therefore, it remains
to show that the sequence

PA (Λj(n− 1) > 0, πj(n) ≥ ρ) (89)

is exponentially decaying for ρ > 0 small enough.
Indeed, for large enough n, πj(n) ≥ ρ implies that

πj(n− 1) ≥ nπj(n)− 1

n− 1
≥ ρn− 1

n− 1
≥ ρ− 1

n− 1
.

For any given ρ > 0, there exists a ρ′ > 0 so that for all
n large enough we have

ρ− 1

n− 1
> ρ′, (90)

and so that the probability in (89) is bounded by

PA (Λj(n− 1) > 0, πj(n− 1) ≥ ρ′) .

For ρ > 0 small enough, ρ′ > 0 is small enough, and
by Lemma A.1 it follows that the latter probability, and
consequently (89), is exponentially decaying in n.

It remains to prove the lemma when ` = u and A 6=
D. In this case there are i ∈ A \D and j ∈ D \A, and
by the assumptions of Theorem 4.1 it follows that either
ci(D) > 0 or cj(D) > 0. Without loss of generality,
we assume that the latter holds. Then, by Lemma B.1 it
follows that (87) is exponentially decaying for all ρ > 0
small enough, and it suffices to show that this is also
the case for (88). Indeed, by the definition of τDn in
(85) it follows that on the event {τDn < ∞} we have
∆(τDn − 1) = D. Consequently, by the definition of the
decision rule in (14) it follows that there is an i ∈ A\D
such that Λij(τ

D
n − 1) < 0. Therefore, by the union

bound we have

PA
(
τDn ≤ n, πj(τ

D
n ) ≥ ρ

)
=

∑
i∈A\D

PA
(
τDn ≤ n, Λij(τ

D
n − 1) < 0, πj(τ

D
n ) ≥ ρ

)
≤

∑
i∈A\D

n∑
m=dn/2e

PA (Λij(m− 1) < 0, πj(m) ≥ ρ) ,

where as before the inequality holds because τDn takes
values in [n/2, n] on the event {τDn ≤ n}. Therefore, it
remains to show that the sequence

PA (Λij(n− 1) < 0, πj(n) ≥ ρ)

is exponentially decaying for ρ > 0 small enough.
As before, this follows by an application of Lemma A.1.

Proof of Theorem 4.1: Fix A ∈ P`,u. By Theorem
3.1 it suffices to show that, for all ρ > 0 small enough,
PA(πi(n) < ρ) is an exponentially decaying sequence
• for every i ∈ A, if |A| > `, and for every i /∈ A, if
|A| < u, when ` < u,

• either for every i ∈ A or for every i /∈ A, when
` = u.

In order to do so, we select the positive constant ζ in (85)
to be smaller than 1/(4|P`,u|). Then, for every n ∈ N
there is at least one D ∈ P`,u for which {τDn ≤ n} 6= ∅.
As a result, for every i ∈ [M ] and ρ > 0, by the union
bound we have

PA(πi(n) < ρ) ≤
∑

D∈P`,u

PA
(
πi(n) < ρ, τDn ≤ n

)
.

Suppose first that ` < u. Then, it suffices to show that,
for every D ∈ P`,u and all ρ > 0 small enough,

PA
(
πi(n) < ρ, τDn ≤ n

)
(91)

is exponentially decaying for every i ∈ A when |A| > `
and for every i /∈ A when |A| < u. We only consider the
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former case, as the proof for the latter is similar. Thus,
suppose that |A| > ` and let i ∈ A.
• If ci(D) > 0, by Lemma B.1 it follows that (91) is

an exponentially decaying sequence.
• If ci(D) = 0, the assumption of the theorem implies

that either |D| = u and i /∈ D, or |D| = ` and
i ∈ D. In either case, A 6= D and by Lemma B.2 it
follows that PA(τDn ≤ n), and consequently (91),
is an exponentially decaying sequence.

Suppose now that ` = u. Then, it suffices to show that
(91) is exponentially decaying for every D ∈ P`,u and
all ρ > 0 small enough, either for every i ∈ A or for
every i /∈ A.
• When D 6= A, by Lemma B.2 it follows that

PA(τDn ≤ n), and consequently (91), is exponen-
tially decaying.

• When D = A, then by assumption ci(A) > 0 holds
either for every i ∈ A or for every i /∈ A. By
Lemma B.1 it then follows that (91) is exponentially
decaying either for every i ∈ A or for every i /∈ A,
and this completes the proof.

APPENDIX C
In this Appendix we fix A ∈ P`,u and prove the

universal asymptotic lower bound of Theorem 5.2. The
proof relies on two lemmas, for the statement of which
we need to introduce the function

φ(α, β) := α log

(
α

1− β

)
+ (1− α) log

(
1− α
β

)
,

where α, β ∈ (0, 1), i.e., the Kullback-Leibler diver-
gence between a Bernoulli distribution with parameter
α and one with parameter 1 − β. Moreover, we set
φ(α) ≡ φ(α, α).

The first lemma states a non-asymptotic, information-
theoretic inequality that generalizes the one used in
Wald’s universal lower bound for the problem of testing
two simple hypotheses [36, p. 156].

Lemma C.1: Suppose that α+β < 1 and let (R, T,∆)
be a policy that satisfies the error constraint (3) and
PA(T < ∞) = 1. Then, for any C ∈ P`,u such that
C 6= A,

EA
[
ΛRA,C(T )

]
≥


φ(α, β) if C\A 6= ∅, A\C = ∅,
φ(β, α) if C\A = ∅, A\C 6= ∅,
φ(α ∧ β) if C\A 6= ∅, A\C 6= ∅.

(92)

Proof: The proof is identical to that in the full
sampling case in [6, Theorem 5.1], and can be obtained
by an application of the data processing inequality for
Kullback-Leibler divergences (see, e.g., [37, Lemma

3.2.1]). Indeed, the left-hand side is the Kullback-Leibler
divergence between PA and PC given the available
information up to time T , when the sampling rule R
is utilized, whereas the right hand side is obtained by
considering the Kullback-Leibler divergence between PA
and PC based on a single event of FRT .

We next make use of the previous inequality to
establish lower bounds on the expected number of
samples taken from each source until stopping.

Lemma C.2: Suppose that α+β < 1 and let (R, T,∆)
be a policy that satisfies the error constraint (3) and
EA[T ] <∞.

(i) If |A| < u, then

min
j /∈A

(
Jj EA

[
NR
j (T )

])
≥ φ(α, β). (93)

(ii) If |A| > `, then

min
i∈A

(
Ii EA

[
NR
i (T )

])
≥ φ(β, α). (94)

(iii) If either |A| = ` > 0 or |A| = u < M , then

min
i∈A

(
Ii EA

[
NR
i (T )

])
+ min

j /∈A

(
Jj EA

[
NR
j (T )

])
≥ φ(α ∧ β).

(95)

Proof: We recall the sequence Λ̃Ri , defined in (80),
and note that it is a zero-mean, {FRn }-martingale under
PA. Moreover, by the finiteness of the Kullback-Leibler
divergences in (1) we have:

sup
n∈N

EA
[
|Λ̃Ri (n)− Λ̃Ri (n− 1)| | FRn−1

]
<∞.

Since also T is an {FRn }-stopping time such that
EA[T ] < ∞, by the Optional Sampling Theorem [38,
pg. 251] we obtain:

EA
[
Λ̃Ri (T )

]
= 0 for every i ∈ [M ]. (96)

(i) If |A| < u, there is a j /∈ A so that the set C =
A ∪ {j} belongs to P`,u. By representation (12) and
decomposition (81) we also have

ΛRA,C(T ) = −ΛRj (T ) = −Λ̃Rj (T ) + Jj N
R
j (T ),

and by (92) and (96) we obtain

Jj EA
[
NR
j (T )

]
≥ φ(α, β).

Since this inequality holds for every j /∈ A, it proves
(93).

(ii) The proof is similar to (i) and is omitted.
(iii) If |A| = ` > 0 or |A| = u < M , then there are

i ∈ A and j /∈ A so that C = A ∪ {j} \ {i} ∈ P`,u. By
representation (12) and decomposition (81) we have

ΛRA,C(T ) = ΛRi (T )− ΛRj (T )

= Λ̃Ri (T )− Λ̃Rj (T ) + Jj N
R
j (T ) + IiN

R
i (T ),
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and by (92) and (96) we obtain

Ii EA
[
NR
i (T )

]
+ Jj EA

[
NR
j (T )

]
≥ φ(α ∧ β).

Since this inequality holds for every i ∈ A and j /∈ A,
it proves (95).

For the proof of Theorem 5.1 we introduce the fol-
lowing notation:

DK :=

{
(c1, . . . , cM ) ∈ [0, 1]M :

M∑
i=1

ci ≤ K

}
,

D′K := {(p, q) ∈ [0, 1]2 : pK̂A + qǨA ≤ K}.

(97)

Moreover, we observe that as α, β → 0 we have

φ(α, β) ∼ | log β|, (98)

r(α, β) ≡ φ(β, α)

φ(α, β)
∼ | logα|
| log β|

. (99)

Proof of Theorem 5.1: (i) Let α, β ∈ (0, 1) such
that α + β < 1 and (R, T,∆) ∈ C(α, β, `, u,K) such
that EA[T ] <∞. By Lemma C.2(iii) it then follows that

EA[T ] WA(T ) ≥ φ(α ∧ β)

where

WA(T ) := min
i∈A

{
Ii

EA[NR
i [T ]

EA[T ]

}
+ min

j /∈A

{
Jj

EA[NR
j [T ]

EA[T ]

}
and by constraint (4) we conclude that

EA[T ] VA ≥ φ(α ∧ β),

where VA := max
(c1,...,cM )∈DK

{
min
i∈A

(ciIi) + min
j /∈A

(cjJj)

}
.

Since the lower bound is independent of the policy
(R, T,D), we have

JA(α, β, `, u,K) VA ≥ φ(α ∧ β).

Comparing with (32) and recalling (98), we can see that
it suffices to show that VA = xAI

∗
A + yAJ

∗
A with xA

and yA as in (33)-(34). Indeed, the maximum in VA is
achieved by ci’s of the form

ciIi = pI∗A, i ∈ A,
cjJj = qJ∗A, j /∈ A,

(100)

for p, q ∈ [0, 1] such that the constraint in DK is
satisfied, i.e.,

K ≥
M∑
i=1

ci = p
∑
i∈A

I∗A
Ii

+ q
∑
j /∈A

J∗A
Jj

= p K̂A + q ǨA,

(101)

and as a result,

VA = max
(p,q)∈D′

K

{pI∗A + qJ∗A}.

This maximum is achieved by p, q ∈ [0, 1] such that
pK̂A + qǨA = K ∧ (K̂A + ǨA), in particular by p and
q equal to xA and yA as in (33)-(34), which completes
the proof.

(ii) Suppose first that ` < |A| < u. As before, let
α, β ∈ (0, 1) such that α + β < 1 and (R, T,∆) ∈
C(α, β, `, u,K) such that EA[T ] <∞. Then, by Lemma
C.2(i) and Lemma C.2(ii) we obtain:

EA[T ] WA(T ) ≥ φ(β, α),

where WA(T ) is now defined as

WA(T ) := min

{
min
i∈A

{
Ii

EA[NR
i [T ]

EA[T ]

}
,

r(α, β) min
j /∈A

{
Jj

EA[NR
j [T ]

EA[T ]

}}
,

and by constraint (4) we conclude that

EA[T ] VA(α, β) ≥ φ(β, α), (102)

where

VA(α, β) := max
(c1,...,cM )∈DK

min
{

min
i∈A

(ciIi) ,

r(α, β) min
j /∈A

(cjJj)
}
.

(103)

Since the lower bound does not depend on the policy
(R, T,∆), we further have

JA(α, β, `, u,K) VA(α, β) ≥ φ(β, α).

Comparing with (35) and recalling (98), we can see that
it suffices to show that

VA(α, β)→ xA I
∗
A = r yA J

∗
A (104)

as α, β → 0 according to (7), with xA and yA as in (35).
The equality in (104) follows directly from the values

of xA and yA in (37). Moreover, the maximum in
VA(α, β) is achieved by c1, . . . , cM of the form (100)
that satisfy (101). Therefore:

VA(α, β) = max
(p,q)∈D′

K

min {pI∗A, r(α, β) qJ∗A} ,

and this maximum is achieved for p and q such that the
two terms in the minimum are equal. As a result,

VA(α, β) = pI∗A = r(α, β) qJ∗A,

where p and q are equal to xA and yA in (35),
with r replaced by r(α, β). As α and β go to 0
according to (7), we have r(α, β) → r (recall (99)),
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and consequently VA(α, β)→ xA I
∗
A with xA as in (37).

Finally, we consider the case |A| = ` and omit the
proof when |A| = u, as it is similar. When either ` = 0
or r ≤ 1, we have to show (36). Indeed, working as
before, using Lemma C.2(i) we obtain

JA(α, β, `, u,K) VA ≥ φ(α, β),

where VA := max
(c1,...,cM )∈DK

min
j /∈A

{cjJj} .

Comparing with (36), and recalling (98), we can see that
it suffices to show that VA = J∗A yA, with yA as in (36).
Indeed, the maximum in VA is achieved by c1, . . . , cM
of the form (100) with p = 0 and q ∈ [0, 1] such that
(101) is satisfied, i.e.,

VA = J∗A max
q∈[0,1]: qǨA≤K

q.

This shows that VA = J∗A yA, with yA as in (36), and
completes the proof in this case.

It remains to establish the asymptotic lower bound
when ` > 0 and r > 1, in which case we have to
show (37)-(39). The asymptotic equivalence in (37) can
be shown by direct evaluation, therefore it suffices to
show only the asymptotic lower bound in this case.

Working as before, using Lemma C.2(i) and Lemma
C.2(iii), for any α, β ∈ (0, 1) such that α + β < 1 we
obtain

JA(α, β, `, u,K) VA(α, β) ≥ φ(β, α), (105)

where

VA(α, β) :=

max
(c1,...,cM )∈DK

min
{
r(α, β) min

j /∈A
(cjJj) ,

min
i∈A

(ciIi) + min
j /∈A

(cjJj)
}
.

(106)

This maximum is achieved by c1, . . . , cM of the form
(100) that satisfy (101), thus,

VA(α, β) = max
(p,q)∈D′

K

min {r(α, β) qJ∗A, pI
∗
A + qJ∗A} .

If either θA ≥ r(α, β)− 1 or

K ≤ K̂A + (θA/(r(α, β)− 1))ǨA,

the maximum in VA(α, β) is achieved when the two
terms in the minimum are equal and, as a result,

VA(α, β) = p I∗A + q J∗A = r(α, β) qJ∗A (107)

with p and q equal to xA and yA as in (37), again with
r replaced by r(α, β).

Otherwise, the second term in the minimum is smaller
and the first equality in (107) holds with p and q equal
to xA and yA as in (39), but with r replaced by r(α, β).

Therefore, letting α and β go to 0 in (105), according
to (7), and recalling (98)-(99), proves the asymptotic
lower bounds in both (37) and (39).

APPENDIX D

In this Appendix we fix A ∈ P`,u and prove Theorems
5.2 and 5.3, which provide sufficient conditions for
asymptotic optimality. In both proofs we recall that
xA ∨ yA > 0, xA > 0 when |A| > `, yA > 0 when
|A| < u, and c∗i (A) > 0 for every i in A (resp. Ac)
when xA > 0 (resp. yA > 0).

Proof of Theorem 5.2: We prove the theorem first
when ` = u, where α and β go to 0 at arbitrary rates.
By the asymptotic lower bound (32) in Theorem 5.1 it
follows that, in this case, it suffices to show that

EA[TR] .
| log(α ∧ β)|
xA I∗A + yA J∗A

. (108)

To show this, for any ε > 0 small enough and any c > 0
we set

Lε(c)

:= max
i∈A,j /∈A

c

(c∗i (A)− ε)Ii + (c∗j (A)− ε)Jj − ε
,

(109)

and observe that

EA[TR] ≤ Lε(c) +
∑

n>Lε(c)

PA(TR > n). (110)

For any n ∈ N, by the definition of TR in (13) it follows
that on the event {TR > n} there are i ∈ A and j /∈ A
such that ΛRij(n) < c and, as a result,

PA(TR > n) ≤
∑

i∈A,j /∈A

PA(ΛRij(n) < c).

Moreover, for any n > Lε(c) and i ∈ A, j /∈ A,

c < n
(
(c∗i (A)− ε)Ii + (c∗j (A)− ε)Jj − ε

)
, (111)

and consequently for every c > 0 the series in (110) is
bounded by∑

i∈A,j /∈A

∞∑
n=1

PA

(
ΛRij(n)

n
< (c∗i (A)− ε)Ii

+ (c∗j (A)− ε)Jj − ε

)
.

(112)

By the assumption of the theorem and an application of
Lemma A.2(iii) with ρi equal to c∗i (A)−ε (resp. 0) when
xA > 0 (resp. xA = 0) and ρj equal to c∗j (A)− ε (resp.
0) when yA > 0 (resp. yA = 0), it follows that the series
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in (112) converges. Thus, letting first c → ∞ and then
ε→ 0 in (110) proves that, as c→∞,

EA[TR] . max
i∈A,j /∈A

c

c∗i (A)Ii + c∗j (A) Jj
. (113)

In view of (46) and the selection of threshold c
according to (19), this proves (108).

We next consider the case ` < u, where α, β → 0 so
that (7) holds for some r ∈ (0,∞). We prove the result
when ` ≤ |A| < u, as the proof when ` < |A| ≤ u
is similar. Thus, in what follows, ` ≤ |A| < u and, as
a result, yA > 0 and c∗j (A) > 0 for every j /∈ A. By
the universal asymptotic lower bounds (35) and (36) it
follows that when either |A| > ` or |A| = ` = 0, it
suffices to show that

EA[TR] .
| log β|
yA J∗A

. (114)

On the other hand, by the universal asymptotic lower
bounds (37) and (39) it follows that when |A| = ` > 0,
it suffices to show that

EA[TR] .
| log β|
yAJ∗A

∨ | logα|
xAI∗A + yAJ∗A

. (115)

(When r ≤ 1, the maximum is attained strictly by the
first term, when r > 1, zA < 1 and K > K̂A + zAǨA,
the maximum is attained strictly by the second term,
whereas in all other cases the two terms are equal to a
first-order asymptotic approximation).

We start by proving (114) when ` < |A| < u. In this
case we also have xA > 0, and consequently c∗i (A) > 0
for every i ∈ A. Then, for ε > 0 small enough and
a, b > 0 we set

Nε(a, b) := max
j /∈A, i∈A

{
a

(c∗j (A)− ε)Jj − ε
,

b

(c∗i (A)− ε)Ii − ε

}
,

(116)

and observe that

EA[TR] ≤ Nε(a, b) +
∑

n>Nε(a,b)

PA(TR > n). (117)

By the definition of TR in (17) it follows that, for
any n ∈ N, on the event {TR > n} there is either a
j /∈ A such that ΛRj (n) > −a, or an i ∈ A such that
ΛRi (n) < b. As a result, by the union bound we obtain

PA(TR > n) ≤
∑
j /∈A

PA(−ΛRj (n) < a)

+
∑
i∈A

PA(ΛRi (n) < b).

For any n > Nε(a, b) and i ∈ A, j /∈ A,

a < n ((c∗j (A)− ε)Jj − ε),

b < n ((c∗i (A)− ε)Ii − ε),

which implies that the series in (117) is bounded by∑
j /∈A

∞∑
n=1

PA

(
− 1

n
ΛRj (n) < (c∗j (A)− ε)Jj − ε

)

+
∑
i∈A

∞∑
n=1

PA

(
1

n
ΛRi (n) < (c∗i (A)− ε)Ii − ε

)
.

(118)

By the assumption of the theorem and an application of
Lemma A.2(i) with ρi = c∗i (A)−ε and of Lemma A.2(ii)
with ρj = c∗j (A) − ε it follows that (118) converges.
Thus, letting first a, b → ∞ and then ε → 0 in (117)
proves that, as a, b→∞,

EA[TR] . max
j /∈A, i∈A

{
a

c∗j (A)Jj
,

b

c∗i (A)Ii

}
.

In view of (46) and the selection of thresholds a, b
according to (20), this implies that

EA[TR] .
| log β|
yA J∗A

∼ | logα|
xA I∗A

, (119)

and proves (114).

The proof when |A| = ` = 0, in which case xA = 0,
is similar, with the difference that we use

Nε(a) := max
j /∈A

{
a

(c∗j (A)− ε)Jj − ε

}
(120)

in the place of Nε(a, c), and apply only Lemma A.2(i).

It remains to show that (115) holds when |A| = ` > 0,
in which case xA is not always positive. We recall the
definitions of Lε(c) and Nε(a) in (109) and (120) and
observe that for any ε > 0 small enough and a, c > 0
we have

EA[TR] ≤Lε(c) ∨Nε(a)

+
∑

n>Lε(c)∨Nε(a)

PA(TR > n). (121)

By the definition of TR in (17) it follows that, for any
n ∈ N, on the event {TR > n} there are either i ∈ A
and j /∈ A such that ΛRij(n) < c or j /∈ A such that
ΛRj (n) > −a, and as a result

PA(TR > n) ≤
∑

i∈A,j /∈A

PA(ΛRij(n) < c)

+
∑
j /∈A

PA(ΛRj (n) > −a).

Following similar steps as in the previous cases, applying
in particular Lemma A.2(ii) with ρj = c∗j (A) − ε and
Lemma A.2(iii) with ρj = c∗j (A) − ε and ρi equal to

Authorized licensed use limited to: Georgios Fellouris. Downloaded on December 30,2022 at 10:04:35 UTC from IEEE Xplore.  Restrictions apply. 



0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3177142, IEEE
Transactions on Information Theory

23

c∗i (A) − ε (resp. 0) when xA > 0 (resp. xA = 0), we
conclude that as a, c→∞

EA[TR] . max
i∈A,j /∈A

{
a

c∗j (A)Jj

∨ c

c∗i (A)Ii + c∗j (A)Jj

}
.

In view of (46) and the selection of thresholds a, c
according to (20), this proves (115).

Proof of Theorem 5.3: Fix A ∈ P`,u and a
probabilistic sampling rule R that satisfies (51). Since
c∗i (A) > 0 for every i in A (resp. Ac) when xA > 0
(resp. yA > 0), xA∨yA > 0, xA > 0 when |A| > `, and
yA > 0 when |A| < u, the exponentially consistency of
R under PA follows by an application of Theorem 4.1.
To establish its asymptotic optimality, by Theorem 5.2
it follows that it suffices to show that PA(πRi (n) < ρ)
is an exponentially decaying sequence for every ρ ∈
(0, c∗i (A)) and i ∈ [M ] such that c∗i (A) > 0. Fix such i
and ρ. Then, there is an ε > 0 such that

ρ+ ε < c∗i (A). (122)

By the definition of a probabilistic rule (recall (22)),
R(n+ 1) is conditionally independent of FRn given ∆R

n

and its conditional distribution, qR, does not depend
on n. Thus, by [39, Prop. 6.13] there is a measurable
function h : P`,u×[0, 1]→ 2[M ], which does not depend
on n, such that

R(n+ 1) = h
(
∆R
n , Z0(n)

)
, n ∈ N,

where {Z0(n), n ∈ N} is a sequence of iid random
variables, uniformly distributed in (0, 1). Consequently,
there is a measurable function hi : P`,u× [0, 1]→ {0, 1}
such that

Ri(n+ 1) = hi
(
∆R
n , Z0(n)

)
, n ∈ N. (123)

Then, for every n ∈ N we have

{πRi (n) < ρ}

=

{ n∑
m=1

hi (A,Z0(m− 1))

+
n∑

m=1

(Ri(m)− hi(A,Z0(m− 1)) < n(ρ+ ε)− nε
}

and as a result PA(πRi (n) < ρ) is upper bounded by

PA

(
n∑

m=1

hi(A,Z0(m− 1)) < n(ρ+ ε)

)

+PA

(
n∑

m=1

(Ri(m)− hi(A,Z0(m− 1))) < −nε

)
(124)

From (23) and (123) it follows that {hi(A,Z0(n −
1)), n ∈ N} is a sequence of iid Bernoulli random

variables with parameter cRi (A), whereas by (51) and
(122) it follows that ρ + ε < cRi (A). Therefore, by the
Chernoff bound we conclude that the first term in the
upper bound in (124) is exponentially decaying. The
second term is bounded as follows

PA

( n∑
m=1

(Ri(m)− hi(A,Z0(m− 1))) < −nε
)

≤PA

(
n∑

m=1

|Ri(m)− hi(A,Z0(m− 1))| > nε

)
≤PA

(
σRA > n

)
+ PA

(
σRA > nε

)
, (125)

where the first inequality follows from the triangle
inequality and the second by an application of the total
probability rule on the event {σRA ≤ n}, in view of the
fact that

σRA ≤ n ⇒
n∑

m=1

|Ri(m)− hi(A,Z0(m− 1))| ≤ σRA .

By the exponentially consistency of R, the upper bound
in (125) is exponentially decaying, which means that
the second term in the upper bound in (124) is also
exponentially decaying, and this completes the proof.
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